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Abstract

Two-sample tests evaluate whether two samples
are realizations of the same distribution (the
null hypothesis) or two different distributions
(the alternative hypothesis). We consider a new
setting for this problem where sample features
are easily measured whereas sample labels are
unknown and costly to obtain. Accordingly, we
devise a three-stage framework in service of
performing an effective two-sample test with only
a small number of sample label queries: first,
a classifier is trained with samples uniformly
labeled to model the posterior probabilities
of the labels; second, a novel query scheme
dubbed bimodal query is used to query labels
of samples from both classes, and last, the
classical Friedman-Rafsky (FR) two-sample test
is performed on the queried samples. Theoretical
analysis and extensive experiments performed on
several datasets demonstrate that the proposed
test controls the Type I error and has decreased
Type II error relative to uniform querying and
certainty-based querying. Source code for our
algorithms and experimental results is available
at https://github.com/wayne0908/
Label-Efficient-Two-Sample.

1 INTRODUCTION

Two-sample hypothesis testing evaluates whether two sam-
ples (or sets of data points) are generated from the same
distribution (null hypothesis) or different distributions (al-
ternative hypothesis). A conventional two-sample test is for-
mulated as follows [Johnson and Kuby, 2011]: (a) the statis-
tician obtains two sets of data points X = {x1, , . . . , xn0}

and Y = {y1, . . . , yn1}; (b) she computes a test statistic
T (X ,Y); (c) she then computes the p-value of the observed

test statistic under the null hypothesis (both X and Y come
from the same distribution). A low p-value implies that, un-
der the null hypothesis, observing a value for the statistic at
least as extreme as the one observed is unlikely to happen,
and the null hypothesis may be rejected.

To motivate our novel two-sample testing problem, we think
of the observed data as being a set of measurements S =

X
S
Y = {s1, . . . , sn} and a set of corresponding group

labels Z = {z1, . . . , zn}, where zi = 0 if si 2 X and 1
otherwise. We think of the si’s as features and the set of zi’s
as the corresponding labels. Accordingly, our observation
model is n i.i.d draws from the joint distribution pSZ(s, z).
The two sample testing problem under this formulation is
equivalent to testing if pS|Z(· | 0) = pS|Z(· | 1) (i.e., S and
Z are independent).

In traditional two-sample testing (see e.g., Friedman and
Rafsky [1979], Chen and Friedman [2017], Hotelling [1992],
Friedman [2004], Clémençon et al. [2009], Lhéritier and
Cazals [2018], Hajnal [1961]), the underlying assumption is
that both the features and their corresponding labels are si-
multaneously available. In this paper, we extend two-sample
hypothesis testing to a new and important setting where the
measurements (or features) s1, . . . sn are readily accessible,
but their groups (or labels) z1, . . . zn are unknown and diffi-
cult/costly to obtain. A good representative example is the
validation of digital biomarkers in Alzheimer’s disease rela-
tive to imaging markers. Say we want to determine whether
a series of digital biomarkers (e.g. gait, speech, typing speed
measured using a patient’s smartphone) is related to amyloid
buildup in the brain (measured from neuroimaging, and an
indication of increased risk of Alzheimer’s disease). In this
scenario, we can obtain the digital biomarkers on a large
scale by distributing the tests via the internet. However, ac-
tually determining if a particular patient is amyloid positive
(higher risk of Alzheimer’s disease) or negative (lower risk)
involves expensive neurological imaging, and it is of consid-
erable interest to reduce this cost. Notice that this scenario
is in stark contrast to traditional formulations of two sample
testing, where the class label (amyloid positivity) is assumed
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to be readily available. This paper addresses this problem
formulation by constructing a label-efficient two-sample
test.

(a) Synthetic dataset (b) Passive (c) Bimodal

Figure 1: A synthetic dataset with two classes shown in blue
and red, and queried datapoints shown in green returned by
the passive query and the proposed bimodal query.

Contributions We propose a three-stage framework for
label efficient two-sample hypothesis testing: in the first
stage, we “model” the class probability (posterior probabil-
ity) of a sample by training a classifier with a small set of
uniformly sampled data; in the second stage, we propose
a new query scheme dubbed bimodal query that queries
the labels of samples with the highest posterior probabili-
ties from both groups, and in the third stage, the classical
Friedman and Rafsky (FR) two-sample test [Friedman and
Rafsky, 1979] is performed on the queried samples to accept
or reject the null-hypothesis. The intuition behind our frame-
work is that the classifier trained on the uniformly sampled
datapoints will identify the regions with most distributional
difference between pS|Z(· | 0) and pS|Z(· | 1); these points
are then labeled by an oracle. As a result, under the alternate
being true, this procedure solves a different, much simpler
version of the problem, thereby reducing the number of la-
beled samples required to reject the null. This is facilitated
by the bimodal query scheme shown in Fig. 1. As is clear
from the figure, when bimodal query (Fig. 1(c)) is used
to label the samples, the points with maximum separation
between the distributions are selected whereas the passive
query (uniform sampling) maintains the original separation.

The query scheme is theoretically motivated by identifying
an optimal marginal distribution pq⇤(s) such that, under the
alternative hypothesis, the test has increased power. That is,
we derive the pq⇤(s) that minimizes the asymptotic FR test-
ing statistic. For samples that are i.i.d generated from pq⇤(s),
we further show that the convergence rate of a variant of the
FR test statistic is independent of feature dimension d. Our
query scheme approximates sampling from this distribution
and we demonstrate that our framework can control the Type
I error at a desired level when a permutation test is used. We
empirically demonstrate increased power when our test is
used on synthetic data, the MNIST dataset [LeCun, 1998],
and a dataset from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [Jack Jr et al., 2008].

Related literature The problem setting considered in this
paper is distinct from the previous work. While [Naghsh-

var et al., 2013, Chernoff, 1959] propose active hypothesis
testing, they actively select actions/experiments and gener-
ate both sample measurements (features) and sample labels
simultaneously from the actions/experiments. A hypothe-
sis is tested based on the generated samples. By contrast,
under our label efficient framework, we assume that the fea-
ture variables are already available, but the labels are costly.
Hence, our work selects labels by accessing observed sam-
ple measurements. The literature more closely related to our
approach is the experimental design literature such as [Si-
mon and Simon, 2013, Bartroff and Lai, 2008, Lai et al.,
2014, 2019] where a sample enrichment strategy is devel-
oped to enroll the patients responsive to an intervention to
enlarge the intervention effect size. However, the sample
enrichment strategy in [Simon and Simon, 2013, Bartroff
and Lai, 2008, Lai et al., 2014, 2019] is designed for a two-
sample mean difference test, and the test considered in our
work is a two-sample independence test. Our work is also
related to classifier two-sample tests [Lopez-Paz and Oquab,
2016]. A classifier two-sample test uses classifier accuracy
to construct a two-sample testing statistic, and the trained
classifier has the property that it can ”explain which features
are most important to distinguish distributions" [Lopez-Paz
and Oquab, 2016]. We make use of this property of classi-
fiers to devise the bimodal query scheme that is central to
our approach. The devise query scheme is opposed to active
learning work [Dasarathy et al., 2015, Li et al., 2020] that
query labels near or on the decision boundaries.

2 PROBLEM STATEMENT

We consider a set of features and corresponding labels
{(Si, Zi)}

n

i=1 2 Rd
⇥ {0, 1} i.i.d. generated from prob-

ability density function pSZ(S,Z). We write S = {si}
n

i=1

to denote a set of observed features, and write Z = {zi}
n

i=1

to denote a set of observed labels corresponding to S. We
formally define null, H0, and alternative, H1, hypotheses as

H0 : pS|Z(· | 0) = pS|Z(· | 1)

H1 : pS|Z(· | 0) 6= pS|Z(· | 1). (1)

Our novel problem formulation supposes that we have free
access to the si 2 S , but that it is expensive to obtain the cor-
responding labels zi 2 Z . We are however granted a label
budget nq  n, and we can select a size nq set S̄ ✓ S for
which an oracle returns the corresponding label set Z̄ ✓ Z .
Notice that each zj 2 Z̄ is a sample from pZ|S(· | sj) where
sj 2 S̄. The two-sample test considered in this paper aims
to correctly reject H0 in favor of H1 using the samples in S

and labels only for the samples S̄ . Hereafter, we use p(s|z),
p(z|s) and p(s, z) as short forms of pS|Z(s | z), pZ|S(z | s)

and pSZ(s, z). We similarly apply such abbreviations to
other probability density functions introduced in other parts
of the paper.



3 A FRAMEWORK FOR LABEL
EFFICIENT TWO-SAMPLE
HYPOTHESIS TESTING

In this section, we propose a three-stage framework for label
efficient two-sample hypothesis testing. The corresponding
algorithmic description is listed in Algorithm 1.

The inputs of the algorithm 1 are as follows: a feature set S ,
a classification algorithm A that takes a training set as input
and outputs a classifier, the number nt of labels used to con-
struct a training set, the label budget nq and a pre-defined
significance level ↵. The output of algorithm 1 is a single bit
of information: was the null hypothesis H0 rejected? During
the first stage, a classification algorithm A takes nt uni-
formly labeled samples (and corresponding labels provided
by the oracle) as a training set input, and outputs a classifier
with class probability estimation function f : Rd

! [0, 1]

used to model p(Z = 1|s) subsequently. As classifiers such
as neural networks and SVMs may be uncalibrated, a classi-
fier calibration algorithm such as Platt scaling [Platt et al.,
1999] could be incorporated into A to output a classifier
with more accurate f(s). We refer readers to [Platt et al.,
1999] and [Niculescu-Mizil and Caruana, 2005] regarding
the details of the calibration algorithm. During the second
stage, we propose a bimodal query algorithm that queries
the labels of samples with highest class one probability f(s)

and highest class zero probability 1 � f(s) until the label
query budget, nq , is exhausted. During the third stage, we
split a labeled feature set S̄ to X̄ and Ȳ , where each set only
contains features from one class. Then the FR two-sample
test is performed with the following steps: (1) compute the
FR statistic (see section 4.1) from X̄ and Ȳ; (2) compute p-
value; (3) rejects the null hypothesis if the p-value is smaller
than the pre-defined significance level ↵.

4 THEORETICAL ANALYSIS OF THE
THREE-STAGE FRAMEWORK

We begin by presenting the FR two-sample test [Friedman
and Rafsky, 1979] in section 4.1, and then we frame la-
bel query as an optimization problem in section 4.2. From
section 4.2.1 to section 4.4, we show that the solution to
this optimization problem inspires the design of the three-
stage framework, and the Type I error of the framework is
controlled. In section 4.5, we discuss the extension of the
proposed framework to using other two-sample tests.

4.1 THE FRIEDMAN-RAFSKY (FR)
TWO-SAMPLE TEST

We consider paired feature and label samples
{(si, zi)}

n

i=1 2 Rd
⇥ {0, 1} that are i.i.d realizations of

(S,Z) ⇠ p(s, z). We write S = {s1, . . . , sn} to denote the

Algorithm 1 A three-stage framework for the label efficient
two-sample testing
input S, nt, nq,↵,A

output Reject or accept H0

First stage: model p(Z = 1|s)

Uniformly sample nt features S̄ ⇢ S and query their labels
Z̄; S = S/S̄;
A takes input S̄ and Z̄ , and outputs a classifier with class
probability estimate function f used to model p(Z = 1 | s);
Second stage: bimodal query
Select b(nq � nt)/2c features S̄0 ✓ S which corresponds
to b(nq � nt)/2c highest f(s), and query their labels Z̄0;
Select nq � nt � b(nq � nt)/2c features S̄1 ✓ S which
corresponds to nq � nt � b(nq � nt)/2c highest 1� f(s),
and query their labels Z̄1;
S̄ = S̄

S
S̄0

S
S̄1; Z̄ = Z̄

S
Z̄0

S
Z̄1

Third stage: FR two-sample test
Split S̄ to two groups X̄ and Ȳ based on the label set Z̄;
compute FR statistic using X̄ and Ȳ; compute p-value;
If p < ↵ Then Reject H0 Else Accept H0.

set of feature observations and write Z = {z1, . . . , zn}

to denote the set of corresponding label observations.
Furthermore, we divide S in two sets based on the label
zi of si, and get X = {x1, . . . , xn0} from class zero and
Y = {y1, . . . , yn1} from class one where S = X

S
Y and

n = n0 + n1. Friedman and Rafsky [1979] proposed a
non-parametric two-sample test statistic that is computed
as follows: First, one constructs a Euclidean minimum
spanning tree (MST) over the samples X and Y , i.e., the
MST of a complete graph whose vertices are the samples,
and edge weights are the Euclidean distance between the
samples. Then, one counts the edges connecting samples
from opposite classes (i.e., cut edges). We use rn to denote
the cut-edge number for the MST constructed over S;
rn corresponds to an observation of the corresponding
random variable Rn that models the cut-edge number for an
MST constructed from {Si, Zi}

n

i=1. Under the alternative
hypothesis H1, rn is expected to be small, and under
the null hypothesis H0, rn is expected to be large. The
Friedman-Rafsky (FR) test statistic wn is a normalized
version of rn,

wn =
rn � E[Rn | H0,S]p

Var[Rn | H0,S]
, (2)

where E[Rn | H0,S] and Var[Rn | H0,S] are the expec-
tation and the variance of Rn conditional on S under the
null hypothesis H0. We use Wn to denote a random variable
of which wn is a realization. Wn is a random FR statistic
obtained from n i.i.d pairs of {Si, Zi}

n

i=1 ⇠ p(s, z). Since
rn is the number of the cut-edges connecting opposite la-
bels, calculating rn requires knowledge of both S and Z .
On the other hand, the derivation for E[Rn | H0,S] and
Var[R | H0,S] under H0 are label free due to the inde-



pendency between Z and S. The numerical expression of
E[Rn | H0,S] and Var[Rn | H0,S] can be found in ap-
pendix 7. The FR test rejects H0 if a small Wn is observed.

In practice as stated in [Friedman and Rafsky, 1979], the
FR test is carried out as a permutation test where the null
distribution (distribution of a statistic under the null H0) of
Wn is obtained by calculating all possible values of wn (2)
under all possible rearrangements of the observations of S .
Then a p-value is obtained using the permutation null distri-
bution and the wn computed from X and Y . The p-value is
compared to a significance level ↵ to reject H0 for p < ↵.
We refer readers to [Welch, 1990] for the procedure of the
permutation test. Both Theorem 4.1.2 in [Bloemena, 1964]
and Section 4 in [Friedman and Rafsky, 1979] demonstrate
that, if Wn is generated under H0, then the permutation

distribution of Wn approaches a standard normal distribu-
tion for large sample size n ! 1: Wn

D
�! N (0, 1), where

D
�! stands for distributional convergence. Therefore, we fol-
low [Friedman and Rafsky, 1979] and use N (0, 1) as the
null distribution of Wn, and we get the p-value given by

p = �[Wn], (3)

where � is the cumulative function of the standard normal
distribution. We use Pi(E) to denote the probability of an
event under Hi. Two types of error for a two-sample test
are considered: the Type I error P0(p < ↵) rejects H0 when
H0 is true, and the Type II error 1� P1(p < ↵) rejects H1

when H1 is true. P1(p < ↵) is called the power of the test.

The authors in [Henze and Penrose, 1999] further show
an asymptotic property of the FR testing statistic Wn, and
we restate (an equivalent version of) their results in the
following. This restated result will be useful in section 4.2.1
to show that the proposed bimodal query is inspired by
the asymptotic minimization of Wn. Following [Henze and
Penrose, 1999], we suppose that there is a constant u 2 [0, 1]

such that as n tends to infinity, n0/n ! u; this is known as
the usual limiting regime. Note that u can be thought of as
the class prior probability for Z = 0 and we write v = 1�u

to denote the class prior probability for Z = 1. Under the
usual limiting regime, combining Theorem 2 in [Henze and
Penrose, 1999] and Theorem 3 in [Steele et al., 1987] yields
an almost sure result for Wn

n
:

Theorem 1. Under the usual limiting regime,

lim
n!1

Wn

n
=

[
R
2p(Z = 0 | s)p(Z = 1 | s)p(s)ds� 2uv]p

2uv[2uv + (Ad � 1)(1� 4uv)]

(4)

almost surely, where Ad is a constant dependent on the

dimension d.

We refer the readers to the Appendix 7 for a proof. Briefly,
Theorem 1 results from combining three almost sure conver-
gence results: Rn

n
!

R
2p(Z = 0 | s)p(Z = 1 | s)p(s)ds,

E[Rn|H0,{Si}n
i=1]

n
! 2uv and Var[Rn | H0, {Si}

n

i=1] !p
2uv[2uv + (Ad � 1)(1� 4uv)] for n ! 1.

4.2 A LABELING SCHEME THAT MINIMIZES
THE FR STATISTIC Wn

Our problem statement assumes that the feature set S =

{s1, . . . , sn} and the label set Z = {z1, . . . , zn} are i.i.d
realizations of (S,Z) ⇠ p(s, z), and that the access to every
si 2 S is free; but it is costly to obtain the corresponding
label zi 2 Z . However, we are assigned a label budget nq

such that we can select a set S̄ ✓ S to query labels from
an oracle, and each random variable Zi corresponding to
the returned label zi admits p(z|si). We then divide S̄ to X̄

from class zero and Ȳ from class one and perform a two-
sample test on X̄ and Ȳ . We write |X̄ | = n̄0 and |Ȳ| = n̄1

and we have nq = n̄0 + n̄1.

Our aim is to find a query scheme that increases the testing
power of a test performed on the selected samples X̄ and Ȳ .
For a uniform sampling query scheme, then we will have S̄

as a set of nq i.i.d realizations generated from the original
marginal distribution p(s), and we can rewrite p-value in (3)
as p = �[Wnq ] where Wnq is a FR statistic random variable
obtained from nq i.i.d pairs of (Si, Zi) ⇠ p(s, z). Instead
of directly tackling the query scheme, we consider to find
an optimal marginal distribution pq⇤(s) such that, under
the alternative hypothesis H1, performing the FR test on a
set of i.i.d. Si ⇠ pq⇤(s) generates large testing power than
performing on the uniformly sampled data points with the
same number of labels nq. After identifying the optimal
marginal pq⇤(s), in practice we will use a query scheme to
find a set of features S̄ ✓ S similar to nq i.i.d. realization
of Si ⇠ pq⇤(s). This motivates the bimodal query scheme
in algorithm 1 to increase the power of the FR test.

4.2.1 A marginal distribution to minimize the FR
statistic asymptotically

Given nq i.i.d. realizations generated from pq(s), we seek a
pq(s) to minimize Wnq and hence generate a more powerful
FR test. From Theorem 1 we know that the convergence
result of Wnq

nq
is a function of only pq(s) under the usual lim-

iting regime n̄0
nq

! u and n̄1
nq

! v. Therefore, we construct
the following optimization problem:

min
pq(s)

Z
p(Z = 0 | s)p(Z = 1 | s)pq(s)ds

subject to
Z

p(Z = 0 | s)pq(s)ds = u

Z
pq(s)ds = 1, pq(s) � 0. (5)

Under the null hypothesis H0, Z and S are independent
and thus p(s, z) = p(s)p(z), and

R
p(Z = 0|s)p(Z =

1|s)pq(s)ds = uv for any pq(s). Therefore, minimizing 5
with pq(s) does not alter the Type I error. A more thorough



analysis of the Type I error is provided in section 4.4. On the
other hand, under the alternate H1, solving the optimization
problem (5) leads to a solution that minimizes Wnq in 3 for
large sample sizes nq ! 1, leading to a decreasing Type II
error of the FR test.

We approximate the continuous random variable S in Eq. (5)
with a discrete versions of the same by partitioning the
support of pq(s) into balls B(si, r) ✓ Rn with radius r

centering at si which leads to discrete p(Z = 0|si) =R
B(si,r)

p(Z = 0|s)p(s)ds. This converts the optimization
problem to a linear program (6)

max
pq(si)

X

i

p(Z = 0 | si)
2
pq(si)

subject to
X

i

p(Z = 0 | si)pq(si) = u

X

i

pq(si) = 1, pq(si) � 0. (6)

Note that p(Z = 1|s) in Eq. (5) is replaced by 1� p(Z =

0|s) and optimization problem is modified accordingly.

Theorem 2. The optimal solution pq⇤(si) to the LP in (6)
is,

pq⇤(sq0) =
u� p(Z = 0 | sq1)

p(Z = 0 | sq0)� p(Z = 0 | sq1)
,

pq⇤(sq1) =
p(Z = 0 | sq0)� u

p(Z = 0 | sq0)� p(Z = 0 | sq1)
,

pq⇤(si) = 0 8i /2 {q0, q1}

where q0 = argmin
i

[p(Z = 0 | si)] = argmax
i

[p(Z = 1 | si)],

q1 = argmax
i

[p(Z = 0 | si)]. (7)

Briefly, the derivation of Eq. (7) comes about when we
combine the linear constraints in Eq. (6) with the fact that
the optimum value is always achieved on the boundary of the
constraint set for LP problems [Korte et al., 2011]. We refer
readers to the appendix 8 for details. The optimal solution
pq⇤(si) of Eq. (6) is a bimodal delta function (with modes
at q0 and q1) that samples the highest posterior probabilities
of p(Z = 0|si) and p(Z = 1|si). Reducing the radius
r of a ball B(si, r) towards zero makes pq(si) a nearly
probability density function therefore the derived pq⇤(si)

in (7) is regarded as an optimal solution to minimize the
original objective function (5).

4.2.2 Practicality of the proposed framework

Theorem 2 tells us that drawing nq i.i.d. samples from pq⇤(s)

to label is an ideal query scheme to increase the testing
power of the FR test. However, practical utility of pq⇤(s) (7)
to minimize Wnq is complicated by two facts: (1) p(z|s) is

unknown to us, and (2) we do not have a random sample
generator to generate nq i.i.d. samples from pq(s). In prac-
tice, we approximate p(z|s) by the output probability of a
classifier and symmetrically query the labels of points at the
approximated highest p(Z = 0|s) and p(Z = 1|s). This mo-
tivates the use of a classifier during the first stage for driving
the bimodal query labeling scheme during the second stage.
The idea to use a probabilistic classifier to estimate p(z|s)

has been similarly used in many previous works [Friedman,
2004, Lopez-Paz and Oquab, 2016, Kossen et al., 2021].
We include extensive experimental results using different
classifiers in appendix 11.1.

With respect to the second point, we empirically demon-
strate that selecting features by bimodal query increases
the power of the test across several applications; all while
controlling the Type I (see section 4.4) even given non-i.i.d.
features.

4.3 CONVERGENCE OF AN EXPECTED FR
STATISTIC VARIANT

The cost function in Eq. (5) is motivated by the almost sure
results outlined in Theorem 1. In this section, we consider a
FR statistic variant and show that the expected FR statistic
variant converges in O(n

�1
q

) (nq is label budget) for nq fea-
tures i.i.d. generated from the bimodal delta function pq⇤(s)

in 7, and the convergence rate O(n
�1
q

) is independent of
feature dimension d.

Given a FR-test performed on n samples {(Si, Zi)}
n

i=1 i.i.d
generated from a marginal distribution p(s, z), we have
the expectation of the FR statistic in (2) as E[Wn] =

E


Rn�E[Rn|H0,{Si}n

i=1]p
Var[Rn|H0,{Si}n

i=1]

�
. In this subsection, we use X

and Y to denote sets of feature random variables Si with
membership Zi = 0 and Zi = 1 respectively. The ex-
pected Rn under the null H0 is only determined by size
n0 = |X | and size n1 = |Y| (see appendix 7), which
leads to E[Rn|H0, {Si}

n

i=1] = E[Rn|H0, |X |, |Y|]. How-
ever, the variance Var[Rn|H0, {Si}

n

i=1] under the null hy-
pothesis is dependent on the topology of MST constructed
over {Si}

n

i=1 and is intractable. This makes the evalua-
tion of E[Wn] difficult. Therefore, following [Henze and
Penrose, 1999], we decouple Var[Rn|H0, {Si}

n

i=1] from
Wn in Eq. (2) by multiplying

p
Var[Rn|H0, {Si}

n

i=1]

and generate a variant of the FR statistic random vari-
able, Wn = Rn � E[Rn|H0, |X |, |Y|]. In what follows,
we evaluate the expected FR statistic variant E[Wnq ] =

E[Rnq ] � E[Rnq |H0] given nq features Si i.i.d. gener-

ated from pq⇤(s). Specifically, we evaluate E


Wnq

nq

�
=

E

h
Rnq

nq

i
� E

h
Rnq

nq

���H0

i
and state the following theorem.

Theorem 3. Given that nq samples are i.i.d. generated from



pq⇤(s) (7), we have

E

"
Wnq

nq

#
=

Z
2p(Z = 0|s)p(Z = 1|s)pq⇤(s)ds

+O(n
�1
q

)� 2uv (8)

The difficulty in evaluating E


Wnq

nq

�
comes from the eval-

uation of E
h
Rnq

nq

i
. Fortunately, considering pq⇤(s) (7) is a

discrete marginal distribution with two modes at sq0 and sq1

(q0 = argmaxi[p(Z = 1|si)] and q1 = argmaxi[p(Z =

0|si)], see (7)) and the probabilities at other points are zero,
we can precisely obtain the probability of an edge being a
cut-edge at sq0 or sq1 thereby leading to convenient evalua-
tion of E

h
Rnq

nq

i
. We refer appendix 9 for the proof.

Remark 1. For the original FR test (or equivalent to our
framework with the bimodal query replaced by the uniform
sampling), given sample size nq, the expected FR variant
E
⇥
Wnq

⇤
inflates with increasing dimension d and hinders

differentiating the alternative hypothesis from the null hy-
pothesis. Using pq⇤(s) (7) turns out to not only minimize
the convergence of Wnq

nq
(4), but also results in a conver-

gence rate of O(n
�1
q

) for E

Wnq

nq

�
. This convergence rate

is independent of dimension d; therefore, performing a FR
test on samples generated from pq⇤(s) can effectively sup-
presses the inflation of E[Wnq ] for high-dimension samples
and helps reject the null under the alternative hypothesis.

4.4 TYPE I ERROR OF THE THREE-STAGE
FRAMEWORK

One important observation for the proposed framework is
that the features labeled in the second stage are dependent on
the uniform sampled features in the first stage. For every n

i.i.d. realizations {si, zi}ni=1 of {Si, Zi}
n

i=1 ⇠ p(s, z) under
the null hypothesis H0, we write S̄ = {s̄1, . . . , s̄nq} to de-
note a set that our query scheme (comprised of uniform sam-
pling and bimodal query) selects from S = {s1, . . . , sn},
and write Z̄ = {z̄1, . . . , z̄nq} to denote a set of label ob-
servations corresponding to S̄. We use S̄i and Z̄i to denote
the random variables corresponding to s̄i and z̄i. Under the
H0, or equivalently, S ? Z, an improper use of the bimodal
query might tend to label samples in the region with high
bias, and makes S̄i dependent on Z̄i, and hence increase
the Type I error. In the following, we present our theorem
regarding the Type I error control:

Theorem 4. Suppose (S̄i, Z̄i)
nq

i=1 are pairs of random fea-

ture variables and label variables acquired in the end of

the second stage of the framework, using a permutation

test in the third stage of the framework to obtain p-value

from (S̄i, Z̄i)
nq

i=1 for any two-sample test have Type I error

P (p  ↵)  ↵, 8↵ for the framework.

Theorem 4 states that the Type I error of our framework is
upper-bounded by ↵ for any two-sample test carried out as
a permutation test in the third stage. A permutation test rear-
ranges labels of features, obtains permutation distribution
of a statistic computed from the rearrangements, and rejects
H0 if a true observed statistic is contained in ↵ probability
range of the permutation distribution. This process does
not need features to be i.i.d. sampled to control the Type I
error at exact ↵, and it is applicable to any two-sample tests
testing independency between S̄i and Z̄i. However, we need
to make sure our query procedure maintains S̄i ? Z̄i under
the H0. Our framework only trains a classifier one time with
uniformly sampled data points in the first stage, and then the
bimodal query selects a subset of features from S to label
based on the trained classifier. For a set of feature and label
variables Q = {S̄i, Z̄i}

nq

i=1 obtained in the end of the second
stage, we write Qu ✓ Q to denote the set obtained from uni-
form sampling, and write Qb ✓ Q to denote the set obtained
from bimodal query. Considering that a uniform sampling
scheme does not change the original distributional proper-
ties (S ? Z under the null) to generate (S̄i, Z̄i) 2 Qu, we
have S̄i ? Z̄i, 8(S̄i, Z̄i) 2 Qu. Qb is not used to train the
classifier, so we also have S̄i ? Z̄i, 8(S̄i, Z̄i) 2 Qb. We
refer readers to Appendix 10 for details.

4.5 EXTENSIBILITY OF THE THREE-STAGE
FRAMEWORK

The starting point for developing the bimodal query used
in the proposed framework is Theorem 1. This asymptotic
result appears in many graph-based two-sample tests where
the testing statistic is a function of cut-edge number [Chen
and Friedman, 2017, Rosenbaum, 2005, Schilling, 1986,
Henze, 1988, Chen et al., 2018]. Furthermore, the Theo-
rem 4 states that our framework controls Type I error for any
two-sample tests if a permutation test is used. The above
two reasons guarantee that, when replacing FR test with
other two-sample tests in the third stage, the Type I error
is controlled if a permutation test is used, and the bimodal
query is a reasonable rule for increasing the testing power
of a test. In the experimental results, we empirically demon-
strate the extensibility of our framework by using the Chen
test [Chen and Friedman, 2017] and the cross-matching
test [Rosenbaum, 2005].

5 EXPERIMENTAL RESULTS

The proposed framework attributes the increasing testing
power of the FR test for a label budget to the use of the
bimodal query in the second stage. We therefore replace the
bimodal query with passive query, uncertainty query and



certainty query to establish three baselines. The passive
query uniformly samples datapoints to query. The uncer-
tainty query selects the points at the smallest p(z|s) (the
most uncertain point). The certainty query scheme is a
heuristic that select points at the most certain region–highest
p(z|s). We also extend the framework beyond FR test to
using the Chen test [Chen and Friedman, 2017] and the
cross-matching test [Rosenbaum, 2005] to empirically in-
vestigate the extensibility of the proposed framework to
other two-sample tests. The three two-sample tests all have
known asymptotic or exact permutation null distributions.

5.1 EXPERIMENTS ON SYNTHETIC DATASETS

Data generated under H1 being true: we use a two-
dimensional normal distribution to generate two types of
binary-class synthetic datasets with a sample size of 2000.
One type has the data with two groups generated from
N ((�1, 0), I2) and N ((��1, 0), I2), and the other type has
data with two groups generated from N ((�2, 0), I2) and
N ((��2, 0), I2(1 + �)). We set �1 = 1, �2 = 0.6 and
� = 1. The two different ways to generate data result in a lo-
cation alternative H1

1 (mean difference) and scale alternative
H

2
1 (variance difference) for the two-sample hypothesis test

to detect. Both types of data are considered as the data real-
izations of different distributions which implies H0 should
be rejected.
Data generated under H0 being true: we simply generate
two groups of data both from same distribution N (0, I2).

We repeat the above procedure 200 times to generate enough
cases for a fair performance evaluation. We remove the la-
bels of the synthetic dataset and use the three-stage frame-
work shown in the algorithm 1 to perform label-efficient
two-sample hypothesis testing. We set nt = 50 and use
logistic regression as the classification algorithm input A.
We set ↵ = 0.05, and set nq from 10% to 100% of the
whole data size to evaluate the performance of the proposed
framework and the three baselines. In addition to the FR
test [Friedman and Rafsky, 1979] proposed to used in the
framework, Chen test [Chen and Friedman, 2017] and cross-
match test [Rosenbaum, 2005] are also used to examine the
extensibility of the framework to using other two-sample
tests. A promising framework should control the Type I
error (upper-bounded by ↵ = 0.05) under the null H0 and
decrease the Type II error under the alternative hypothesis
H1.

Figure 2(a) shows the Type II errors returned by the pro-
posed framework and its parallel implementations with the
bimodal query replaced by the three baseline queries. It is
observed that the proposed framework generates lower Type
II error than its parallel implementation with only a small
label proportions of the whole datasize. Figure 3(a) shows
the 95% confidence of the Type I error returned by the pro-
posed framework. It is observed that the significance level

↵ = 0.05 overlaps with the 95% confidence interval of the
Type I error, which agrees with the Theorem 4 that the Type
I error of the proposed framework is upper-bounded by ↵.
We refer readers to Fig. 7 to Fig. 10 in the Appendix 11.1
for the results of the Chen test [Chen and Friedman, 2017]
and the cross-match test [Rosenbaum, 2005] and the re-
sults of using other classification algorithms, which shows
the extensibility of the proposed framework to using other
two-sample tests and other classification algorithms.

5.2 EXPERIMENTS ON MNIST AND ADNI

MNIST data generated under H1: we sample images from
MNIST [LeCun, 1998] to create two groups of data as fol-
lows: in the group one, we randomly sample 1000 images
of one class from MNIST; and in the group two, we first
randomly sample 700 images of the same class but sample
the other 300 images of a different class from the MNIST.
Both groups are projected to a 28-dimensional space by a
convolutional autoencoder [Ng et al., 2011] before injecting
to the proposed three-stage framework. The second group
of data should follow a distribution similar to the group one
however it is polluted by a different class of data. We repeat
the above data generating process 200 times and ideally a
two-sample test should reject the null hypothesis H0 for
each case.
MNIST data generated under H0: we simply sample two
groups of 1000 images from one class in the MNIST data.
We repeat the above process 200 times to obtain 200 cases
of MNIST data under H0.
The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset: data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database [Jack Jr et al., 2008]
was obtained to demonstrate a real-world application of the
label efficient two-sample testing. Our ADNI dataset is com-
prised of five cognition measurement scores obtained from
participants in ADNI. In addition, ADNI has an available
PET-imaging based measure used to quantify amyloid load
(AV45) in the brains of patients with AD patients [Gruchot
et al., 2011]. This motivates a hypothesis that the five mea-
sures are different in individuals with amyloid in the brain
from those without amyloid in the brain. That is, H0 implies
that the five cognition measurement scores from participants
with high or low AV45 have no significant and H1 implies
the opposite. Measuring AV45 requires a PET scan, a costly
procedure that we would like to minimize. Therefore we use
the proposed framework to perform a two-sample test with
fewer PET scans (label queries). In the experiment, we bi-
narize the AV45 using the cut-off value suggested by ADNI.
We sample 750 participants with AV45 values higher than
the cut-off as group one, and sample 250 participants with
AV45 values lower than the cut-off as group two. We repeat
the above random sampling 200 times to generate 200 data
cases.

https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf
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label budget (percentage of all data) is on the X-axis.

For the MNIST dataset, we set nt = 100 and vary nq from
10% to 100% of the whole dataset with 10% interval incre-
ment. We use a neural network to model p(z|s). For the
ADNI dataset, we set nt = 50 and also vary nq from 10%

to 100%. We use logistic regression to model p(z|s). We set
↵ = 0.05 for both cases.

We compare the proposed framework to its parallel imple-
mentations to demonstrate the increased testing power of
the bimodal query-based FR test relative to the baseline
query-based FR tests. This can be seen in Figure 2(b) where
the proposed framework generates lower Type II error in
both MNIST and ADNI than its parallel implementations
with only a small label query proportion of the whole dataset
size. Then in Figure 3(a), we observe that the significance
level ↵ = 0.05 either overlaps with or upper-bounds the
95% confidence interval of the Type I error of the proposed
framework. Both results above demonstrate that the pro-
posed framework increases the testing power with same
label budget nq and also can control the Type I error for real
datasets. Lastly, we replace the FR test in the framework
with the Chen test [Chen and Friedman, 2017] and the cross-
match test [Rosenbaum, 2005] to examine the extensibility
of the proposed framework to using other two-sample tests
for the real datasets. We refer readers to Fig. 11 to Fig. 16
in the appendix 11.1 for the results of the Chen test [Chen
and Friedman, 2017] and the cross-match test [Rosenbaum,
2005] and the results of using other classification algorithms.
We observe that our framework with the FR test replaced by

the Chen and the cross-match tests still return lower Type II
errors than the parallels using other baseline queries with a
small label query proportion, while controlling the Type I
error at a desired level.

5.3 ABLATION STUDY ON THEOREM 3

Figure 4: Type II error re-
turned by the proposed frame-
work and its parallel of the
uniform sampling based FR
test for various dimension d.

In this section, we study
the Theorem 3 that al-
ludes the testing power
of the proposed frame-
work is dimension free.
We reuse the data gen-
eration paradigm under
the H

1
1 in section 5.1 but

increase the dimension
number d from 2 to 18,
and therefore create 200
data cases having two
groups of samples gener-
ated from N ((�1, ..., 0)

d
, Id) and N ((��1, ..., 0)

d
, Id) for

d = 2, ..., 18 and �1 = 1. We then use the proposed frame-
work and its parallel of uniform sampling-based FR test to
test the generated high-dimensional dataset under the alter-
nate H

1
1 . We set nq = 20% of the whole datasize. Figure 4

shows that the Type II error of the proposed framework
does not vary much for different dimensions but the Type II
error of the passive query based FR test explodes along the
increasing sample dimension. This empirical observation is
consistent with the results of Theorem 3.

6 CONCLUSION

We extend the traditional two-sample hypothesis testing to
a new important setting where the sample measurements
are available but the group labels are unknown and costly
to obtain. We therefore devise a three-stage framework for
the label efficient two-sample test based on theoretical foun-
dations of increasing the testing power and controlling the
Type I error with a label budget.
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7 PROOF OF THEOREM 1

Proof. E [Rn|H0, {Si}
n

i=1] and Var [Rn|H0, {Si}
n

i=1] have analytical expressions stated in [Friedman and Rafsky, 1979]
as follows:

E [Rn | H0, {Si}
n

i=1] =
2n0n1

n
(9)

q
Var [Rn | H0, {Si}

n

i=1] =

s
2n0n1

n(n� 1)

⇢
2n0n1 � n

n
+

Cn � n+ 2

(n� 2)(n� 3)
[n(n� 1)� 4n0n1 + 2]

�
(10)

where Cn denotes the number of edge pairs sharing a common node in the MST. Inserting the analytical expressions of
E [Rn | H0, {Si}

n

i=1] (9) and
p
Var [Rn | H0, {Si}

n

i=1] (10) to FR statistic Wn (2), we have

Wn

n
=

Rn
n

�
2n0n1
n2r

2n0n1
n(n�1)

n
2n0n1�n

n
+

Cn�n+2
(n�2)(n�3) [n(n� 1)� 4n0n1 + 2]

o (11)

As stated in [Henze and Penrose, 1999], under the usual limiting regime, there exists a constant u 2 (0, 1) such that n0 and
n1 tend to infinity, and n0/n ! u. We write v to denote 1� u; as with u, n1/n ! v under the usual limiting regime. The
variables, u and v can be thought of as class prior probabilities for Z = 0 and Z = 1. We have the following under the usual
limiting regime:

lim
n!1

n0n1

n2
= uv (12)

Theorem 2 in [Henze and Penrose, 1999] gives an almost sure result regarding the convergence of Rn
n

under the usual
limiting regime:

lim
n!1

Rn

n
= 2uv

Z
p(s | Z = 0)p(s | Z = 1)

up(s | Z = 0) + vp(s | Z = 1)
ds

= 2uv

Z p(s)p(Z=0|s)
u

p(s)p(Z=1|s)
v

p(s)
ds

= 2

Z
p(Z = 0 | s)p(Z = 1 | s)p(s)ds (13)

The graph-dependent variable Cn in
p
Var[Rn | H0, {Si}

n

i=1] (10), formally defined after Eq. (13) in [Friedman and Rafsky,
1979], is the number of edge pairs that share a common node of a Euclidean minimum spanning tree (MST) generated from
the data. While Cn = n � 2 for the one-dimensional case, in [Friedman and Rafsky, 1979], Cn remained unsolved for
dimension d � 2. In fact, as stated in Eq. (1.6) in [Steele et al., 1987], Cn can be expressed as

Cn = 1� n+
1

2

X

k

k
2
Vn,k, (14)

where Vn,k stands for the number of nodes with degree k in a MST constructed from n data points. From Theorem 3
in [Steele et al., 1987], we get limn!1

Vn,k

n
= ↵k,d for all k � 1, d � 2 where ↵k,d’s are constants dependent on dimension

d. This leads to the following:

lim
n!1

Cn

n
=

1

2

X

k

k
2Vn,k

n
� 1

=
1

2

X

k

k
2
↵k,d � 1 (15)

Herein, we use Ad =
Cn
n

to denote the dimension-dependent constant which Cn
n

converges to.



We reorganize the denominator of Wn
n

and rewrite Wn
n

as follows

Wn

n
=

Rn
n

�
2n0n1
n2r

2n0n1
n(n�1)

n
2n0n1�n

n
+

Cn�n+2
(n�2)(n�3) [n(n� 1)� 4n0n1 + 2]

o

=

Rn
n

�
2n0n1
n2r

2n0n1
n2

n
2n0n1�n

n(n�1) +
Cn�n+2

(n�1)(n�2)(n�3) [n(n� 1)� 4n0n1 + 2]

o

=

Rn
n

�
2n0n1
n2vuuuuuuuuuuuuuut

2n0n1

n2

⇢
2n0n1

n(n� 1)
�

1

n� 1
+

nCn

(n� 2)(n� 3)
�

n
2

(n� 2)(n� 3)
+

2n

(n� 2)(n� 3)
�

4n0n1Cn

(n� 1)(n� 2)(n� 3)
+

4nn0n1

(n� 1)(n� 2)(n� 3)
�

8n0n1

(n� 1)(n� 2)(n� 3)
+

2Cn

(n� 1)(n� 2)(n� 3)
�

2n

(n� 1)(n� 2)(n� 3)
+

4

(n� 1)(n� 2)(n� 3)

�

=

Rn
n

�
2n0n1
n2vuuuuuuuuuuuuuuuuut

2n0n1

n2

(
2n0n1
n2

1�
1
n

�
1

n� 1
+

Cn
n

(1�
2
n
)(1�

3
n
)
�

1

(1�
2
n
)(1�

3
n
)
+

2

(1�
2
n
)(n� 3)

�

4n0n1
n2

Cn
n

(1�
1
n
)(1�

2
n
)(1�

3
n
)
+

4n0n1
n2

(1�
1
n
)(1�

2
n
)(1�

3
n
)
�

8n0n1
n2

(1�
1
n
)(1�

2
n
)(n� 3)

+

2Cn
n

(1�
1
n
)(n� 2)(n� 3)

�
2

(1�
1
n
)(n� 2)(n� 3)

+

4

(n� 1)(n� 2)(n� 3)

�

(16)

Combining eqns. (12), (13), (15), and (16) yields the asymptotic convergence of Wn
n

under the usual limiting regime

lim
n!1

Wn

n
=

R
2p(Z = 0 | s)p(Z = 1 | s)p(s)ds� 2uvp
2uv[2uv +Ad � 1� 4uvAd + 4uv]

=

R
2p(Z = 0 | s)p(Z = 1 | s)p(s)ds� 2uvp

2uv[2uv + (Ad � 1)(1� 4uv)]
(17)

8 PROOF OF THEOREM 2

Proof. The solutions (7) of the LP (6) are represented as follows:

pq⇤(sq0) =
u� p(Z = 0 | sq1)

p(Z = 0 | sq0)� p(Z = 0 | sq1)
, (18)

pq⇤(sq1) =
P (Z = 0 | sq0)� u

p(Z = 0 | sq0)� p(Z = 0 | sq1)
, (19)

pq⇤(s) = 0 8i /2 {q0, q1} (20)
where q0 = argmin

i

[p(Z = 0 | s)] = argmax
i

[p(Z = 1 | s)], q1 = argmax
i

[p(Z = 0 | s)]. (21)



(a) u = 0.2 (b) u = 0.4 (c) u = 0.6

Figure 5: Simulated optimal solutions Pq⇤(s) to the LP(6) with different P (Z = 0|s).

The following proof presents the derivation of the closed-form solution (18) to (21) for the LP (6). In fact, p(Z = 0 | si)’s
are constant coefficients and pq(si)’s are variables in the LP. Herein, we use H to denote the number of variables pq(si)
such that i = 1, . . . , H .

The feasible solutions to the LP (6) forms a feasible region. This is a bounded region, since the variables pq(si)’s are upper
and lower bounded. Furthermore, the constraints

P
i
p(Z = 0|si)pq(si) = u and

P
i
pq(si) = 1 form an h� 2 dimensional

polytope and the constraints pq(si) � 0 restrict the polytope to the h� 2 dimensional positive orthant. The optimal solution
of the LP occurs at one of the vertices of the corresponding polytope [Korte et al., 2011]. In what follows, we identify the
vertices of the polytope, locate the optimal feasible solution from the vertices, and present results from a simulation to
empirically validate the derived closed-form solution.

Identifying the vertices of the polytope: Given the LP (6), the intersection between the h � 2 dimensional polytope
(feasible region) and an h� 1 dimensional hyper-plane pq(si) = 0 produces an h� 3 dimensional facet. Therefore, the
intersection between the h� 2 dimensional polytope and any h� 2 hyper-planes pq(si) = 0 produces a zero-dimensional
facet. In fact, a vertex is a zero-dimensional facet. Therefore, with the above intersection operations, a vertex of the polytope
is a vector with length of h including h� 2 zero components, and this reduces the constraints in (6) to the linear equations of
two unknowns, pq(sq0) and pq(sq1). pq(sq0) and pq(sq1) are two non-zero components of the vertex and they are specified
in (18) and (19).

Locating the optimal solution among the vertices: Substituting (18) and (19) into the objective in (6) yields following:

max
p(Z=0|sq0 ),p(Z=0|sq1 )

p(Z = 0 | sq0)
2
pq(sq0) + p(Z = 0 | sq1)

2
pq(sq1)

= max
p(Z=0|sq0 ),p(Z=0|sq1 )

p(Z = 0 | sq0)
2
[u� p(Z = 0 | sq1)]

p(Z = 0 | sq0)� p(Z = 0 | sq1)
+

p(Z = 0 | sq1)
2
[p(Z = 0 | sq0)� u]

p(Z = 0 | sq0)� p(Z = 0 | sq1)

= max
p(Z=0|sq0 ),p(Z=0|sq1 )

u[p(Z = 0 | sq0) + p(Z = 0 | sq1)]� p(Z = 0 | sq0)p(Z = 0 | sq1) (22)

We write L[p(Z = 0 | sq0), p(Z = 0 | sq1)] = p(Z = 0 | sq0)
2
pq(sq0) + p(Z = 1 | sq1)

2
pq(sq1) and compute the partial

derivatives of L w.r.t. the posterior probabilities, rL[p(Z = 0 | sq0), p(Z = 0 | sq1)], to yield

rL[p(Z = 0 | sq0), p(Z = 0 | sq1)] =

✓
@L

@p(Z = 0 | sq0)
,

@L

@p(Z = 0 | sq1)

◆

= (u� p(Z = 0 | sq1), u� p(Z = 0 | sq0)) (23)

As observed in (18) and (19), there are two considerations for pq(sq0) and pq(sq1): (1) p(Z = 0 | sq1)  u, p(Z =

0 | sq0) � u and (2) p(Z = 0 | sq1)  u, p(Z = 0 | sq0) � u. For the first consideration, (23) yields a non-negative
derivative for @L

@p(Z=0|sq0 )
and a non-positive derivative for @L

@P (Z=1|sq1 )
. Therefore, given the convexities of L[p(Z = 0 |

sq0), p(Z = 0 | sq1)] with respect to p(Z = 0 | sq0) and p(Z = 0 | sq1), we have q0 = argmaxi[p(Z = 0 | si)] and
q1 = argmini[p(Z = 0 | si)]. On the other hand, for the second consideration, (23) yields a non-positive derivative for

@L
@p(Z=0|sq0 )

and a non-negative derivative for @L
@p(Z=1|sq1 )

. Thus q0 = argmini[p(Z = 0 | si)] and q1 = argmaxi[p(Z =

0 | si)]. Both cases have identical solutions, but with the order of q0 and q1 swapped. The summarized closed-form solution
is presented in eqns. (18) to (21).



Simulation results: We simulate the LP (6) with randomly generated p(z|si), and set u = 0.2, u = 0.4 and u = 0.6. We
solve the LP (6) using the Python optimization package. The bimodal delta functions associated with the optimal pq⇤(si) are
observed in Figure 5. The two modes of the bimodal delta functions are generated at the points of highest p(z|si) for both
classes which agrees with the derived closed-form solutions (18) to (21).

9 PROOF OF THEOREM 3

Proof. For n pairs of random variables (Si, Zi) i.i.d. generated from p(s, z) (8), we use n0 and n1 to denote the feature
samples generated with membership Zi = 0 and 1. It is easy to see n = n0 + n1. From (9) we know that E[Rn |

H0, {Si}
n

i=1] =
2n0n1

n
, and this says E[Rn | H0, {Si}

n

i=1] is determined only by the number of features generated from
class one or zero. Given p(Z = 0) = u and p(Z = 1) = v, we have

E


Rn

n

����H0

�
= E


2n0n1

n

�
= 2uv (24)

Considering that we change the original marginal distribution p(s) to pq⇤(s) and nq samples are i.i.d. generated from pq⇤(s),
and given that pq⇤(s) is derived subject to p(Z = 0) = u and p(Z = 1) = v (see (6)), we also have E

h
Rnq

nq

���H0

i
= 2uv.

Now we turn to evaluate E

h
Rnq

nq

i
obtained from nq samples Si i.i.d. generated from pq⇤(s). Same as the notations used

in (7), we use sq0 and sq1 to denote the only two points for pq⇤(sq0) > 0 and pq⇤(sq1) > 0, and pq⇤(s) = 0 for any other
s. Three cases of Rnq

nq
can possibly happen under pq⇤(s): (1) all nq samples are generated at sq0 ; (2) all nq samples are

generated at sq1 ; and (3) at least two points are generated at sq0 and sq1 . This leads to the expansion of E
h
Rnq

nq

i
in the

following:

E


Rnq

nq

�
= [pq⇤(sq0)]

nqE


Rnq

nq

���� case 1
�
+ [pq⇤(sq1)]

nqE


Rnq

nq

���� case 2
�

+ {1� [pq⇤(sq0)]
nq � [pq⇤(sq1)]

nq}E


Rnq

nq

���� case 3
�

(25)

A minimum spanning tree (MST) constructed over nq samples i.i.d. generated from pq⇤(s) contains nq � 1 edges, and
we write Ii to denote a random variable standing for if an edge in MST is a cut-egde, Ii = 1, or not, Ii = 0. Therefore
we have E

h
Rnq

nq

i
=

1
nq

Pnq�1
i=1 E[Ii]. Under both case 1 and case 2, Ii is simply described as whether the two endpoints

of Ii have same label, and therefore we have E[Ii | case 1] = 2p(Z = 0|sq0)p(Z = 1|sq0) and E[Ii | case 2] = 2p(Z =

0|sq1)p(Z = 1|sq1). Under the case 3, Ii can be further categorized to an edge variable I
a

i
that connects sq0 and sq1 and

other edge variables Ib
i

at either sq0 or sq1 . There is only one edge to connect sq0 and sq1 thus we simply write I
a for Ia

i

and E[I
a
| case 3] = p(Z = 0 | sq0)p(Z = 1 | sq1) + p(Z = 1 | sq0)p(Z = 0 | sq1). Each I

b

i
can be viewed as an edge

variable that connects a random variable S ⇠ pq⇤(s) and a point at sq0 or sq1 (under the case 3, two points already exist at
sq0 and sq1), and therefore E

⇥
I
b

i
| case 3

⇤
=

R
2p(Z = 0|s)p(Z = 1|s)pq⇤(s)ds. Inserting E

h
Rnq

nq

i
=

1
nq

Pnq�1
i=1 E[Ii],

E[Ii | case 1] = 2p(Z = 0|sq0)p(Z = 1|sq0), E[Ii | case 2] = 2p(Z = 0|sq1)p(Z = 1|sq1), E[Ia | case 3] = p(Z = 0 |

sq0)p(Z = 1 | sq1) + p(Z = 1 | sq0)p(Z = 0 | sq1) and E
⇥
I
b

i
| case 3

⇤
=

R
2p(Z = 0|s)p(Z = 1|s)pq⇤(s)ds to (25) we

have

E


Rnq

nq

�
= [pq⇤(sq0)]

nq
2(nq � 1)[2p(Z = 0|sq0)p(Z = 1|sq0)]

nq

+ [pq⇤(sq1)]
nq

2(nq � 1)[2p(Z = 0|sq1)p(Z = 1|sq1)]

nq

+ {1� [pq⇤(sq0)]
nq � [pq⇤(sq1)]

nq}
[p(Z = 0 | sq0)p(Z = 1 | sq1) + p(Z = 1 | sq0)p(Z = 0 | sq1)]

nq

+ {1� [pq⇤(sq0)]
nq � [pq⇤(sq1)]

nq}
(nq � 1)

R
2p(Z = 0|s)p(Z = 1|s)pq⇤(s)ds

nq

=

Z
2p(Z = 0|s)p(Z = 1|s)pq⇤(s)ds+O(n

�1
q

) (26)

Inserting the results of E
h

Rnq

nq

���H0

i
and E

h
Rnq

nq

i
to E


Wnq

nq

�
= E

h
Rnq

nq

���H0

i
� E

h
Rnq

nq

i
completes the proof.



10 PROOF OF THEOREM 4

Proof. We write S = {S1, . . . , Sn} and Z = {Z1, . . . , Zn} to denote pairs of (Si, Zi) i.i.d generated from p(s, z). We
write S̄ = {S̄1, . . . , S̄nq} ✓ S and Z̄ = {Z̄1, . . . , Z̄nq} ✓ Z to denote sets of feature random variables and corresponding
label random variables obtained in the end of the second stage of the proposed framework. Note that S̄i’s are not necessarily
to be i.i.d random variables. Furthermore, we divide S̄ into X̄ for feature random variables with membership Z̄i = 0 and Ȳ

for feature random variables with membership Z̄i = 1. It is easy to see S̄ = X̄
S
Ȳ .

Under the null hypothesis H0 (Si ? Zi), Z̄i and S̄i are independent: We split the initial unlabelled sample feature
set S (Z is unknown) to a training feature set St and a hold-out feature set Sh. St corresponds to a collection of sample
features uniformly labeled in the first stage of the framework, and Sh corresponds to the unlabelled sample feature set
at the beginning of the second stage. Furthermore, we write Zh and Zt to indicate label sets of Sh and St respectively.
We have St ✓ S̄ and Zt ✓ Z̄ . In the proposed framework, we train a classifier with St and Zt, and herein, we write ✓ to
denote a parameter random variable of the classifier. First of all, it is easy to see since p(St, Zt) = p(St)p(Zt) as St is
uniformly sampled from S under H0. ✓ is dependent on St and Zt since we use St and Zt to train the classifier. Also, we
have p(Sh,Zh, ✓) = p(Sh,Zh)p(✓) since the classifier training process is independent of the hold-out set (Sh,Zh). Lastly,
we write q = q(✓) to denote a query scheme to query labels based on the output probabilities of the classifier parameterized
by ✓. In fact, S̄/St and Z̄/Zt are features and labels returned by the query q, hence S̄/St ✓ Sh and Z̄/Zt ✓ Zh. Given ✓

is independent of Sh and Zh, and Sh is independent of Zh, we have P (S̄/St, Z̄/Zt) = P (S̄/St)P (Z̄/Zt). Combining
P (St,Zt) = P (St)P (Zt) together with P (S̄/St, Z̄/Zt) = P (S̄/St)P (Z̄/Zt), we have P (S̄, Z̄) = P (S̄)P (Z̄).

We further empirically demonstrate that the independence between S̄ and Z̄ exists by testing the error rate of the classifier
used in the framework. Specifically, we consider two possible ways of classifier training that could be used in the p(z|s)

modelling: one is one-time training where a classifier is only trained one time with uniformly sampled points; this training
fashion is used in the proposed framework and it is stated to be able to maintain the independence between S̄ and Z̄ under
the null; and the other way is online training where a classifier is initialized with uniformly sampled points and then it is
updated by the queried samples. We use the unqueried samples and their labels as a test set and generate classifier error rates
for the above two training fashions. Logistic regression is used to output a logistic classifier. It is easy to see and also stated
in [Lopez-Paz and Oquab, 2016] that a classifier should have around 0.5 error rate if the testing S̄ and Z̄ are independent.
The results are shown in Figure 6. It is observed that the one-time training classifier tested with the unqueried samples and
their labels for the passive query, certainty query and the bimodal query all have error rates around 0.5 at different label
query proportions of the whole dataset, whereas the error rates generated from the online training classifier are biasedly
lower than 0.5.

Figure 6: Classification error for one-time training and sequential training classifier.

The proposed framework with permutation test used upper-bounds the Type I error with significance level ↵: A
permutation test rearranges features in S̄ to obtain the null distribution of Tnq conditional on X̄ and Ȳ under the H0

(S̄ ? Z̄), compute p-value with an observed statistic Tnq obtained from X̄ and Ȳ , and reject H0 for p-value smaller than the
significance level ↵. This is equivalent to P (p  ↵ | H0, X̄ , Ȳ)  ↵. Therefore, we have the Type I error with permutation



test used in our framework in the following:

P (p  ↵) =

Z
P (p  ↵ | H0, X̄ , Ȳ)p(X̄ , Ȳ)dX̄dȲ

 ↵

Z
p(X̄ , Ȳ)dX̄dȲ

= ↵ (27)

11 OTHER EXPERIMENTAL RESULTS

11.1 COMPLETE RESULTS FOR USING DIFFERENT CLASSIFICATION ALGORITHMS IN THE FIRST
STAGE AND DIFFERENT TWO-SAMPLE TESTS IN THE THIRD STAGE OF THE PROPOSED
FRAMEWORK

A classification algorithm A is used to output a classifier with f : Rd
! [0, 1] to model p(Z = 1|s). In this section, we

present results of our framework using different classification algorithms A. We select a classification algorithm based
on two aspects: (1) a large class of the universal learning machines (e.g. neural networks, and support vector machines
based on the appropriate kernels with a large number of training examples) outputs probability f(s) as a monotone function
of p(Z = 1|s) [Friedman, 2004]; (2) the classifier calibration process [Platt et al., 1999] adjusts f(s) to generate more
accurate p(z|s). We will see that in the following, even in the case of small sample size training, the bimodal query produces
superior results relative to passive query. Besides, in order to examine the extensibility of the proposed framework to using
other two-sample tests, we replace the FR test in the third stage with the Chen test [Chen and Friedman, 2017] and the
cross-match test [Rosenbaum, 2005].

Synthetic datasets
Figure 7 shows the logistic regression, and Figure 9 shows the SVM results of Type II errors of the proposed Framework and
its parallel implementations with the bimodal query or the FR test replaced. From Figure 7(a) and Figure 9(a) we observe
that the proposed framework (FR test + bimodal query) have lower Type II error than the FR test combined with other query
schemes with small number of label queries. Figure 7(b)(c) and Figure 9(b)(c) show the extensions of the framework to
using the Chen test and the cross-match test. It is observed that the our framework is well extended to the Chen and the
cross-match tests with the logistic regression.

Figure 8 shows the logistic regression, and Figure 10 shows the SVM results of Type I errors of the proposed Framework and
its parallel implementations with the FR test replaced. ↵ = 0.05 either overlaps with or upper-bound the 95% confidence
interval of the Type I error in all cases which shows the Type I error is controlled.
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Figure 7: Type II error of the proposed framework (Bimodal query based FR test) and its parallel implementations either
with FR test replaced by Chen and cross-match tests, or with bimodal query replaced with three baseline queries under the
two synthetic dataset alternative hypotheses H1

1 and H
2
1 . Logistic regression is used. Type II error is on the Y-axis and label

query proportions of the whole dataset size is on the X-axis.

MNIST and ADNI
Figure 11, Figure 13 and Figure 15 show the logistic regression, SVM and neural network results of Type II errors for the
proposed Framework and its parallel implementations with the bimodal query or the FR test replaced. We observed that
not only the proposed framework has lower errors than its parallel implementation with the bimodal query replaced, the
framework extended to the Chen and the cross-match tests also generate lower Type II errors in all three classifier cases.



(a) FR test (b) Chen test (c) Cross-match test

Figure 8: Type I error (95% confidence interval) of the proposed framework (Bimodal query based FR test) and its parallel
implementations with FR test replaced by Chen and cross-match tests under the synthetic dataset null hypothesis H0.
Logistic regression is used. Type I error is on the Y-axis and label query proportion of the whole dataset size is on the
X-axis.
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Figure 9: Type II error of the proposed framework (Bimodal query based FR test) and its parallel implementations either
with FR test replaced by Chen and cross-match tests, or with bimodal query replaced with three baseline queries under
the two synthetic dataset alternative hypotheses H1

1 and H
2
1 . SVM is used. Type II error is on the Y-axis and label query

proportions of the whole dataset size is on the X-axis.

(a) FR test (b) Chen test (c) Cross-match test

Figure 10: Type I error (95% confidence interval) of the proposed framework (Bimodal query based FR test) and its parallel
implementations with FR test replaced by Chen and cross-match tests under the synthetic dataset null hypothesis H0. SVM
is used. Type I error is on the Y-axis and label query proportion of the whole dataset size is on the X-axis.

Figure 8 shows the logistic regression, and Figure 10 shows the SVM results of Type I errors for the proposed Framework
and its parallel implementations with the FR test replaced. ↵ = 0.05 either overlaps with or upper-bound the 95% confidence
interval of the Type I error in most of all cases which shows the Type I error is controlled.

Figure 12, Figure 14 and Figure 16 show the logistic regression, SVM and neural network results of Type I errors for the
proposed Framework and its parallel implementations with the FR test replaced. It is observed that the proposed framework
with the FR test always has ↵ = 0.05 either overlapping with or upper-bounding the 95% confidence interval of the Type I
error in all classifier cases which shows the Type I error is controlled.
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Figure 11: Type II error of the proposed framework (Bimodal query based FR test) and its parallel implementations either
with FR test replaced by Chen and cross-match tests, or with bimodal query replaced with three baseline queries under the
MNIST alternative hypothesis HM

1 and the ADNI hypothesis HAD
1 . Logistic regression is used. Type II error is on the

Y-axis and label query proportion of the whole dataset size is on the X-axis.

(a) FR test (b) Chen test (c) Cross-match test

Figure 12: Type I error (95% confidence interval) of the proposed framework (Bimodal query based FR test) and its parallel
implementations with FR test replaced by Chen and cross-match tests under the MNIST null hypotheses HM

0 . Logistic
regression is used. Type I error is on the Y-axis and label query proportion of the whole dataset size is on the X-axis.
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Figure 13: Type II error of the proposed framework (Bimodal query based FR test) and its parallel implementations either
with FR test replaced by Chen and cross-match tests, or with bimodal query replaced with three baseline queries under the
MNIST alternative hypothesis HM

1 and the ADNI hypothesis HAD
1 . SVM is used. Type II error is on the Y-axis and label

query proportion of the whole dataset size is on the X-axis.

(a) FR test (b) Chen test (c) cross-match test

Figure 14: Type I error (95% confidence interval) of the proposed framework (Bimodal query based FR test) and its parallel
implementations with FR test replaced by Chen and cross-match tests under the MNIST null hypotheses HM

0 . SVM is used.
Type I error is on the Y-axis and label query proportion of the whole dataset size is on the X-axis.
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Figure 15: Type II error of the proposed framework (Bimodal query based FR test) and its parallel implementations either
with FR test replaced by Chen and cross-match tests, or with bimodal query replaced with three baseline queries under the
MNIST alternative hypothesis HM

1 and the ADNI hypothesis HAD
1 . Neural network is used. Type II error is on the Y-axis

and label query proportion of the whole dataset size is on the X-axis.

(a) FR test (b) Chen test (c) cross-match test

Figure 16: Type I error (95% confidence interval) of the proposed framework (Bimodal query based FR test) and its parallel
implementations with FR test replaced by Chen and cross-match tests under the MNIST null hypotheses H

M
0 . Neural

network is used. Type I error is on the Y-axis and label query proportion of the whole dataset size is on the X-axis.
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