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ABSTRACT
Synchronous reluctance motors (SynRMs) have gained con-

siderable attention in the field of electric vehicles as they reduce
the need for permanent magnets in the rotor, resulting in less
material and manufacturing costs. However, their lower average
torque and torque ripple vibrations have been identified as key
issues that require resolution. In this study, we present a SynRM
design framework employing the cardinal basis functions (CBF)-
based parametric level set method. The SynRms design prob-
lem is recast as a variational problem constrained by Maxwell’s
equations which describe the behavior of electric and magnetic
fields in the SynRM. A continuum shape sensitivity analysis is
carried out using the material derivative and adjoint method. A
distance regularization energy function is employed to maintain
the level set function as a signed distance function during the
optimization. The parametric topology optimization problem is
computationally solved using the Method of Moving Asymptotes
(MMA). To demonstrate the effectiveness of our approach, we
present a numerical example that compares the torque charac-
teristics of the optimal design with those of a reference design.
Preliminary results show that the optimized SynRM has a 30.30%
increase in average torque, along with a slight increase in torque
ripple, compared to the reference model.

∗Address all correspondence to this author.

1 Introduction
The recent focus in motor design has shifted towards in-

creasing efficiency, reducing cost, and improving environmental
friendliness [1]. Having no permanent magnets in the rotor, syn-
chronous reluctance motors (SynRMs) can offer lower material
and manufacturing costs [2]. In view of this, synchronous reluc-
tance motors are an attractive option for industrial applications
such as pumps, fans, traction, and electric vehicles.

In contrast to the permanent magnet (PM) machines [3], syn-
chronous reluctance motors generate torque utilizing magnetic
reluctance variation [4]. While SynRMs avoids the usage of PM
in its structures, their limitations can not be ignored. One major
disadvantage of SynRMs is their relatively lower average torque
compared to other types of motors, including induction motor
(IM) [5], permanent magnet synchronous motor (PMSM) [6].
Additionally, SynRMs suffer from torque ripple due to the in-
teraction between the spatial harmonics of magnetomotive force
(MMF) and the rotor geometry [7]. Theoretically, the torque per-
formance of SynRM depends on the excitation current and the
motor design itself [8]. Consequently, there is a need to identify
the optimal layout of the rotor to improve the torque character-
istics. Traditionally, design optimization of electric machines is
based on the parameterized studies [9], which focus on finding
the optimized shape and size, providing limited flexibility.

Because gradient-based topology optimization (TO) pro-
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vides higher flexibility, several studies have been conducted on
topology optimization for SynRMs. Notably, Lee et al. [10, 11]
implemented a density-based topology optimization framework
to determine an optimized layout for the iron webs and bridges
of SynRMs. This work considers multiple aspects, including
torque performance, manufacturability, and structural safety, as
simultaneous optimization objectives. Additionally, Lee et al. [8]
efficiently incorporated a design-dependent current phase angle
into the topology optimization process for SynRMs. Okamoto et
al. [12] employed an MMA-based TO method to optimize the ro-
tor core layout of SynRMs, with a focus on enhancing the torque
performance of and investigating the impact of the rotor bridges.
Yamashita et al. [13] applied the level set method to designing
SynRMs for reduced iron loss and improved torque characteris-
tics. Park et al. [14,15] employed the level set method to improve
the average torque by maximizing the magnetic energy between
two rotor positions. In [16], the rotor of SynRMs was optimized
using the ON/OFF method, and the iron loss, including eddy
current loss and hysteresis loss, were newly considered in the
optimization. Besides SynRMs, topology optimization for per-
manent magnet machines has been implemented using a number
of methods, including bidirectional evolutionary structural opti-
mization (BESO) [17, 18], level set method [19, 20] and density-
based methods [21, 22].

Topology optimization for electric machine design is cur-
rently in an active research area, and it entails a number of chal-
lenges that need to be addressed. The optimized result using the
density-based method usually accompanies by the intermediate
value and blurring boundaries, and the On-Off approach usually
generates the checkerboard pattern [23]. These drawbacks will
bring about troubles for further manufacturing. Although the fil-
ter projection can partly mitigate this issue and improve the op-
timized design’s manufacturability, the selection of appropriate
filtering radius directly affects the patterns of the optimization
results [24]. A common way is conducting the parametric study
to investigate the effects of various filtering radii on the opti-
mized result, which is time-consuming [8]. Since the level set
method directly evolves the design boundary [25], it can ensure
a clear boundary in the final design and lessen the need for post-
processing. However, for the conventional level set approach, to
guarantee the boundary evolves one grid interval length per time
step, the step size needs to be sufficiently small. This will cause
an excessive number of iterations before the objective function
converges. Additionally, the conventional level set method re-
quires the design velocity field extension to the whole design do-
main, which results in additional computational costs.

In view of this, we propose a cardinal basis function (CBF)
based level set method to design SynRMs. By parameterization
of level set function with cardinal basis function (CBF), we can
transform the original Hamilton-Jacobi PDE into a system of
ODE to lessen the computational burden [26, 27]. In addition,
the reinitialization scheme in the conventional level set method

is replaced by the minimization of a distance regularization en-
ergy function along with the objective function [28]. This avoids
the undesirable periodical suspension in the optimization pro-
cess. With the parameterization of the level set function, the ad-
vanced optimization solver, such as Method of Moving Asymp-
totes (MMA) [29], can be employed to find the optimal design.
The convergence speed can remarkably improve with these pros
brought by the CBF-based level set method.

The rest of the paper is organized as follows: Section.2 in-
troduces the modeling of synchronous reluctance motors (Syn-
RMs). Section.3 presents the details on topology optimization of
SynRMs, including cardinal basis function (CBF) based level set
method, problem formulation, and shape sensitivity analysis, fol-
lowed by one numerical example given in Section.4. Section.5
concludes the paper and outlines perspective work.

2 Modeling of Synchronous Reluctance Motors (Syn-
RMs)
The SynRM consists of a laminated steel rotor and a lam-

inated stator excited by a poly-phase winding. The winding is
typically an integral slot winding, though a fractional slot wind-
ing could be applied. This study uses a four-pole SynRM as the
numerical design model for topology optimization. The 2D ge-
ometry of the quarter SynRM model is illustrated in Fig.1, which
is driven by balanced three-phase currents iu(t), iv(t) and iw(t):

iu(t) =Im sin(ωct −θ)

iv(t) =Im sin
(

ωct −
2π

3
−θ

)
(1)

iw(t) =Im sin
(

ωct +
2π

3
−θ

)
,

where Im is the amplitude of the current set to 120A. The cur-
rent phase angle θ is set as π/3 during the optimization process.
The rotor rotates with a rotational velocity 1200r/min. The ac-
tive length of this SynRM is 80mm. The radial airgap length is
5mm. For the material properties, a linear material with relative
permeability µr is set 5000 for the rotor iron, where the design
domain is placed. Although local magnetic saturation brought by
the nonlinear constitutive relation between magnetic flux density
B and magnetic field strength H will impact the magnetic perfor-
mance, a linear relation is adopted at the current stage. This is
because incorporating the nonlinearity into the current optimiza-
tion model will overly complicate the shape sensitivity analysis,
especially for solving the adjoint equation. To evaluate the effect
of relative permeability, it is advisable to consider different rela-
tive permeability values. For the non-design area, the nonlinear
soft iron is chosen for the stator. A copper electrical conductivity
of 6×107 S/m is used for the coils.
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FIGURE 1: CAD model of synchronous reluctance motors (Syn-
RMs).

Rotor rotation is modeled using the embedded physics in-
terface for rotating machinery in COMSOL Multiphysics, where
the sliding mesh interface facilitates the separation of the rotor
and the stator. In addition, an anti-periodic boundary condition
is applied to both sides of the geometry, as depicted in Fig. 1.

3 Topology Optimization of Synchronous Reluctance
Motors (SynRMs)

3.1 Conventional Level Set Method
Conventionally, the level set function Φ is a Lipschitz con-

tinuous real-valued function defined in R2 or R3 [30]. With the
level set method, the structure boundary ∂Ω, highlighted as the
red curve, is implicitly represented by the zero isosurface of the
level set function with one-higher dimension, as illustrated in
Fig. 2. According to the sign of the level set function, the design
domain D can be divided into three parts, indicating the material,
the interface, and the void, respectively. The level-set represen-
tation can be formulated as Eq. 2:

{
Φ(x,t)> 0, x ∈ Ω, material
Φ(x,t) = 0, x ∈ ∂Ω, boundary
Φ(x,t)< 0, x ∈ D/Ω, void

, (2)

where x is the coordinates of an arbitrary point in the design do-
main and t is a pseudo time for the dynamic shape optimization
process. The motion of the material interface is governed by the
Hamilton-Jacobi equation:

∂Φ(x, t)
∂ t

−Vn|∇Φ(x, t)|= 0, (3)

FIGURE 2: A schematic of level set representation.

where Vn is the normal velocity field contributing to the shape
variation.

3.2 CBF-Based Parametric Level Set Method
In this section, a cardinal basis function (CBF) is con-

structed based on the radial basis function partition of unity
(RBF-POU) collocation method to parameterize the level set
function [31]. For the derivations of CBF construction using
RBF, see [27] and the references cited therein. Given n different
nodes x1,x2, ...,xn ∈ R2 or R3, a level set function can be gen-
erally interpolated with cardinal basis functions (CBFs) in the
following form,

Φ(x, t) =
n

∑
j=1

Ψ j(x)µ j(t), (4)

where µ j(t) is actually the value of level set function at jth node.
Ψ j(x) is the constructed CBF, which is equal to 1 at the center
node and 0 at other nodes. The CBF with this Kronecker delta
properties can be expressed as follows:

Ψ j(xi) =

{
1, i = j ,

0, i ̸= j .
(5)

After the parameterization of the level set function using CBF,
the design variable at each node owns obvious physical meaning,
which is, namely, the value of the level set function. By substi-
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tuting the Eq. 4 into the Hamilton-Jacobi Eq. 3, the original PDE
is converted to an ODE in the following form,

n

∑
j=1

µ̇ j(t)Ψ j(x)−Vn|∇Φ|= 0. (6)

From the above equation, the normal velocity field Vn can be
obtained as follows:

Vn =
1

|∇Φ|

n

∑
j=1

µ̇ j(t)Ψ j(x). (7)

3.3 Problem Formulation
The design target is to improve the average torque of SynRM

and reduce its torque ripple simultaneously. In this study, the
torque ripple can be measured as variance Var, and the average
torque and the torque ripple can be expressed as follows:

E(Ti) =
1
n

n

∑
j=1

Ti , (8)

Var(Ti) =
1
n

n

∑
j=1

(Ti −E(Ti))
2 , (9)

where Ti is the torque at the ith rotor position. Thus, the opti-
mization objective can be formulated to maximize the mean of
the torque and minimize its variance, which can be expressed as:

Maximize: F = E(Ti)−Var(Ti),

Subject to: a(A,A) = l(A), ∀A ∈ U

V(Ω) = V* ,

(10)

where V(Ω) is the volume ratio of iron and V* is the target vol-
ume ratio. The energy bilinear form a(A,A), the source linear
form l(A) of magnetostatic system without permanent magnet
and the volume of iron V(Ω) are described by:

a(A,A) =
∫

Ω

νB(A) ·B(A)dΩ , (11a)

l(A) =
∫

Ω

J ·AdΩ , (11b)

V(Ω) =
∫

Ω

H(Φ)dΩ , (11c)

where H(Φ) represents the Heaviside function and ν , B and J
represent the magnetic reluctivity, magnetic flux density, and cur-
rent density, respectively. A is the magnetic vector potential, and
the arbitrary virtual vector potential A belongs to the space of
admissible vector potential U:

U =
{

A ∈
[
H1(Ω)

]
| A = 0 on x ∈ Γ

}
, (12)

where Γ denotes the Dirichlet essential boundary and H1(Ω) rep-
resents the Sobolev space of first-order [32].

For accurate interpolation of material properties and effec-
tive avoidance of numerical instability during the optimization
process [26, 27], a distance regularization energy function is in-
troduced here. This function needs to be minimized along the
objective function to maintain the distance-regularized level set
function. The distance regularization energy function R is given
in the following form:

R =
∫

Ω

P(|∇Φ|)dΩ , (13)

where P(|∇Φ|) is the regularization energy potential density,
which is proposed by Li et al. [28] and formulated as follows:

P =


1

(2π)2 (1− cos(2π|∇Φ|)), |∇Φ|< 1 ,

1
2
(|∇Φ|−1)2, |∇Φ|> 1 .

(14)

3.4 Shape Sensitivity Analysis
This section details how to conduct the shape sensitivity us-

ing the material time derivative. For the derivation, a general
magneto-static system is considered, and the whole magneto-
static system can be divided into two sub-domains Ω1 and Ω2
with the interface of γ , shown in Fig. 3. The domain Ω1 and Ω2
have a distribution of ν1, J1, M1 and ν2, J2, M2, respectively.

For derivation convenience, we consider a general objective
function that is defined inside a region Ω2 in Fig. 3 as

F =
∫

Ω2

f(B(A2))kdΩ , (15)

where k is the localizing factor, which is used to select the in-
tegral domain for the objective function, where it is equal to 1.
Except in this area, the localizing factor k is zero.

Firstly, the objective function is coupled with the magneto-
static governing equation using the Lagrange multiplier method
as follows:

L(A,A) = F+ l(A)−a(A,A) . (16)
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FIGURE 3: A schematic of the magnetostatic system interface.

Next, the material time derivative is utilized to derive the shape
sensitivity [30, 33, 34]:

DL(A,A)
Dt

=
DF
Dt

+
Dl(A)

Dt
− Da(A,A)

Dt
. (17)

For conciseness, the derivative of the Lagrangian is directly pre-
sented as follows:

DL
Dt

=
∫

γ

1
µ0

(
1
µr

−1
)

B(A1) ·B(A2)Vnds , (18)

where γ is the interface between the iron Ω1 and the air Ω2.
The adjoint variable A2 can be obtained by solving the follow-
ing equation with the corresponding boundary condition.

∫
Ω1

1
µ1

B(A1) ·B(A1)dΩ+
∫

Ω2

1
µ2

B(A2) ·B(A2)dΩ

=
∫

Ω2

∂ f
∂B2

·B(Ȧ2)kdΩ ,

(19)

where ∂ f
∂B2

=
(

∂ f
∂B2x

, ∂ f
∂B2y

)T
. By plugging Equation (7) into

Equation (18), the material derivative of Lagrangian can be as-
sembled as

DL
Dt

=
n

∑
j=1

µ̇ j(t)
∫

γ

[
1
µ0

(
1
µr

−1
)

B(A1) ·B(A2)

]
1

|∇Φ|
Ψ j(x)ds .

(20)
Similarly, the material derivative of the volume constraint can be

formulated as

DV
Dt

=
∫

γ

Vnds =
∫

γ

1
|∇Φ|

n

∑
j=1

µ̇ j(t)Ψ j(x)ds . (21)

With the chain rule, the material derivatives of Lagrangian and
volume constraint can also be expressed as

DL
Dt

=
∂L

∂ µ(t)
∂ µ(t)

∂ t
=

∂L
∂ µ(t)

µ̇(t) , (22a)

DV
Dt

=
∂V

∂ µ(t)
∂ µ(t)

∂ t
=

∂V
∂ µ(t)

µ̇(t) . (22b)

To solve the optimization problem (10), the advanced
gradient-based optimizer, method of moving asymptotes (MMA)
[35, 29], is implemented in this study. By comparing the corre-
sponding parts of Eqs.(̃20), (21) and (22), the sensitivity of the
objective function F and volume constraint V can be formulated
as follows:

∂F
∂ µ j(t)

=
∫

γ

[
1
µ0

(
1
µr

−1
)

B(A1) ·B(A2)

]
1

|∇Φ|
Ψ j(x)ds ,

(23a)
∂V

∂ µ j(t)
=

∫
γ

1
|∇Φ|

Ψ j(x)ds . (23b)

It is noted that the boundary integration in the above equation can
be converted into a domain integration by using the Dirac delta
function δ as:

ds = δ (Φ)|∇Φ|dΩ. (24)

In addition, the sensitivity of the distance regularization energy
functional R can be derived as follows:

∂R
∂ µ j(t)

=−∇ · (dp(|∇Φ|)|∇Φ|) ·Ψ j(x) , (25)

where dp is defined as [28]

dp(s)≜
p′(s)

s
, (26)

where p′(s) is the first derivative of the regularization energy po-
tential density defined in Eq.(̃14). Finally, the shape sensitivity
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FIGURE 4: The optimization design evolution for SynRM de-
sign.

of the total objective function J coupling the distance regulariza-
tion energy function R with the original objective function F can
be expressed in the form of domain integration as:

∂J
∂ µ j(t)

=
∫

Ω

[
1
µ0

(
1
µr

−1
)

B(A1) ·B(A2)

]
δ (Φ)Ψ j(x)dΩ

+w
∂R

∂ µ j(t)
,

(27)

where w is the weighting factor. Similarly, the shape sensitivity
of the volume constraint expressed in the form of domain inte-
gration is also given here:

∂V
∂ µ j(t)

=
∫

Ω

δ (Φ)Ψ j(x)dΩ . (28)

FIGURE 5: The evolution of level set function Φ.

4 Design Example
The proposed design optimization method is applied to a

four-pole Synchronous reluctance motor in Sec. 2. To obtain a
symmetric design, only the left half domain is studied, and the
design variable is symmetrically assigned along the axis of 45
degree, as shown in Fig. 1. The relative permeability of the ma-
terial is interpolated using the Heaviside function of the level set
function Φ. The initial volume fraction of iron in the rotor is
0.6078, and the target volume fraction target is set to 0.4.

From Sec. 3.4, it is noted that the calculation of gradient and
divergence is vital in the shape sensitivity analysis. In general,
structured quadrilateral meshes have several advantages over tri-
angle meshes when it comes to computing gradients and di-
vergences. The gradient of a scalar function on a structured
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quadrilateral mesh can be approximated using a bilinear inter-
polation scheme, which is simpler and more accurate than the
linear interpolation scheme used for triangle meshes. In addi-
tion, the divergence of a vector field can be calculated using a
simple finite difference scheme that takes advantage of the struc-
tured quadrilateral mesh. According to this, the conformal map-
ping theory [36, 37] is employed to parameterize the 2D triangle
meshed irregular design domain onto a structured quadrilateral
meshed rectangular domain, where the level set function is de-
fined. Then, the proposed extended level set method is applied
to the design in this study. For more details, readers are referred
to [38, 39, 40, 41]. In the implementation process, the design
domain is meshed with 11363 triangular elements before confor-
mally mapped to a 0.3708 m × 1 m rectangular domain, where
the level set function is defined and discretized with 65 × 174
grids.

In this study, a total of 7 rotor positions (every 10 degrees
from 0 to 60◦) were investigated. Due to the rotational nature
of the design domain, the meshes employed to discretize the
said domain must undergo rotational movement. The rotation-
moving mesh is expressed as

[
xr
yr

]
=

[
cosθ −sinθ

sinθ cosθ

][
x−Xp
y−Yp

]
+

[
Xp
Yp

]
, (29)

where xr and yr represent the mesh coordinates after rotation rel-
ative to a random point (Xp,Pp). x and y are the mesh coordinates
in the original design domain and θ represents the mechanical ro-
tation angle. Figure 4 shows the design evolution on the rectan-
gular domain, and its corresponding level set function Φ is given
in Fig. 5. The design evolution in the rotor of SynRM after con-
formal mapping is illustrated in Fig. 6. The optimization history,
including the average torque, torque variance, volume ratio, and
distance regularization energy, is given in Fig. 7. The volume
of the permanent magnet is 40.01% when the optimization ends.
Since there is no least reluctance position in the initial design,
the average reluctance torque is 0. After the optimization ends,
the average torque increased to 14.71 N ·m, and the torque vari-
ance converged at 1.21. In addition, the distance regularization
energy R remains at a relatively low level, which guarantees the
distance-regularized level set evolution during the optimization
process.

To verify the effectiveness of the proposed method, we
also investigated the torque performance of a reference syn-
chronous reluctance motor with a multi-layer flux barrier, shown
in Fig. 8. The same boundary conditions are applied to the ref-
erence model, and its calculated torque characteristics are com-
pared with the optimized SynRM in Fig. 9. Our optimized model
can generate an average torque at 14.88 N while the average
torque of the reference model is 11.42 N, so it turns out that the
average torque increased by 30.30%. The torque variance of the

FIGURE 6: The design evolution in the rotor of SynRM.

optimized design is 0.228425, while the reference model only
has 0.11 torque variance. One reason leading to this deficiency
can attribute to the few rotor positions considered. In addition,
an appropriate weight should be chosen to balance the average
torque and torque variance in the objective function formulation.

Finally, the full 2.5D optimized rotor was extruded and as-
sembled with the rotor bridge, shaft, and stator for unity, as
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shown in Fig. 10.

FIGURE 7: The iteration history for SynRM design.

5 Conclusion and Future Work
The rotor structure of the four-pole synchronous reluctance

motor (SynRM) was designed using the cardinal basis func-
tion (CBF) based level set method. Although the solver for the
SynRM is a time-dependent study, a magnetostatic field analysis
is carried out at every rotor position in this study. The design
problem is reformulated to balance average torque improvement
and ripple reduction. One numerical example was carried out to
verify the proposed method. The torque performance of the opti-
mized SynRM is compared with that of a reference model. Pre-

FIGURE 8: The CAD model of a reference SynRM.

FIGURE 9: Torque performance comparison between reference
and optimized SynRM.

liminary results show that the optimized SynRM has a 30.30%
increase in average torque, along with a slight increase in torque
ripple, compared to the reference model. Based on these, there
is still much room for improvement in future studies. One of our
efforts will incorporate the nonlinear B-H curve into the topol-
ogy optimization of the rotor structure to accurately investigate
the influence of magnetic saturation on torque performance. Be-
sides, to further reduce the torque ripple, an increasing number
of rotor positions should be considered in the objective function
formulation, with attention to the issue of computational cost.
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