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ABSTRACT

Processing-in-memory (PIM) based architecture shows great po-
tential to process several emerging artificial intelligence workloads,
including vision and language models. Cross-layer optimizations
could bridge the gap between computing density and the available
resources by reducing the computation and memory cost of the
model and improving the model’s robustness against non-ideal hard-
ware effects. We first introduce several hardware-aware training
methods to improve the model robustness to the PIM device’s non-
ideal effects, including stuck-at-fault, process variation, and thermal
noise. Then, we further demonstrate a software/hardware (SW/HW)
co-design methodology to efficiently process the state-of-the-art
attention-based model on PIM-based architecture by performing
sparsity exploration for the attention-based model and circuit-
architecture co-design to support the sparse processing.
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1 INTRODUCTION

Advanced computing systems have been a critical enabler of the
tremendous success of computationally intensive artificial intelli-
gence (Al) models. However, in recent years, the advancements in
transistor scaling have been offset by excessive heat, power con-
sumption, and other issues related to physical limits. Furthermore,
from a system standpoint, modern processor throughput is ham-
pered by data transfer bandwidth. Computing efficiency, defined as
performance per unit power/energy consumption, has emerged as
an important metric for next-generation computing platforms.

To achieve better efficiency, one promising approach is to de-
sign domain-specialized accelerators with emerging nonvolatile
memories owing to their superior characteristics. For instance, Re-
sistive Random Access Memory (ReRAM), one type of promising
emerging nonvolatile memories, features remarkable scalability and
zero standby power thanks to its nonvolatility [27]. Moreover, the
ReRAM with the cross-point array or crossbar structure is applica-
ble for dense integration. This structure can fuse computation and
memory within modern computing models and thus is beneficial to
reduce the data-transfer overhead [35]. Based on this observation,
a pioneering crossbar-based design has been proposed to realize
matrix-vector multiplication (VMM) in the same physical space of
storage. That is to say, processing-in-memory (PIM) architecture
can bring significant efficiency improvement to computation tasks.

In an ideal case, the ReRAM device can be programmed to ana-
log resistance to represent the values ranging from low resistance
state (LRS) to high resistance state (HRS). However, the write driver
and the sense amplifier can only support limited precision, resulting
in the PIM system’s limited bitwidth representation of involving
elements [28]. Therefore, the quantization step is necessary, and
the quantization robustness becomes a critical issue, especially for
low-precision circumstances [7]. Moreover, the device’s static and
dynamic faults will degrade the inference accuracy of the neural
network [11]. Therefore, PIM-based system robustness should be
enhanced via software-hardware (SW/HW) co-design [36].

ReRAM-based PIM designs can naturally support the VMM com-
putations, which are the dominant components in convolutional
neural networks (CNNs). However, when the application involves
more complicated function blocks, the ReRAM-based PIM designs
should provide additional support for efficient data processing and
computation. We find that attention-based networks bring unique
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challenges for PIM designs. Therefore, we investigate potential
PIM-based architectural solutions on attention-based models.

This paper analyzes cross-layer optimization for efficiency and
robustness improvement and provides a case study for attention-
based networks. The remaining parts are formulated as follows:
Section 2 proposes the software optimization and hardware special-
ization for efficiency enhancement, and Section 3 focuses on the
hardware-software co-design strategies regarding the robustness
issue. Section 4 investigates a more complicated case, i.e., PIM-
based designs for attention-based models, and shows the potential
of PIM-based systems on broader models and applications. Section
5 concludes this work and discusses future topics.

2 EFFICIENCY ENHANCEMENT FOR
PIM-BASED DESIGNS

Efficiency is the major concern for designing PIM-based architec-
ture. Although PIM-based architecture can provide higher through-
put and alleviate the impact of data movement, naively mapping
workloads to PIM may lead to low utilization. If we cannot extract
parallelism from the workload, only a small portion of PIM cells can
participate in the computation, leading to low effective throughput.
Moreover, since one of the operands needs to be stored in PIM be-
fore the computation begins, we need to guarantee the PIM is large
enough to hold the data for each computation stage (i.e., work mem-
ory). If the required work memory is larger than the PIM capacity,
off-chip accesses are required during computation, incurring extra
power overhead and possibly stalling the computation process.

To enhance the efficiency of the PIM-based architecture, we intro-
duce several cross-layer optimizations. From the software/algorithm
perspective, we compress and reorganize the workload (e.g., the
deep neural networks) to fit the working memory on-chip and
extract sufficient parallelism, respectively. The software-level op-
timization takes the specification of the underlying hardware in
mind and targets maximizing the actual end-to-end speedup rather
than the theoretical benefits. From the hardware perspective, we ex-
plore the unique features of the workload and tailor the PIM-based
designs for each workload. The cross-layer optimization opens a
larger design space and makes it possible to seek a better solution.

2.1 Software Optimization for Efficiency

A lot of workloads to be deployed onto the PIM-based architec-
ture contain redundant computations. For example, we can remove
over 93% of the computations in a deep neural network by prun-
ing the unimportant weights with negligible accuracy loss [32].
Pruning the weights can also reduce the memory capacity require-
ment. However, removing arbitrary weights will not benefit the
efficiency. Since the basic operation of a PIM-based design is vector-
matrix multiplication, the computation can be skipped only if all
the weights of one row stored in the array are zeros. Thus, a high
pruning ratio does not necessarily convert to savings of memory
capacity or computation.

Structured pruning was adopted to address this challenge. In-
stead of removing individual weights, structured pruning tends to
prune an entire structure of the model, e.g., the filter, convolutional
kernel, or a row/column of weights. SSL[26] applies group LASSO
regularizer, which is the /1-norm of the [2-norms of the structures
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Figure 1: Pipeline configuration for DNN training in
PipeLayer [22].

that we want to remove. The regularizer will drive a large number
of these structures to be zeros. Apart from convolutional neural net-
works, this method can also be applied to other models like LSTM
[39]. Structured pruning can be further enhanced for PIM-based
designs. Group Scissor [24] introduces a two-step method to reduce
the memory capacity and computation cost. The first step is to per-
form the low-rank approximation to the original weight to reduce
the size of the weight, thus reducing the size of the crossbar. The
second step is to perform structural pruning to remove redundant
connections among crossbars and alleviate routing congestion.

Quantization is also an important method to compensate for
the limited bitwidth of the memory cell. Bit-slice sparsity [40] en-
forces the bit-slice regularizer during quantization-aware training,
producing the weights with sparse bit-slices. The all-zero bit-slice
can be skipped, thus reducing the number of cells required for de-
ployment. BSQ [31] extends this regularizer to generate bit-level
sparsity, making it possible to explore a broader design space for
mix-precision quantization.

2.2 Hardware Specialization for Efficiency

From the hardware perspective, we are seeing two major challenges
in enhancing the efficiency, 1) finding the optimal dataflow and
mapping scheme for both inference and training tasks of deep
neural networks (DNNs); 2) incorporating support for emerging
models/operators. We proposed a variety of PIM-based designs to
address these challenges.

RENO [18] pioneered the adoption of ReRAM crossbars for com-
puting neural networks. The crossbar arrays are used to calculate
the vector-matrix multiplication in the analog domain. A mixed-
signal router design was proposed to transfer the intermediate data
in analog form while maintaining the control and routing data in
digital form. RENO also features a pipeline between the PIM accel-
erator and CPU to execute the instructions. ISAAC [21] proposes a
full-fledged design to support the inference of convolutional neural
network. The read-out, sample and hold, analog-digital conversion,
and post processing are scheduled in a pipeline manner in each
compute tile to provide higher throughput. PRIME [3] presents a
full-stack solution including hardware architecture and software
interface to support in-situ computation of neural networks in main
momory. PipeLayer [22] then introduces the support for DNN train-
ing by adding weight update into the computation pipeline and
resolving the dependencies in training. The ReRAM arrays can be
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configured into morphable subarrays and memory subarrays, for
computation and storage, respectively. PipeLayer build a pipeline,
as shown in Figure 1, to efficiently support DNN training. A portion
of subarrays are configured into memory mode to store the activa-
tions for calculating the errors in the back propagation. The input
samples in the same batch are processed in a pipeline fashion since
the weight update is applied at the end of each batch and there
is no dependency among these samples. AtomLayer [20] further
addressed the inefficiency of PipeLayer for inference tasks. Atom-
Layer chooses to dedicate the PIM accelerator for processing one
layer and uses off-chip DRAM to store the intermediate data. The
extra communication with off-chip memory brings a low on-chip
buffer overhead, low latency, and high hardware utilization. Lat-
tice [41] calculates the dot product between input feature maps and
the weights in the peripheral circuits to eliminate the analog-digital
conversion cost.

Looking beyond conventional DNN, there are new operators
and workloads that expose opportunities for PIM-based designs.
Generative Adversarial Networks (GAN) involve transposed convo-
lutional (TCONV) layers. TCONV adds a zero insertion stage before
regular convolution to expand the input feature map. These inserted
zeros form a subset of patterns for the convolution since only non-
zero value needs to be computed. ReGAN [1] and ZARA[2] are
built on top of this observation. They pre-classify the weight ker-
nels into multiple subsets and only invoke computation between
the input and relevant subsets in both the forward and backward
phases of a TCONV. Depthwise separable convolution significantly
reduces the parallelism by decomposing the original convolution
into depthwise and pointwise stages. The lack of parallelism leads
to poor efficiency on PIM. MobiLattice [42] address this issue by
introducing an additional digital mode to the PIM design where the
weights are read from the array and processed in a local processing
element (PE). The digital mode is able to avoid excessive ADC and
crossbar latency when the parallelism is insufficient to offset the
cost. Apart from DNN, graph analysis is also a series of important
workloads. Due to the sparse nature of the graphs, it is challenging
to map such workloads to PIM-based designs. GraphR [23] imple-
ments the graph processing with each ReRAM crossbar executing
the sparse matrix-vector multiplication. The graph is partitioned
into subgraphs and stored in a compressed format. After that, the
subgraphs are processed by the graph engines (GE) with a stream-
apply execution model.

3 ROBUSTNESS IMPROVEMENT IN
PIM-BASED ARCHITECTURE

To realize robustness improvement, methodologies for SW/HW
co-design require minimum hardware overhead to prevent non-
ideal properties from compromising the accuracy and performance
of PIM systems [29]. The PIM implementation of computational
networks can tolerate some level of variation, as shown in selected
small networks [9]. However, the variation in the PIM-based system
may have a more severe impact on large-scale networks, such as
more than 10% of accuracy degradation on the VGG19 network on
the CIFAR-10 dataset [12]. For the PIM system variation, we con-
sider the cell-level, subarray-level, and system-level variation [35].
For example, the stuck-at fault [8] is viewed as cell-level variation;
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Figure 2: Loss surface contour along two random directions
around converged weights. Estimated on ResNet20 model on
CIFAR-10 dataset trained with HERO [33] and SGD.

IR-drop [10, 15] is categorized as subarray-level variation; process
variation is considered as system-level variation. Furthermore, we
find that several strategies are effective in robustness improvement
to these variations, such as the retraining method during finetune
stage [17], error compensation with redundant crossbar/array [15],
and inline calibration scheme [19]. To enhance the robustness of
PIM systems, we first look into the hardware design and algorithm
optimization for quantization robustness and provide promising
solutions. Moreover, for robustness against the variation, we in-
vestigate the hardware-aware training method for inference and
training stages and discuss reliable and effective hardware design.

3.1 Design and Optimization for Quantization
Robustness

As mentioned in Section 2.1, quantization is an effective method to
save memory bandwidth. However, due to the fixed precision quan-
tization, the weight will be perturbed by a I« bounded variation,
deviating the result from the software training result. Moreover,
limited memristor resolution leads to reduced precision of synap-
tic weights and drastically reduces system accuracy. To address
this issue, a hardware/software co-design process that adapts train-
ing iterations to generate hardware-compatible weights directly is
highly effective. The following are three techniques in the co-design
process [25]: Firstly, distribution-aware quantization selects the op-
timum discrete weight values based on the device-programmed
memristance distribution. Additionally, quantization regularization
ensures that well-trained weights are distributed in the manner
provided by the quantization scheme. Furthermore, independent
bias tuning assists neural networks in learning the optimal bias to
compensate for the accuracy offsets caused by distribution-aware
quantization and quantization regularization. It also helps to reduce
the impact of process variation.

Furthermore, a recent study uncovers that quantization robust-
ness and generalization performance can be unified and optimized
under the Hessian-enhance regularization optimization (HERO) [33].
HERO follows the observation that the generalization gap between
training and inference is bounded by a I weight perturbation [5]. In
order to jointly minimize the generalization gap and quantization
loss, the Hessian value is proved to be necessary for the gradient
formulation. As a result, HERO can achieve a more flat loss sur-
face around the converged weights as shown in Figure 2. HERO
can boost the quantization robustness and will benefit the PIM
deployment accuracy under various weight precision settings.
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Table 1: In-memory training accuracy results under ReRAM
programming variation in ResNet20 network on CIFAR-10
dataset with SGD and ESSENCE [38].

Method 0.5% 1.0% 1.5% 2.0%
SGD 82.79% 37.40% 23.95% 17.03%
ESSENCE 89.71% 88.21% 83.07% 76.73%

3.2 Hardware-aware Training for Variation
Robustness

Aside from the quantization variation, the PIM system also suffers
from process variation, input signal noise, thermal noise, shot noise,
and other types of noise [4]. To combat the process variation and
input signal noise, the noise-eliminating training (NET) method [14]
based on a new crossbar structure is proposed to eliminate the noise
accumulation during training. NET method can adapt dynamic
threshold to reduce the noise amplitude in the high-sensitivity
region of two selected activation functions, namely sigmoid and sgn
function. In general, the optimal selection of dynamic threshold can
help reduce the PIM system sensitivity to noise without the failure
of training convergence. Moreover, the variation-aware training
method [16] can actively compensate the impact of device variations
and optimizes the mapping scheme from computations to crossbars.

However, due to the computing efficiency consideration, the
high operating frequency of PIM system is preferable. At the same
time, the amplitude of the thermal noise and shot noise would
increase, and lead to the convergence failure of the previous training
method [6]. In order to combat the combination of thermal noise and
shot noise at the high operating frequency, we propose the ReRAM-
based stochastic-noise-aware training (ReSNA) method [34]. The
ReSNA method starts with the analysis of the noise distribution at
specific operating frequency and temperature. The noise amplitude
is then converted to the relative impact on the weight value. After
that, such relative impact and other PIM hardware settings are
included in the training process. As a result, ReSNA can provide
reliable and robust training results under the combination of noise.
More importantly, ReSNA is a generalized method as it can also
provide promising inferencing results even when further including
random telegraph noise and programming noise.

The NET and ReSNA methods consider the PIM inference stage
and provide effective hardware-aware training solutions. But note
that PIM-based training is a more challenging problem under the
consideration of variation. The main reason is that each training
iteration involves the reprogramming of the weight value, and thus
introduces programming variation periodically. Even with batch
training techniques, PIM-based training is still unstable and may
fail. Recently, an endurance-aware training method ESSENCE [38]
proposes to utilize a structured sparse gradient matrix to update
the weight and reduce the number of reprogramming by up to 10x.
One impressive benefit of ESSENCE is more stable training results
under the programming variation. Under 2.0% Gaussian distributed
random programming noise, ESSENCE can outperform SGD by
more than 59%, as indicated in Table 1. Therefore, ESSENCE enables
robust and reliable in-memory training against the variation.
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Figure 3: Accuracy recovered by MFTA [13] under various
process variations (denoted by o). x- and y -axis are the accu-
racy before and after applying MFTA, respectively.

3.3 Hardware Exploration for Variation
Robustness

For the hardware design, we aim to stabilize the weight repre-
sentation and improve the PIM-system robustness. To provide a
comprehensive analysis, we cover two circumstances for the PIM
implementations of multi-layer perceptron (MLP) and spiking neu-
ral network (SNN), where the input value is encoded as the voltage
amplitude and spike firing time, respectively.

For the MLP case, the integration of the feedback controller
in [30] to adaptively modify the sensor directions significantly
reduces this accuracy loss. The feedback controller chooses the
next inferencing voltage direction depending on the results of the
previous round of inferencing rather than using the "compute-and-
read-verify" method. By doing this, the PIM engine develops into
a self-correcting system that can handle any faults that may be
brought on by the read disturbance. When compared to the naive
open loop design without any feedback controllers, the service
life (which represents the length of reliable recall executions) with
a feedback controller is increased by a factor of over ten.

For the SNN case, the robustness improvement involves the ad-
justment of the firing threshold and timing threshold. For instance,
variation has an impact on the post-spike firing rates from the
current-based activation function, and subsequently reduces com-
putational accuracy. By tuning firing thresholds to alter the firing
times, this issue can be successfully addressed. The multi-level fir-
ing threshold adjustment (MFTA) method intentionally increases
the firing thresholds of post-neuron post-spikes when they fire
earlier than anticipated due to ReRAM process variations and vice
versa [13]. The results in Figure 3 are generated from the Monte
Carlo simulation to validate the efficacy of the MFTA scheme. The
MTFA can recover the accuracy under various variation levels and
maintain high inferencing accuracy results. In summary, hardware
designs for different networks can provide promising solutions for
better variation robustness.

4 CASE STUDY FOR ATTENTION-BASED
MODEL

4.1 Dense Attention-based Model

Attention-based neural networks have shown superior performance
in a wide range of tasks. However, the computational complexity
of the attention operation hinders the deployment of attention-
based neural networks on resource-constrained devices. Although
researchers have successfully applied ReRAM-based PIM to acceler-
ate conventional neural networks, the unique computation process
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Figure 4: Illustration of sparse attention.

of the scaled dot-product attention makes it difficult to be directly
used in these designs. The key challenge for scaled dot-product for
ReRAM-based implementation is the intermediate result challenge.
In the attention-based model, the two operands Q and K are both
obtained as intermediate results generated from previous linear
layers. To calculate the subsequent Q and K7, one of these two
matrices has to be loaded to the ReRAM array as a conductance
matrix to perform PIM MatMul. However, constrained by the pro-
gramming driver circuits, programming a matrix into a ReRAM
array is usually slow, and it could cause a longer latency to load
intermediate results into ReRAM arrays and stall the computation.
Moreover, the iterative calculation in a multi-head self-attention
module inevitably causes frequent rewriting of ReRAM cells, lead-
ing to a high and unavoidable write energy consumption.

ReTransformer [37] proposes a pipelined method to reorder data
generation and computation process of scaled dot-product attention
layer between Wp and Wk. At beginning of the inference, Wp
and Wy are initialized and written into two ReRAM crossbars,
respectively. To perform the dot product between Q and K in the
ReRAM-based PIM module, one of the intermediate results Q and
K, must be stored in a ReRAM crossbar.

The basic method is to decompose the computation into two
cascaded multiplication steps. The original computation order is to
compute two weights matrices with input matrices to generate Q
and K, and then compute the Q and KT multiplication. An optimized
computation flow is to compute the Q matrix first. Then, instead
of computing K matrix, the computation is reordered to perform
the multiplication between Q and weight. The generated output
is then multiplied by input matrix. Hence, a possible way to avoid
writing the intermediate results into a ReRAM crossbar can be
the follows: at the beginning of the process, we initialize ReRAM
crossbars with the weight matrices. Then we could form a pipeline
where the first stage is to compute Q by multiplying weights and
input, and the second stage is to compute intermediate results by
multiplying Q and weight. In the meanwhile, we initialize another
ReRAM crossbar which stored the input matrix. We then perform
could compute the intermediate result with the input matrix to save
processing time. The evaluation result shows that the proposed
pipeline scheme could improve efficiency by up to 80%.

4.2 Sparse Attention-based Model

From the algorithm perspective, a better accuracy-computation
complexity trade-off can be achieved by exploiting a dynamic and
unstructured sparsity in the attention map matrix (as shown in
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Figure 4), where the original attention computation is converted
to a sampled dense-dense matrix multiplication (SDDMM) and a
sparse-dense matrix multiplication (SpMM). However, the unique
unstructured and dynamic sparsity pattern in the sparse attention
challenges the mapping efficiency of the PIM architecture, as the
conventional PIM architecture uses a VMM primitive. For one PIM
bank, the sparse computation pattern leads to a low utilization rate,
which originates from rigid input/output dimensions of the VMM
primitive. We can abstract each PIM bank into a M X N PE array
which computes the inner product between a M X N matrix and a
1 X M vector in each cycle. in the attention map computation stage,
the k vectors are stored in the memory array, and the Q vectors
are streamed into the PIM bank, where the output attention map
matrix is streamed out. At each cycle, M elements in a Q vector can
be computed with N K vectors. In this case, the PIM bank is fully
utilized only when N continuous indexes in the attention map mask
are valid. In other words, the output dimension of the PIM bank
cannot be fully filled, which will reduce the effective output paral-
lelism. Similarly, for the output computation stage, the V vectors
are stored in the memory array and the sparse attention map matrix
is streamed into the PIM bank. At each cycle, M elements in a row
of the attention map are computed with N V vectors. We need to
ensure N continuous indexes in the attention map mask are valid
to fully utilize the PE array. That is to say, the input dimension is
not fully filled with a reduction of the effective input parallelism. In
general, for the current PIM architecture, the computation primitive
provided by the PIM bank is not suitable for sparse processing in
the attention model.

We would like to address this problem by performing a circuit-
architecture co-design methodology. The conventional PIM bank
only provides the primitive of VMM with fixed input and output
parallelism. To improve the mapping efficiency, the basic idea is
to collapse the input or output dimensions according to the pres-
ence of sparsity. We still abstract each PIM bank into a M X N PE
array. However, we assume that the PE array can be dynamically
configured to compute the inner product between two 1 X MN vec-
tors or multiplication between one scalar and one 1 X MN vectors.
In the attention map computation stage, the output dimension is
sparse. Instead of mapping the sparse dimension into the spatial
parallelism, we map the sparse dimension in a temporal loop. For
each computation cycle, we compute one non-zero value in the
sparse attention map from the inner product between one g and k
vectors. The computation corresponding to the pruned attention
scores can be skipped. Since the token dimension is a relatively
large value (e.g. 64, 128) and M, N is a small value (e.g. 8), the M X N
PE array can be fully utilized. Similarly, when the input dimension
is sparse, the input is viewed as a scalar and each computation cycle
produces one output vector corresponding to the product of the
non-zero attention map and one V vector. For each computation
cycle, we feed one non-zero value in the sparse attention map as
a scalar and perform a scalar vector multiplication between the
scalar and one specific v vector. The computation corresponding to
the zero-value attention map can be skipped.

Following this micro-arch design principle, we need to have some
requirements of the PIM bank design methodology, where each
bank should be reconfigured to support one of these three primitives.
In scalar vector multiplication (SVM) mode, the PIM bank receives
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a scalar as the input, multiplies it by the vector stored in the bank,
and produces a vector as the output. In the inner product (IP) mode,
the PIM bank receives a vector as the input, computes the dot-
product of the input vector and the stored vector, and produces a
scalar as the output. In addition, the throughput delivered by each
bank should be maintained as it is in the original design. Thus, we
need to scale up the vector dimension in these two primitives. For
example, if the original PIM bank provides the VMM primitive of
the shape M X N (i.e., input length is M, output length is N), our
reconfigurable PIM bank design will provide the SVM primitive
with the shape of 1 X MN, or the IP primitive with the shape of
MN X 1. Therefore, the proposed design can efficiently support the
unstructured and dynamic sparsity pattern in the attention map.

5 CONCLUSION

In this paper, we demonstrate that cross-layer optimizations could
bridge the gap between computing density and the available re-
sources by reducing the computation and memory cost of the model.
Moreover, We introduce design and optimization to improve the
model robustness to the PIM device’s non-ideal effects. Further-
more, we propose a SW/HW co-design methodology to process the
state-of-the-art attention-based model on PIM-based architecture
efficiently. We believe that the robustness enhancement remains
an open question since the theoretical analysis is worth exploring.
Besides, the automatic design flow for PIM systems should also be
included in the SW/HW co-design framework.
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