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An interpretable hybrid predictive
model of COVID-19 cases using
autoregressive model and LSTM

Yangyi Zhang?, Sui Tang'** & Guo Yu?**

The Coronavirus Disease 2019 (COVID-19) has had a profound impact on global health and economy,
making it crucial to build accurate and interpretable data-driven predictive models for COVID-19
cases to improve public policy making. The extremely large scale of the pandemic and the intrinsically
changing transmission characteristics pose a great challenge for effectively predicting COVID-19
cases. To address this challenge, we propose a novel hybrid model in which the interpretability of
the Autoregressive model (AR) and the predictive power of the long short-term memory neural
networks (LSTM) join forces. The proposed hybrid model is formalized as a neural network with

an architecture that connects two composing model blocks, of which the relative contribution is
decided data-adaptively in the training procedure. We demonstrate the favorable performance of
the hybrid model over its two single composing models as well as other popular predictive models
through comprehensive numerical studies on two data sources under multiple evaluation metrics.
Specifically, in county-level data of 8 California counties, our hybrid model achieves 4.173% MAPE,
outperforming the composing AR (5.629%) and LSTM (4.934%) alone on average. In country-level
datasets, our hybrid model outperforms the widely-used predictive models such as AR, LSTM, Support
Vector Machines, Gradient Boosting, and Random Forest, in predicting the COVID-19 cases in Japan,
Canada, Brazil, Argentina, Singapore, Italy, and the United Kingdom. In addition to the predictive
performance, we illustrate the interpretability of our proposed hybrid model using the estimated AR
component, which is a key feature that is not shared by most black-box predictive models for COVID-
19 cases. Our study provides a new and promising direction for building effective and interpretable
data-driven models for COVID-19 cases, which could have significant implications for public health
policy making and control of the current COVID-19 and potential future pandemics.

The coronavirus disease 2019 (COVID-19) pandemic has posed a severe threat to global health and economy
while producing some of the richest data we have ever seen in terms of infectious disease tracking. The quantity
and quality of data placed epidemic modeling and forecasting at the forefront of worldwide public policy mak-
ing. Compared to previous infectious diseases, COVID-19 shows special transmission characteristics, yielding
significant fluctuations and non-stationarity in the new COVID-19 cases. This poses grand challenges in effective
prediction, and, on the other hand, draws attention of the global community to epidemic tracking and prediction.

In the last three years, various models and methods have been developed to predict COVID-19 cases (see
survey in! and references therein). These models can be roughly grouped into two categories: mechanistic models
and data-driven models. The mechanistic models aim at directly characterizing the underlying mechanisms of
COVID-19 transmission. Typical examples of mechanistic models are based on differential equations, such as
the compartmental models SIR and SEIR*™. The data-driven models formulate the prediction of the COVID-19
cases primarily as a regression problem and exploit fully data-adaptive approaches to understand the functional
relationship between COVID-19 cases with a set of observable variables. Data-driven models include classical
statistical models such as Autoregressive models (AR)®, Support Vector Machine (SVM)?!1, and the deep
learning models'?-'8. In this paper, we will focus on data-driven models.

An Autoregressive model expresses the response variable as a linear function of its previous observations®. Its
simple structure and strong interpretability are found to be powerful in capturing short-term changing trends in
time series. AR models have been applied in various application fields, including infectious decease modeling?'.
However, they may fail to capture the highly nonlinear patterns and long-term effects in the data-generating
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dynamics. On the other extreme of the predictive model complexity spectrum, deep learning models, particu-
larly LSTM?, have demonstrate impressive power in capturing complex dependence structures in sequential
data. LSTM has been used to achieve the best-known results for many problems on sequential data. However, a
well-known limitation of the deep learning models is the short of interpretability due to their black-box nature.
This lack of interpretability prevents people from drawing useful conclusions from the model outputs, thus
hinders effective policy making®, especially in crucial fields such as public health. This observation motivates
us to consider a hybrid model in which the two seemingly distinct types of models join forces while maintaining
both good predictive power and certain interpretability.

In this paper, we propose such a hybrid model that additively combines the LSTM and the AR model for
the task of COVID-19 cases prediction. The proposed hybrid model is formalized as a neural network with an
architecture that connects an AR model and a LSTM block, and the relative contribution of these two component
models is decided in a totally data-adaptive way in the training procedure. To demonstrate the predictive power
of the proposed hybrid model, we consider both county-level and country-level data. Specifically, in 8 counties
in the state of California, USA, and 7 other different countries (results available in the Supplementary Material),
our method performs favorably compared with either AR or LSTM model alone, as well as other commonly-used
predictive models under various evaluation metrics. All codes are accessible through links on the reference page®.

In addition to the predictive accuracy, the importance of predictive models’ interpretability has been discussed
in plenty of previous works?*~%’. A higher model interpretability facilitates human’s ability to understand its pre-
dictions, and thus promotes bias detection and other factors that contribute to policy making. Specifically, we
demonstrate how the coefficients from the AR part of the trained hybrid model shed light onto understanding
the underlying disease transmission mechanism, and thus could help to predict its prevalence trends, and to
inform public health policy makers to improve pandemic planning, resource allocation, and implementation of
social distancing measures and other interventions. A long-term mission of this paper is to stretch the application
of hybrid models beyond COVID-19 forecasting: toward other fast-moving epidemics and cases that require
accurate prediction and interpretability.

Although in this paper we focus on confirmed cases prediction, we note that the proposed framework can
be easily extended to tackle other COVID-19 or more general epidemiological tasks (e.g., hot spot prediction).
Furthermore, the proposed method has its own research significance from a methodological perspective. For
example, it raised the open questions on studying its theoretical guarantees, mathematical quantification of
prediction, and interpretability.

Related work. Recently, numerous studies have employed machine learning techniques to investigate
various tasks on COVID-19 and achieved impressive results. Examples include using deep learning to detect
COVID-19 through CXR images and predicting death status based on food categories to recommend healthy
foods during the pandemic?®*. In light of these advances, our research focuses on predicting confirmed cases
of COVID-19.

In this section, we provide a more detailed review of data-driven models that formulate the prediction prob-
lem as a regression problem. Regression-based models, including simple AR models and more complex models
such as Random Forest, Gradient Boosting, and CNN-LSTM, have been widely used for COVID-19 prediction.
For example, Mumtaz et al.*! used ARIMA to predict the daily confirmed cases in European countries, while
Yesilkanat®* used a Random Forest model to predict the number of cases and deaths. Muhammad et al.** used a
CNN-LSTM model to predict the number of confirmed cases and deaths in Nigeria, South Africa, and Botswana.
We summarize a list of recent work from year 2020 to 2022 in Table 1.

One advantage of these models is that they do not require a priori knowledge of the disease dynamics and
can capture rich relationships in the data. They have been shown to be effective in predicting COVID-19 cases
in various regions around the world. However, COVID-19 data displays rich variability, and therefore a single
predictive model may not be sufficient and has its own limitations. For example, one major disadvantage of
ARIMA models is that they may not be able to capture non-linear patterns in the data, which can lead to inac-
curate predictions. On the other hand, more complex models such as Random Forest and CNN-LSTM may suffer
from overfitting, where the model becomes too specialized to the training data and cannot generalize well to new
data. These complex models may also lack interpretability, making it difficult to understand the factors driving
the predictions and thus provide little to none guidance to actual public health policy making.

Hybrid predictive models that combine different regression models may offer the best of both worlds by
capturing both linear and non-linear patterns in the data while maintaining some degrees of interpretability. The
idea is to decompose a model into different components that are designed to capture specific characteristics of
the data. It has proven to be an effective way of improving empirical predictions in various applications, includ-
ing those in COVID-19 prediction®,

Comparison to previous works on hybrid modeling. 'The idea of using an additive combination of AR models
(or more generally, ARIMA models) with LSTMs has recently appeared in the literature for time series forecast-
ing, with applications in gas and oil well production and sunspot monitoring**’. However, there is a significant
difference between our approach and previous methods: our approach trains the two components in the model
jointly, while previous hybrid modeling techniques take a sequential approach to training. Specifically, Zhang*!
proposed a hybrid model of ARIMA and artificial neural networks, aiming to capture more patterns in the data
and improve forecasting performance. The preprocessed data is used to fit an ARIMA model first, before the
residual term is used as input to train a neural network model. Fan et al.* followed a similar procedure, using
an ARIMA model and an LSTM model. The logistics of these methods is to use an ARIMA model to capture the
linear pattern of the data first and rely on the neural networks capture the non-linear pattern in the residuals.
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Study Dataset Models Results
Atik® Turke Support Vector Machine (SVM), Linear Regression, | SVM has the highest R value (99%) and the lowest
¥ Bagged Tree, Fine Tree RMSE and MAE values.
Galasso et al.” USA counties Random Forest MAE below 300 weekly cases/100,000, using easily
accessible training features
Ali et al Saudi Arabia Gradient Tree Boosting, Random Forest, XGBoost, The XGBoost and Voting Regressor model outper-

Voting Regressor

form the other models

Chumachenko et al.**

Germany, Japan, South Korea, and Ukraine

Random Forest, K-Nearest Neighbors, Gradient

The Gradient Boosting model has the best perfor-

Boosting mance by related error and MAE
The XGBoost model outperforms the ARIMA model
16
Fang et al UsA ARIMA, XGBoost on COVID-19 case prediction in the USA
Decision tree model has the highest accuracy
Muhammad et al. 7 Mexico Logistic Regression, Decision Tree, SVM, Naive (94.99%). SVM model has the highest sensitivity
. Bayes, and Artificial Neutral Network (93.34%). Naive Bayes model has the highest specific-
ity (94.30%).
Luo et al.*® America double-layer LSTM,XGBoost 17\/[2A11;E of LSTM and XGBoost reaches 2.32% and
., RMSE of LSTM reaches 601.20 while the SEIR model
49
Vadyala et al. USA, State of Louisiana LSTM, SEIR has an RMSE of 3615.83 (on 3 Parishes of Louisiana
5 . . . LSTM models reaches a 98.58% precision accuracy
15
Alassafi et al. Malaysia, Morocco and Saudi Arabia LSTM, RNN while the RNN models have 93.45%

LSTM’s prediction closely matches the official data.

Tomar and Gupta™ India LSTM By the prediction of the LSTM, social isolation and
lockdown can reduce the spread of virus effectively.
ARIMA(3,3,1) model has the best performance for

Bhandari et al.”! India ARIMA cumulative cases and death(predicted RMSE is 668.7

and base RMSE is 5431).

Table 1. A non-exhaustive list of previous works on data-driven models for COVID-19 cases prediction in the
past three years. Most commonly used evaluation metrics are RMSE, MAE, and MAPE.

The main goal of these previous works is to explore whether a hybrid model produces better performance than
the single models.

In our study, we design a general network architecture that includes both an AR part and an LSTM part
additively and trains the entire architecture jointly by minimizing the empirical risk. By doing so, we do not
arbitrarily give preference to any of the two additive components. Instead, the relative weights of the interpretable
AR part and the predictive LSTM part are determined fully by the data.

In summary, our contributions can be summarized as:

e Development of a novel approach to hybrid modeling for COVID-19 cases prediction: we have designed a
general network architecture that combines AR and LSTM models additively and trains the entire architecture
jointly, allowing the relative weights of the interpretable AR part and the predictive LSTM part to be fully
determined by the data. This approach is a departure from traditional sequential modeling approach and has
the potential to contribute to the literature of sequential data prediction.

e Extensive numerical studies on data sets from two sources that displays a rich variety of variability: we have
shown that the proposed hybrid model demonstrates better forecasting performance than single models.
This finding is important as it shows that the hybrid model is an effective way to combine the strengths of
different modeling techniques and can be used as a framework for future research.

e Exploration of interpretability: we have also explored the interpretability of the hybrid model, which is
an important contribution as it allows for a better understanding of the model and can lead to improved
decision-making based on the model’s output. This contribution enhances the practical applicability of our
proposed hybrid model.

Methods

In this section, we first overview the two building blocks of our additive hybrid model, namely the AR and the
LSTM model, and their relative advantages. Then we present our hybrid model which combines these two build-
ing blocks additively, and we intuitively elaborate why it is better than the two individual components.

Autoregressive (AR) models. In time series, we often observe associations between past and present val-
ues. For example, by knowing the price of a stock in the past few days, we can often make a rough prediction
about its value tomorrow. AR is a simple model that utilized this empirical observation and can yield very accu-
rate prediction in certain applications. It represents the time series values using linear combination of the past
values. The number of past values used is called the lag number and often denoted by p. Let €; denote the Gauss-
ian noise at time t with mean 0 and variance o'. The structure equation of AR(p) model can be represented as

Yi=a+taYi-1+aYio+ - +ayYp+ € (1)
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where ay is the intercept, and a;, - - -, ap represent the coefficients. AR model is often effective on stationary data.
To ensure stationarity, a common trick is to applx{ the differencing operation on the time series. A time series

value at time ¢ that has been differenced once, YV, is defined as follows:

Y = v — v, )

and higher order differencing operation can be defined recursively. However, an AR model is not sufficient to
capture the non-linear dependence structure, which is found to be an important feature of the COVID-19 data,
indicated by Fig. 1. A purely AR based model is thus often insufficient for the task of COVID-19 cases prediction.

Long short term memory networks (LSTM). RNN (Recurrent Neural Network)** is known to suffer
from the long term dependency problem: as the network grows larger through time, the gradient decays quickly
during back propagation, making it impossible to train RNN models with long unfolding in time. To solve this
problem, Hochreiter and Schmidhuber (1997) introduced a special type of RNN called LSTM with a proper
gradient-based learning algorithm?*.

We employ a LSTM regression model, which is represented as

Ye = Go(Ye—15 s Yep), (3)

where we use Y;_1, ..., Y, pas the sequential input data; G represents the neural network architecture shown in
Supplementary Fig. 1 and 6 represents the weight parameters in neural networks.

The core concepts of a LSTM cell are the cell states and the associated gates, as illustrated in Supplementary
Fig. 2. The cell state C;_; at time step ¢ — 1 acts as a transport highway that transfers relative information all the
way down the sequence chain, which intuitively characterizes the “memory” of the network. The cell states, in
principle, carry relevant information throughout the processing of the sequence. So even information from the
earlier time steps can make its way to later time steps, reducing the effects of short-term memory. The Forget
Gate decides what information should be kept. The Input Gate decides what information is to be added from the
current step and update the cell state C; at time step t. The Output Gate determines what the next hidden state
h should be. The four gates comprise a fully connected feed forward neural network.

To achieve optimal prediction results using LSTM model, it is crucial to have a careful hyperparameter tuning,
including the choice of units (dimension of the hidden state), the number of cells (i.e. the number of time steps),
and layers. This is usually a difficult task in practice. For example, few LSTM cells are unlikely to capture the
structure of the sequence, while too many LSTM cells might lead to overfitting. However, just like other neural
networks, a well-known limitation of LSTM is its lack of interpretability?’.

The hybrid model. As discussed above, both AR and LSTM have their relative strength and limitations
in their prospective domains. We propose to combine the two models additively into one single hybrid model,
which is expressed as

Y: = @AR(p) + (1 — )G (Ye_1, - Yiop)s 4)

where p is the lag number and o weights the contribution of two components: by tuning the value of «, one
can strike a balance between the prediction given by AR and LSTM parts, and thus a prediction of linear and
nonlinear signals.

We illustrate the structure of the hybrid model in Fig. 2. The hybrid model is characterized as one neural
network architecture where the two composing models are added through the last layer. The AR component
captures the linear relationship in time series and the LSTM component would describe the nonlinear patterns.
In section “Training” of the Supplementary Material, we show how to train the weights in each of the two com-
ponents in a fully data-adaptive manner by minimizing the empirical risk. We will compare the contribution of
the hybrid model’s AR component and LSTM component in section Results.
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Figure 1. An example of visualizing daily observations, where blue line represents the data before smoothing,
orange line represents data after smoothing. The data is collected from the Los Angeles county.
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Figure 2. Visualization of the hybrid architecture.

Results

The results include four sections: Model evaluations, Prediction, Interpretability, and Comparative study on the
WHO datasets. In Model evaluations, we introduce the metrics we use to evaluate the models and on which we
compare the models’ performances. In section Prediction, we exhibit the visualizations of several interesting tri-
als and compare the numerical predictions and evaluations of the three models. In Interpretability, we compare
the AR component of the hybrid model with the AR model. This is to examine how we may interpret the hybrid
model. We leave other training details in Supplementary Material. In Comparative study on the WHO datasets,
we further examine the performance of the proposed hybrid model by applying it to data of 7 different countries
around the world and comparing its performance with that of its component models and 3 additional models.

Data description and statistical analysis. We utilize two primary data sources. The first data source is
a dataset specific to California counties, which is available in the CHHS Open Data repository under the title
COVID-19 Time-Series Metrics by County and State. This dataset includes information on populations, positive
and total tests, number of deaths, and positive cases. We conducted a preliminary statistical analysis to examine
correlations between these variables and the number of daily cases. The results of this analysis can be found in
Supplementary Fig. 3 in Supplementary Material, and we anticipate that they will provide valuable insights for
future research.

The second data source, used for comparative analysis, can be found in the WHO repository at the WHO
Coronavirus (COVID-19) Dashboard. This resource presents official daily counts of COVID-19 cases, deaths,
and vaccine utilization, as reported by countries, territories, and areas. In this study, we use 7 countries: Japan,
Canada, Brazil, Argentina, Singapore, Italy, and the United Kingdom.

All datasets generated and analysed during the current study are also available in the author’s Github repos
itory®.

Model evaluations. We use a quantitative measure to evaluate and compare the performance of models:
the Mean Absolute Percentage Error (MAPE), defined as:

100 <N |Y; — Y,
MAPE:72| t true,t|

n
t=1

(5)

| Ytrue,t |

A model with small values of MAPE is preferred.

We examine the performance of the three models (hybrid, AR, and LSTM) on different time periods within
the available range. This is essential in our research, since the performance of a model is not constant on differ-
ent trends; by intuition, a model performs better on smooth curves than it does on steep curves. By repeating
our evaluation process on different time periods thus different trends, we wish to understand what trends do
the model give the best performance. Such understanding will help us decide to what degrees we may trust the
performance of the models. We evaluate the models repeatedly to reduce the influence brought by the instabil-
ity of model training. Specifically, we leave 7 days between the first date of any two consecutive training data
points. Although a larger number of repetitions seems desirable, increasing the repetition number is at the cost
of making neighboring training points closer to each other. However, the difference in performance between two
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Figure 3. The left panels show the training and testing data. The right panels show the ground truth versus
forecasts of the AR, LSTM, and hybrid model, respectively. We display the average prediction (solid line) with 2
times standard error (shaded region). The standard error across 100 runs are reported for LSTM and hybrid. The
hybrid model is more stable than the LSTM.

neighboring training points, that are too close to each other, would be attributed more to the instability of model
training than to the difference in trend. Such results give us little information about the model performance over
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trend. In the end, we let the step number be the same as our lag number. By doing so, we suppose the concept
of a week is important in forecasting.

Additional evaluation metrics. In the Supplementary Material, we additionally evaluate and compare above
models using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The evaluation is done on the
same dataset across different comparing methods.

Prediction. In this section, we present the numerical results for all three models. We perform a compre-
hensive comparison of the performance for the three models in multiple counties, showing the advantage of the
hybrid model. All predictions are transformed back to the original scale.

Visualization. We compare the three models’ performance on COVID-19 case prediction in California 8 coun-
ties. For each county, we test the models’ performance on several different situations: for example, when the
training data has an up trend and the testing data has a down trend. From all trials we practiced, we choose the
following trials, presented in Figs. 3 and 4, as representatives of different combinations of training and testing
data, since they reflect the general model performances well.

Figure 3a shows models being trained on curved data and being tested on down trend data, as shown on
the left and right panel, respectively. Figure 3b shows models being trained on up trend data and being tested
on down trend data. Figure 3c shows models being trained on up trend data and being tested on up trend data.
Figure 3d shows models being trained on down trend data and being tested on down trend data. Figure 4a,b
show models being trained on down trend data and being tested on up trend data, while Fig. 4a has gentle
upward testing data and Fig. 4b has sharp upward testing data. Figure 4c show models being trained and tested
on jagged data.

To ensure the results above are representative, we run each selected trial 100 times, visualize the mean and
standard error of these trials, and present averaged MAPE. While AR outperforms LSTM on some cases, the
hybrid model outperforms both in most cases, except that in Fig. 3b and in Fig. 4c. The MAPE, averaged on the
100 trials, shows that LSTM (4.469%) outperforms hybrid (4.993%) slightly in Fig. 3b. However, as shown in
the right panel of Fig. 3b, the hybrid model captures the general trend of ground truth better than LSTM does.
Similarly, in Fig. 4c, AR (3.675%) outperforms hybrid (3.718%) slightly. Yet, as shown in the right panel of Fig. 4c,
the hybrid model captures the general trend of ground truth better than AR does.

Beside, interestingly enough, the hybrid model always seems to capture the ground truth’s trend. Actually, the
shape of hybrid ’s forecasts resembles either that of the AR model or that of the LSTM model, or it resembles a
combination of both. When AR model captures the trend better than the LSTM does, the hybrid model resembles
the AR model in forecast shape: for example, in Fig. 3b, San Francisco 2020-02-17 to 2020-05-14, and in Fig. 4a,
Santa Barbara 2022-01-17 to 2022-04-14. When LSTM model captures the trend better than the AR does, the
hybrid model resembles the LSTM model in forecast shape: for example, in Fig. 3d, San Francisco 2022-06-10
to 2022-09-05, and in Fig. 4b, Riverside 2022-02-16 to 2022-12-20. On jagged testing data, where AR performs
better on some part and LSTM better on the other, the hybrid model presents advantages of both models: for
example, in Fig. 4c, the hybrid model resembles AR on the two ends, where AR performs better, and it resembles
LSTM in shape between day 5 to day 15, where LSTM seems to capture the trend better.

General performance. 'We evaluated the model performances numerically, in the 8 California counties across
multiple trials. The results are given in Table 2. We observe that the hybrid model outperforms the AR model and
the LSTM models almost uniformly: it generally yields the smallest average MAPE. To be specific, the general
MAPE of each model (AR, LSTM, LSTM with 2 layers, and hybrid), averaged on the results for all 8 counties, is
5.629%, 4.934%, 6.804%, and 4.173% in order. In general, the hybrid model has the best general performance,
and it outperforms the AR model by approximately 1.5%. The LSTM model suffers from overfitting when a
second LSTM layer is added. As seen in the Supplementary Material, the proposed hybrid model also yields the
lowest RMSE and MAE values.

Interpretability. Interpretability of hybrid models can be defined as the ability to provide insight into the
relationships they have learned, as introduced by Murdoch et al.>. The hybrid model proposed a decomposition
approach to decipher the learned model underlying the data-generating mechanism, where the estimated AR
model provides the easy-to-understand linear trend. On the other hand, the LSTM is able to capture the long-
term and nonlinear trend in the time series data. Our hybrid model aims to strike a balance between interpret-
ability and accuracy, enabling us to gain insights into the underlying data while still achieving high predictive
performance.

In this section, we study how AR and LSTM components contribute to the hybrid model when fitting the
data. Our purpose is to seek the insights into explaining why the hybrid model enjoys the better performance
in general. And more importantly, we seek to use the interpretation from the fitted hybrid model to provide
practical guidance to the public health policy making process.

Note that all models are trained on the normalized data as described in section “Training” (Supplementary
Material). Consequently all figures below report predictions on the normalized scales.

In Fig. 5, we present three settings with different signal strength ratio (represented by the value of ) of the
AR components and LSTM components in the prediction of the hybrid model. Specifically, the larger value of o
indicates the AR component dominates the LSTM component in prediction, and the smaller value of « indicates
otherwise. We found that the component that has stronger signal characterizes the general trend in the data
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County AR LSTM LSTM (Double) | hybrid
Los Angeles 5.153 (1.071) | 5.120 (1.358) |7.838(3.414) 3.640 (0.773)
San Diego 4.446 (0.652) | 3.828 (0.669) | 5.539(1.549) 3.462 (0.883)
San Francisco | 4.754 (0.421) | 4.433 (0.600) | 5.350 (1.029) 3.553(0.317)
General performance Santa Barbara | 7.706 (1.714) | 6.157 (1.087) | 8.482(2.677) 5.970 (1.243)
Fresno 6.549 (1.668) | 5.092 (0.933) |6.811 (2.189) 4.188 (0.707)
Sacramento 5.240 (0.787) | 4.707 (0.758) | 5.784 (1.182) 3.897 (0.733)
Ventura 6.525(0.706) | 5.607 (0.913) | 7.157 (1.626) 4.687 (0.733)
Riverside 5.660(0.925) | 4.528 (0.651) | 7.467 (2.428) 3.985 (0.750)
Los Angeles | 4.221 3.607 (0.105) | 3.528 (0.161) 3.356 (0.030)
San Diego 3.749 3.513(0.055) | 3.542(0.119) 3.343 (0.019)
San Francisco | 5.251 4.115 (0.076) | 4.068 (0.068) 4.104 (0.028)
Santa Barbara | 4.731 4.183 (0.034) | 4.111 (0.061) 4.160 (0.011)
Latest performance
Fresno 3475 3.107 (0.067) | 3.525 (0.219) 2.942 (0.009)
Sacramento 4.685 3.789 (0.048) | 3.703 (0.066) 3.880(0.025)
Ventura 4.143 3.567 (0.029) | 3.489 (0.053) 3.410 (0.021)
Riverside 4.752 3.415(0.100) | 3.283 (0.145) 3.197 (0.044)

Table 2. MAPE (by percentage) for each model on each county. General performance is averaged on all trials.
The inconsistent performances of neural networks have been compensated by the small step value, which is

7. The Latest performance is on the latest trial, from 2022-06-10 to 2022-09-05. The results for LSTM, LSTM
double and hybrid are each averaged on 100 runs, to compensate the inconsistent performances of neural
networks. The value in parenthesis is the standard error. AR has 0 or small standard error for the same trial.
The hybrid model is usually the best in performance and has the lowest standard error. Best performances are
given in bold.

while the other helps to stabilize the variance. This observation sheds light into why the hybrid model provides
better predictive performance in general than a single model.

Moreover, the fitted value of « provides a characterization of the intrinsic nonlinearity of the data, and
consequently the difficulty of exploiting interpretation in the linear components of the fitted hybrid model.
The smaller the value of «, the higher weight the nonlinear fit using LSTM has in the final prediction. In such a
setting, coefficients in the AR components should be given less weight into generating interpretation for policy
making. Equivalently, for larger value of e, it is more trustworthy to derive coefficients interpretation from the
important AR part. This observation is helpful for public policy maker to distinguish among different virus
transmission stages.

Finally, we observe interesting patterns of the coefficients estimates in the AR components of the hybrid model
compared with the coefficients in the pure AR model. As shown in Table 3, across the three settings of different
values of «, the pure AR model tends to put heavier weight in coeflicients of larger lags, say Y;_7. In contrast, the
AR component in the hybrid model tends to focus on capturing the short history, i.e., the coefficients associated
with smaller lags (e.g., Y;—1) tend to have larger estimates. This indicates that the short history pattern in the
data could be well approximated by a simple (say, linear) model, while the longer history in the data possesses
more complicated nonlinear structure that requires a LSTM component to fit.

Comparative study on the WHO datasets. In this section, we compare our proposed hybrid model
for COVID-19 prediction with its two component models, the ARIMA and LSTM models, as well as three
other commonly used models: Support Vector Machines®® (SVM), Random Forest** (RF), and eXtreme Gradi-
ent Boosting™ (XGBoost). To ensure the effectiveness of our model in different application settings, we use a
country-level data for this comparative study, focusing on datasets from seven different countries collected by
the World Health Organization.

We provide a brief overview of the three additional comparing methods. Support Vector Machines (SVM
is a machine learning model that identifies the optimal hyperplane in a high-dimensional space that maximally
separates data points into different classes. An SVM applies to both classification and regression problems. SVM
is know to not perform well on noisy or unbalanced data>>’.

Random Forest**~# is an ensemble learning method that constructs a multitude of decision trees. A Random
Forest is very flexible and can handle complex data types. On the other hand, the Random Forests are known
for their reduced interpretability, sensitivity to noise, the need for hyperparameter tuning, and potential issues
with imbalanced data. These factors may impact their performance in the context of COVID-19 predictions®-%°.

Extreme Gradient Boosting (XGBoost)***5*® has shown exceptional performance in various tasks. XGBoost
is an ensemble learning method based on gradient boosting trees. It is known for its efficiency, scalability, and
accuracy. However, like other tree-based ensemble methods, it can be more challenging to interpret. This may
make it difficult to understand the driving factors behind predictions. In addition, XGBoost can be prone to
overfitting, especially with small datasets or when the hyperparameters are not tuned properly®-2.

)42,47
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Figure 4. The left panels show the training and testing data. The right panels show the ground truth versus
forecasts of the AR, LSTM, and hybrid model, respectively. We display the average prediction (solid line) with 2
times standard error (shaded region). The standard error across 100 runs are reported for LSTM and hybrid. The
hybrid model is more stable than the LSTM.

Alpha Models | Intercept | Y;_; Yi_2 Yi—3 Yi-a Yis Yi—6 Yi—7
AR -0.106 -0.124 |0.108 0.063 0.183 0.001 0.039 0.654
o= 0817 hybrid —-0.008 0.702 0.142 0.044 0.210 0.089 0.114 -0.108
AR —0.000 —-0.019 |0.061 -0.077 |0.117 —0.041 |0.165 0.553
o« =054 hybrid 0.022 0.478 -0.298 |0.080 —0.003 | -0.169 |0.049 -0.243
AR - 0.046 0.103 —-0.166 |0.145 -0.168 | 0.311 -0.170 |0.813
o =017 hybrid 0.025 0.680 0.043 -0.079 | -0.138 | 0.080 —-0.156 | —0.063

Table 3. Coefficients of AR model v.s. AR coefficients of hybrid model. When AR component dominates

the prediction (¢ = 0.817), MAPE for AR and hybrid are 3.088% and 2.593%. When the AR and the LSTM
components have similar weight in prediction (« = 0.547), MAPE for AR and hybrid are 2.523% and 1.950%.
When LSTM component dominates the prediction (¢ = 0.174), MAPE for AR and hybrid are 9.337% and
4.665%. Coeflicients with biggest absolute values are given in bold.
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Figure 5. The forecasts of a hybrid model versus the ground truth, and the contribution of its AR and its LSTM
component.
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Figure 6. A heatmap exhibiting the performance, measured by MAPE in percentage, of the 7 models from
this study and from previous work: AR, Single LSTM(LSTM), Double LSTM(DLSTM), hybrid, SVM, Random
Forest(RF), XGBoost(XGB). The assessment has been done on data collected by World Health Organization,
from 7 different countries around the world: Japan(JPN), Canada(CAN), Brazil(BRA), Argentina(ARG),
Singapore(SGP), Italy(ITA), and The United Kingdom(GBR).

We present the numerical results of the comparative study, which are visualized in Fig. 6. The comparative
study is done on data collected by the World Health Organization® in Japan (JPN), Canada (CAN), Brazil (BRA),
Argentina (ARG), Singapore (SGP), Italy (ITA), and the United Kingdom (GBR).

Overall, the proposed hybrid model performs better than the other models in most cases, as evidenced by its
lower MAPE. This suggests that our model is effective in various situations and outperforms other commonly
used models for COVID-19 prediction.

Discussion
In this paper, we introduce a novel hybrid model that borrows strength from a highly structured Autoregressive
model and a LSTM model for the task of COVID-19 cases prediction. Through intensive numerical experiments,
we conclude that the hybrid model yields more desirable predictive performance than considering the AR or the
LSTM counterpart alone. In principle, the hybrid model enjoy the advantages of each of its two building blocks:
the expressive power of LSTM in representing nonlinear patterns in the data and the interpretability from the
simple structures in AR. Consequently, the proposed hybrid model is useful in simultaneously providing accu-
rate prediction and shedding light into understanding the transition of the virus transmission phases, and thus
providing guidance to the public health policy making process.

It is also noteworthy that the predictive performance of the proposed hybrid model can be further improved
by properly choosing the hyperparameters. Furthermore, while we considered LSTM as the nonlinear component
in the hybrid model, it can be substituted by any other deep learning models.
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