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Abstract—In-sensor-processing (ISP) paradigm has been
exploited in state-of-the-art vision system designs to pave the way
towards power-efficient sensing and processing. The redundant
data transmission between sensors and processors is significantly
minimized by local computation within each pixel. However, exist-
ing ISP designs suffer from limited frame rates and degraded
fill factors. In this brief, we introduce a low-latency in-sensor-
intelligence neuromorphic vision system using neuromorphic
spiking neurons, namely SpikeSen. SpikeSen directly oper-
ates on the photocurrents and executes the computation in the
frequency domain, reducing the long exposure time and speed-
ing up the computation. Experiments show that SpikeSen
can achieve more than 6.1× computation speedup compared to
existing ISP designs with competitive energy consumption per
pixel.

Index Terms—In-sensor-processing, neuromorphic computing,
low latency, frequency-domain computation, CMOS.

I. INTRODUCTION

THE PROLIFERATING edge computing techniques
greatly reduce the energy consumption and latency of data

transmission by moving computation resources close to source
data in low-power real-time applications such as Internet-of-
Things (IoT), portable devices, robots, etc. Vision systems that
incorporate image sensors and processors are critical compo-
nents in edge computing devices. The limited power budget
and latency requirement have triggered a series of near-sensor-
processing (NSP) vision system designs for image processing
applications [3], [5], [7], [15]. These designs place low-power
processors near the image sensor on a single chip to reduce the
physical distance between the raw image data and the process-
ing elements. Nevertheless, the power-hungry analog-to-digital
converters (ADCs) between sensors and processors still hinder
the vision systems from pursuing higher energy efficiency and
performance.

In-sensor-processing (ISP) paradigm recently gains atten-
tion owing to its capability of building ultra-low-power vision
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systems targeted on always-on image processing applications.
In the ISP designs [8], [9], [12], [13], [14], processing ele-
ments are integrated within the pixels of the CMOS sensors.
The processing element directly fetches the analog outputs
from sensor pixels and performs image pre-processing compu-
tation locally, such as multi-layer perceptrons (MLPs), support
vector machines (SVMs), or the 1st layer of binary neural
networks (BNNs). This design concept reduces the consid-
erable power of analog-to-digital conversion, saves memory
access cost and bandwidth between sensors and proces-
sors, and avoids the need for large buffers for raw images.
Nevertheless, unresolved drawbacks still exist in prior ISP
designs, including the degraded fill factor and the long expo-
sure time. Advances in neuromorphic engineering, inspired by
the computation mechanisms of human brains, have led to a
generation of large-scale spike-based processors for cognitive
computing. Representative neuromorphic designs [1], [2], [4]
perform spike-based computation in which the data are rep-
resented by the temporal information of spike trains. With
simple synapse and neuron circuit implementations, neuro-
morphic computing hardware becomes a promising solution
to pursuing higher power efficiency. Conventional spike-based
image sensors [10], [11] transforms the photocurrent values
to the spike frequency or timing in each pixel circuit, but
they fail to implement computation associating multiple pixels.
Developing a scheme which benefits from the direct integra-
tion of ISP and neuromorphic computing hardware becomes
a valuable research topic.

To overcome the challenges in existing ISP vision systems,
we propose a low-latency in-sensor-intelligence design with
neuromorphic spiking neurons, namely SpikeSen. To our
best knowledge, SpikeSen is the first ISP design that directly
processes the photocurrents and computes the 1st layer of
BNNs in the spike frequency domain. The main contributions
in this brief include:

1) We propose a spike-based computing pixel (SCP) and
SCP string circuit that leverages the CMOS-based neuro-
morphic spiking neuron and capacitive synaptic weight
to process the photocurrent locally within each pixel and
accumulate the partial results from adjacent pixels.

2) Based on the proposed SCP circuit substrate, we design
SpikeSen, a low-latency ISP vision sensor with
neuromorphic spiking neurons. SpikeSen executes
convolution in the frequency domain with extremely low
latency.

3) We optimize the mapping scheme and control flow of
SpikeSen with a novel sub-SCP structure. The paral-
lel operations of multiple sub-SCPs further simplify the
control flow and speed up the computation.
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Fig. 1. (a) The structure of our proposed spike-based computing pixel (SCP).
(b) The structure of the neuromorphic spiking neuron in SCP.

II. CHALLENGES IN IN-SENSOR-PROCESSING DESIGNS

There exist NSP designs [3], [5], [15] that deploy the pro-
cessors close to the pixel array. ISP designs [9], [13], [14]
go further by fusing the processing units with the pixels.
Unresolved drawbacks exist in the prior CMOS-based ISP
designs. First, the local analog processing element deployed
within each pixel contains several memory cells to store model
parameters, and thus the fill factor is degraded. For exam-
ple, in [14], a register is added in each processing circuit
to store weights. In [13], an SRAM macro that contains
16 SRAM cells is included in each in-pixel processing cir-
cuit. Second, the computation in the prior designs requires a
long exposure time to accumulate photocurrents, which leads
to a long computation latency. Third, the prior designs still
require power-consuming ADCs to convert analog outputs to
the digital domain.

III. NEUROMORPHIC VISION SENSOR DESIGN

In this section, we introduce SpikeSen from the basic
circuit substrate to the top architecture. We start from the
unit cell in SpikeSen named spike-based computing pixel
(SCP) in Section III-A. Then we introduce how to build
the interconnects between different SCPs in Section III-B.
Based on the proposed circuit structure, we present our
proposed spike-based neuromorphic vision sensor design in
Section III-C.

A. Spike-Based Computing Pixel

The proposed SCP computes the product between the pixel
value in the format of photocurrent and the weight value pro-
grammed to a capacitor. Fig. 1(a) depicts the structure of our
proposed SCP. In each SCP, the “programmable capacitor” Cm
is in parallel with the photodiode (PD) and in series with the
spiking neuron. The spike neuron consists of a transistor Mnrn
in parallel with a Schmitt trigger that controls the gate voltage
of Mnrn. We adopt the Schmitt trigger designed in [6] due to
its simplicity, as shown in Fig. 1(b).

Principle of SCP: Assume the current flowing through the
spike neuron is Inrn, the photocurrent is Iph and the current
charging Cm is IC. One can derive the equations:

Inrn + IC = Iph; IC = Cm
dVout

dt
. (1)

Assume the high/low threshold voltages of the Schmitt trig-
ger in the spiking neuron are VthH and VthL, respectively.
When Vout increases from 0 and is lower than VthH , Mnrn
is cut off. Inrn is much smaller than Iph, leading to IC = Iph.

Fig. 2. Simulation Vout waveform of SCPs with different Cm values.

IC keeps charging Cm until Vout = VthH , toggling the out-
put of the Schmitt trigger. Mnrn is then switched on with
Inrn >> Iph, leading to a large discharging current IC = −Inrn
that decreases Vout to VthL instantly, based on Equation (1).
Then Mnrn is turned off again. This charging/discharging loop
generates the oscillating Vout, and its frequency is proportional
to Iph since the charging phase (IC = Iph) is dominant in the
charging/discharging loop.

In an SCP, the output oscillating frequency is not only
proportional to the input photocurrent Iph, but also inversely
proportional to the capacitance Cm since dVout

dt = IC
Cm

during
the charging phase. As shown in Fig. 2, larger Cm leads to
smaller Vout oscillation frequency. In our SCP design shown
in Fig. 1(a), Cm consists of a transistor switch in series with
a capacitor Cs and in parallel with a small capacitor Cp. The
binary weight is represented by the gate voltage of the tran-
sistor switch Mi, denoted as Vin. When Vin is low and Mi
is switched off, Cp leads to low capacitance state (LCS) of
Cm. When Mi is switched on, Cp is bypassed and Cs leads to
high capacitance state (HCS). By programming the weight to

1
Cm

, the output oscillating frequency of SCP will represent the
product of the photocurrent strength and the weight.

B. SCP String for MAC Operation

The proposed SCP implements multiplication within
each pixel unit in the frequency domain. Prior ISP
designs [13], [14] require a long exposure time (∼ 1ms) to
accumulate the photocurrents from multiple cells on the capac-
itors and convert the voltages to the digital domain as the
computation results. Substituting the slow photocurrent accu-
mulation with high-frequency oscillation greatly shortens the
computation latency and boosts the performance. However,
the connections between multiple pixels are also necessary to
accumulate the multiplication results from different pixels.

To support multiply-and-accumulate (MAC) operations with
our basic SCP design, we propose a structure called SCP
string. Fig. 3(a) shows the structure of a 2-cell SCP string that
consists of two basic SCP cells (SCP1 and SCP2) in series as
a simplified example. SCP1 is connected to the power sup-
ply VDD. The output is generated by the spiking neuron in
SCP2. There is an additional initialization circuit including
two bias resistors Rbias, which will be interpreted hereinafter.
Since these two SCPs are connected in series, the following
equations can be derived:

Inrn + IC1 = Iph1; IC1 = Cm1
dVC1

dt
;

Inrn + IC2 = Iph2; IC2 = Cm2
dVC2

dt
;

dVout

dt
= dVC1

dt
+ dVC2

dt
; (2)
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Fig. 3. (a) The structure of a 2-cell SCP string for MAC operation. (b) The
simulation result of a 2-cell SCP string oscillating waveforms, including the
output voltage Vout and the internal node voltage between the two cells Vint .

where VC1 and VC2 are the voltages across two SCPs. The
series connection enables the oscillation to be modulated by
both SCPs, i.e., dVout

dt = IC1
Cm1

+ IC2
Cm2

.
The oscillation behavior in the SCP string is similar to the

oscillation in a single SCP. When Vout increases from 0V, Inrn
is much smaller than Iph1 and Iph2. Thus IC1 = Iph1 and IC2 =
Iph2, leading to dVout

dt = Iph1
Cm1

+ Iph2
Cm2

. In this way, the increasing

speed of Vout can represent the MAC result
Iph1
Cm1

+ Iph2
Cm2

. When
Vout reaches the threshold voltage of the Schmitt trigger VthH ,
Inrn becomes much larger than Iph1 and Iph2, decreasing Vout
instantaneously. The oscillation frequency is proportional to
the MAC result between the input vector [Iph1 Iph2] and the
weight vector [ 1

Cm1

1
Cm2

]. Following the same design principle,
an n-cell SCP string that consists of n basic SCP cells in series
can compute the MAC results of n-element input vectors and
weight vectors. The SCP string enables the accumulation of
the products calculated in multiple SCP cells in the frequency
domain. The SCP cells are connected in series so that the
voltage changes of all the SCPs are summed up. This overall
voltage change is reflected by the change of output voltage
Vout. Thus, the oscillation frequency of Vout represents the
overall MAC result.

Weight representation and bias cancellation: As interpreted
hereinbefore, the weight in each SCP is represented by 1

Cm
.

However, for the implementation of binary neural networks,
even if the −1 weights are represented by 1

Cm,HCS
where

Cm,HCS is the high capacitance state value, they still posi-
tively contribute to the output oscillation frequency. To cancel
this positive weight bias and enable ±1 weights, an addi-
tional cycle is required to program all the capacitance values
inversely. The final output should be the difference between
the output frequency in the computation stage and the output
frequency in this bias cancellation stage, i.e.,

Output = fcomp − fbc

=
N∑

n=1

Iph,n
1

Cm,n
−

N∑
n=1

Iph,n
1

C′
m,n

=
N∑

n=1

Iph,n

(
1

Cm,n
− 1

C′
m,n

)
, (3)

where Cm,n and C′
m,n are Cm values in the n − th SCP in the

SCP string during the computation stage and bias cancellation
stage, respectively. C′

m,n is Cm,HCS while Cm,n is Cm,LCS, or

vice versa. In this case, +1 weights are represented by 1
Cm,LCS

−
1

C′
m,HCS

and −1 weights are represented by 1
Cm,HCS

− 1
C′

m,LCS
. Such

a differential computing paradigm also contributes to better
noise immunity.

The initialization of SCP string: The PDs should work
in reverse bias. In an SCP string, we need to guarantee
that the PD in each SCP is in reverse bias, which means
VC1 < Vbias < 0 and VC2 < Vbias < 0. Hence, a bias resistor
Rbias is added in parallel with PD and Cm in each SCP. The
voltages of the internal nodes between adjacent SCPs are dis-
tributed evenly between VDD and ground by the bias resistor
string during the initialization stage, reversely biasing all the
PDs. Fig. 3(b) shows the simulation result that manifests the
oscillation behavior of the internal node voltage in a 2-cell
SCP string in Fig. 3(a). Both the output voltage Vout and the
internal node voltage Vint oscillate at the same frequency. It
can be observed that Vint gradually approaches VDD when the
oscillation proceeds, leading to decreasing bias voltage of the
PD in SCP1. To guarantee the reverse bias of PDs throughout
the operation, a periodic initialization is required to prevent
any two internal node voltages in the SCP string from inter-
secting each other. The initialization period depends on the
values of the photocurrent Iph and Cm, as well as the total
voltage supply of the SCP string VDD.

C. Spike-Based Neuromorphic Vision Sensor

1) Fundamental SpikeSen Architecture: The fundamen-
tal architecture overview of SpikeSen is shown in Fig. 4(a).
To enable the formation of different SCP strings within
SpikeSen, interconnects between adjacent SCP cells are
necessary. Take 2 × 2 convolution as an example. A 4-cell
SCP string executes the MAC result in a 2 × 2 win-
dow. We adopt a “Left-to-right column-by-column (LRCC)”
interconnect scheme to form an SCP string with 4 SCPs, as
shown by the red arrows in Fig. 4(b). In each 4-cell SCP string,
the 4 SCP cells have 4 different interconnect modes and mod-
ulate the photocurrents with different weights. For example,
the top-left SCP is connected to VDD and the bottom-left SCP;
the top-right SCP is connected to the bottom-right SCP and
output the MAC results. In total, 8 controllable interconnects
in each SCP are required to form the LRCC SCP string, as
highlighted in Fig. 4(a). Note that when the adjacent SCPs
are connected, the interconnects are merged. For example,
the TL of SCP(x, y+1) is the same interconnect as the BR
of SCP(x, y). Fig. 4(c) shows the ON/OFF state of the 8
interconnects under the 4 interconnect modes. Note that the
8 interconnects can support larger convolution kernels under
our LRCC interconnect scheme. The difference lies in how
to control the interconnects according to the position of each
SCP in the SCP string.

To slide multiple kernels on the image and generate multiple
output feature map channels, C binary weights are pro-
grammed to Cm in each SCP, where C is the output channel
number. These C binary weights are at the same position
of different kernels in a BNN layer. C output feature map
channels are generated sequentially. Since for each output
channel, the control flow is identical, we will concentrate on
the single-channel convolution hereinafter.

2) Sub-SCP Structure Optimization: In the fundamental
SpikeSen architecture, the entire SCP array is divided into
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Fig. 4. (a) The overall architecture of SpikeSen. (b) The LRCC formation of multiple SCP strings in SpikeSen to perform a 2 × 2 convolution. (c) The
ON/OFF state of the 8 interconnects in each SCP under the 4 interconnect modes.

multiple SCP strings that work in parallel with the same
kernel. When one cycle of computation is completed, the
interconnect mode of each SCP should be switched to form
different SCP strings, which is equivalent to sliding the kernel
over the image. Besides, the weights are also supposed to be
shifted on the SCP array. The total cycle number of a single-
channel convolution computation depends on the number of
interconnect modes, e.g., 4 cycles for 2 × 2 convolution.
Both the interconnect mode and the weight of each SCP need
switching when one cycle of computation is completed.

The controllable interconnects using CMOS switches inject
additional noises to the oscillating voltage output and degrade
the computation accuracy. Therefore, we propose a novel sub-
SCP structure of SCP that can implement the kernel sliding in
a more efficient way than the fundamental SCP in Fig. 4(a).
The proposed sub-SCP structure of an SCP is shown in Fig. 5.
For a 2 × 2 convolution, the original SCP is divided into
four sub-SCPs, and each sub-SCP contains two interconnects,
one programmable Cm and one PD, respectively. All the four
sub-SCPs in one SCP sense the same image region, and
work simultaneously under one of the four interconnect modes
respectively. The spiking neuron is added to the sub-SCP at
the output side of the SCP string.

The benefits from the sub-SCP design are two-fold. First,
since the interconnects are distributed to different sub-SCPs,
no CMOS switches are needed to control the ON/OFF state of
the interconnects. The noises caused by CMOS switches are
avoided. Second, the weights in one convolution kernel are
mapped to different sub-SCPs of a SCP. Since the sub-SCPs
work in parallel under different interconnect modes, the com-
putation of a single-channel convolution is completed in one
cycle instead of multiple cycles in the fundamental architec-
ture, thus reducing the total computation latency and boosting
the throughput.

IV. EXPERIMENTS

A. Experiment Setup

We perform the post-layout simulation of the proposed cir-
cuits in Cadence Virtuoso with TSMC 65nm PDK. The size
of the SCP array is set to 32 × 32. In the evaluated structure,
each SCP contains 4 sub-SCPs to perform a 2 × 2 convolu-
tion layer. Since the oscillation frequency of spiking neuron
reaches above 2MHz, the computation stage is set to 5us for

Fig. 5. The sub-SCP structure in each SCP.

Fig. 6. The relationship between the final output of a 4-cell SCP string and
the expected MAC results after bias cancellation.

each output channel, and the total computation latency of each
output channel is 10us including the bias cancellation stage.
The initialization period is set to 5us.

B. Computational Accuracy Analysis

Fig. 6 shows the relationship between the oscillation
frequency of a 4-cell SCP string and the expected MAC results
after bias cancellation. Here we simulate with 4-cell SCP
string to verify the computation results of a 2 × 2 convolu-
tion. In the simulation, LCS/HCS are set to 20fF/200fF. The
photocurrents range from 0 ∼ 10nA with 6 levels. The ini-
tialization circuit is also included in the simulation. Process
variations with a standard deviation of 10% are injected to Cm
in each SCP. A ±5% voltage fluctuation is applied to the power
supply of the SCP string. We perform Monte Carlo simulation
with 160 data points under 27◦C, 80 data points under −40◦C
and 80 data points under 120◦C. The expected MAC results
of 4 capacitive weights and 4 photocurrent-based inputs are
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TABLE I
COMPARISON WITH EXISTING NSP AND ISP DESIGNS

depicted by the X-axis. The final output frequency depicted
by the Y-axis is linearly proportional to the expected MAC
results, indicating the capability of the proposed SCP struc-
ture to perform MAC operations. The oscillation frequency
of SpikeSen output increases with the temperature. The lin-
earity and immunity to process variations are degraded under
high temperature (120◦C). The measured SNR under room
temperature is 18.2dB.

C. Energy, Performance and Area Comparison

Table I shows the comparison between SpikeSen and
existing NSP designs [3], [15] and ISP designs [9], [13], [14].
We scale the latency of each design according to a 2 × 2 con-
volution layer with 6 output channels. We select energy per
frame per pixel as the Figure of Merit for fair energy efficiency
comparison and scale the data to 65nm/1.2V node.
SpikeSen achieves at least 6.1× latency reduction over

existing NSP designs [3], [15] and ISP designs [9], [13], [14].
SpikeSen consumes 22.06pJ pixel-wise energy per frame,
which achieves at least 66.8% reduction compared to the
digital and mixed-signal ISP counterparts [3], [15]. The
extremely low computation latency of SpikeSen stems from
the high-frequency-domain computation performed by SCPs.
Because the oscillation is generated by charging and dis-
charging the capacitor, SpikeSen also features minor static
power dissipation during the oscillation. SpikeSen does not
defeat [13], [14] in terms of energy per pixel. However, it
should be noted that these designs generate binary MAC
results by sensing the differential voltage outputs. To achieve
competitive precision with SpikeSen, they require power-
hungry ADCs to sense differential voltage as well as analog
peripherals that assist the computation, leading to considerable
power consumption and area overhead.

V. CONCLUSION

In this brief, we propose SpikeSen, a low-latency in-
sensor-intelligence vision sensor design with neuromorphic
spiking neurons. SpikeSen harnesses the novel spike-based
computing pixel design and performs the computation in
the frequency domain. SpikeSen significantly outperforms
prior designs with more than 6.1× computation speedup and
competitive energy consumption.
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