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ABSTRACT

We consider the space-time sampling and reconstruction of
sparse bandlimited graph signals driven by a heat diffusion
process. In this paper, we develop a sampling framework con-
sisting of selecting a small subset of space-time nodes at ran-
dom according to some probability distribution, generalizing
the classical variable density sampling to the heat diffusion
field. We show that the number of space-time samples re-
quired to ensure stable recovery depends on an incoherence
parameter determined by the interplay between graph topol-
ogy, temporal dynamics, and sampling probability distribu-
tions. In optimal scenarios, as few as O(slog k) space-time
samples are sufficient to ensure accurate recovery of all k-
bandlimited graph signals that are additionally s-sparse. Our
proposed sampling method requires much fewer spatial sam-
ples than the static case by leveraging temporal information.
Finally, we test our sampling techniques on a wide variety of
graphs. The numerical results on synthetic and real climate
data sets support our theoretical findings and demonstrate the
practical applicability.

Index Terms— Graph signal recovery, sampling theo-
rem, sparse signals, random space-time sampling, compres-
sive sensing.

1. INTRODUCTION

In the era of big data, graph signals are ubiquitous. Graph
signal processing has become a very active research topic
[1, 2, 3, 4]. Sampling theory is a fundamental component
of graph signal processing and has attracted considerable re-
search attention. It concerns when a graph signal can be re-
covered from its discrete sampled values. In classical sam-
pling theory, the signals of interest are defined on regular do-
mains and are smooth, where smoothness is built upon con-
cepts of frequency analysis, such as bandlimitness and shift-
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invariance. It becomes more challenging in the graph setting,
as espoused in review paper [5]. One of the difficulties lies
in how we can develop and connect notions of frequencies
for graphs that model the actual properties of signals of inter-
est. Several graph sampling approaches [6, 7, 8] have recently
been developed based on different notions of graph frequency,
bandlimitedness, and shift-invariance, and have found various
applications in modeling real graph data sets.

In modern applications, there are many situations where
the graph signals to be sampled and recovered are evolving
in time. Examples include propagation of rumors over social
networks [9], neural activities transfer in different regions of
the brain [10], and spatial temperature profiles measured by
a wireless sensor network [11]. Due to application specific
constraints, one may not be able to get enough samples to re-
construct the graph signal at any single time snapshot. How-
ever, it is sometimes convenient to obtain sampled values of
graph signals at multiple time instances. Reconstruction of
time-varying graph signals from space-time samples has re-
ceived much attention in recent years [12, 13, 14, 15, 16, 17].
Different models for time series over graphs have been con-
sidered. The examples include bandlimited graph processes
[12], dynamical processes with smooth temporal difference
[13], and signals defined on time-varying graphs [17]. Vari-
ous reconstruction algorithms [12, 13, 14] are proposed. In
most of these works, the space-time samples are often cho-
sen uniformly at random or according to sampling theory for
static graph signals [14]. Despite the superior empirical per-
formance, the sampling and recovery methods are short of
theoretical guarantees. Sampling theory for dynamical pro-
cesses over graphs is relatively scarce in the literature. For
the smooth temporal difference model, [13] provides a char-
acterization for feasible deterministic sampling sets for their
reconstruction algorithm. For bandlimited graph processes,
[15] considered both deterministic and Bernoulli space-time
sampling. Necessary conditions on probabilities are derived
to ensure the exact reconstruction of signals and a convex op-
timization approach was proposed to choose the optimal sam-
pling design.

In this paper, we proposed a random space-time sampling
approach for s-sparse bandlimited graph signals with band-
width k driven by a heat diffusion operator. We select space-
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time nodes randomly according to a predetermined probabil-
ity distribution and reconstruct the signal via solving an /;-
minimization problem. We provide a theoretical sampling
bound on the sampling complexity to guarantee the exact re-
covery of the signal. There are several merits of our sampling
method: (i) Our sampling method is computationally cheap.
Once the probability distribution is determined, the node se-
lection can be realized quickly; (ii) It allows us to perform
physics-informed space-time sampling. We develop a notion
of optimal sampling distribution that depends on the graph
topology, the signal bandwidth, and the temporal dynamics
[18]. We show in optimal scenarios, O(slog k) space-time
samples are enough to guarantee robust recovery. Further, nu-
merical examples on synthetic and real data sets demonstrate
the effectiveness of the proposed approach.

2. NOTATION, PRELIMINARIES AND SET-UP

We provide some formal definitions related to graph oper-
ators and signals. For an undirected weighted graph G =
(V,E,W), where V. = {v1,---,v,} is a set of vertices,
E C V x V is a set of edges, and W is the weighted ad-
jacency matrix. Specifically, if we denote (v;, v;) as the edge
between v; and v; if they are connected with positive weight,
w;; > 0, W is defined as

W(i,j) = {wij, (vi,vj).e E .

0, otherwise
In particular, W is symmetric because G is undirected. The
degree of a vertex v; is defined by deg(v;) = E;’:l W (i, 5),
and the diagonal degree matrix of G is denoted by D =
diag(deg(v;)).

With these definitions in place, we introduce the Lapla-
cian operator of G as L = D — W. L is a positive-
semidefinite operator, hence it admits an eigendecomposi-
tion as L = UXU T where the columns of U are orthonor-
mal, and ¥ is a diagonal matrix containing the eigenvalues
01, -+ ,0n > 0. According to spectral graph theory, the
multiplicity of 0 equals the number of connected components
of the graph. In this paper, we consider connected undirected
graphs and assume the multiplicity of each eigenvalue is 1.
Soweshallhaveo; =0 <09 < -+ < 0.

A graph signal is a vector x € R"™ defined on the vertices
V of G, i.e. x(7) is the signal value associated with the node
v;. For any graph signal x on G, the graph Fourier transform
of x is defined as x = U " x, where %X contains the Fourier co-
efficients of x ordered in increasing frequencies. The inverse
Fourier transform is defined naturally as x = UX.

A graph signal can be considered smooth if neighboring
nodes have similar signal values. As such, we may define the
smoothness of a graph signal x to be the weighted sum of
squared differences between every pair of neighboring nodes.

This quantity can be represented via the Laplacian as

Y wy(x(i) = x()*

(vi,vj)EE

x Lx =

For a smooth signal x, x| Lx is small, and since x ' Lx =
St oix(i)%, we expect x(i) to be near zero for suffi-
ciently large indices of 7. This motivates the definition of
k-bandlimited signals and its subset of s-sparse signals.

Definition 1. A graph signal x on G is k-bandlimited for
some k € Z, if x € span(Uy), where Uy, denotes the first
k columns of U. Equivalently, x is bandlimited if the only
nonzero entries of X are in the first & positions. Furthermore,
A k-bandlimited graph signal x on G is s-sparse for s € Z
with s < kif

[supp(X)| = [{i : x(i) # 0} <s.

This generalized the sparse bandlimited signals from
classical setting [19] to finite graphs. In practice, the band-
width is typically unknown, so one can choose a large upper
bound k. In many cases, signals of interest are s-sparse in
the spectral domain. In this paper, we will consider s-sparse
k-bandlimited graph signals that diffuse according to the heat
equation, given by

0]
—xy = —Lx t>0.
ot t ts =
This diffusive process is determined completely by the
initial condition, since x; = e *Fxy. Restricting to only

discrete uniform observations, we label the time-steps by
{0, At,--- , (T — 1)At} for some At > 0 and T € Zy.
Define A = e~ 2L as the signal evolution operator, then the
diffusive signals are given by x, Ax, --- , AT ~!x. Note that
A=UAU", where A = e~ 2" If we denote Ay, -- - , Ay, as
the diagonal entries of A, then 1 = Ay > -+ > \,.

The heat diffusion process over graphs is a simple yet ef-
fective model of real-world dynamics. It finds applications
in modeling diffusion phenomena such as temperature vari-
ations, pollution dispersion, and functional connectivity of
neurons in different regions of the brain. We assume that A
is known and consider how we can leverage the underlying
physics to perform efficient space-time sampling.

2.1. Space-time Variable Density Sampling

The space-time sampling and reconstruction problem can be
formally stated as follows. Let €2; denote the subset of nodes
at which the signal x; is observed, then we wish to deter-
mine sufficient conditions on {Q;}7 ' such that x; can be
stably recovered from its space-time samples. When 7" = 1,
then this problem reduces to the sampling of s-sparse and k-
bandlimited static graph signals.

We will consider the following random sampling proce-
dure on the space-time nodes with respect to a probability
distribution on all space-time locations.
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Let p be a probability distributionon J = {1,2,--- ,Tn},
we construct the sampling set 2 = {wy, - , wy, } by drawing
m indices with replacement from J according to p, i.e.

Plw; =) = p(i)

The corresponding sampling matrix S € R™*T™ is defined
as

Vj=1,---,m;i€7.

1, j:wi

We collect the probabilities of selecting each element in 2
into a diagonal matrix P € R™*™ given by

Po = Sdiag(p)S" = diag([p(w;)]}%, ).

We may apply the sampling matrix to the extended space-time
signal in R"T formed as

otherwise

rar() =[x (49T, (47 T]

Our goal is to recover x from its space-time samples y =
Sﬂ'A,T(X).

2.2. Sparse Representation of 74 ()

To establish the main sampling and reconstruction theorem,
our key idea is to produce a sparse representation of the diffu-
sion trajectory 74 7(x) generated by x. We recall first that x
is sparse relative to Uy,. This sparsity is preserved through the
diffusion process, that is, A'x is also sparse relative to Uy,. As
such, we can introduce a natural extension Uk,T of Uy such
that m4 7 (x) is sparse relative to a space-time orthonormal
dictionary U, &, defined as:

1 1 1
OO T 12 Fr(w) M
1 u 2 u k u
Uk,T _ fT(/\.l) L fT()\'2) 2 fT(/\js=) k e RTxk.
)\’{7.1 A§7.1 )\Z*‘l
OO Froe M2 Fr () Uk
where fr(\;) = EJT 01 A2 is introduced to normalize the

columns. Note that in the static case (i.e. T = 1), Uk,T = Uyg.

Now we verify the claim that if x is s-sparse and k-
bandlimited, then U, ;w4 7 (x) is s-sparse. If x is bandlim-
ited of the form x = Zf_l ¢y, denote & = [¢y, -+, éx] ",
then 74 7(x) = Uy, pdiag ([fr(N\)]Ey) € with

diag([fr(\i)]F_, )¢ being s-sparse.

3. RECOVERY /;-MINIMIZATION PROBLEM

With a sparse representation of w4 7(x) in place, we propose
the following ¢;-minimization problem for signal recovery.
Consider

1 1
min ||c[|1 subject to P, * SUr,rc = Py *y, 3.1
ceR

where a weighted sampling matrix PS;% is applied to ensure
numerical stability. As the true solution diag([fr()\;)]F_;)e
is s-sparse, if it is the unique solution to the ¢;-minimization
problem (3.1), then we can recover x = Uy¢C uniquely by
solving the ¢;-minimization problem. The following theo-
rem, derived from theorem 12.20 in [20], provides a sufficient
condition on the number of space-time samples required for
consistent recovery.

Theorem 1. Let x be a s-sparse, k-bandlimited signal. As-
sume that Q = {wq, - - wm} are selected according to p as
in subsection 2.1. Denote U T(5 as the jth row of U, T, and
suppose the incoherence parameter K (p) is finite, where

K = e 3.2
(p) = max 0 3.2)
Then as long as m > CK?(p)slog(k)log (6’1) , for some

constant C > 0, with probability at least 1 — ¢, the vector €
is the unique solution to the {-minimization problem in 3.1.

3.1. Optimal Sampling Distribution

A natural follow-up investigation to Theorem 1 is how we
can minimize the number of samples necessary for recovery.
It is clear that the relevant factor is K2(p). The following
proposition gives us an ‘optimal’ probability distribution pop
that minimizes K2(p).
Proposition 1. Define K(p) as in 3.2. K?(p) is minimized
when p = Popt, Where

N 2
|0

o)

2
N

Popt (1) =

In the optimal case, we have

Z”Uk 705 1%-

Notice that the optimal samphng distribution pop is not
dependent on signal sparsity, so a one-time calculation is suf-
ficient for the optimal recovery of all space-time signals in

popt

span ((NI k,T>- From now on, we only consider the optimal
case, and denote p = popt and K = K (pPopt)-

As Uy r contains k normalized columns, we obtain an
upper-bound for K2 as

Tn ~ 9 Tn k ~
= Z HU,IT(SdHOO < ZZUIG,T(Z}]')Z =k.
d=1 i=1 j—1

Our numerical experiments show that for highly irregular
graphs, K2 could be of the order O(k). For regular graphs,
K? are often of order O(1), such as in the case of the un-
weighted ring graph, which has sinusoidal eigenvectors and
therefore the entries of U, &, 7 have approximately equal norms.
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4. EXPERIMENTS

In this section, we will empirically investigate three aspects of
the recovery problem: (i) verify the sampling complexity of
Theorem 1; (i) study behavior of K? for certain graphs; (iii)
test our methods on real data. We use the Lasso algorithm
[21] as the ¢1-minimization solver.

4.1. Number of Samples for Accurate Recovery

In this subsection, our main goal is to investigate how the re-
quired number of space-time samples m varies with respect to
the sparsity s of the graph signal. Specifically, we want to find
the smallest such m such that at least 95 out of 100 randomly
generated sparse and bandlimited signals can be recovered via
Theorem 1 with less than 5% relative error.

We perform this test on the Minnesota graph (n =
2642,k = 1000) and the unweighted ring graph (n =
1000,k = 400) from the GSP Toolbox [22], comparing
optimal dynamic sampling and uniform dynamic sampling
methods. The dynamics are determined by the heat diffusion
process in Section 2 with At = 4 and T' = 10.

The results are summarized in the left panel of Figure 1.
We note that the number of samples required for consistent
recovery is roughly proportional to s, as shown by the linear
best-fit dashed lines, supporting the claims of Theorem 1.

4.2. Incoherence Parameter 2

We now discuss the relationship between K2 and k, T for the
Minnesota graph and the unweighted ring graph, shown in the
right panel of Figure 1.
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Fig. 1: Left: The number of space-time samples v.s. the sparsity for Min-
nesota graph (top) and ring graph (bottom) with linear best-fit dashed line.
Blue: optimal sampling distribution. Yellow: uniform sampling distribution.
Right: K2 v.s. bandwidth and time for Minnesota graph (top) and ring graph
(bottom).

We see that for both graphs, K2 has a very weak positive
correlation with T. However, K2 is highly dependent on k.
For the irregular Minnesota graph, K? is roughly linearly re-
lated to k& with coefficient 0.08. As for the unweighted ring
graph, K? is bounded by a constant 5 as a function of k. As
such, we may treat K2 for the ring graph as a constant. In
fact, the class of regular graphs with reasonable weights all
have near-constant bounds on K ? as a function of k.

4.3. Real Data: Sea Level Measurements

We now apply our recovery methods to the sea level pressure
data set from [23]. The signals (n = 500) are naturally ban-
dlimited over a KNN graph (see [18]). We choose a time se-
ries consisting of 7" = 50 snapshots and bandwidth k& = 200.
Such signals are approximately to be sparse with s = 30. We
remark that the KNN graph is approximately regular, and as
such the optimal sampling distribution is close to the uniform
sampling distribution.

We first numerically demonstrate the advantage of dy-
namic optimal sampling (7" = 50) versus static optimal sam-
pling (T = 1). For each fixed number of samples m, we con-
duct 100 trials and record the recovery results with an error
plot, representing the average relative error and the standard
deviation. The results are shown in the left panel of Figure 2.
With more than 20 samples, the dynamic sampling method

1.0 1.0
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g g
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& 02 & 02
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Fig. 2: Recovery results for real sea level pressure data. Left: space-time
recovery versus static recovery. Right: comparison of space-time variable
density sampling with static optimal sampling approaches.

can reconstruct signals with around 10% relative error with
high probability, as indicated by the tight error bar.

We also compare the average relative error of the pro-
posed optimal and uniform sampling method with existing
sampling algorithms from Tsitsvero et al. [6], Chen et al. [7],
and Anis et al. [8] for bandlimited signal recovery. For each
of these three sampling methods, we optimally choose sev-
eral spatial locations at ¢ = 1 and fix it until £ = 50. For each
sampling method, we perform 100 trials at each sampling rate
with additive Gaussian noise of mean 0 and variance 0.12, and
perform recovery via the Lasso algorithm. As our proposed
optimal and uniform sampling methods are probabilistic, we
included error bars that represent the standard deviation of
recovery errors. The results are shown in the right panel of
Figure 2. We see that optimal sampling has better perfor-
mance compared to existing methods when the observational
samples are scarce.

5. CONCLUSION AND FUTURE WORK

We propose a space-time variable density sampling algorithm
for the recovery of sparse bandlimited graph signal in a heat
diffusion process. We provide theoretical guarantees in the
noiseless case and present empirical success with noise and
model error on synthetic and real data. Future work includes
theoretical analysis with noise, extension to general linear
time-invariant system, and validating this method on more
real data sets.
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