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Abstract

Many networked systems such as electric networks, the brain, and social networks
of opinion dynamics are known to obey conservation laws. Examples of this
phenomenon include the Kirchoff laws in electric networks and opinion consensus
in social networks. Conservation laws in networked systems are modeled as
balance equations of the form X = B*Y’, where the sparsity pattern of B* € RP*P
captures the connectivity of the network on p nodes, and Y, X € RP are vectors
of potentials and injected flows at the nodes respectively. The node potentials Y
cause flows across edges which aim to balance out the potential difference, and the
flows X injected at the nodes are extraneous to the network dynamics. In several
practical systems, the network structure is often unknown and needs to be estimated
from data to facilitate modeling, management, and control. To this end, one has
access to samples of the node potentials Y, but only the statistics of the node
injections X. Motivated by this important problem, we study the estimation of
the sparsity structure of the matrix B* from n samples of Y under the assumption
that the node injections X follow a Gaussian distribution with a known covariance
Y x. We propose a new /¢ -regularized maximum likelihood estimator for tackling
this problem in the high-dimensional regime where the size of the network may
be vastly larger than the number of samples n. We show that this optimization
problem is convex in the objective and admits a unique solution. Under a new
mutual incoherence condition, we establish sufficient conditions on the triple
(n, p, d) for which exact sparsity recovery of B* is possible with high probability;
and d is the degree of the underlying graph. We also establish guarantees for the
recovery of B* in the element-wise maximum, Frobenius, and operator norms.
Finally, we complement our theoretical results with experimental validation of the
performance of the proposed estimator on synthetic and real-world data.

1 Introduction

Let G = ([p], E) be a directed graph on the vertex set [p] = {1,2,...,p} with a size m edge set
E C [p] x [p]. Let D denote the p x m incidence matrix that encodes the edges of G as follows: each
column of D is associated with an edge (i, j) € F and is a vector of zeros except at the locations
i and j where it is —1 and +1 respectively. Let X € RP be a vector of injected flows or signals at
the vertices and let f € R™ be the vector of flows through the edges. Then, the basic conservation
law between these flows may be expressed as D f + X = 0; that is, at each vertex, the flow (which
is a linear combination of flows at the edges incident on the vertex) has to balance the injections.
In physical systems, edge flows f often arise as a way to balance the differences between certain
potentials Y € RP at the vertices. That is, the flows satisfy f = —DTY’; notice that this implies that
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the flow at the edge (4, j) is given by Y; — Y;. Thus, the above conservation law yields the following
relationship, called a balance equation, between the node potentials and injected flows:

X-BY =0, (1)

where B* = DDT € RP*X? is the symmetric Laplacian matrix [4, 60]. In an electrical circuit (with
unit resistances on edges), Y corresponds to the voltage potentials at the vertices, f corresponds to
the edge currents, and X denotes the injected currents at the vertices. Indeed, this picture can be
generalized by assigning weights to the edges of the network (conductances in the case of an electric
network), and allowing the flows to be weighted by these weights. The model in (1) is referred to as
generalized Kirchoff’s law, and importantly, this models the relationship between flows and potentials
in a range of systems that satisfy conservation laws such as hydraulic networks, opinion consensus in
social networks, and transportation/distribution networks (see [60, 40, 55] and references therein).

It can be readily seen that the Laplacian B* is a positive semi-definite that encodes the edges of
G. Specifically, (i,j) € E if and only if B}; # 0. The Laplacian lies at the heart of spectral graph
theory [15], and owing to its fascinating properties has found a range of applications in diverse areas
such as image processing, manifold learning, spectral clustering, and bandits [52, 6, 62, 58, 32, 56].
In this paper, we consider a situation where the edge set £ of the graph is unknown and needs to be
estimated from measurements of the node potentials Y. Based on the above discussion, we will cast
this as a problem of learning an unknown positive definite B* (or the sparsity pattern thereof) from
measurements of Y. Further, we suppose that we only have access to the statistics of X, namely, that
it is a 0O-mean Gaussian random vector with a covariance matrix > x. The situations where X x is
unknown and B* is non-invertible is briefly discussed in the remarks in Section 2. We list a variety
of applications where this learning problem arises naturally.

1. Topology learning in electric networks: Consider an electric network (or circuit) with p
nodes, current injections X, node voltages Y, conductances A;; > 0 between nodes 4
and j, and shunt conductances A;; > 0 connecting i-th node to the ground. The current-
balance equation is given by (1), where B* is the Laplacian with B}; = —A;; and B}; =
A+ Z?Zl A;; [21]. Inreal electric grids, current injections are unknown random variables.
To ensure reliable power supply, learning B* and its underlying graph from voltage samples
is important and has been widely studied [20, 33, 13, 1]. The current-balance equation also
appears in Markov chains and flow networks where Kirchoff laws apply [60, 46].

2. Brain connectivity from graph filters: The structural connectivity of the human brain is
often studied using a network with nodes representing brain regions, and the edge weights
representing the density of anatomical connections [45, 25, 61]. Recent studies showed that
the weights can be inferred using graph filters satisfying (1) with B* = ( {‘;01 h AL,
where A is the symmetric adjacency matrix; h; is the filter coefficient; and X is the latent
graph signal. For brain networks, [51, 36] showed that L = 3 is a reasonable choice.
Additionally, for large L, the graph filter B* can be approximated as B* = 1 — «A using
matrix power series expansion, thus a feasible choice for analysis. Graph filters are also
used in social and protein interaction networks [50, 37].

3. Structural equation models (SEM): Structural equation models are used to explain relation-
ships among exploratory variables in several domains; for e.g., psychoanalysis [22], social
sciences [16], medical research, and neuroimaging [7, 47, 38]. Using SEMs, [42] provided
a causal interpretation of Linear Hawkes Processes. In SEM with no latent variables, we let
y = Ay + x, where A is the path matrix. Then the SEM satisifies (1) with B* = I — A.

4. Linear dynamical (diffusion) networks: These network dynamics are satisfied by many sys-
tems including consensus dynamics, thermal capacitance networks, power swing dynamics,
[54]. Further, by lifting approach, these dynamics can be used to study periodic/cyclic
behavior in atmospheric systems [53].

Before we detail our topology discovery method, we comment on a few competing approaches that
only have limited utility in our setting. First, penalized (nodal) regression methods [39] are not
applicable here since these require samples of both X and Y. Yet other works have considered the
estimation of topology from linear measurements [2, 9, 33, 65, 11, 14, 18, 19], but these assume direct
linear access to the graph (via the adjacency or appropriate covariances) or assume low-rankedness in
the underlying structure. A recent line of work [20, 1], proposed estimating B* by estimating the



inverse covariance (or precision) matrix ©* of Y using the graphical LASSO (GLASSO) [66, 23].
In particular, [20, 1] showed that ©* has non-zeros corresponding to those pairs of vertices that
are connected by paths of length at most two; that is, the (4, j)-th entry of ©* is non zero if and
only if (¢,7) is an edge in G or there is a k € [p] such that i — k — j is a path in G. The authors
then estimated edges of G by identifying (and eliminating) the pairs of vertices that have two-hop
connections in G (see Fig. 1)—for future reference, we call this estimator as GLASSO+2HR (2 hop
refinement). However, this estimator requires strong structural assumptions on G such as triangle-
freeness. Further, the precision matrix ©* of Y is far more dense than the underlying graph G since
0 = B*Z}l (B*)T; this results in sub-optimal data requirements for reliable recovery (see Remark
3). Finally, if X x is a diagonal matrix, we can estimate the sparsity pattern of B* by taking the
principal square root of the empirical covariance matrix of Y. Unfortunately, this method does not
allow for any correlation between the node injections which is not the case in practice. Importantly,
this method is numerically unstable unless one has a large number of samples (n) of Y so that the
empirical covariance matrix is invertible—-a requirement that is at odds with the high-dimensional
regime where one typically desires n to be smaller than the number of variables p.

In light of the limitations of previous approaches, we study a natural penalized maximum likelihood
estimator for B* using the samples {Y;}7_;. This estimator is not only statistically efficient but also
obviates the restrictive assumptions imposed by the aforementioned methods. We now summarize
the main contributions of the paper:

* We propose a novel ¢; regularized maximum likelihood estimator (MLE) for B* from samples
of Y. It is worth noting that the optimization program we propose is not the standard graphical
LASSO program [66, 23] as it involves terms that are quadratic in the optimization variable. Our
first result shows that, notwithstanding its form, the ¢, regularized MLE is convex in B and it has a
unique minimum even in the high-dimensional regime (n < p) under certain standard conditions.

* Under a new mutual incoherence condition, we provide a sufficient condition on the number of
samples n required to recover the exact sparsity of B* with high probability. Furthermore, under
these sufficient conditions we also establish the consistency of our estimator in the element-wise
maximum, Frobenius, and spectral norms. Formally, we show that if n = (d? log p) then with

high probability ||§ — B*||oo € O(4/logp/n), where d is the degree of the underlying graph.
* Finally, we complement our theoretical results with experimental results both on the synthetic

data sets and data from a benchmark power distribution system. Our experiments demonstrate the
clear benefit of the proposed estimator over baseline and competing methods.

(a) true graph  (b) graphical model (c)¢; — MLE (this paper) (d) GLASSO+2HR

Figure 1: Stylistic visualization of ¢;-MLE vs GLASSO+2HR in [20]. (a) True graph G with B*; (b)
graphical model of ©* = B*E)}1 (B*)7; (c) estimate of B* by our proposed £; —regularized MLE estimator;
and (d) estimate of B* by GLASSO+2HR [20]. Graph G and the graphical model of ©* have same set of
vertices; however, in the latter, there are spurious edges (dashed lines in (b)) between vertices that are two-hop
neighbors in G (see main text in Introduction). In Fig 1(c) and 1(d), we depict potential outputs of /{ —MLE
and GLASSO+2HR respectively for some sample covariance matrix. Since the outputs are random objects,
the graphs in Fig 1(c) and 1(d) can have missing and false edges that are not present in the true graph in 1(a).
The GLASSO+2HR estimate advocated in [20] recovers B* by first estimating ©* = B*E;{l (B*)" which is
potentially dense when compared to B* (see Fig 1(a) and Fig 1(b)). Hence, the GLASSO+2HR estimate in
Fig 1(d) might have more edges than the true graph. However, since our ¢1-MLE directly estimates the sparse
matrix B*, likely, the estimated and the true graph might only differ on a few edges, as shown in Fig 1 (c¢). Our
experimental results in Section 4 validate this claim.

Organization of the paper: In Section 2, we introduce an ¢; -regularized ML estimation problem for
networked systems obeying conservation laws. In Section 3, we show that this optimization problem
is convex in the objective and establish consistency and support recovery rates for our estimator. In
Section 4, we provide simulation results. In Section 5, we summarize our paper with future directions.



Notation: For any two subsets T} and 7% of [p] x [p], we denote by Ar, 7, the submatrix of A with
rows and columns indexed by 7 and 75, respectively. When 77 = 75 we denote the submatrix
by Ar,. For a matrix A = (A; ;) € RP*P, we use || Al = max; ; |A;;] to denote the maximum
element-wise norm, and ||A||r and || A||> to denote the Frobenius norm and the operator norm.
We denote the /.-matrix norm of A defined as v4 = [|A[| = max;_q,_, 23:1 |A;i;|. We use
| All1,0t = ;25 |Aij| to denote the off-diagonal {1 norm. We use vec(A) to denote the p?-vector
formed by stacking the columns of A and use I'(4) = (I ® A) to denote the kronecker product of
A with the identity matrix I. For symmetric positive definite matrices A; and A,, we use A > A,
to denote A; — A, is positive definite. We define sign(A;;) = +1if A;; > 0 and sign(4,;) = —1
if A;; < 0. For two-real valued functions f(-) and g(-), we write f(n) = O(g(n)) if f(n) < cg(n)
and f(n) = Q(g(n)) if f(n) > ’g(n) for constants ¢, ¢’ > 0.

2 Problem Setup

Consider a p-dimensional random vector X following the Gaussian distribution N (0, ¥ x ) with a
known covariance matrix X x > 0 (we outline a relaxation of this assumption in Remark 1). Let
Y = (B*)~'X witha p x p matrix B* = 0 and note that Y ~ A/ (0, ©* 1), where ©* = B*X.x B*.
Define the sample covariance matrix S =n~! 3" | V;Y;T, where {Y7,...,Y, } are the n (possibly
n < p) ii.d. samples of Y. For some A,, > 0, we consider the ¢; regularized MLE for estimating B*:
argmin  [Tr(S©) — log det(O) off] 5 (2)

B~0;0=B%'BT

n

where || Bl|1,ot = >_,; | Bij| is the £1-norm applied to the off-diagonal entries of B € RP*P. The

loss function in (2) without the ¢; penalty is the negative log-likelihood of Y, and maximizing it to
estimate B* yields an unrestricted MLE.

The optimization problem in (2) looks similar to the ¢;-regularized log-determinant problem, which
has a rich, long history in high-dimensional statistics, machine learning, signal processing, and
network sciences (see for instance [35, 3, 66, 23]). The bulk of this literature focuses on estimating
©*. The resultant estimator, referred to as the graphical LASSO (or GLASSO), has many nice
theoretical properties (e.g., asymptotic consistency and support recovery in the high-dimensional
regime) [48, 49, 67]. However, our estimator in (2) is significantly different from GLASSO because
we are estimating B* rather than ©*. Other studies close to our setup estimate a sparse Cholesky
factor of ©* [27, 17, 28]. Recall that the Cholesky decomposition is given by ©* = LLT where
L > 01is a lower triangular matrix. We differ from this line of work on multiple fronts: (i) we do
not require B* to be a lower or upper triangular Cholesky factor; (ii) our method allows for arbitrary
correlations between the nodal injections resulting in an extra E}l between the factors; and (iii) to
the best of our knowledge, ours is the first work to provide guarantees on the sample complexity for
estimating B* in the high-dimensional regime.

Remark 1. (Unknown covariance matrix X x ). In problem (2), we assume that ¥ x is known. If this is
not the case, we can slightly modify (2) to estimate B* D instead of B*, where D is the unique square
root of Z)_(l satisfying D? = E)_(l. This approach works best if the sparsity of B* (approximately)
equals the sparsity of B* D, which for instance happens when X x is (approximately) diagonal. [
Remark 2. (On invertibility of B*). The invertiblity assumption of B* ensures that B* is identifiable
from samples. This holds in several applications including the ones in (2)-(4) in Section 1. However,
this might not be true if B* is a Laplacian matrix that has k zero eigenvalues. One common work
around (see e.g., [24, 20, 21]) is to work with a reduced Laplacian matrix by deleting k rows and
columns of B* (we employ this insight in our experiments; see Section 4). O

3 A Convex Estimator and Statistical Guarantees

In this section, we first recast the objective in (2) in terms of B for a known X x. We then present our
main results on the performance of our estimator in (2) when X is Gaussian and non-Gaussian. We
comment on extending our results to other convex loss functions and conclude with an overview of
the key steps in proving our results. Full details are given in the appendix.

We begin by rewriting the problem in (2) in a form that is more suitable to our methods of analysis.
Let D be the unique square root of E)_(l satisfying D? = E)_(l (see [8]). Substituting B = BT and



© = BD?BT in the cost function of (2) yields the following:

B = argmin [Tr(DBSBD) — log det(B?) + Ay || B||1,0tt] » 3)
B>0
where we use the fact that the trace operator is cyclic and the determinant of a matrix product equals
the product of matrix determinants. We dropped constants that have no effect on the estimate. The
symmetry and invertibility of B is sufficient enough to ensure that log(-) is well-defined. In other
words, the positive-definiteness assumption is not needed for the well-posedness of (3).

Lemma 1 below is the starting point of our analysis. It establishes two key properties of the estimator

in (3) under the positive definiteness of B: (i) loss function in (3) is convex in B and (ii) Bis unique.
The following result is proved in Appendix A.3.

Lemma 1. (Convexity and Uniqueness) For any A, >0 and B >0, if the diagonal elements of the
sample covariance matrix Sii > 0 for all i, then (i) the {1-log determinant problem in (3) is convex

and (u) Bin (3) is the unique minima sansfymg the sub gradient condition 2DzBS 2B~ 1—|—)\ Z=0.
Here Z belong to the sub-gradient 8HB||1 off With Z” =0, fori = j, and Zl] = 81gn(B i) when
BU # 0 and |Z”| < 1 when Bm =0, fori # j.

A few comments of Lemma 1 are in order. ( Convexity) First, we recall that the compositions of two
convex functions is in general not convex. As an example, consider two convex functions f(z) = x2
and g(x) = —x, however, g(f(x)) = —z? is not convex. Therefore, in light of the fact that the loss
function is a composite function of B, it is not clear if (3) is convex. Nonetheless, in Lemma 1 we
prove that (3) is a convex program. Key to our proof is the notion of monotone convex functions.
(Uniqueness) Second, the uniqueness result is non-trivial in high-dimensions (n < p) because the
Hessian is rank deficient, and hence, the loss function in (3) might not be be strictly convex. However,
in Lemma 1 (ii) we show that Bis unique. Key to our proof is the notion of coercivity and it adapts
techniques in [48] to the case where the objective function is quadratic in the optimization variable.

3.1 Statement of Main result

Our first result theoretically characterizes the performance of Bin (3) when Y is Gaussian. Instead,
our second result provides such a characterization for B when Y is non-Gaussian. At a crude level,
our results guarantee that when the number of samples n scales as d? log p, our ¢;-regularized MLE
correctly recovers the support of B* and is close to B* (measured in Frobenius and operator norms)
with high probability. Here, d is the degree of the graph underlying B*.

Since we consider an ¢ regularized log-determinant program for our ML estimator (3), our results
might appear similar to that of [48]. However, as also pointed in Section 3.2, our main results,
including the assumptions and sufficient conditions needed to derive them, are not subsumed by those
in [48], or vice versa (see Remark 3 and Section 4 for more thorough discussion).

We begin with the a few assumptions that are essential to prove our theoretical statements. Similar
subset of assumptions in the context of ¢; regularized least squares problem appeared in [63, 57, 39,
68], and in the context of ¢; regularized inverse covariance estimation problem appeared in [48, 67].
We define the edge set £(B*) = {(i,j) : Bj; # 0,forall i # j}. Let £ := {£(B*) U (1,1)...U
(p,p)} be the augmented set including the diagonal elements. Let E° be the complement of E.

[A1] Mutual incoherence condition. Let I'* be the Hessian of the log-determinant function in (3):
I'* 2 V% logdet(B)|p_p- = B* '@ B* " (4)

For I'* in (4), there exists some « € (0, 1]

T pTae) M|, <1-a

[A2] Hessian regularity condition. Let d be the maximum number of non zero entries among all the
rows in B* (i.e., the degree of the underlying graph), ©* = B*E;B*, and D? = E;{l. Then,

I

A few comments are in order. [A1] Our novel mutual incoherence condition on B* regulates the
influence of irrelevant variables (elements of Hessian restricted to £ x E) on relevant variables

. < e

o~ 4d)|0* |0 I D2l




(elements of Hessian restricted to £ X E). The a-incoherence assumption of the above type is
standard in literature, and [48] demonstrates its validity for several graphs, including chain and grid
graphs, which we will explore in experimental section. Notice that the a-incoherence in [48] is
imposed on ©*. Instead, we require it on B*. [A2] This condition is in parallel with bounding the
maximum eigenvalue of ©* ! condition for estimating sparse ©* (see for e.g., [49, 30]).

Our problem set-up assumes that the injected flows X, ¢ € [p], are Gaussian. Given that the vector
of node potentials Y depends on X via the balance equation (see equation (1)), we have that Y is
Gaussian. However, we work with sub-Gaussian distributions, a natural generalization to the Gaussian
case, which encompasses many well known distributions that occur in practice (for e.g., bounded
random variables, gaussians and mixture of gaussians). We define this distributional assumption
below.

Definition 1. (Sub-Gaussian random variable) A zero mean random variable Z is said to be sub-
Gaussian if there exists a constant o > 0 such that for any t € R, Elexp(tZ)] < exp (o2t?/2).

Our first main result below provides sufficient conditions on the number of samples n needed for
Bin (3) to exactly recover the sparsity structure of B* and to achieve sign consistency, defined as
sign(B;;) = sign(Byj;), for all (i, j) € E. We recall that vy = [|Al], £ max;—1__, > 51 1Al
and define ¥* = ©* ! to be the covariance matrix of the node potential Y.

Theorem 1. (Support Recovery: Sub-Gaussian) Let X = (Xq,...,X,) be the vector of injected
Sflows. Suppose that for all i, X;/\/Xx (ii) is sub-Gaussian with parameter o and assumptions
[AI-A2] hold. Let the regularization parameter A, = Cy+/7(log 4p)/n, where Cy is given below.

Given n independent samples from Y, if the sample size n > C2d?(7 log p + log 4), the following
hold with probability at least 1 — ﬁ, for some T > 2:

(a) B exactly recovers the sparsity structure of B*; that is, Bg- = 0,
Y D y

(b) B satisfies the element-wise {~. bound ||§ — B*|loo < Cay/ %, and

*
B;;

s

(¢) B satisfies sign consistency if | BX,,| > 2Ca4/ %, B, = ming jyes(B+)

where Cy = 192v/2[(14402)k(5*) Tr(Sx )vpevp« v 1| max{vp.-1vg--1, 202, _ V3 20~ td=1},

B*—11
Co = [64v2(1 + 40%)k(2*) Tr(Xx )vps —1vp2vp=vg- 1], Co = Cy/(4vp.—1) and k(-) is the
condition number.

The quantities (vp--1,vpz, vp«, K(X*), Tr(Xx)) capture the inherent complexity of the model and
do not depend on the number of samples n. As long as the magnitude of the entries in r*-1 D2,
and B* scale as O(1/d), the model complexity parameters do not depend on (p,d). That is, as
the size of the network grows with (p, d) the edge strengths decay with d. Suppose that the model
complexity parameters are constants and that n = 2(d? log p). Then part (a) of Theorem 1 guarantees
that our ML estimator does not falsely include entries (or edges in the underlying graph) that are
not in the support of B*. Part (b) establishes the element-wise ¢, norm consistency of B; that is,

| B — B*||sc = O(+y/(log p)/n). Finally, part (c) establishes sign consistency of B, and hence, our
estimator does not falsely exclude entries that are in the support of B*. Crucial is the requirement of

|B:. .| =Q (« /(logp)/ n), which puts a limit on the minimum (in absolute) value of the entries in

min

B*. This condition parallels the familiar beta-min condition in the LASSO literature (see [63, 59]).

We now present a corollary to Theorem 1 that gives consistency rates of convergence for B in the
Frobenius and operator norms. Let £(B*) = {(i, j) : Bj; # 0,forall i # j} be the edge set of B*.
Corollary 1. Let s = |E(B*)| be the cardinality of £(B*). Under the same hypotheses in Theorem

1, with probability greater than 1 — ﬁ, the estimator B satisfies

~ 1 4 ~ 1 4
1B 5l < Cog SRR ED 1B o, < Cyminga, vy T2

Proof sketch. Both the Frobenius and operator norm bounds follows by applying standard matrix
norm inequalities to the /., consistency bound in part (b) of Theorem 1. Importantly, s + p is the




bound on maximum number of non-zero entries in B*, where s, by definition, is the total number of
off-diagonal non-zeros in B*. Complete details are provided in Appendix A.3.

Thus far we have assumed that the nodal potentials Y; are sub-Gaussian random variables. We now
explore another broad class of random variables with bounded k™ moments, which are known to have
tails that decay according to some power law [44]. An important example of power law distributions
are Pareto distributions which finds applications in a wide variety of areas [43, 41]. Motivated by
such important practical considerations, we state our next result for random variables with bounded
moments. We begin with the following definition.

Definition 2. (Bounded moments) A random variable Z is said to have bounded 4k™ moment if there
exists a constant My, € R such that E [(Z)**] < Mj,.

Results below parallel Theorem 1 and Corollary 1 for random variables with bounded moments.

Theorem 2. (Support Recovery: Bounded Moments) Let X = (X1, ..., X,,) be the vector of injected
Sflows such that for all i, the node potential Y;/ \/27; has bounded moment as in Definition 2 and
assumptions [A1-A2] hold. Let the regularization parameter \,, = Co+/7(log 4p) /n, with Cy defined
in Theorem 1. Given n independent samples from 'Y, if the sample size n > Cyd?*p™'*, then with
probability greater than 1 — 1/p™ =2, for some T > 2, the following hold: (a) B exactly recovers the

sparsity structure of B* (that is Bge = 0); (b) the element-wise (o, bound ||B B*||oo < C54/E et

and (c) B satisfies sign consistency if | B ;.| > 2C5 prlk

min

The constants and their dependence on the model complexity parameters are given in Appendix A.3.

Corollary 2. Suppose the hypotheses in Theorem 2 hold. Then with probability greater than 1 — ——

1.
A
|B—B*|p < Csy/ S 4ng | B — B*||y < Csmin{d, /s T p}y/ B8, where s = |E(B*)|.

Interpretations of Theorem 1 and Corollary 1 also hold for Theorem 2 and Corollary 2. However, in

this setting, we have different sample size n = Q(d?p™/*) and |B*,, | = Q(y/p™/* /n), where k is
given by Definition 2. In contrast, for sub-Gaussian case we have logarithmic dependence in p (the
number of vertices). Finally, albeit fundamentally different from GLASSO estimator, we were able

to obtain consistency rates for B (3) that are similar to those in [48, 12].

Remark 3. (Comparison with the GLASSO estimator). For simplicity, suppose that ¥ x is diagonal.
Then, it follows that B* = 0 is the unique square root of ©* = (B*)2. Thus, a naive way to estimate
B*is by taking the square root of the GLASSO estimate ©. Let us call this estimator BS R and note
that B s inherits its optimal properties from ©. We show that © has sub- optimal estimation rate than
Bin (3) for estimating B*. Let B* contains d non-zero elements in every row. Then the underlying
graph of ©* is a two-hop network with degree d*. Using sample complexity results from [48], it
follows that 5) requires n = Q)(d*log p) to estimate B*. Instead, our {-regularized MLE requires
n = Q(d? log p) samples. This reduction is more pronounced for networks with a large degree d. [

3.2 Outline of Main Analysis

We provide an outline of our methods and main strategies to prove Theorem 1. We employ the primal-
dual witness technique—a well-known method used derive to statistical guarantees for sparse convex

estimators [63, 64, 34]. This technique involves constructing a primal-dual pair (B Z ) satisfying
the zero-subgradient condition of the convex problem in (3), such that (the primal) B has the correct
(signed) support. Suppose this construction succeeds, from the uniqueness result in Lemma 1, it
follows that B = B , and the dual Z is an optimal solution to the dual of (1). Thus, at the heart of
our analysis is in showing that the primal-dual construction succeeds with high-probability. Similar
technique is also used to prove Theorem 2 (i.e., the non-Gaussian case); see Appendix A.3.

While our proof methods are inspired from [48, 63], our analysis is more involved due to the
presence of B2, as opposed to B, in the loss function of (3). Consequently, we require more nuanced
assumption (as in [A2]) and dual feasiblity condition than the ones in [48] (see below).



3.3 Primal-dual pair and supporting lemmas

We briefly introduce the primal-dual witness construction. In Lemma 2, we provide sufficient
conditions under which this construction succeeds.

We construct the primal-dual pair (E , Z ) as follows. The primal solution B is determined by solving

B2 arg min [Tr(DBSBD) — log det(B?) + A, || Bl|1,0ft] - (6)
B=BT B>0,Bgc=0

Here (6) is a restricted problem, in that, we impose Bge = 0. Also, we have B~ 0and B e = 0.
The dual Z € 9||B|, off is chosen such that it satisfies the zero-subgradient condition of (6). This is
obtained by setting 2\, Z;; = [B~1];; — [D2BS];;. for all (i, j) € E°. It can be verified that (B Z)
satisfies the zero-subgradient condmon (see the statement of Lemma 1) of the original problem in (3).
Thus, it remains to establish the strict dual feasibility condition; that is |Zj| < 1, forany (i,5) € E°.

We introduce some notation. Let W £ S — ©* ' bea measure of noise in the data, where S is the
sample covariance and ©* ! is the true covariance of Y. Let A £ B — B* be a measure of distortion

between the primal solution B as defined in equation (6) and the true matrix to be estimated B*.
We also need the the higher order terms (denoted by R(A)) of the Taylor expansion of the gradient

V log det(B) centered around B* [10]:

Viegdet(B) = B* '+ B* 'AB* ' + B~ = B* ' — B*'AB*"!. 7)
2R(A)

Lemma 2. (Sufficient conditions for strict dual feasibility) Let the regularization parameter \,, > 0
and o be defined as in [A1]. Suppose the following holds

®)

- An
max { [|D(D28) + DD, [Wlloes [ R(A) e [P D) 107 oo | < S

Then the dual vector Zge satisfies | Zpe||so < 1, and hence, B = B.

Proof sketch: The proof essentially involves expressing the sub-gradient condition in Lemma 1 as a
vectorized form using R(A) (in (7)) and . By manipulating the vectorized sub-gradient condition,

we obtain an expression of Zg. that is a function of the quantities in (8). We finish off the proof by
repeated applications of triangle inequality of norms and invoking assumptions in Lemma (8).

The following results provides us with dimension and model complexity dependent bounds on the

reminder term R(A) in (7) and the distortion A.
Lemma 3. (Control of reminder) Suppose that the element-wise {o-bound | A|| holds,

where vg.—1 = |||B*71|HOC. Then |R(A)||oc < 3d|| A2 03, 1.

1
S 3115*71d

The proof, adapted from [48], is algebraic in nature and relies on certain matrix expansions. The
details are provided in Appendix. In the following result, we provide a sufficient condition under
which the element-wise ¢,,-bound on A in Lemma 3 holds.

Wl + 0.5\,

Lemma 4. (Control of A) Let r e 4up. 1 [Vp2vpe <
|Alloc = |B—B*|lsc <

. 1 1 .
min { T L — } Then we have the element-wise £, bound

B*—1

Proof sketch: By construction Bge = B = 0. Hence, ||A]|co = ||Ag||co, Where Ag = B — Bj,.
We construct a continous vector valued function /' : Ay — Ap that has a unique fixed point.
Invoking assumptions [A1]-[A2], we show that F'(-) is a contractive map on the ., ball defined as
B, = {A: ||4||cc < r} with r defined in the statement of the lemma. Specifically, we show that
F(B,) C B,. Finally, we finish off the proof by an application of Brower’s fixed point theorem [29]
to show that the unique fixed point is inside B,.. Consequently, ||Alls < 7.

Finally, the result in Theorem 1 follows by putting these lemmas together for an appropriate choice of
Ap, and the sample size requirement, and there upon, invoking some known concentration inequalities.
Refer Appendix A.3 for complete details.
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Figure 2: Graphs used in experiments. (a) Chain graph with maximum degree d = 2. (b) Grid graph d = 4.
(c) IEEE 33 bus (node) distribution network with additional loops (shown in dashed lines). (d) Sparsity of B*
associated with the IEEE 33 bus network. (d) Sparsity of (B*)?. Notice that (B*)? is denser relative to B*.
Consequently, GLASSO+HR needs more samples than ¢;-MLE to recover the support (see plots in Fig. 3).

4 Experiments

We validate the support recovery performance of our ¢;-regularized MLE on synthetic and a bench-
mark power distribution network (see Fig. 2). We choose \,, proportional to y/log p/n. Our results
are averaged over 100 trials of n independent samples of Y. We compare ¢;-regularized MLE
performance with (i) the square-root estimator (hereafter, GLASSO+SR) that identifies the support of

~1
B* by determining (4, j) for which ©7; # 0; and (ii) the GLASSO+2HR (Hop Refinement) estimator
[20] that identifies the support of B* by determining (i, j) for which @71'7]‘ < —7 for 7 = le — 02.

Here O is the GLASSO estimate of the inverse covariance matrix of Y [23]. These estimators are
described in detail in Introduction.To have a fair comparison with the GLASSO based estimators, we
set Xx (X is the injected vector) to be diagonal. However, as discussed earlier, our ¢; regularized ML
estimator works for any X x > 0. We consider p to be as large as 64 nodes, Computational examples
involving large data matrices for B* having a lower triangular matrix form has been reported in [28].

(i) Synthetic data: We consider two undirected graphs for B*, the chain graph and the grid graph for
p = {32,64} nodes. We set B}; = 1 for (i,7) € E'and B; = 0 for (i, ) € £, where E can be the
edge set of the chain or grid graph. We then adjust the diagonal elements of B* to ensure B* > 0.

(ii) Power network: We set B* to be the Laplacian of the IEEE 33 bus power distribution network
[69]. For this data, we note that B* is non-invertible because of one zero eigenvalue. We obtain
the reduced B* by deleting the first row and column of B*. We also slightly modify the network
by adding three loops of cycle length three, two of cycle length four, and one loop of cycle length
five (see Fig 2). We made these modifications to highlight that /;-MLE imposes no connectivity
assumptions on the graph underlying B*, except sparsity. In contrast, GLASSO+2HR estimator [20]
restricts the graph underlying B* from having cycles of length three (i.e., triangle-free).

In Fig. 3, we show empirical support recovery probabilities for all three estimators as a function of
the number of samples n. Both on synthetic and power network data, /;-MLE achieved superior
rates than the other competing estimators. In fact, /;-MLE exactly recovers the support of B* when
the number of samples is in the order of d? log p, which is in excellent agreement with the proposed
theory. Instead, for a similar performance, GLASSO+SR needed d* log p samples (see Remark 3).

5 Discussions and Future Work

High dimensional networks obeying conservation laws of the form X = B*Y are often used to model
and study interactions among different conserved quantities in various engineering and scientific
disciplines. For such systems, with unknown structure of the network, or equivalently the sparsity
pattern of B*, we estimate the the sparsity structure of B* using an /;-regularized ML estimator.
Our estimator relies on n samples of the node potentials Y, with some knowledge of the statistics of
the node injections X . We showed that this estimator is the unique optimal solution to a variant of
the convex log-determinant program. Using novel mutual incoherence conditions, we have provided
(theoretical) sparsity and support recovery consistency for our estimator. Finally, using several
numerical results we not only validated our theory but also showed that our ¢;-regularized estimator
outperforms methods that employ GLASSO based estimators.
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Figure 3: Empirical probability of success of various estimators versus the raw sample size n for (left) chain
graph, (middle) grid graph, and (right) IEEE 33 bus network. For chain and grid graph, we compare our ¢;
regularized MLE performance with GLASSO+SR for p € {32,64}. Instead, for IEEE 33 bus network, we
compare ¢; regularized MLE with GLASSO+SR and GLASSO+2HR.

In our setup, we neither require actual injected flows (X), nor B* to be a Laplacian matrix, nor
n > p, thereby allowing our learning problem to be general enough to be applicable for a variety
of domains ranging from electrical networks to social networks. Consequently, our framework
and theoretical results admits many future extensions and refinements. For instance, verifying the
assumptions [A1-A2] in practice is a fruitful future direction. It is worth noting that, in order to run
the proposed algorithm/estimator, one need not verify the assumptions. Notice that from Lemma
1, the loss function/objective is convex and admits a unique solution if the regularization constant
An > 0 and B is positive definite, therefore the unknown structure of the network can be recovered
by finding the unique minima. However, in order to theoretically guarantee the properties of the
estimator mentioned in Theorem 1 and Theorem 2, assumptions [A1-A2] are needed. A possible
extension to the current problem is to recast the objective function in (2) as the minimization of the
Bregman divergence for more general loss functions. Another promising direction is to generalize (2)
to include non-invertible network matrix B*. We leave this as our future work.
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A Appendix

A.1 Code Availability

In Section 4, we performed numerical experiments to validate the support recovery property of the
proposed ¢; regularized ML estimator and compare its performance with the square root estimator
(GLASSO+SR) and what we call the GLASSO+2HR (2 Hop Refinement) estimator [20]. Our
benchmark examples include a synthetic data for chain and grid graphs, and a real-world electric
power system network. We implement all three estimators using CVXPY 1.2 open source python
package on Google Colab. All the simulation results reported in this paper can be reproduced using
the code available at https://github.com/AnirudhRayas/SLNSCL.

A.2 Limitations

In this work we restricted B* in the model B*Y — X = 0 to be invertible and positive definite. In
applications such as transportation networks, B* might not be symmetric, and hence, not positive
definite. For this setting, it is not clear if our technical analysis hold. Another limitation is that the
our sample complexity result depends quadratically in the maximum degree d. This is because of
the proof technique we adapted from [48]. Decreasing this dependence from d? to d is an open
question. Finally, as is well known, verifying regularity conditions, such as the mutual incoherence,’
in practice is computationally hard. Hence, there is a need to develop regularity conditions that are
easily verifiable in practice.

A.3 Proofs of all technical results

Overview: We begin with a brief overview of the problem set-up and state the necessary assumptions.
Then, we provide proofs for all the technical results. Recall that our observation model is Y =
B*7' X, where B* is a p X p sparse matrix which encodes the structure of a network with the property
that Bf; = 0 for all (7, j) € E°, Y € R” is the vector of node potentials and X € R? is the unknown
random vector of injected flows with known covariance matrix > x. Given n i.i.d samples of the
vector Y our goal is to learn the sparsity structure of the matrix B*. Towards this we propose an

estimator B which is the solution of the following ¢; regularized log-det problem

B = argmin [Tr(DBSBD) — log det(B?) + || Bl1,01] - 9)
B>0

where D € RP*P is the unique square root of E}l and S is the sample covariance matrix constructed
from n samples of the random vector Y. We recall the assumptions necessary to prove our results.

[A1] Mutual incoherence condition. Let I'* be the Hessian of the log-determinant function in (9):
I'* £ V% logdet(B)|p_p- = B* '@ B* . (10)

Ihep(The) e <1-o

[A2] Hessian regularity condition. Let d be the maximum number of non zero entries among all the
rows in B* (i.e., the degree of the underlying graph), ©* = B*Z;{lB*, and D? = 2)_{1. Then,

H

Our analysis is based on the Primal-Dual Witness (PDW) construction to certify the behaviour of the

estimator B. The PDW technique consists of constructing a primal-dual pair (E, Z ), where B is the
primal solution of the restricted log-det problem defined below

B2  argmin  [Tr(DBSBD) —logdet(B?) + A, || B
B=BT ,B~0,Bgc=0

For I'* in (10), there exists some « € (0, 1] such that ||

P*_lw < . . (11)
o 4d[|0* | [ID? |l o

1,0ff] - (12)

where Z is the optimal dual solution. By definition the primal solution B satisfies Bpe = By. = 0.
Furthermore the pair (B, Z) are solutions to the zero gradient conditions of the restricted problem

*nterestingly, this condition is necessary and sufficient for sparse linear regression problems [63].

15



(12). Therefore, when the PDW construction succeeds the solution Bis equal to the primal solution
B which guarantees the support recovery property ie. Bge = 0.

We now summarize our technical results. @) We begin by showing that the ¢, regularized log-det
problem in (9) is convex and admits a unique solution B (see Lemma 1). @ We then proceed to
derive the sufficient conditions under which the PDW construction succeeds (see Lemma 2).

We then guarantee that the remainder term R(A) is bounded if A is bounded (see Lemma 3).

Furthermore, for a specific choice of radius r as a function of ||W||we show that A lies in a ball
B, of radius r (see Lemma 4). 6 We then derive a lemma which we call the master lemma which
gives support recovery guarantees and element-wise £, norm consistency for our estimator B under
no specific distributional assumptions (see Lemma A.6). @ Using known concentration results on
sub-gaussian and moment bounded random vectors we prove our main result for the two distributions
mentioned above. Recall that our main result gives sufficient conditions on the number of samples
required for our estimator BA to recover the exact sparsity structure of B*. We also show that under
these sufficient conditions B is consistent with B* in the element-wise £, norm and achieves sign
consistency if | B, | (the minimum non-zero entries of B*) is lower bounded (see Theorem 1 and

Theorem 2). @ Finally, we show that B is consistent in the Frobenius and spectral norm.

Numbering convention: To make the appendix self contained we restated statements of all theorems,
lemmas, and definitions with their numbers unchanged with respect to the main text. For the numbered
environments that are specifically introduced in Appendix, the environment begins with the label "A"
(e.g., Lemma A.1).

Lemma 1. (Convexity and uniqueness) For any A\, >0 and B >0, if the diagonal elements of the
sample covariance matrix Sy; > 0 for all i, then (i) the £1-log determinant problem in (9) is convex
and (ii) Bin (9) is the unique minima satisfying the sub-gradient condition 2D2BS— 2§_1+An2 =0.
Here Z belong to the sub-gradient 8H§||1’0ff so that Z-j =0, fori=j, and Z-j :sign(ﬁij) when
Eij # 0 and |Zj| < 1 when Eij =0, fori # j.

Proof. (i) Convexity: Let S = MM?, for some M > 0, and recall that || A||% = Tr(AAT). Then,
the objective function in (9) can be expressed as

IDBM|[3: — log det(B?) + Apl|Bl|1 ofr- (13)
First, the square-root of the first term is convex because for any A € (0,1) and By, By > 0, we have

[DOAB1 + (1 = A)B2)M||p = |[ADB1M + (1 — \) DBy M||
<A DBIM|p+ (1= N[ DB M||F.

Now that hy (z) = 22 and ho(A) = ||A|| are both convex and that h; () is non-decreasing on the
range of ho, that is, [0, 0o], it follows that the composition hy o hy = || - ||% is convex.

Second, we show the convexity of — log det(B?) using the perspective function technique [10]. To
this end, let | - | be the absolute value and note that log det(B?) = log | det(B?)| = 2log | det(B)|.
Let g(t) = log | det(B + tV')| with V > 0 be the perspective function of log | det(B)|. Since B is
symmetric and invertible, there exists an orthogonal matrix Q such that QQT = I and B = QQQ",
where (2 is a diagonal matrix consisting of eigenvalues of B. Then,

g(t) = log(| det(QQQT +tQQTVQQT)]) (14)
= log(| det(Q(Q +tQTVQ)QT))) (15)
= log(| det(Q +tQTVQ)|) (16)
= log(| det(I +tQ71QTVQ)|) + log(|Q), 17)

where we used the facts | det(X1X2)| = | det(X7) det(X2)| = | det(X1)|| det(X2)| and A is full
rank. Since  is diagonal and QTV Q = 0, it follows that the eigenvalues {)\;} of Q7 1QTV Q are
real-valued (need not be positive). Thus,

g(t) =log [T 1(1+tA)] + log(192).
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Notice that ¢'(t) = > ’\(ﬁi\t’;z and ¢"(t) = = (1+t/\ oz < 0. Thus g(t) is strictly concave.
Hence, 2 log | det(B)| = log det(B?) is strictly concave. Finally, — log det(B?) is strictly convex.

Third, the norm A, || B|| 1,0 is the sum of absolute values of off-diagonal terms, and hence, convex.
Because the sum of convex functions and a strictly convex function is strictly convex, we conclude
that the objective function in (14) is strictly convex.

Remark: In the proof, we used the fact that B is symmetric and full rank but not the positive-definite.
The proof for B > 0 is simple because we can drop the absolute values and mimic the standard
log-det concavity proof [48, 23]. Finally, we required V' = 0 to not to deal with the (possible)
imaginary eigenvalues of Q~'QTV Q. However, we conjecture that 1 needs to be only symmetric.

(ii) Uniqueness: In part (i), we showed that the objective function in (14) is strictly convex. Recall
that strictly convex functions have the property that the minimum is unique if attained [10]. We show
that the minimum is attained using the notion of coercivity (see Def 11.10 and Proposition 11.14
in [5]). This amounts to showing that the objective function CO(B) £ (|| DBM||% — 2log det B)
subject to constraints (see below) tend to infinity as || B||2 — oc.

By Lagrangian duality, the ¢; regularized log-det problem (9) can be written as

arg min |DBM]||% — 2logdet B, (18)
B~0,B=BT,||Bl|1,ot<An

where A,, is the constraint on the off diagonal elements of B. From the constraint || B||1 ot < Ay,
it follows that the off-diagonal elements of B lie in an ¢; ball. Thus, ||B||2 — oo if and only if for
any sequence of diagonal elements || [B11, ..., Bpp| ||cc = 00. On the other hand, by Hadamard’s
inequality for positive definite matrices [26], we have 2logdet B < ) 2log Byy. Thus,

k

IDBM |7 — 2logdet B > | DBM|[3 — 2 " log By (19)
k
We now lower bound || DBM ||%. Consider the following inequality:

IDBM||7 =Y _[DBMJ; (20)
0,J
= Z (Dik B M;;)? 2n
i,9,k,l
> Y (Dik B My;)? (22)
i,j,k=l
—Z Br)? >_(Dix)* (M) (23)

i,j
The inequality in (22) follows because the off—dlagonal elements of the matrix B are non-negative
(e, j k#(DikBklMlj)Z > 0). Rewriting equation (19) using the lower bound from equation
(23), we have

IDBM |7 — 2logdet B > > | (Bk)* Y _(Dir)*(My;)* — 2log By, (24)
k i
If the term ), ; (Dix,)?(Mg;)? > 0, then for any sequence ||[Bi1, . . ., Bppl|l« — 00, the quadratic

term (Byy)? in the right hand side of the lower bound in equation (24) dominates the logarithmic
term log By, for all k. Therefore the objective function CO(B) = ||[DBM||% — 2logdet B > oo
as ||[B11, - - ., Bpp||loo — o0. This implies that CO(B) is coercive and a unique minima exists. Now
it remains to show that the term ), (Dir)*(My;)? > 0.

One one hand, by assumption, the diagonal elements of the sample covariance matrix S are strictly
positive. On the other hand, S = M2, where M is the unique positive semi-definite square root. Thus,

Skr = Z(Mkj)z > 0. (25)

J

17



By the same logic, the following inequality holds for D? = E}l, where ¥ x is positive definite matrix:
=X ke =Y _(Dix)* > 0. (26)

Multiplying terms in (25) and (26), we have that 3, (Dix)?(My;)? > 0.
O

We derive sufficient conditions under which the PDW construction (defined in Section 3.2) succeeds.

Lemma 2. (Sufficient conditions for strict dual feasibility) Let the regularization parameter A, > (
and « be defined as in [A1]. Suppose the following holds

_ An
P2 0" M} < S22 @D

max{|Hl"(D2A) + (DB .

oW llse [1R(A) oo,

Then the dual vector Z e satisfies | Zp«||so < 1, and hence, B = B.

Proof. We begin by obtaining a suitable expression for Zpe using the zero-subgradient condition of
the the restricted ¢; regularized log-det problem defined in (6):

B = arg min [Tr(DBSBD) — logdet(B?) + \,||B 1,05} . (28)
B=BT,B>0,Bgc=0
The zero-subgradient of the restricted problem is given by
2D?BS — 2B~ ' + A\, Z =0, (29)

where B is the primal solution given by (28) and Z 0| B||1,0f is the optimal dual. Recall that
A=DB—B*and W = S — ©* ! and notice the following chain of identities:
2(D?BS — B™Y) + A\ Z = 2(D?*BS — D*B*S + D*B*S — B~') + A\, Z

= 2(D?AS + D?B*S — B~ V) + A\, Z

= 2(D*AW + D*B*W + D*A0* ' + D?B*0* ' — B~1) + A\, Z.
On the other hand, by definition, ©* " = B* !X x B*~! and (D?)~! = . Thus, D*B*©* ™! =
B* 1. Substituting these expressions in the zero-subgradient condition yields the following:

D’AW + D?*B*W + D*A0* ' + B* ' — B~ 1+ N Z =0, (30)

where A], = 0.5\,,. By adding and subtracting B* “PAB* ™! to the preceding equality and followed
by some algebraic manipulations give us

B* 'AB* ' + D2AW + D?B*W + D?A0* ' — R(A)+ X, Z =0, (31)
where R(A) = B~! — B*~! — p*~1AB*~L,

We now vectorize (30). We use vec(A) or A to denote the p?-vector formed by stacking the columns
of Aanduse I'(A) = (I ® A) to denote the Kronecker product of A with the identity matrix I. By
applying vec() operator on both sides of (30) it follows that

vec(B* PAB* ! + D?°AW + D?B*W + D?A©* ' — R(A) + X, Z) = 0. (32)

Using the standard Kronecker matrix product rules [31], we have vec(B* “PAB*7!) = I'*A, where
I'* = B* ' @ B* ! and vec((D?*A)W) = I(D?AW; T'(D?*A) = I ® D?A; and I is the p x p
identity matrix. By substituting these observations in (32), we note that

A+ T(D?AW + T(D*B* W + I['(D*A)0* ' —R(A)+ \.Z = 0. (33)

For compactness, we suppress A notation in R(A). Recall that the F is the augmented set defined as
E:={&(B*)uU(1,1)...U(p,p)}, where & is the edge set of the network and E° is the complement
of the set E. Recall that we use the notation Ag to denote the sub-matrix of A containing all
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elements A;; such that (i,j) € E. We partition the preceding linear equations into two separate
linear equations corresponding to the sets £/ and E° as

(34)

FELEAE + (FELE(DQA) + FEcE(DzB*))WEc +Tgeg (DZA)G* o, ! REC + )\/,HZEC =0.
(35)

From (34), we can solve for Ag as

Ap = The)™" [— ((FEE(D2A) +Ter(D*B ))WE +Tpr(D*A)O% _1) +Rp — A;EE] .

2M
(36)

Substituting Ap given by (36) in (35) gives us

Thep(Thp) "M + (Dpep(D*A) + Tpep(D?B*)) Wl pep(D?A)0%. 0%~ Rpe + N.Zpe =0.
_ (37)
From which we can solve for the vectorized dual Z, Ee as

N Zge =T p(Upg) "M — (Tgep(D?A) + T e g(D2B*)) Wie — T e g (DAY~ + Rege.
(38)

Taking the element-wise £, norm on both sides of the preceding equality gives us
2 oo < N T () ™ o M + v e (D2A)]| O e
A (39)

_ 1. -
- 7/|HFECE(D2A) + Poen(DB)|| s oo + 5 || B

‘We invoke the mutual incoherence condition in (10) to bound H
since || Age||oo < ||A|l0o for any matrix A, we get

= 1- 1 _
Pplloe < =5 1M e + 5 IPD8) | 101

Thep(Tpp) | < (1 - ) and

1 (40)
+ 57 LI @*2) + T DB || Wl + 171l -

We bound || M||~ by taking the element-wise ¢, norm of M in (36) and followed by applying
sub-multiplicative norm inequalites. Thus,

1Ml < [|Tee(D?A) +Tpp(D?BY)
+1Re e + Xl ZE -
Because Z is the sub-vector of the vectorized optimal dual Z, it follows that ||Z Elloo < 1. Thus,

1Moo < [JT(D22) + (DB LW o + [ITDA)]| 16" o + IRll] +X,.

Wello + [TEs(D2A 0% M
W] +|H EE( )H’OOH 2| @1

(42)

2H

On the other hand, from (42), we have H < X/ /4. Putting together the pieces, from (42) and (40)
we conclude that
1-— 1

Peloe < (1= ) + = H 4 5 H (43)
2 —
=(-a)+—H (44)
2—a (N«
<(1-a)+ N <4> (45)
S(l—a)+%<1. (46)
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Remark For comparison, consider the strict dual feasibility conditions in [48, Lemma 4]. Here, the
maximum is on the noise deviation ||| and the remainder term || R(A)||. Instead, in our case,
the maximum is taken over several other quantities not just ||V || and ||R(A)]|c (see (2)). O

The following lemma shows that the remainder term R(A) is bounded if A is bounded. The proof is
adapted from [48], where a similar result is derived using matrix expansion techniques. We use this
lemma in the proof of our main result (see Theorem 1 and Theorem 2) to show that with sufficient
number of samples R(A) < a\,/24.

Lemma 3. (Control of reminder) Suppose that the element-wise {yo-bound |A]lce < %%ld

holds, then the matrix Q) = kzo(—l)k(B*flA)k satisfies the bound vor < 2 and the matrix
R(A) = B* " 'AB* ' AQB* ™! has the element-wise {,-norm bounded as

3
IR(A) oo < SAlANEVE- -1 47

We show that for a specific choice of radius r, the distortion A = B — B* lies in a ball of radius r.
Lemma 4. (Control of A) Let

1 1

A .

2 gy s W [l +0.50,] < { , }
r=dvpelvpave oo+ ] < min 3vg«—1d 61/F*711/%*,1d
Then we have the element-wise (., bound ||Al|co = HE — B*||oo < 1.

Proof. We adopt the proof technique in [48, Lemma 6]. We use the notation A, or [A] g to denote the

sub-matrix of A containing all elements A;; such that (i, j) € E. Let G (Bg) be the zero sub-gradient
condition of the restricted ¢; log-det problem in (12):

G(EE) = [DQES —-B '+ /\;LZ}E =0. (48)

where X, = 0.5),,. LetG'denote the vectorized form of G. Recall that A = B — B* = By — Bj 2
Apg. The second equality follows from PDW construction and the constraint in the restricted convex
program in (6). To establish || Ao < 7, we show that Ay lies inside the ball B, = {Ay € RIZI :
| Al < 7}, where Ap = vec (Ag), using a contraction property of the continuous map:

FAg) & —(Tpp) ' (G(Ap + By)) +Ag, (49)

where we used the fact that Bpe = Egc = 0.

Suppose that F'(-) is a contraction on B, i.e., F'(B,.) C B,.. Then by Brower’s fixed point theorem
[29), it readily follows that there exists a C' € B, such that F(C') = C. Finally, C' = Ag because
(i) B that satisfiesG(B) = 0 is unique (see Lemma 1) and (ii) F(Ag) = Ag if and only if G(-) = 0,
Hence, Ap; € B, is the unique fixed point of F(-) in (49). Consequently, || Ag oo < 7.

It remains to show that £’ (+) is a contraction. Let A’ € RP*? be a zero padded matrix on E° such
that A’g € B,.. Then F(A’g) can be expanded in terms of A’ as

F(A'p) = ~(Tpp) " (A% + By)) +A] 50)
— —(Tp) ™" [vee([D*(A + BY)S]p — (& + B)5" + X, Zp) + Tl -
Adding and subtracting ©* ! and B;’Jfl to the preceding equality yields us
F(g) == (Tip) ™" [vee ([DX(A + BYW] , + [DX(&" + BY)o* | X Zp - By )]
— (Pgp) ™ [ vee (A + BY) ™ = By ™) + Ty -
(5D

20



The last vec () term can be even simplified as

vec ((A/ +B>¢<)71 o B*—1> +F*A/ = vec ((A/ +B*)71 o B*—l + (B*—IA/B*—1)>

(52)
= vec(R(A)).
Substituting this observation in (51) and rearranging the terms gives us
= ) e [N, T e 4]
A éT2
iz, o (53)
= (D) [RA)]  — (D) Hvee [ D24 4 BYO T =B
AT, N

We now show that || F(A’5)||oe < r by bounding £s norms of terms (7% )-(T4). Recall that vy =
Al = max;—1, _, Z§:1 |A;;| and it is sub-multiplicative; that is | AB||., < [|A|l Bl -
Notice that this not the case with the max norm (£.).

(i) upper bound on || T} || : Consider the following chain of inequalities.

R S
[l s
(@) x—1 2 % ’
< e 2B Wl + X,

c

() ,
Wlloo + A7) <

< Vp--1 [Vp2vps

—~
<

(54)

>3

where (a) follows because ||ZHoo < 1 (see Lemma 1); (b) follows because I'(D? B*) = (I ® D?B*),
and hence, |F(D2B*)|HoO = |p?B*||| . < |[|IP?||| MB*lloc = vp2vp-; and finally, (c) follows
from definition of the radius r in Lemma 4.

(ii) upper bound on || Tz || ~: For Ty in (53), consider the following chain of inequalities.

I Talloo < vpe—r [[[LD*A)]| IV loc)
< vpe—vp |l W o

(a)
< vpe—1Vp2d[| Ao |[[W ]| o

(b) , r
< vpemvp2d||A oo | —————
4vp«—1Vp2vp~
(¢ 1 (d)
<d )<l (55)
3dvp«-1 dvp- 4

where (a) follows because by construction A has at-most d non-zeros in every row and that || A’|| <
d||A’||oo; (b) follows from the choice of = 4vp.—1(vp2vp« ||W||oo + AL) in Lemma 4, which is
lower bounded by 4vp.-1vpzvp« ||W ||, for all A}, > 0. Thus, |[W e < 7/(4vpe-1vp2vp+); ()

follows because A’ is a zero-padded matrix of A. Hence ||A|| = ||A’||oo < 7, which can be upper

bounded by 1/(3dvg.-1) in light of the hypothesis in Lemma 4; and finally, (d) follows because
VBxlVpgx—1 Z 1.

(iil) upper bound on || T3||oo: For T3 in (53), consider the following chain of inequalities.

ITslloe < wpemt | R(A) e (56)
(a) 3
< Sdvpeavp |85 (57)
®) 3 ©)

< idup*_w%*,lr(r) < -, (58)

=3
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where (a) follows because Lemma 3 guarantees that || R(A’)|| < (3/2)dv3,. . ||A'||2, whenever

[|A|oo < 1/(3dvg«-1). The latter inequality is a consequence of the hypothesis in Lemma 4; (b)
is true because by construction A’ € B,., and hence, || A" loo < 73 (c) follows by invoking the
hypothesis in Lemma 4, where 7 satisfies » < 1/(6dvp.-1v3, ).

(iv) upper bound on ||T4||s: The expression of T} in (53) can be simplified as
i s [p < 0 -1])
= —(Tpp) " vec ({D2A'@*—1 L p2prerl B*_I}E>
= =Tkt vee ([D2a%07] ). (59)
The last equality follows by observing that D2B*©* ! = B*~". This can be verified by plugging

0* ' =B* 'uxB* land L x = (D?)"!in D>B*©* ! and simplifying the resulting expression.
By taking the /., bound on the both sides of (59) gives us

| Talloe < vp-—1 DD A)[|| 10l (60)
< vpea1vped|| A so|©* e 61)

(@)
< vpewperd||0F T s < 27 (62)

where (a) follows by invoking the assumption in (11), and noting that [|©* ! | . < 1/(4vp.-1vp2d).

Putting together the pieces, from the above calculations, we note that

[F(AE oo < [ Tilloo + 1 T2lloc + [ Talloo + 1 T4lloc < 7 (63)

is a contraction as claimed. This concludes the proof. O

We borrow the following notion of tail conditions as defined in [48] to characterize the distribution.
We us this characterization to prove our master lemma A.6.

Definition A.3. (7Tail condition, [48]) The random vector Y satisfies the tail condition T (f,vs)
if there exist a constant v, > 0 and a function f : N x (0,00) such that for any i,j € [p] and
§ € (0,1/vy):

. 1
PUS:s =251 =9 < 5055

Furthermore, f(n,0) is monotonically increasing in n (or §) for fixed § (or n).

: (64)

Both the exponential-type tail f(n,d) = exp(cnd®) and the polynomial-type tail f(n,d) = cn™d2m,
where m is an integer and ¢, a > 0, satisfy the monontone property in Definition A.3. The following
inverse functions associated with f(n, d) are needed to prove our sample complexity result:

ng(6,p") :=max{n|f(n,0) < p"}and df(n,p") := max{d|f(n,d) < p"}. (65)
Both the functions are well-defined due to the to the monotonicity property of f(n,d). Further, if
n > ny(d,p") for some 6 > 0 implies that § > 64 (n,pT).
The following result presents an exponential-type tail bound for sub-Gaussian random vectors.

Lemma A.5. (Sub-Gaussian tail condition, [48]) Consider a zero-mean random vector (Y1,...,Y),)

with covariance ¥* such that each'Y; / /X%, is sub-Gaussian with parameter o. Given n i.i.d samples,
the sample covariance matrix S satisfies the tail bound

nd?
L < _
P18 - 851 > 9] < 4eXp{ 128(1 + 402)2 max(X, )2 } (66)

forall § € (0,8(1 + 402) max(2%)).
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Let W;; = Si; — X7, where X% = ©*~!. This difference quantity, which signifies the amount of
noise in the data, plays a key role in bounding the error term HE — B*||. We later show that if W;;

is small, then we can guarantee that our estimator B is close to B* in the element-wise ¢, —norm.

By taking a union bound over all entries of \Wij |, from Lemma A.3, it follows that

; »’ 1
P[HWHOO > 6f(n7p )] < f(n,5f(n,pT)) - p'r—2’ (©67)

for some 7 > 2. The above bound gives an explicit control on the noise term.

We now state and prove our master lemma which gives support recovery guarantees and ¢, norm
bounds for our estimator B for distributions satisfying tail condition 7 (f, v, ) in Definition A.3.

Lemma A.6. (Master lemma) Consider a distribution satisfying the incoherence assumption with
parameter « € (0,1] and the tail condition T (f,v.). Let B be the unique solution of the log-
determinant problem in (9) with \,, = 2vp2vp+d;(n, p7) for some T > 2. Then if the sample size is
lower bounded as

n > n(1/ max{v., 24dvpzvg max{vp.-1vg.-1, 22, 1 Vh. 1,20 d 1}, pT), (68)

then with probability greater than 1 — ——, the estimate B recovers the sparsity structure of B* ie.
P

(Bpe = By,.). Furthermore B satisfies the {, bound ||§ — B*||oo < 8vpe-1vp2vp=6¢(n,pT).

Proof. We first show that the Primal Dual Witness (PDW) construction (see sec 3.3) succeeds with
the probability stated in the lemma. This amounts to showing that the inequality in (8) holds with
the required probability. To this aim, let A denote the event that ||W||o < d7(n,p”). We have
previously shown in (67) that P[A] > 1 — 1/p”~2. Conditioned on the event A, we show that the
inequality in (8) is satisfied.

From Lemma 4, we have

Wlloo + 050, (69)

r = 4vp.—1 [Vp2vp-
substituting for \,, = 2vp2vp-d7(n,p”) as given in the assumption, we get
7 < 8vps—1vp2vp-05(n,p’). (70)

From assumption on the sample size n in (68) and the monotonicity property (65) we have 0.5\, =
vp2vp+05(n,pT) < /48, which implies that \,, < 1. We also set d7(n,p”) < A,. Similarly
from (65) and (68) we have r < 8vp.—1vp2vp-dg(n,pT) < min{l/(3dvg.-1), 1(6dvp.—1v3. 1)},
Therefore the assumption in Lemma 4 is satisfied resulting in

1 1

3dvg.—1’ 6dyr*711/%*,1

[A]|oo <7 < min (71)

Define d¢ =) #(n,p"). We show that the every component in the max term of (8) are bounded by
a\y, /24. We begin with the first component:

[[N(D*A) + T(D*BY) ||| Wl < [[||D*A + D*B*||| ] 0¢ (72)
< [lIp*Alll +[ID*B*[||.] 8 (73)
An
< 2 d|Alloo + vpevp-] 48‘“? (74)
(a) 1 ad,
S |:1+ 3VB*VB*1:| 48 (75)

®) aX, _ a\,
< < .
- 36 T 24

where (a) follows from (71); (b) follows because vp«vg«-1 > 1.

(76)
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We show the second component || R(A)||o < aX,/24. In fact,

IR € 2alalzv. . @
(2 gdru%*flr (78)
%) ;d {6%”11”%*1} V1 (8upe—1vp2vp6y) (79)
= Qwpevpb; < az—zn. (80)

where (a) holds because, as shown in (71), ||Al|« satisfies the assumption in Lemma 3; (b) holds
because ||Al|oo < 7; and (c) is a consequence of the inequality in (71).

We show that the third component [||[L(D2A)||| _[|©* ! [loc < @A, /24. In fact,

ITD?A)[[| 0" oo = [ DA 0" loc @1)
< vp2d]| 0 ool Allso (82)
(a) )
< vpad]|© 7 or (83)
(i) dvpe {1} [Bvp«-1vp2vp-dy] (84)
- 4dvp2vps—1 '
< Qupavpe {48;?“7;&] - 0‘22". (85)

where (a) holds because ||A| s < r and (b) follows by invoking the assumption in (11). Since the
sufﬁ(nent conditions for strict dual feasibility are satisfied, the PDW construction succeeds. Therefore

B = B. Since by definition B g = BL. = 0, the estimator B recovers the spars1ty structure of
B*. Now, since A = B — B* and ||A||oo < 8vp-—1vp2vp=0¢(n,p7), we have | B — B|loe <
8up«—1Vp2vp=0f(n,pT).

We use Lemma A.5 and Lemma A.6 to prove our main result for sub-gaussian distributions.

Theorem 1. (Support recovery: Sub-Gaussian) Let Y = (Y1, ...,Y),) be the node potential vector.
Suppose that Y; [ /%%, is sub-Gaussian with parameter o and assumptions [A1-A2] hold. Let the

regularization parameter \, = Co+/7(log4p)/n, where Cy is given below If the sample size
n > C2d?(tlog p + log 4), the following hold with probability at least 1 — P —L for some T > 2:

a) B exactly recovers the sparsity structure of B*; that is, Bg. = 0,
Y D

(b) B satisfies the element-wise {o bound | B — B*||s < Cay/ M, and

*
ijh

(c) B satisfies sign consistency if | Bi.,| > 2C54/ % By, & ming ;)

where C; = 192v/2 [(1 +40?) max(Zfi)waB*] max{Vp.—1Vpg.—1, 205, VY, 1 207 d T,
3
Cy = [64v/2(1 + 40?) max (X} ) vp—1vp2vp-], and Cy = Ca /(4vp--1).

Proof. Part (a): From Lemma A.6, we have that if n > n(d, p7), then B recovers the exact sparsity
structure of B*. We compute n (4, p™). Using the tail bound for sub-gaussian distributions (see

Lemma A.5), the decay function f(n,8) = I exp { nf? } where ¢, = 128(1 + 402)? max(X};)%.
From the definition of inverse function and monotonicity of f(n,d) in A.3, we have ns(4,p”) =
%54’”. Substituting for § from Lemma A.6, we get

ny(8,p7) = Cid*(rlogp + log4). (86)
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Therefore, from Lemma A.6, if n > Cf d2(7' logp + log 4), the estimator B recovers the sparsity
structure of B*.

Part(b): From Lemma A.5 we compute §. Using the monotonicity property of f(n,d) and setting

« log(4p™ /71 log4
n 7 n

Also we have from Lemma A.6 that ||§ — B*||so < 8vp«-1vp2vp=6¢(n,p”). Thus,

~ 1 log 4
|B — B*||oo < 64V2(1 4 40?) max (X7 )vp--1Vp2vps |/ %. (88)

Cy

Part(c): We prove the sign consistency of B by contradiction. Let |B* . | > 2C5,/ % be as in
the theorem’s hypothesis. Suppose that sign(B ) # sign(B*). Then, an elementary algebra shows that
| B=B*|os > 2C5 1/ %. This contradicts the bound in part (b). Thus, sign(B) # sign(B*). O

We now show Frobenius and spectral norm consistency for the sub-gaussian distribution. Recall that
E(B*) ={(i,j) : B}; # 0,forall i # j} is the edge set of B*. Thus, s = |£(B")| is the number of
non-zero off-diagonal elements in B*.

Corollary 1. Let s = |E(B*)| be the cardmalzty ofé'(B*) Under the same hypotheses in Theorem
1, with probability greater than 1 — Pl the estimator B satisfies

e 1 4 ~ I 4
1B - B*||r 302\/(”1’)(7“0”* ) and B - B §Cgmin{d,\/75+p}\/%.
(89)

Proof. Consider the following inequality:
~ ~ 2 2
1B-B =3 (By-By) =Y (Ba-B:) + X (Bu-8:) o0
1,j ( i#£j
<plB - B|% +sllB - B*|I3 ©On
= (s +p)|B - B"[%, (92)
where the inequality follows because there are at most p non-zero diagonal terms and s non-zero
off-diagonal terms in B — B*. The latter fact is a consequence of Theorem 1 (a), which ensures that

Bge = B3, with high probability when n = (d? log p). We obtain the Frobenius norm bound in
(89) by upper bounding || B — B*||~ using the result in Theorem 1 (b).

‘We now spectral norm consistency. From matrix norm equivalence conditions [26], we have

IB-Bll<||B-B|| <dB- B« ©3)
and that
IB—B*|l2 < ||B - B*|lr < vs+p|B— B (94)
These two bounds can be unified into one single bound as
| B — B*||z < min{y/s + p,d}|| B — B*||oo. (95)
This concludes the proof. O

Next we prove our second main result for random vectors with bounded moments. We need the
following standard concentration inequality result.
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Lemma A.7. (Tail bounds for random variables with bounded moments, [48]) For a random vector

(Y1,...,Y),), suppose there exists a positive integer k and scalar My, € R with
v 4k
E - < M. (96)
o

Given n i.i.d samples, the sample covariance matrix S admits the following concentration inequality

22k (max; 35) 2 Cp (M, + 1)
nkg2k :

P[|S; — X5 > 0] < O7)

where Cy, > 0 is a constant depending only on k.

Theorem 2. (Support Recovery: Bounded Moments) Let Y = (Y1,...,Y,) be the node potential
vector. Suppose that Y; [ /%%, has bounded moment as in (96) and assumptions [A1-A2] hold. Let

the regularization parameter \,, = Cy+/7(log 4p) /n, with Cy defined in Theorem 1. If the sample
sizen > Cyd?p™'*, then with probability more than 1 — 1 /"2, for some T > 2, the following hold:

a) B exactly recovers the sparsity structure of B*; that is, Bg. = 0,
Y D

B satisfies t e element-wise { ., boun B— B* 0o < Oy T—k, and
(b) B satisfies the el loe bound | B — B*||os < Cs1/ 2

s . . . [pr /%
(c) B satisfies sign consistency if | B}, | > 2Cs1/ 2= —,

2
where Cy = |48(max X7;) (Cr (M}, + 1))1/% vp2vp+ max{vp-—1vp.—1, 202, v 207 dT Y|
Cs = 16(max; 37;) (Cr (M}, + 1))1/2k Vp«—1Vp2VB-.

Proof. The proof follows along the same lines of Theorem 1. Hence, to avoid redundancy, we provide

only high-level details. Part (a) We use the polynomial type tail bound in A.7 to compute ns(d,p"),

T\1/k
we therefore have ny(d,p") = % and substituting for ¢* and ¢ as given in Lemma A.7 and

Lemma A.6 respectively, we get

ng(d,p") = Cud?p™/*. (98)

Part(b): From Lemma A.7, we have f(n,§) = #, where ¢, = 22F(max X%)2*Cy, (M}, + 1).

Thus setting
T cp” L2k * 1/2k pT/k
6=26f(n,p") = < > = 2(mlax SI)(Cr(My + 1)) - (99)

n

On the other hand, from Lemma A.6, we have || B — B*||o0 < 8vp--11p2 vp=0f(n,p”). Thus,

~ 7/k
IB — B*||os < 16(max 25)(Ci(Mys + 1) vy ivpavge | 2. (100)
i n
Part (c): similar to the contradiction argument in Theorem 1. The details are omitted. L]

We present Frobenius and spectral norm consistency results for distributions with bounded moments.

Corollary 2. Suppose the hypotheses in Theorem 2 hold. Then with probability greater than 1 — ﬁ:
|B=B*||p < Csy/ S 4 || B — B*||y < Cs min{d, /5 F p}y/ 2, where s = |E(B*)].

Proof. The proof follows along the same lines of Corollary 1. Hence, the details are omitted. O
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