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ABSTRACT

The International Pulsar Timing Array 2nd data release is the combination of datasets from worldwide collaborations. In this

study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in

the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational

span. We find no evidence for such signals and set sky averaged 95% upper limits on their amplitude ℎ95. The most sensitive
frequency is 10nHz with ℎ95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA
band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered
common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in
some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in
searching for continuous gravitational wave signals and setting the upper limit.

Key words: gravitational waves – methods:data analysis – pulsars:general

1 INTRODUCTION

The goal of the Pulsar Timing Array (PTA) collaborations is to detect
gravitational wave (GW) signals in the nanohertz band, where we

★ E-mail: falxa@apc.in2p3.fr

expect to see a gravitational wave background (GWB) produced by
the superposition of GW signals from the population of supermassive
black hole binaries (SMBHBs) (Jaffe & Backer 2003; Sesana et al.
2008; Maiorano et al. 2021). Some individual SMBHBs might be
brighter than most and stand above the stochastic signal; those are
individually resolvable sources (Sesana et al. 2009; Rosado et al.
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2015). The binaries detectable in the PTA band are in the orbits
with the period from a few months to a few years and emit almost
monochromatic GWs continuously during decades; we refer to those
signals as continuous GWs (CGWs) (Ellis et al. 2012; Babak et al.
2016; Aggarwal et al. 2019; Corbin & Cornish 2010).

The GWs affect propagation of the radio emission from millisec-
ond pulsars leaving an imprint in the time of arrival (TOA) of pulses
observed with the radio telescopes. CGWs impact TOAs from all
observed millisecond pulsars in a deterministic manner character-
ized by parameters of the SMBHBs. In this work, we consider the
data combined by the International Pulsar Timing Array (IPTA).
IPTA is a consortium of NANOGRAV (NANOGrav Collaboration
et al. 2015), European Pulsar Timing Array (EPTA) (Desvignes et al.
2016a), Australian (PPTA) (Manchester et al. 2013a) and Indian Pul-
sar Timing Array (InPTA) (Tarafdar et al. 2022) collaborations. In
particular, we analyze the second data released by IPTA (IPTA DR2)
described in details in Perera et al. (2019).

Recently, PTA collaborations have reported on the discovery of
the common red noise signal, that is the stochastic signal with the
spectral shape common to all pulsars in the array. Its high statisti-
cal significance was demonstrated independently by three collabora-
tions (Arzoumanian et al. (2020a); S Chen et al. (2021); Goncharov
et al. (2021)) and, with even higher statistical confidence, was as-
sessed using the IPTA DR2 (Antoniadis et al. 2022). We do not yet
know the nature of this process, and its interpretation as GW back-
ground is inconclusive: the data is not informative enough to resolve
the Helllings-Downs spatial correlations (Hellings & Downs 1983),
which should be present in the case of the GW signal.

In this work, we search for continuous GWs which could be present
in the data in addition to the stochastic GWB. Following the steps
of previous studies (Babak et al. 2016; Aggarwal et al. 2019; Zhu
et al. 2014; Becsy et al. 2022; Becsy & Cornish 2020; Arzouma-
nian et al. 2023), we search for a single GW signal produced by a
SMBHB binary in a circular orbit. In our study, we neglect the pulsar
terms during the search and setting an upper limit on GW amplitude.
However, we do an in-depth analysis of the (weak) candidate events
identified as plausible GW signals. In the followup analysis on the
restricted parameter space (frequency and sky position), we extend
our model to include (i) pulsar term, (ii) eccentricity, (iii) extend the
model beyond the assumption of a single source. For the first time,
we have included in the analysis the common red component as a
part of the total noise model.

The main results of the paper can be summarized as follows.
We did not detect any CGW signal and set an upper limit on GW
amplitude. We have found that the noise model plays a crucial role in
interpreting PTA observations. The detailed analysis performed on
the most promising candidate event revealed that it could be explained
by a time-correlated high-frequency noise in one of the pulsars.

The paper is organized as follows. In the next Section, we will
briefly describe the IPTA DR2 dataset and the data model used in
the analysis. Most of the material needed for this Section is available
in the literature, and we heavily refer to it, keeping only parts which
are necessary for further presentation. In Section 3 we describe the
methodology which we have followed to get our results presented in
Section 4. In Section 5 we give a detailed follow-up study of a most
promising GW candidate event and demonstrate the importance of
noise modelling at high frequencies. We conclude with Section 6.
Throughout the paper, we adopt geometrical units � = � = 1.

2 IPTA DATA RELEASE 2 AND THE DATA MODEL

2.1 IPTA DR2 dataset

The IPTA DR2 consists of 65 stable MSPs with the duration of
observations up to 30 years (Antoniadis et al. 2022; Perera et al. 2019)
1. It combines the pulsar timing data acquired by European Pulsar
Timing Array (Desvignes et al. 2016b), North American Nanohertz
Observatory for Gravitational Waves (Arzoumanian et al. 2016),
and the Parkes Pulsar Timing Array (Manchester et al. 2013b). The
combined data is superior to the datasets of each collaboration: (i) it
has better sky coverage providing better localization of GW signals,
(ii) allows better decoupling and identification of noise components
due to increased number of observing backends, and (iii) reduces the
number of gaps in the data due to absence of observations. We have
already observed the improvement in the detection of the common
red noise process in Antoniadis et al. (2022) by using IPTA data.

The combined dataset was analyzed to extract the properties of
individual pulsars (pulse frequency, spin-down, parallax, etc.) by
fitting a timing model that predicts the TOAs (Edwards et al. 2006).
Differences in predicted TOAs and measured TOAs in the dataset
form the timing residuals. The residuals are the result of various
noise processes as well as the interaction of the radio emission with
GWs, which is the main subject of this work.

2.2 Noise model

The noise of each pulsar data is modelled using the Gaussian process
and split into several components (see Antoniadis et al. (2022) for
details). The white noise (WN), that estimates the TOA measurement
errors, quantifies the radiometer noise in the receiver backend system
and models the jitter noise which is intrinsic to the pulsar (statistics
of pulse-to-pulse variation). The timing model (TM) corrects deter-
ministic TOA perturbations of physical origin (Edwards et al. 2006).
Even though we fit the TOAs for the timing model before we start the
analysis, the fit might not be perfect and leave behind some residuals
which we assume to be small and use a linear model2 to describe
TM-generated errors. The low-frequency part of the data is strongly
affected by red noise, which is a time-correlated process which power
spectral density (�( � )) we describe as a simple power-law. We dis-
tinguish achromatic red noise (RN, ��

��
) intrinsic to each pulsar

(denoted by a subscript �) due to stochastic variations in the rotation
of a pulsar and chromatic (i.e. dependent on the radio frequency at
which pulses are observed) dispersion measurements variations (DM,
��
��

) noise caused by time-varying interstellar medium properties
along the line of sight. Those two processes are described as

��� ( � ) =
�2
��

12�2
� −3
��

(

�

���

)−���

, (1)

��� ( � ) =
�2
��

12�2
� −3
��

(

�

���

)−���
(

1400���

�

)2

, (2)

where � is radio observation frequency and ��� = yr−1 (see Anto-
niadis et al. (2022) for details). Note that {��� /�� , ��� /�� } are
individual for each pulsar and we omit the pulsar index � to ease
the notations. In addition, for the first time, we will also add the
common red noise which is firmly established recently (Antoniadis

1 We used only the 53 pulsars of Antoniadis et al. (2022) for our analyses.
2 Linear in deviations from already determined parameters
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et al. 2022; Arzoumanian et al. 2020b; S Chen et al. 2021; Gon-
charov et al. 2021), we denote it as {�crn, �crn}. This is a red noise
component with the spectral properties shared across all pulsars in
the array. The nature of this signal is still unclear, there is not enough
evidence to support its GW origin, and it is a subject of current active
investigations; for now, we call it "crn".

All observations are translated to the solar system barycenter
(SSB) frame. The transformation from the Earth’s based frame to
SSB relies on a precise knowledge of the solar system ephemeris
(SSE): in this work, we use DE438 ephemeris (Folkner & Park 2018).
It was noted that there could be unaccounted systematic errors in the
SSE, which could be mistaken for a stochastic GW signal. We have
included BAYESEPHEM (Vallisneri et al. 2020) in the data model to
mitigate those potential errors. BAYESEPHEM is a phenomenolog-
ical model that varies the orbital elements of major external planets
and takes into account possible systematics in SSE; note that it might
also absorb part of the stochastic GW signal.

The GW background would require including the Hellings-Downs
correlations between pulsars in the data model. We do neglect cross-
correlation terms in our analysis, reducing in practice the GW back-
ground to the detected CRN. This is justified because: (i) any cross-
correlation present in the data is rather weak; otherwise, it would
have been detected (ii) the auto-correlation part is captured already
in the CRN process that we include in the model.

All in all, the model of the timing residuals is a superposition of the
noise components described above. In addition, we will assume (and
test this hypothesis) that the data contains a deterministic continuous
GW signal ���� (�):

®�� = M®� + �� � + ��� + ���� + ��� + ���� (�) + ���� (�). (3)

The TM contribution is described by M®� where M is a design matrix
and ®� are the linear corrections to the timing model parameters;
�� � , ��� , ���� , ��� are the components described above and
correspond to the white noise, the individual red noise, the common
red noise and the dispersion measurement variations noise; the signal
���� (�) denotes the BAYESEPHEM model for SSE systematics.

We base our analysis on the noise model derived for each pul-
sar independently. This approximation assumes that the GW signal
contribution is sub-dominant and neglected in modelling each pulsar
data. In fact, the GW signal will be absorbed into the RN during this
step and should be decoupled when we analyze the full array allow-
ing RN parameters to vary. For the main analysis, we fix parameters
of the WN component to their maximum likelihood values obtained
from the single pulsar noise analysis. It was shown (Antoniadis et al.
2022; Chalumeau et al. 2021) that this does not affect the result for the
stochastic GW signal search, and we assume the same for continuous
GW search. This assumption tremendously reduces the parameter
space, which otherwise would be computationally intractable.

We model each noise component as a Gaussian process (van
Haasteren & Vallisneri 2014) using sin and cos as basis functions
evaluated at �� = �/���� Fourier frequencies, where ���� is time
span of observations:

�(�) =

�︁

�

�� cos(2�� �� ) + �� sin(2�� �� ), (4)

where the �� and �� are the Gaussian distributed weights with the
covariance matrix defined by the power spectral density of the noise.
In our approach, we marginalize over the weights. In previous PTA
analysis (Babak et al. 2016; Aggarwal et al. 2019; Zhu et al. 2014), the
number of Fourier components (�) was fixed to 30 for both RN and

DM3. This choice was motivated by computational savings and that
those noise components mainly contribute at the low-frequency end
of PTA sensitivity. However, the recent study based on the Bayesian
model selection has shown that the noise models with specific values
of � for each noise component and each pulsar are better supported
by the data (Chalumeau et al. 2021).

2.3 Continuous Gravitational Waves

The concept of detecting GWs with PTA was formulated in Sazhin
(1978); Detweiler (1979) . The response to a deterministic GW signal
can be written as

�� (�, �) =

∫ �

0

1

2

�̂�� �̂
�
�

1 + �̂� · Ω̂
Δℎ� � (�

′)�� ′, (5)

where �̂� is the unit vector pointing to the pulsar � in the sky, Ω̂
is the direction of GW propagation and ℎ� � is the GW strain in
the transverse-traceless gauge (� and � are the spatial indices). The
response depends on the GW strain at two instances of time: the time
of emission of electromagnetic signal and the time of its reception:

Δℎ� � (�) = ℎ� � (� − ��) − ℎ� � (�), (6)

where

�� = �� (1 + Ω̂ · �̂�) (7)

and �� is the distance to the pulsar �. The time difference in the
strain corresponds to the light travel time between the Earth and the
pulsar with a geometrical factor. The corresponding two terms in the
expression of the timing residuals are usually referred to as Earth ��
and pulsar �� terms:

�� (�) = ��,� (� − ��) − ��,� (�). (8)

The strain amplitude of a GW produced by a circular binary system
is given by:

ℎ� � (�,Ω) =
︁

�=+,×

��� � (Ω̂)ℎ�(�), (9)

where �
+,×
� �

are two GW polarization tensor defined as

�+� � (Ω̂) = �̂��̂ � − �̂� �̂ � , (10)

�+� � (Ω̂) = �̂��̂ � − �̂� �̂ � , (11)

Ω̂ = − sin � cos ��̂ − sin � sin ��̂ − cos ��̂ (12)

and the unit vectors are

�̂ = − sin ��̂ + cos ��̂, (13)

�̂ = − cos � cos ��̂ − cos � sin ��̂ + sin ��̂, (14)

where (�, �) are the polar coordinates of the GW source sky location.
Plugging these expressions in equation (5), we obtain the timing

residuals expected in the PTA data for a CGW signal coming from a
circular SMBHB:

�� (�, Ω̂) =
︁

�

��(Ω̂) [��(�) − ��(� − ��)] (15)

3 Note, NG have used a different model for DM, namely DMX, which is
not decomposed in Fourier basis functions (Lam et al. 2016; NANOGrav
Collaboration et al. 2015)
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with :

�+ (�) =
M5/3

���(�)1/3

[

− sin[2Φ(�)] (1 + cos2 �) cos 2�

−2 cos[2Φ(�)] cos � sin 2�] , (16)

�× (�) =
M5/3

���(�)1/3

[

− sin[2Φ(�)] (1 + cos2 �) cos 2�

+2 cos[2Φ(�)] cos � sin 2�] , (17)

where M is the chirp mass, �� the luminosity distance, �(�) the
CGW orbital angular frequency, � is the orbital inclination to the line
of sight, � is a polarization angle and Φ(�) is the phase of CGW.

The �� are the antenna pattern functions (Babak & Sesana 2012;
Sesana & Vecchio 2010; Ellis et al. 2012; Taylor et al. 2016) given
as

�+ (Ω̂) =
1

2

(�̂ · �̂)2 − (�̂ · �̂)2

1 + Ω̂ · �̂
, (18)

�× (Ω̂) =
(�̂ · �̂) (�̂ · �̂)

1 + Ω̂ · �̂
. (19)

In this work, we neglect the pulsar term considering it as a part of
the noise, assuming that the source has evolved sufficiently over ��
to move the pulsar term off the earth-term frequency. Including pul-
sar term should improve the parameter estimation but comes with a
huge price of the increase in the complexity of the likelihood surface
and the dimensionality of parameter space (2 additional parameters
per pulsar for phase and frequency of pulsar term, e.g. see Corbin
& Cornish (2010)). We foresee the possibility of following up the
candidate events (identified using the earth term only) with the ex-
tended signal model (pulsar term, eccentric orbit) on the reduced
parameter space. We also neglect the evolution of the GW frequency
(�� = 2� ��� ) over the observation time. The frequency evolution
becomes potentially measurable for the heavy sources emitting at
frequency ≥ 10−7Hz, neglecting the frequency evolution does not
prevent us from detecting the sources but introduces a bias in the
measured GW frequency (overestimating it), for more details see
conclusion in Petiteau et al. (2013). So the CGW phase takes a very
simple form:

Φ(�) = ��� + �0/2, (20)

where �0 is initial orbital phase. Finally, the CGW amplitude ℎ is a
function of M, �� and ��� given by

ℎ =
2M5/3 (� ��� )−2/3

��
. (21)

We consider the model containing only one CGW signal. This
model still detects multiple CGW if they are present in the data at the
non-overlapping Fourier frequencies (see Babak & Sesana (2012)
for discussion). If we find more than one candidate with sufficient
statistical significance as potential GW sources, we will conduct ad-
ditional investigations extending our model to include several CGWs.
We start the analysis with 1 CGW source characterized by 7 parame-
ters summarized in table 1 together with their prior range (we always
assume a uniform prior4).

4 For setting an upper limit we use uniform prior on the amplitude of GW
strain

CGW parameter Range

log10 ℎ [-18, -11]
��� (Hz) [10−9, 10−7]

�0 [0, 2�]
cos � [-1, 1]
� [0, �]
� [0, �]
� [0, 2�]

Table 1. List of the CGW parameters as defined in our model with their
respective ranges.

3 METHOD

We work within the Bayesian framework and start with running
the search for the CGW signal. As mentioned above, we sample
parameters of CGW together with the noise parameters for RN and
DM. We keep the white noise parameters fixed and marginalize over
the timing model and BAYESEPHEM parameters. We made two
runs: with and without CRN, to check how much it affects our result.
We always use Markov chain Monte-Carlo (MCMC) sampler (Ellis
& van Haasteren 2017), and we use ENTERPRISE (Ellis et al. 2020)
software to construct the models and compute the likelihood and
prior probability.

We extensively use the single pulsar noise explorations runs per-
formed before the main analysis. We have converted posteriors for
the RN and DM into 2D histograms ({��� ,�� , ��� ,�� }) and
use them as one of a proposal for those parameters. This empirical
proposal improves the efficiency of MCMC and reduces the autocor-
relation length of the chain (Aggarwal et al. 2019).

During the search, we compute the Bayes factor (BF), comparing
the null model (noise only) against the model where we have a CGW
signal on the logarithmically spaced frequencies. In the absence of
the detection, we proceed to setting an upper limit, building a 95%
sensitivity curve. During the upper limit analysis, we used a uniform
prior on the amplitude of the GW signal.

IPTA data contains 53-millisecond pulsars; however, not all of
them are equally sensitive to the CGW. We have selected 21 pulsars
which, on average, recover 95% of the array’s total signal-to-noise
ratio (SNR) to CGW. The selected pulsars are depicted on the pro-
jected sky map in Figure 1 as red stars; we have used large green
stars and annotation for the four best timers. The ranking method
is briefly outlined in Babak et al. (2016) and in greater detail in L.
Speri et al. (2022). This significantly reduces the computational cost
without much affecting the final results 5

Historically we have performed the search with the noise model
with the uniform settings across all pulsars in the array; namely, we
have used 30 frequency bins for modelling both RN and DM pro-
cesses (as it was done in preceding work Arzoumanian et al. (2014);
Aggarwal et al. (2019)). Using this uniform setting we have obtained
quite erroneous results, and after a long investigation, we realised
that this noise model does not adequately describe the observational
data (see section 5). We have switched to another noise model where
we have used the custom-made noise model for the six best EPTA
pulsars (see Chalumeau et al. (2021) for details), and for other pul-
sars, we changed the number of used frequency bins: RN30DM100 –

5 We have analyzed 21 pulsar, the noise model for each pulsar is character-
ized by 4 parameters (an amplitude and a spectral index for RN and DM);
Bayesphem adds 11 parameters. Finally, we have 7 parameters for the contin-
uous wave and 2 for the common red noise, giving a total of 104 parameters
to sample.

MNRAS 000, 1–11 (2021)
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frequency bins for RN as it was the recommended value for spectral
index > 1.5 (see Goncharov et al. (2021)).

This was a useful exercise that triggered a set of investigations we
would have to do in case of any CGW candidate. In addition, this
section shows the importance of custom modelling noise for the best
pulsars in the array, especially the noise at high frequencies, which
is often partially neglected, assuming that it is dominated by the
white (measurements) noise and it does not affect the search for the
stochastic GW signal (which is most pronounced at low frequencies).
The considered event shows how unmodelled high-frequency noise
could conspire for CGW signal.

6 CONCLUSION

We have searched for a continuous GW signal in the IPTA DR2
dataset. We have used the Bayesian approach and based detection
criteria on the Bayes factor. We have shown that using a custom
noise model for the six best EPTA pulsars is essential for the correct
interpretation of the data. This is especially true for J1012+5307,
which exhibits time-correlated noise at high frequencies. We found
no CGW candidates using this noise model and proceeded to set
the upper limit on GW strain. The addition of CRN in the noise
model slightly affects the upper limit by lowering the sensitivity of
the array at low frequencies. The most sensitive frequency appears
to be around 10 nHz with a 95% sky averaged upper limit for CGW
amplitude ℎ95 = 9.1 × 10−15. The IPTA DR2 shows a much better
upper limit than previously set at higher frequencies, making it a
promising dataset to detect CGW.

During the analysis, we demonstrated the CGW candidate follow-
up investigations program, which was an important exercise that
should be used in subsequent PTA CGW analysis. The expected
CGW signal has low SNR, and its SNR will be slowly accumulated
as we get more pulsars and a longer observational span. Modelling
noise in pulsar data is essential, especially at high frequencies.

This analysis was limited to circular SMBHBs using only the
Earth term. The use of eccentric CGW signal and including the
pulsar term might potentially improve the search; however, it brings
signal complexity which might make harder the interpretation of
the results and increases the parameter space. We are entering the
era of very high quality and high cadence radio observations with
new instruments like FAST (Hobbs et al. 2019) or SKA (Stappers
et al. 2018) with sophisticated data analysis techniques. Additional
investigations of the best approach to detecting CGW have to be re-
investigated, probably using simulated data and/or an extended CGW
signal injection campaign.
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