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Abstract

Thermal cloaks are devices designed to shield an object against thermal detection, which have
attracted growing interest in research. This paper proposes to design thermal cloaks using the
level-set-based shape and topology optimization in the context of pure heat conduction. The
cloaking effect is achieved by optimizing the distribution of two bulk heat conductive materials
to eliminate the temperature disturbance induced by the introduction of the insulator (cloaking
region) into a homogeneous thermal conduction medium. The optimized thermal cloaks are free
of high anisotropy and nonhomogeneity commonly seen in the popular transformation thermotics
or scattering cancellation methods. Due to the clear boundary characteristic of the level set
representation, no sophisticated filtering techniques are required to suppress the appearance of
"gray regions" as opposed to the density-based topology optimization methods. Considering the
fact that the device components that need to be thermally cloaked, e.g., sensors, can take an
arbitrary free-form shape, a conformal thermal cloak on manifold is also topologically optimized
using the extended level set method (X-LSM), which has not been reported in the literature. The
structural boundary is evolved by solving the (modified) Hamilton-Jacobi equation. The feasibility
and robustness of the proposed method to design thermal meta-devices with cloaking functionality
are demonstrated through a number of 2D and 3D (solid and shell) numerical examples with
different cloaking regions (circular, human-shaped, spherical and curved circular). This work may
shed light on further exploration of the thermal meta-devices in the heat flux manipulation regime.

Keywords: Thermal cloak, Heat flux manipulation, Topology Optimization, Level set method,
Extended Level Set Method

1. Introduction

How to conceal an object has fascinated peo-
ple for a long time. The invisibility cloak in
Harry Potter is too magic to be perfectly re-
alized, owing to the wave nature of light [1].
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However, thanks to the two pioneering works
[2, 3], some lights were shed on guiding light
around an object as if nothing was there. This
original concept of cloaking from the optical
field has since then been expanded into vari-
ous fields, e.g., thermal cloaks [4–6], acoustic
cloaks [7] and magnetic cloaks [8], to name a
few. Inspired by the way the light traveling
path is altered to render optical invisibility in
the wave system, researchers have attempted
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to manipulate the heat flow in a desired man-
ner using meticulously designed metamaterials
to achieve a variety of thermal functionalities
in the diffusion system [9–13], such as thermal
cloaks [4, 5, 14], thermal concentrators [15, 16],
thermal rotators [17–19] and thermal camou-
flages [20, 21].

Two popular methods for designing such
thermal metamaterials are the scattering can-
cellation method [22, 23] and the transforma-
tion thermotics method [6, 12], inspired and
developed by the pioneering transformation
optics [2, 3]. The basic idea behind transfor-
mation thermotics is that to maintain the in-
variance of the domain equation under coordi-
nate transformation, the related physics prop-
erty, i.e., thermal conductivity tensor, must be
properly modified. As a result, the thermal
metamaterials obtained through transforma-
tion thermotics often exhibit high anisotropy
and inhomogeneity, posing a significant chal-
lenge to physical realization. A common treat-
ment is to employ a multi-layered structure
[19, 24], but often at the expense of a cer-
tain loss of accuracy. We briefly mention some
of the preceding research endeavors using the
aforementioned methods. Imran et al. [24]
and Dede et al. [25] explored the heat flux
control devices taking into account the con-
vection effect. Vemuri et al. [26] managed to
guide the conductive heat flux by properly po-
sitioning and orienting the nominally isotropic
material. Moccia et al. [27] realized the in-
dependent manipulation of heat and electri-
cal current, pushing one step further toward
the "transformation multiphysics". An intel-
ligent thermal metamaterial was developed in
[16], which exhibits either cloaking or concen-
trating functionality depending on the ambi-
ent temperature. An intriguing macroscopic
thermal diode was subsequently created and
experimentally validated in [28].

Attempts have also been made to design
thermal metamaterials using natural materi-
als to avoid high anisotropy. For example, a
thermal camouflage device was demonstrated
in [21], which was directly derived from the

conduction equation and could produce a dif-
ferent thermal scattering signature than ex-
pected. The research studies in [4, 5, 29, 30]
focused on the experimental validation of ther-
mal meta-devices with various functionalities.

As an alternative, numerical optimization
has been employed to design thermal metama-
terials. Dede et al. [31] examined the thermal-
composite design for heat flux shielding, fo-
cusing, and reversal by optimizing the inclu-
sion angles in a surrounding medium. Per-
alta et al. [32] devised a thermal concentra-
tor using a continuous optimization approach
by considering a metadevice with a quantita-
tively characterizable microstructure consist-
ing of a laminate of two materials with con-
trasting thermal conductivities. The opti-
mization was conducted considering both the
orientation and relative thickness of materi-
als as the design variables. Subsequent work
from Peralta et al. [33] ensured the fabri-
cability of the devices using a Discrete Ma-
terial Optimization (DMO) technique. The
versatility and potential of the continuous op-
timization approach have also been demon-
strated in the design of metadevices for heat
flux manipulation in transient regimes [34],
not limited to only steady conduction prob-
lems. By using two macroscopically distin-
guishable bulk materials, several metadevices
were devised using the density-based topol-
ogy optimization method with different appli-
cation purposes, e.g., thermal [35], mechan-
ical [36] and later thermo-mechanical prob-
lems [37]. The thermo-mechanical metade-
vices from [37] also explored square cloaking
regions besides conventional circular or annu-
lar geometries. Seo et al. [38] proposed a
multi-scale topology optimization method us-
ing only a single variable for heat flux con-
trol purposes. The multi-scale method was
shown to be more advantageous over the vari-
ous composition ratios of the highly conduc-
tive material than the single-scale counter-
part. Yet, the optimized designs did not
have quite crisp boundaries. Sha et al. [39]
came up with an illusion device using density-
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based topology optimization, where the heat
source is camouflaged while keeping the exte-
rior temperature field unaltered. Recent work
from Sha et al. [17] combined the transfor-
mation thermotics and topology optimization
to successfully design thermal meta-devices
with omnidirectional thermal functionalities.
To suppress the appearance of "gray region",
i.e., intermediate densities, sophisticated fil-
tering techniques [40] are often required in the
density-based optimization methods for ther-
mal metadevices design [35–37]. A number of
papers [14, 15, 41] dealt with the topology op-
timization of thermal meta-devices with a level
set representation using the covariance matrix
adaptation evolution strategy (CMA-ES) to
search for the optimal designs. However, most
existing designs only focus on 2D planar cases
with canonical cloaking regions, i.e., circular
shapes. Moreover, the 3D solid thermal cloak
obtained using numerical optimization has yet
to be reported. Since the device components
that need to be thermally cloaked, e.g., sen-
sors, can take an arbitrary free-form shape,
a conformal thermal cloak on the manifold is
strongly desired, which has not been investi-
gated in the literature.

In this study, we try to contribute by de-
signing thermal cloaks by means of level set
based topology optimization. The objective
function will be the least square error in the
current design temperature field from a pre-
defined reference temperature field in a spe-
cific evaluation domain. Two bulk materi-
als with separate thermal conductivity will be
properly distributed in the design domain to
minimize the temperature disturbance in the
evaluation domain. The clear boundaries be-
tween different material phases facilitate the
generation of 3D models and the carrying out
of physical experiments. No extra filtering
techniques are needed in the optimization pro-
cess. A conformal manifold thermal cloak
is also topologically optimized using the ex-
tended level set method [42] by incorporat-
ing conformal geometry theory [43], where
the hurdles of dynamic boundary evolution on

free-form surfaces are overcome by solving a
modified Hamilton-Jacobi equation on the 2D
parameter domain (See Section 2.3 for details).
The optimized multimaterial configuration ex-
hibits the thermal cloaking functionality, and
does not exhibit material anisotropy and in-
homogeneity. The effectiveness and robust-
ness of the proposed method are demonstrated
through a number of 2D and 3D (solid and
shell) numerical examples with different cloak-
ing regions (circular, human-shaped, spherical
and curved circular).

This paper is organized as follows: Section
2 will provide the problem formulation and
shape sensitivity analysis. Numerical exam-
ples, including 2D and 3D designs, will be
presented in Section 3. Section 4 will contain
some discussions with closing remarks.

2. Shape and topology optimization of
thermal cloaks

2.1. Problem formulation
This paper is focused on designing thermal

cloaks using level-set-based topology optimiza-
tion. For simplicity, we first consider a 2D
steady-state heat conduction problem. It is
assumed that all associated physical proper-
ties are isotropic. The governing equations for
pure heat conduction phenomena are given as
follows:

− k∇2T = 0, in Ω

k∇T · n = 0, on ΓH

T = Th, on ΓD1

T = Tl, on ΓD2

(1)

where k is the thermal conductivity, T is the
state variable temperature, n is the outward
unit vector of the structural boundary. There
is no body heat source term, nor boundary
heat flux. As shown in Figure 1, the whole
computational model consists of the insulator
domain Ωins, the design domain ΩD and the
outer domain Ωout. Two Dirichlet boundary
conditions are applied with Th = 333.15K and
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Tl = 273.15K on the left and right edges in
red and black color, respectively. All other
boundaries are adiabatic. Ωins is the region of
interest that we want to cloak. By cloaking,
it means that there should be no temperature
gradient within Ωins. Suppose we simply dig
the insulator domain Ωins out of a reference
domain, which is solely filled with single ma-
terial iron. In that case, it will disturb the
temperature distribution on Ωout. Assuming
a thermal sensor is employed to evaluate the
temperature perturbation in Ωout, it would de-
tect the existence of the insulator region, i.e.,
it is not clocked. This makes it reasonable to
introduce some copper with a higher thermal
conductivity to offset for the extremely low
thermal conductivity brought by the insulator
region Ωin. An optimal distribution between
iron and copper in the design domain ΩD can
be sought after using topology optimization.
Ωout will always be filled with iron.

Figure 1: The diagram of a thermal cloak with a cir-
cular insulator. w = 4, h = 3, rins = 0.4, rD = 1. The
thermal conductivities for copper and iron are set to
be kcopper = 400W/(m ·K), kiron = 67W/(m ·K).

The objective of the optimization is to min-
imize the least square error between the tem-
perature fields in the external evaluation do-
main Ωout. The formal optimization problem
is formulated as follows:

Inf
Φ

J =
1

Jn

∫
Ωout

|T − Tref |2dΩ,

s.t. a(T, T̄ ) = 0, ∀T̄ ∈ Uad,

(2)

where a(T, T̄ ) =
∫
Ω
k∇T ·∇T̄ dΩ. T̄ is the test

function and Uad is the space of the virtual
temperature field satisfying the same bound-
ary conditions. The reference temperature
field Tref with uniform gradient is generated
by filling all the computational domain with
iron. Jn is a constant normalization term to
keep the objective value in a moderate range.
Jn is given as:

Jn =

∫
Ωout

|T0 − Tref |2dΩ, (3)

where T0 is the temperature field when the
design domain ΩD is filled with only iron in
the presence of central insulator. The Φ refers
to the level set function, which functions as
the design variable and embed the structural
boundaries in its zero contours.

Pioneered by Sethian and Wiegmann [44]
and further completed by Allaire [45] and
Wang [46], respectively, the level set method
has become a promising shape and topology
optimization approach. A clear boundary
between different phases can be generated
and maintained during the optimization
process, which is a much desired property
when a detailed description of the boundary
is required. The structural boundary is
implicitly represented as the zero contour of
a one-higher dimensional level set function.
The level set function is defined on a fixed
background grid in the conventional level set
framework. The structural design is implicitly
embedded in the level set function Φ(x, t) as
follows:

{ Φ(x, t) > 0, x ∈ Ω, material
Φ(x, t) = 0, x ∈ ∂Ω, boundary
Φ(x, t) < 0, x ∈ D/Ω, void

(4)
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Figure 2: The level set representation of a 2D design

The level set representation of a 2D de-
sign is shown in Figure 2. For the struc-
tural boundary, it always satisfies the equa-
tion Φ(x, t) = 0. By differentiating both sides
of the equation with respect to a pseudo time
t, we could obtain the Hamilton-Jacobi (H-J)
equation [47]:

∂Φ(x, t)
∂t

− Vn · |∇Φ| = 0, (5)

where Vn = V · (− ∇Φ
|∇Φ|) = dx

dt
· (− ∇Φ

|∇Φ|). The
update of the level set function is realized by
solving the above H-J equation iteratively to
evolve the structural boundary. The normal
velocity Vn can be obtained from shape sensi-
tivity analysis, which is usually derived using
the adjoint method.

In this study, the level set function Φ is de-
fined on the design domain ΩD. Specifically,
Φ > 0 refers to the copper domain Ωcopper and
Φ < 0 represents the iron domain Ωiron. The
structural boundary between copper and iron
is given as Φ = 0. There is no void phase in
the design domain ΩD.

2.2. Shape sensitivity analysis
As can be seen from equation (5), the nor-

mal velocity Vn is needed to solve the H-J

equation. Vn can be obtained from shape sen-
sitivity analysis [45, 46]. In this study, we em-
ploy the material derivative method [48] and
adjoint method [49] to derive the shape deriva-
tive.

The Lagrangian of the optimization prob-
lem is defined as

L = J(T ) + a(T, T̄ ). (6)

The material derivative of the Lagrangian is
given:

DL

Dt
=

DJ(T )

Dt
+

Da(T, T̄ )

Dt
. (7)

In this problem formulation, the objective
function is evaluated on Ωout, which is differ-
ent from the design domain ΩD. We rewrite
the objective function J as follows:

J =
1

Jn

∫
Ωout

|T − Tref |2dΩ

=
1

Jn

∫
Ω

g(x) · |T − Tref |2dΩ,
(8)

where g(x) is a window function, which takes
value 1 in domain Ωout, and 0 in domain ΩD

and Ωins.
The material derivative of the objective

function J(T ) is:

DJ(T )

Dt
=

1

Jn

∫
Ω

2g(x) · (T − Tref ) · T ′dΩ

+
1

Jn

∫
∂Ω

g(x) · |T − Tref |2 · Vnds.

(9)

The material derivative of the weak-form
governing equation is:
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Da(T, T̄ )

Dt
=

∫
Ω

k[∇T ′ · ∇T̄ +∇T · ∇T̄ ′]dΩ

+

∫
∂Ω

k∇T · ∇T̄ · Vnds.

(10)

Collecting all the terms containing T̄ ′ as
follows:

∫
Ω

k∇T · ∇T̄ ′dΩ = 0. (11)

we recover the weak form of the state equation
as a(T, T̄ ′) = 0, for ∀T̄ ′ ∈ Uad. Collecting
the terms containing T ′ and making the sum
equal to zero, we can obtain the adjoint
equation:

1

Jn

∫
Ω

2g(x) · (T − Tref ) · T ′dΩ

+

∫
Ω

k∇T ′ · ∇T̄ dΩ = 0.

(12)

The above adjoint equation (12) is solved
for T̄ . The remaining part for the material
derivatives of the Lagrangian L reads:

DL

Dt
=

1

Jn

∫
∂Ω

g(x) · |T − Tref |2 · Vnds

+

∫
∂Ω

k∇T · ∇T̄ · Vnds

(13)

Applying the steepest descent method, the
design velocity field can be constructed as:

Vn = − 1

Jn
g(x) · |T − Tref |2 − k∇T · ∇T̄ .

(14)

2.3. Conformal mapping theory and extended
level set method (X-LSM)

The conventional level set formulations de-
tailed in subsections 2.1 and 2.2 are well suited
for shape and topology optimization problems
in Euclidean space (2D planar and 3D solid
cases). However, they are not quite conve-
nient for shape and topology optimization on
Riemannian manifolds since the level set func-
tion Φ is typically defined on fixed Euclidean
grids. By incorporating the conformal geome-
try theory [43], the extended level set method
(X-LSM) [42] elegantly extends the level set
framework from Euclidean space to Rieman-
nian space, enabling us to do shape and topol-
ogy optimization on free-form surfaces in a
fast and robust manner. A conformal map-
ping is essentially a function that locally pre-
serves angles, but not necessarily lengths. A
vivid representation of this angle preservation
characteristic is shown in Figure 3, where the
infinitesimal circles are mapped to infinitesi-
mal circles from the 3D human face to a 2D
disk.

Figure 3: Conformal mapping from 3D surface to 2D
disk [43]

Based on the fact that the covariant deriva-
tives on the manifold can be represented by
the Euclidean gradient operators multiplied
by a scalar with the conformal parameteriza-
tion, in X-LSM, the original Hamilton-Jacobi
equation defined on manifolds can now be
equivalently solved on the 2D parameter
domain with a modified form:

∂Φ(x, t)
∂t

− e−λVn · |∇Φ| = 0, (15)
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where e2λ is the conformal factor associated
with this conformal parameterization. The
surface-to-plane conformal parameterization
is computed based on Hamilton’s Ricci flow
theory [50, 51]. By solving this modified
Hamilton-Jacobi equation (15) on the 2D pa-
rameter domain, the structural boundary evo-
lution is now performed on 2D plane utilizing
the well established finite difference scheme.
The X-LSM not only maintains the benefits of
the conventional level set method, e.g., clear
boundary description and flexibility in han-
dling topological changes, but also overcomes
the hurdles of dynamic boundary evolution on
free-form surfaces. The computational cost
and algorithm complexity will also be consid-
erably reduced. Based on X-LSM, a number
of topology optimization problems on man-
ifolds were resolved, such as soft robot de-
sign problems [52, 53] and thermal problems
[54]. A recently proposed dimension reduction
level set method (DR-LSM) by Xu et al. [55]
takes one step further by transferring both the
physics governing equation and the Hamilton-
Jacobi equation from manifold in 3D space to
the 2D parameter domain. The equivalence
of this dimension reduction formulation and
the induced computational cost saving capa-
bility are systematically investigated. For in-
terested readers, please refer to [42, 55] for de-
tailed mathematical derivations. In this study,
the extended level set method (X-LSM) will be
employed to design a thermal cloak on a free-
form surface. The flowchart for the X-LSM is
depicted in Figure 4.

3. Numerical examples

In this section, in total four numerical ex-
amples are covered to demonstrate the valid-
ity and feasibility of the proposed methodol-
ogy in designing thermal cloaks, including 2D
cloaks with circular/human-shaped insulators,
3D solid cloak with a spherical insulator and
a manifold cloak with a curved circular in-
sulator. For all the numerical examples, the
temperature fields are normalized in this way:

Figure 4: The flowchart of the X-LSM

T n
i = (Ti − Tl)/(Th − Tl), where Ti = T, T0 or

Tref for a better visualization effect to display
the temperature field comparisons.

3.1. A 2D thermal cloak with circular insula-
tor

As shown in Figure 5(c), a temperature field
Tref with uniform gradient is generated by fill-
ing ΩD and Ωins with iron. When the insula-
tor is presented in Ωins shown in Figure 5(b),
the reference temperature field in Ωout is obvi-
ously disturbed with nonparallel temperature
contour lines as shown Figure 5(d). To allevi-
ate this temperature perturbation and achieve
the thermal cloaking function, the iron and
copper are optimally distributed in the design
domain ΩD using the level-set-based topology
optimization algorithm.

The optimization result is shown in Figure
6. The normalized temperature field Tn and
the discrepancy with the normalized reference
temperature field T n

ref are displayed in Figure
7. The temperature contour lines in Ωout re-
gion are almost parallel as they are when there
is no insulator presented. The temperature
difference in Ωout is close to zero and negligible.
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Figure 5: Example 3.1 (a) No insulator in Ωins, (b)
With insulator in Ωins, (c) Normalized reference tem-
perature field Tn

ref , (d)Normalized temperature field
Tn
0 , (e) Tn

ref - Tn
ref , (f) Tn

0 - Tn
ref

The objective function J = 2.26×10−4, which
is small enough to indicate that the insulator
is effectively cloaked from being detected by
evaluating the temperature field perturbation
in Ωout.

The convergence history plot for the ther-
mal cloak with a circular insulator is given in
Figure 8. The objective function J is mono-
tonically decreasing as the iteration number
goes up. There is no volume constraint im-
posed on either the iron or the copper in this
optimization. The copper accounts for 15.81%
of the whole design domain area in ΩD for the
final optimal configuration.

3.2. A 2D thermal cloak with a human-shaped
insulator

The second numerical example deals with
a similar problem-setting as in shown Figure

Figure 6: Optimized structure for the thermal cloak
with circular insulator

Figure 7: (Example 3.1) Left: the normalized tem-
perature field Tn = (T − Tl)/(Th − Tl). Right: the
normalized temperature difference Tn − Tn

ref

1 but with a human-shaped insulator. The
optimized structure is exhibited in Figure 9.
Again, the temperature field in Ωout with uni-
form gradient is reproduced as shown in Fig-
ure 10 (left). The temperature discrepancy be-
tween T n with the normalized reference tem-
perature field T n

ref in Ωins is small enough to
be neglected. The objective function J =
7.71× 10−4.

The convergence history plot for the thermal
cloak with a human-shaped insulator is shown
in Figure 11. In the final optimized configu-
ration, 21.48% of ΩD are occupied by copper.
A clear boundary between the iron and copper
is maintained during the optimization process.
As a result, little post processing is needed to
convert this structure into 3D printable mod-
els as shown in Figure 12.
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Figure 8: Convergence history for the thermal cloak
with circular insulator

Figure 9: Optimized structure for the thermal cloak
with human-shaped insulator

3.3. A 3D thermal cloak with a spherical in-
sulator

In this subsection, we extend the proposed
topology optimization scheme to design a 3D
solid thermal cloak with a spherical insulator.
Few research works have been conducted to
design 3D thermal cloaks from the standpoint
of numerical optimization. Most of the numer-
ical optimization endeavors focus on only the
2D cases.

As can be seen from Figure 13, the whole
computational domain Ω is a cuboid, consist-
ing of the spherical insulator domain Ωins, the
design domain ΩD with a spherical shell shape
and the outer domain Ωout. Two Dirichlet
boundary conditions are applied with Th =

Figure 10: (Example 3.2) Left: the normalized tem-
perature field Tn = (T − Tl)/(Th − Tl). Right: the
normalized temperature difference Tn − Tn

ref

Figure 11: Convergence history for the thermal cloak
with human-shaped insulator

10K and Tl = 0K on the left and right side
walls, respectively. All other boundaries are
adiabatic. Ωins is the region of interest that
we want to cloak. The optimal distribution of
iron and aluminum inside the spherical shell
ΩD is sought after using the level-set-based
topology optimization algorithm. The outer
domain Ωout is always fixed with iron.

As displayed in Figure 14(c), the reference
temperature field Tref with uniform gradient
is generated by filling the entire computational
domain Ω with iron. The temperature field in
the outer domain Ωout is clearly disturbed by
the introduction of the spherical insulator as
shown in Figure 14(d). This disturbance can
be identified by the non-parallel temperature
contours in Figure 14(d).

The optimal structure for iron in the spher-
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Figure 12: 3D CAD models for the optimized 2D
cloaks with left: circular insulator, right: human-
shaped insulator

Figure 13: The diagram for a 3D spherical thermal
cloak. w = 3, h = 3, l = 4, r1 = 0.6, r2 = 1.
Th = 10K,Tl = 0K. The thermal conductivities
for aluminum and iron are set to be kaluminum =
204W/(m ·K), kiron = 67W/(m ·K).

ical shell design domain ΩD is given in Fig-
ure 15. Both the isometric and orthographic
views are provided for the optimized iron con-
figuration. The complementary region of the
iron structure in the spherical shell design do-
main ΩD will be occupied by aluminum with
a higher thermal conductivity. Two cross-
sections 1 and 2 are selected in Figure 16(a) to
better visualize the optimized structures. The
optimal material distribution of iron and alu-
minum on cross-section 1 and 2 are presented
in Figure 16(b) and 16(c), respectively.

As we can see from Figure 17(left), the tem-
perature field with uniform gradient is dupli-
cated in the outer domain Ωout with parallel
temperature contours by the optimal distribu-
tion of iron and aluminum in the design do-
main ΩD. The discrepancy between the nor-
malized temperature field T n and the normal-

Figure 14: Example 3.3 (a) No insulator in Ωins, (b)
With insulator in Ωins, (c) Normalized reference tem-
perature field Tn

ref , (d)Normalized temperature field
Tn
0 , (e) Tn

ref - Tn
ref , (f) Tn

0 - Tn
ref

Figure 15: The optimal structure of iron in the design
domain ΩD

ized reference temperature field T n
ref is shown

in Figure 17(right). The discrepancy is close
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Figure 16: Two cross-sections views for the optimized
3D iron structure

to zero in the outer domain Ωout, which means
the spherical insulator will not be thermally
detected by measuring the temperature dis-
turbance in Ωout, thus achieving the cloak-
ing functionality. The objective function J =
8 × 10−3. The convergence history with the
iron structure evolution is depicted in Figure
18.

3.4. A manifold thermal cloak with a curved
circular insulator

This subsection is devoted to designing a
conformal thermal cloak on a general free-form
surface using the extended level set method
(X-LSM) [42], which has not been investi-
gated in the literature. Most of the existing
metadevices for heat flux manipulation pur-
pose are based on 2D planar or solid 3D mod-
els. In practical applications, it it not uncom-
mon that the device components that need to

Figure 17: (Example 3.3) Left: the normalized tem-
perature field Tn = (T − Tl)/(Th − Tl). Right: the
normalized temperature difference Tn − Tn

ref

Figure 18: Convergence history for the 3D spherical
thermal cloak with iron structure evolution

be thermally cloaked, e.g., sensors, take an ar-
bitrary free-form shape. To this end, a confor-
mal thermal cloak is strongly desired to pro-
vide the necessary cloaking performance.

The problem-setting for a 3D thermal cloak
on a spherical surface patch is shown in Figure
19. This manifold model can be obtained by
partitioning a semi-spherical surface with two
parallel planes. The overall size is 50 × 70 ×
100 mm. The shell model thickness is uniform
and set to be 1 mm. As can be seen in Figure
19, the whole computational domain Ω con-
sists of a circular insulator domain Ωins, the
ring-shaped design domain ΩD and the outer
domain Ωout. Ωins is the region of interest that
we want to cloak. Two Dirichlet boundary
conditions with Th = 323K and Tl = 298K
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Figure 19: The diagram of a 3D thermal cloak on a
spherical surface patch with a circular insulator. The
thermal conductivities for aluminum and iron are set
to be kaluminum = 204W/(m·K), kiron = 67W/(m·K)

are assigned to the boundary edges in red and
black, respectively. All other boundaries are
set to be adiabatic. The outer domain Ωout is
fixed with iron and serve as the evaluation do-
main to detect the temperature disturbance.

As shown in Figure 20, a temperature field
Tref with uniform gradient magnitude is gen-
erated by filling ΩD and Ωins with iron. When
the insulator is presented in Ωins shown in Fig-
ure 20(b), the reference temperature field in
Ωout is obviously disturbed with nonparallel
temperature contour lines. The initial and op-
timal designs on the 2D parameter domain and
manifold in 3D space are given in Figure 21
and Figure 22, respectively. As can be seen
from Figure 23(left), the temperature field in
Ωout has been restored. The discrepancy be-
tween the normalized temperature field and
the normalized reference temperature field is
negligible in Ωout shown in Figure 23(right).
The final objective function J = 1.09 × 10−3,
which is small enough to be considered as a
successful thermal cloak. To the best of the
author’s knowledge, this is the first thermal
cloak design on a manifold.

4. Discussions and conclusions

In this study, a level-set-based shape and
topology optimization is proposed to design
thermal cloaks by distributing two naturally

Figure 20: Example 3.4 (a) No insulator in Ωins, (b)
With insulator in Ωins, (c) Normalized reference tem-
perature field Tn

ref , (d)Normalized temperature field
Tn
0 , (e) Tn

ref - Tn
ref , (f) Tn

0 - Tn
ref

occurring bulk thermal conductive materials
to eliminate the temperature disturbance on
the evaluation domain caused by the insula-
tor (cloaking region). The optimized struc-
tures exhibit the expected cloaking functional-
ity, despite having simple shape and topology.
Compared with the transformation thermotics
or scattering cancellation methods, the pro-
posed optimization algorithm is advantageous
in that the resulting configuration does not
possess any anisotropy and non-homogeneity,
which could greatly facilitate the physical re-
alization to further validate the cloaking per-
formance.

Four numerical examples are considered in
this paper. The first 2D example with a cir-
cular cloaking region serves as the benchmark
example to draw some comparisons with lit-
erature results. It is worth mentioning that
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Figure 21: The initial designs for the thermal cloak
on a spherical surface patch with a curved circular in-
sulator

Figure 22: The optimal designs for the thermal cloak
on a spherical surface patch with a curved circular in-
sulator

the optimized structure with a circular insu-
lator has not been seen in the literature, yet
it still renders a good cloaking performance.
The second 2D example deals with a ther-
mal cloak with a human-shaped insulator. To
the best of my knowledge, not many research
works have investigated the cloaking of an ar-
bitrary shape. Most of the models considered
are canonical shapes, e.g., circular and spheri-
cal. The second designed cloak with a human-
shaped insulator will trigger more interest in
the thermal cloak design for a broader applica-
tion. The proposed method is then extended
to devise a 3D thermal cloak with a spherical
insulator. As far as the author is concerned,

Figure 23: (Example 3.4) Left: the normalized tem-
perature field Tn = (T − Tl)/(Th − Tl). Right: the
normalized temperature difference Tn − Tn

ref

this is among the first to come up with a 3D
thermal cloak design using the numerical op-
timization method. The last example is con-
cerned with a conformal thermal cloak on a
manifold surface optimized using the extended
level set method (X-LSM). The thermal cloak
on a free-form surface has not been reported
in the literature, which could inspire a broader
exploration of heat flux manipulation devices
on manifolds.

In this paper, we employed the level set
framework with only shape derivative, which
can only be used to evolve already existing
boundaries through, e.g., merging or splitting
holes. However, it does not have the hole nu-
cleation capability, i.e., a hole will not be gen-
erated inside a local solid region. Thus, the fi-
nal optimized structure will show some depen-
dence on the initial design. A common strat-
egy to mitigate this dependence is to come up
with an initial guess with a decent number of
holes, providing enough structural boundaries
for subsequent evolution. From this stand-
point, the initial shapes selected in Figure 8,
11, 18 and 21 are quite reasonable in providing
sufficient boundaries. But we can not claim
that they are the best since it is always pos-
sible to add more initial holes. Even though
they might not be the best initial design, the
objective functions J are sufficiently small to
be considered as a successful thermal cloak.
To be more specific, the objective functions
J are 2.26 × 10−4, 7.71 × 10−4, 8 × 10−3 and
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1.09× 10−3 for the 2D circular thermal cloak,
2D human-shaped thermal cloak, 3D spherical
thermal cloak and conformal manifold ther-
mal cloak, respectively. Another approach is
to incorporate topological derivative [56] into
the problem formulation, which will enable the
hole nucleation to eliminate the dependence on
the initial designs.

In the future work, the following aspects
worth a further investigation. Firstly, the op-
timized designs should be numerically verified
and experimentally validated to make them
more convincing. Secondly, more interest-
ing heat flux manipulation devices should be
explored, e.g., thermal camouflage involving
thermal radiation.
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