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Abstract—Advanced Persistent Threat (APT) has dramatically
changed the landscape of cybersecurity. APT is carried out
by stealthy, continuous, sophisticated, and well-funded attack
processes for long-term malicious gain thwarting most current
defense mechanisms. There is a need for a defense strategy
that continuously combats APT over a long time-span in imper-
fect/incomplete information on attacker’s actions. We propose
the stochastic evolutionary game model to simulate the dynamic
adversary to address this need in this work. We add the player’s
rationality parameter ς to the Logit Quantal Response Dynamics
(LQRD) model to quantify the cognitive differences of real-
world players. We propose an optimal decision-making plan
by calculating the stable evolutionary equilibrium that balances
a trade-off between defense cost and benefit. Cases studies
conducted on Energy Delivery Systems (EDS) indicate that the
proposed method can help the defender predict possible attack
action, select the related optimal cyber defense remediation over
time, and gain the maximum defense payoff.

Index Terms—APT, Cyber Defense, Cyber-Physical Systems
(CPS), Energy Delivery Systems (EDS)

I. BACKGROUND

Advanced Persistent Threat (APT) has dramatically changed

the landscape of cybersecurity. APT is carried out by stealthy,

continuous, sophisticated, and well-funded attack processes

for long-term malicious gain thwarting most current defense

mechanisms. There is a need for a defense strategy that

continuously combats APT over a long time-span in imper-

fect/incomplete information on attacker’s actions. We pro-

pose the stochastic evolutionary game model to simulate the

dynamic adversary to address this need in this work. We

add the player’s rationality parameter ς to the Logit Quantal

Response Dynamics (LQRD) model to quantify the cognitive

differences of real-world players. We propose an optimal

decision-making plan by calculating the stable evolutionary

equilibrium that balances a trade-off between defense cost and

benefit. Cases studies conducted on Energy Delivery Systems

(EDS) indicate that the proposed method can help the defender

predict possible attack action, select the related optimal cyber

defense remediation over time, and gain the maximum defense

payoff. In this work, we use EDS as an instance of CPS for

case study.

Game theory is a decision-making theory for studying the

direct interaction among decision-makers [1], whose goal is to

maximize the earnings of players and is suitable for analyzing

the strategy selection issue when the behaviors of decision-

makers interact directly. It mainly includes player, state, action,

information, strategy, payoff, and equilibrium elements. Game

theory has the characteristics of objective opposition, non-

cooperative, and strategic interdependence and aligned with

the essential attributes of cyber attack-defense [2]. Therefore,

applying the game theory to model and analyze the cyber

attack-defense process has become a hot research issue in

recent years [3]. However, researchers have to address some

challenges. To our best knowledge, existing game models

for cyber attack-defense are mainly on the hypothesis of

complete rational players [4] [5] [6]. Complete rationality

includes several preconditions that are difficult to achieve,

such as perfect rational consciousness, the perfectability of

analyzing and inferring, identifying and judging, memoriz-

ing, and computing. If players can not reach any of these

conditions, then it belongs to bounded rationality. The strict

requirement of complete rationality is too harsh for the social

attacker and defender. Real-world attackers and defenders have

different cognizance abilities, which is determined by their

interests, such as safety knowledge, skill level, experience,

and so on [7]. In a word, the selection of strategy affected by

various uncertain factors leads to the bounded rational game.

At present, this issue assumes a significant challenge.

To sum up the above, APT calls for a framework that could

characterize the continuous interplay of advanced defense-

attack on system resources with imperfect/incomplete op-

ponent’s actions in a long time-span. This study involves (1) a

model to accurately capture the continuously evolving process

of the system status and how attackers influence it and de-

fender’s actions; and (2) dynamic defense/attack strategies that

judiciously and continuously take steps to minimize/maximize

the long-term system damage without knowing the opponent’s

behavior.

The main contributions of this paper are as follows:

(1). We construct the dynamic stochastic attack-defense
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game model for describing the evolutionary process of cyber

attack-defense remediation.

(2). Then we analyze the improved strategy payoff calcula-

tion and formation of the optimal strategies.

(3) We also design the optimal cyber defense remediation

selection approach for a multistep attack.

II. RELATED WORKS

A. Advanced Persistent Threat

The cybersecurity domain has been changed dramatically

by a new class of threats, referred to as Advanced Persistent

Threat (APT) by industry. The earliest well known APT case

Stuxnet [8] designed to modify industrial Programmable

Logic Controllers and force them to diverge from the expected

behaviors by exploiting a vast majority of security holes

and tools. Another famous APT case is Operation Aurora

[9], which targets at Google and dozens of other companies.

The APT attacker can exploit the zero-day vulnerability in

the Internet Explorer. [10] introduces the definition of APT

and unique characteristics, making it different from traditional

security issues. Sengupta et al. [11] propose a game-theoretic

approach to model the stealthy- takeover property of APT and

provide several guidelines for the system design based on the

analytic results.

B. Game Theory in Cyber Security

Depending on the players’ rational degree, existing research

can be divided into two categories: complete rational game and

bounded rational game.

A complete rationale game takes the hypothesis that the

players have full cognition. Each player can select the best

strategy to maximize its payoff and predict other players’

strategy selections. The Nash equilibrium calculates the opti-

mal response of each player through maximizing the expected

defense payoff. Orojloo et al. [12] regarded both attacker

and defender as players in the game and treated the attack-

defense adversary as the zero-sum game. They considered

players have complete information and act simultaneously.

They constructed the non-cooperative static game model based

on a defense graph to analyze attack intention and select the

optimal defense strategy. Aiming at sensor networks’ security

issue, Li et al. [5] constructed a non-cooperative game model

between attackers and trusted sensor nodes to balance costs

and benefits. Due to the Nash equilibrium solution’s restric-

tions, Li et al. [6] used the Pareto optimization to calculate

the equilibrium. Do et al. [2] analyzed the impact of attack-

defense strategy changes on the defense evaluation of worm

attack-defense performance with the Bayes game model’s

help. However, this method is limited to pure strategy Nash

equilibrium. Etesami et al. [13] analyzed the optimal mixed

strategy of IDS intrusion response. Pawlick et al. [14] regarded

the defender as the signal sender and the attacker as the signal

receiver and built an attack-defense signal game model. The

attacker identifies and adjusts the cognition of the defender

according to the defense signal. Then the single-stage and

multi-stage signal game models are developed, respectively.

The identified optimal defense strategy by calculating each

stage’s equilibrium helps defenders decide during various

stages. Almost the same time, Lei et al. [15] constructed

the multi-stage repeated game model of attack-defense. The

defender inferred attacker type depending on a priori attack

strategy, and the posterior inference was revised to improve the

accuracy of the decision progressively. The above multi-stage

models mainly analyze erratic behaviors in discrete periods.

In summary, all the studies above are based on the complete

rationality assumption of players. They first quantify the

strategy payoffs according to their types and then construct the

payoff matrices to calculate the Nash equilibrium. However,

they do not consider whether the players’ complete rationality

is in line with the reality of players’ biology property. The

environment and individual factors affect the attack-defense

players, so their behaviors can hardly reach complete rational-

ity. To a certain extent, they are bounded rational agents [16],

and the strategy selection is the process of continuous learning

and adjustment. Although Hu et al. [17] proposed an evolution-

ary game model of bounded rationality, this model is restricted

from analyzing the payoff between two strategies only. Also,

the stable equilibrium states, according to rationality changes,

did not notify accordingly in the simulation result. So, without

the premise of bounded rationality in a diversified strategy

selection, the modeling and analysis of attack-defense may be

impractical. Therefore, studying the attack-defense game rules

under bounded rationality is an applied and promising research

issue.

III. THE SYSTEMS MODEL OF OUR OPTIMAL CYBER

DEFENSE REMEDIATION

The architecture of our optimal defense decision-making

approach illustrates in Fig. 1. The input includes evidence

such as vulnerability database, Nessus scanned logs, Attack

Graph (AG), Intrusion Detection System’s (IDS) real-time

alert, security configuration, network topology, and MITRE

ATT&CK [18], and the output is the optimal defense strategy.

The decision-making process involves five steps: (1) Deter-

mine the targets and critical attack paths to strategy selection

targets. (2) Extract candidate attack-defense strategies from

the input security data according to the enhanced AG of

attack evidence and abnormal evidence. (3) Model the attack-

defense process as the stochastic evolutionary game based on

the LQRD model. (4) Evaluate the strategy payoff based on

cost-benefit analysis. (5) Generate optimal defense strategy.

Besides, as a typical cyber adversary scenario consists of

multiple players, we also extract the set of candidate defense

strategies by analyzing the network environment informa-

tion, including the vulnerability repairs, firewall access rules,

security configuration, etc. We further collect alert data of

firewall, IDS, and virus detection system and host audit log.

By analyzing the attack behavior information, we can extract

the set of candidate attack strategies by referring to the tactics

and techniques in the MITRE ATT&CK framework [18].
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Fig. 1: The architecture of our cyber defense remediation method

A. Game Modeling of Attack-Defense Based on LQRD:

The evolutionary game model includes four essential ele-

ments: player sets, candidate strategy set, belief set, and payoff

set.

Definition 1. A four-tuple can denote the model of the

Attack-defense Stochastic Evolutionary Game (ASEGM).

(1) N = (NA,ND) is the population set of attack-defense

players, where NA and ND are the populations of attackers

and defenders, respectively.

(2) S = (SA,SD) is the set of candidate attack-defense

strategies, in which SA = {A1,A2, . . . ..,An} is the set of the

candidate strategies for attackers, SD = {D1,D2, . . . ..,Dm}
is the set of candidate strategies for defenders. n and m are the

numbers of attack and defense strategies, respectively. where

m,nǫN+ and n,m ≥ 2
(3) Θ = (P,Q) is the belief set of the attack-defense game,

where piǫP represents the probability that the attacker selects

candidate strategy Ai, qiǫQ represents the probability that

defender chooses candidate strategy Dj , where 1 ≤ i ≤ n,

1 ≤ j ≤ m,
∑n

i=1
pi = 1,

∑m

j=1
qj = 1

(4) U = (UA,UD) is the payoff function set. UA and

UD represent the payoff functions of attack and defense,

respectively.

B. Game Payoff Quantification of Attack-Defense Strategy

Considering the condition (4) of Definition 1, the payoff

quantification of the attack-defense strategy is the basis of

defense strategy selection. Therefore, its accuracy directly

affects the selecting results. We summarized the types of

different attack-defense strategies and proposed the payoff

metric based on cost-benefit analysis.

Definition 2: Attack Benefit (AB) is the earned network

resources through a series of attack actions or the level of

network damage, which reflects the capability of controlling

the targeted network system.

Definition 3: Attack Cost (AC) is the cost or effort that an

attacker pays to obtain network resources or cause losses to

the network system.

Definition 4: Defense Benefit (DB) includes direct benefit

and indirect benefit. The immediate benefit is the level of

security reinforcement. Security measures only consider the

direct benefits, and we further add the indirect benefits of

the defender through the counterattack. For example, the

electronic evidence of port scanning time, port number, source

IP address, and destination IP address can use to reconstruct

the attack chain. Through which the defender can earn indirect

benefits through investigating criminal responsibility.

Definition 5: Defense Cost (DC) is the cost or effort

that defenders take against the possible attacks, including the

human and time cost of the implementation of security devices,

and the economic value of affecting the regular operation of

service (a.k.a.negative impact of control measures.).

Definition 6: Attack-defense payoff matrices M are as

follows. In which, aij and dij represent the attack and defense

payoff of selecting strategy combination (Ai,Dj) respectively,

aij = AB−AC, dij = DB−DC. The payoff matrices M is
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as below:

M =











a11, d11 a12, d12 · · · a1m, d1m
a21, d21 a22, d22 · · · a2m, d2m

...
...

. . .
...

an1, dn1 an2, dn2 · · · anm, dnm











(1)

C. Construction of Evolution Equations for Attack-Defense

Decision Making

Evolutionary stable strategy (ESS) is an optimal decision

of the game system in long-time strategy evolution. The

definition of the permanent evolutionary strategy of cyber

attack-defense is as follows:

Definition 7: Suppose the attacker population selects the

candidate strategy set SA = (A1,A2, ..,An) with the probabil-

ity distribution P = (p1, p2, .., pn), and the defender popula-

tion selects the candidate strategy set SD = (D1,D2, ..,Dm)
with the probability distribution Q = (q1, q2, .., qm). It means

that individuals in the attacker and defense population ran-

domly selects and implements their pure strategies with the

probability distribution P and Q in the actual adversary. We

call σ∗ = (P,Q) as the stable strategy of attack-defense if

the following conditions hold.

(1). (stability) U(σ∗σ∗) ≥ U(σ, σ∗)

(2). (balance) U(σ∗, σ∗) = U(σ, σ∗) ⇒ U(σ∗, σ) ≥ U(σ, σ)

Where, U(σ∗, σ∗) denotes the payoff when attacker and

defender both select σ∗. For any σ 6= σ∗, U(σ∗, σ) is the

payoff when either side changes its strategy.

Condition (1) guarantees that both attacker and the defender

cannot earn more if either side changes strategy. In a policy

containing a large number of σ∗ and a small number of σ,

it is necessary to meet that S is the best response to itself;

otherwise, other strategies may invade and develop.

Condition (2) guarantees that if there is another optimal

strategy, σ, σ∗ is required to react better than σ, which ensures

that σ cannot develop even if the approach mutates to σ.

Definition 7 provides the condition of whether a strategy

is an evolutionarily stable strategy, but does not characterize

the track of players’ selection on this strategy and the attack-

defense players search for the best approach and are disturbed

by stochastic error. This Sub-section describes the strategy

evolution track by modifying the LQRD equation to indicate

the randomness of selection. The LQRD uses Fisher-Tippett

(an independent-identical-distribution) to depict the degree of

noise influence on different players [19]. That is to say, and

the player selects the strategy with the exponential probability

distribution, which is in line with the law of evolution of most

things in the real world. Herein, we first give the deduction

of the proposed LQRD equation combined with Eqns. 2-4.

So, the differential equation of the probability of selecting this

strategy is [20]:

dpi
dt

=

n
∑

k=1

pkcki −

n
∑

y=1

piciy (2)

Where, pi is the probability of selecting strategy Ai ,
dpi
dt

is

the probability that selects strategy Ai varying with time. cki is

the conditional transition probability of the attackers selection

from strategy Ak to strategy Ai, which describes the updating

rules of strategy selections.

The core of the attack-defense evolutionary game is to study

the dynamic change speed of the proportion of individual

selecting strategy in the total population. That is, we need to

calculate the selecting probabilities of different techniques. For

conditional transition probability, we use the LQRD equation

to describe the rules of strategy updating and add an extra

rationality parameter ς to quantify the cognitive capabilities

of different game players. The improved LQRD transition

probability equation is defined as follows:

cki =
exp(ςUAi

)
∑n

k=1
exp(ςUAi

)
(3)

Set the rational parameters ς(ς ≥ 0) based on the historical

rational degrees of players. The bigger ς is, the higher the

degree of rationality is. The payoff is U = V+ ǫ, where V is

the payoff of observable factors, ǫ is the payoff of uncertain

factors. The deduction of cki in Eqn. 3 can be referred to [19].

Take the formula in Eqn. 3 into Eqn. 2 and get the LQRD
equation as following:

dpi
dt

=
exp(ςUAi

)
∑n

k=1
exp(ςUAi

)
− pi (4)

The Eqn. 4 shows that the change rate of the population

proportion of player selecting strategy Ai is proportional to

the difference between the ratio of individual expected payoff

to the total gain and the balance of unique numbers of choosing

this strategy to the whole numbers. It also shows that in the

attacker population composed of bounded rational players, the

number change rate of players selecting a specific candidate

strategy varies with the proportion of this strategy payoff to

the total gain.

To construct the LQRD equations of attack-defense, from

condition (3) of Definition 1, we denote the strategy of

probability vectors P and Q is the mixed probability of

selecting SA and SD respectively. The evolution equations

are as follows:

(1). Evolution equation of attack strategy over time The

expected payoff UAi
of an attacker selecting candidate strategy

Ai is as follows, i = 1, 2, ..., n

UA1
= q1a12 + q2a12 + ....+ qma1m

UA2
= q1a21 + q2a22 + ....+ qma2m

UAi
= q1ai1 + q2ai2 + ....+ qmaim =

m
∑

j=1

qjaij

....

UAn
= q1an1 + q2an2 + ....+ qmanm
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The changing rate of the proportion of individuals selecting

strategy Ai in the attacker population overtime is
dpi
dt

. It

reflects the learning and improving selecting strategy Ai

for bounded rational attacker through repeated games. The

LQRD differential equation of change rate from Eqn. 4 is:

dpi
dt

=
exp(ς

∑m

j=1
qjaij)

∑n

k=1
exp(ς

∑m

j=1
qjakj)

− pi (5)

(2). Evolution equation of defense strategy over time.

The expected payoff UDj
of an attacker selecting candidate

strategy Dj is as follows, j = 1, 2, ...,m

UD1
= p1d11 + p2d21 + ....+ pndn1

UD2
= p1d12 + p2d22 + ....+ pndn2

UDj
= p1d1j + p2d2j + ....+ pndnj =

n
∑

i=1

pidij

....

UDm
= p1d1m + p2d2m + ....+ pndnm

The changing rate of the proportion of individuals selecting

strategy Dj in the defender population overtime is
dqj
dt

. It

reflects the learning and improving selecting strategy Dj for

bounded rational defender through repeated games. So, the

LQRD differential equation of change rate is:

dqj
dt

=
exp(ς

∑n

i=1
pidij)

∑m

k=1
exp(ς

∑n

i=1
pidik)

− qj (6)

The practical significance of the above evolution equation

is: taking the defense strategy Dj as an example, if the number

proportion of individual selecting the pure strategy Dj is

smaller than the payoff proportion of individual obtaining

from Dj . The growth rate of the defender number choosing

Dj is larger than zero. Otherwise, the growth rate is less

than zero. If the number proportion is exactly equal to the

payoff proportion, then the growth rate of the number of

defender selecting strategy Dj is zero. Set F (pi) =
dpi
dt

,

G(qj) =
dqj
dt

, and then combine the above equations to equate

below condition:

Y (pi, qj) =

(

F (pi)
G(qj)

)

= 0 (7)

This will give us the stable equilibrium of attack-defense

adversary.

IV. IMPLEMENTATION, RESULT, AND ANALYSIS:

The Industroyer malware has unleashed a major escala-

tion in cyber-attacks on Industrial Control Systems (ICS) by

combining a multi-stage APT attack with in-depth domain

knowledge. Industroyer (also referred to as Crash-override)

is a malware framework considered to have been used in

the cyber-attack on Ukraine’s power grid on December 17,

2016. The attack cut a fifth of Kyiv, the capital, off power

for one hour and considered a large-scale test [21]. The Kyiv

incident was the second cyber-attack on Ukraine’s power grid

in less than a year. The first attack occurred on December 23,

2015. Industroyer is the first-ever known malware specifically

designed to attack electrical grids. Simultaneously, it is the

fourth malware publicly revealed to target industrial control

systems, after Stuxnet, Havex, and BlackEnergy.

In this section, we take the invasion and proactive defense

against Industroyer in the real-world Energy Delivery System

(EDS) network as an example. We analyze the adversarial

attack-defense process against Industroyer, verify the proposed

approach for optimal defense strategy selection. The results of

the two scenarios with different strategy payoffs are compared

and analyzed. Besides, we summarize the general evolution

rules of the best defense strategy in the targeted network

system. Finally, we compare our methods with the existing

research comprehensively.

A. EDS Network Implementation:

We implemented an EDS network that is shown in Fig. 2

from [22]. The entire test-bed is connected to a network switch

and a router, and the zoning is implemented using VLAN and

firewall rules. There are five subnets created by an external and

internal firewall. The IT Workstations (WSs) were located at

the IT subnet. A Web Server (WebS) is located at the DMZ

subnet and is directly accessible from the Internet through an

external firewall. Supervisory Control and Data Acquisition

(SCADA) servers (L3/L2), Remote Transmit Unit (RTUs) (L1)

are in different subnets under larger Operational Technology

(OT) subnet that holds critical communication. The SCADA1

servers and SCADA2 servers are only accessible from the

WebS of the DMZ. The WebS is accessible from user WS

and other hosts from level 4 or 5. The user subnet contains the

user’s WS. The firewalls allow all outbound traffic from users

subnet. The test-bed also includes Intrusion Detection System

(IDS) running both IT and OT specific rules and a commercial

OT Asset Discovery and Management (ADM). They are both

connected to the span port of the switch to inspect the entire

ICS traffic. For the Industroyer attack simulation, we injected

vulnerabilities on the test-bed machines. The user worksta-

tions contained the vulnerability CVE-2009-1918 in Internet

Explorer (IE). If a user accesses malicious content using

the vulnerable IE browser, the device may be compromised.

The WebS contained the vulnerability CVE-2006-3747 in the

Apache HTTP service, resulting in a remote attacker executing

arbitrary code on the machine. The SCADA1 and SCADA2

server had the vulnerability CVE-2018-5313, allowing priv-

ilege escalation up to the administrator level. The SCADA1

server controls 10 RTUs of substation 1, whereas the SCADA2

server controls 7 RTUs of substation 2. We assume that if an

attacker acquires control over the SCADAs, the RTUs can be

acquired as well.

As a defender, the network center’s administrator is re-

sponsible for the security of the EDS’s whole intranet. The

attacker comes from the external network and attacks the
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intranet through the Internet. The purpose is to erase system-

crucial registry keys and overwrite all ICS configuration files

to make the system unbootable and recovery from the attack

harder. Industroyer attacks can be divided mainly into two

steps, the first is to break through the boundary, and the second

is to penetrate the intranet horizontally. Due to the firewall

rules, external attackers can only communicate with the IT

network’s Work Station (WS) and mail server but cannot

access the Operation Technology (OT) network. The security

protection devices are composed of the firewall, Intrusion

Protection System (IPS), virus detection system (VDS), and

patch management system. We used the Nessus scanning tool

to scan the EDS network. Table I shows the results of the

principal vulnerabilities.

Fig. 2: Logical view of EDS Test-bed

B. Candidate Strategy Extraction and Payoff Calculation:

In this experiment, based on the network topology and

vulnerabilities, the logical Attack Graph (AG) is created

using the open-source tool MulV AL as illustrated in Fig.

3 [22]. The MulV AL is a reasoning toolkit for automatically

identifying vulnerabilities in IT and OT networks [23]. The

different shapes represent the network state, and the edge

represents the atomic attack action. By referring to the attack-

defense behavior database of MITRE for Industrial Control

Systems (ICS) [24], we extracted the atomic attack and defense

actions that can be launched in the network system. All the

possible atomic actions are shown in Table II.

Fig. 3: The AG of test-bed based EDS

[22]

We find that the attacker first conducted port scanning action

A1 through port 25 of the mail server at the IT domain.

Furthermore, the attacker collected open service information

to prepare for subsequent attacks. Since port scanning is a

concealed means of attacking, which is the passive attack

virtually, we denote it as A1 =Scan Port. Based on further

detections and analyses of alert information, we find that some

adventurous attackers may execute atomic attacks, A4, and A5

shown in Table II along the most critical path from the alert

node to a goal SCADA 1/SCADA 2 [22]. The unauthenticated

attackers exploit the vulnerability CVE-2006-3747 of Webs at

DMZ to allows remote attackers to cause a denial of service

(application crash) and possibly execute arbitrary code via

crafted URLs that are not adequately handled using certain

rewrite rules. We denote this candidate strategy as A4=Denial

Of Service (DoS), which is an active attack. After the WebS

is compromised as the next stage of an APT, the attacker

starts exploiting CVE-2018-5313 of SCADA 1/SCADA 2. We

denote this candidate strategy as A5 = Execute Arbitrary

Code, which is also an active attack. So, in this experiment

three candidate defense strategies D1 = Close Unused Ports,

D4 =Block Unwanted IP Address, and D5 = Install Patches

are mapped from Table II as an extraction for that critical APT

chain.
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TABLE I: Network Configuration and Vulnerability Information

Nodes Configuration CV E Description

WS Microsoft Internet Explorer
(IE)

CVE-2009-1918 Allows remote attackers to execute arbitrary code via
a crafted HTML document

WebS Apache Web Server CVE-2006-3747 allows remote attackers to cause a denial of service
(application crash) and possibly execute arbitrary
code via crafted URLs

SCADA 1 SCADA Master server CVE-2018-5313 An attacker can leverage this vulnerability to execute
arbitrary code under the context of Administrator

SCADA 2 SCADA Master server CVE-2018-5313 An attacker can leverage this vulnerability to execute
arbitrary code under the context of Administrator

TABLE II: Cyber Attack and Defense Actions

No. Attack Action No. Defense Option

A1 Scan Port D1 Close Unused Port

A2 Obtain Root Privilege D2 Restart Device

A3 Buffer Overflow D3 Offline Network

A4 Denial of Service D4 Block unwanted IPs

A5 Execute Arbitrary
Code

D5 Install Patches

From Eqn. 1, the payoff matrix of attack-defense is as

follows: M =





a11, d11 a12, d12 a13, d13
a21, d21 a22, d22 a23, d23
a31, d31 a32, d32 a33, d33





C. Evolution of Equations for Decision Making:

Firstly, we set the attackers and defenders with equal

degrees of rationality. Furthermore, we assign the proportion

of the number of players selecting strategy A1, A4, and A5, in

the attacker population as p1,p2, and p3 respectively. Secondly,

we assign the proposition of defender population selecting

strategy D1, D4, and D5, as q1, q2, and q3 respectively.

Besides, we construct the LQRD equation of attack-defense

strategy as follows, respectively.

The expected payoff of attacker selecting strategy A1 = port

scan attack is UA1
= a11q1+a12q2+a13q3, the expected gain

of denial of service is UA4
= a21q1 + a22q2 + a23q3, and the

expected payoff of attacker selecting strategy A5 = Execute

Arbitrary Code is UA5
= a31q1 + a32q2 + a33q3 . Then, we

can obtain the evolution equation of strategy A1, A4, and A5

from Eqn. 5:

The expected payoff of defender selecting strategy D1 =
close unused port is UD1

= d11p1+d21p2+d31p3, the expected

gain of denial of service is UD4
= d12p1 + d22p2 + d32p3,

and the expected payoff of defender selecting strategy D5 =
Execute Arbitrary Code is UD5

= d13p1+d23p2+d33p3 . Then,

we can obtain the evolution equation of strategy D1,D4, and

D5 from Eqn. 6:

Then, according to Eqn. 7, equalize all equations to zero.

The solution of those equations is the stable evolutionary

equilibrium of attack-defense decision-making, and defender’s

optimal defense strategy is selecting strategy {D1,D4,D5}
with mixed probability {q1, q2, q3}.

D. Result and Analysis:

We consider two numerical experiments: Scenario 1 (with-

out considering counterattack payoff) and Scenario 2 (consid-

ering counterattack payoff). In this work, we only consider

Scenario 1.

Scenario 1: We combine the Definition 2 - Definition 5 and

security behaviors database and then obtain the game payoff

of attack-defense as organized in Table III.

TABLE III: Game Pay-off of Scenario 1

Candidate
Attack Strategy

Candidate Defense Strategy

D1 D4 D5

A1 (0.16,0.06) (0.16,-0.15) (0.16,-0.3)

A4 (0.24,-0.2) (0.24,0.39) (0.24,-0.3)

A5 (0.4,-0.2) (0.4,-0.15) (0.4,0.7)

In general, the degree of player rationality in the real world

is medium, and here we set ς = 5.0, and set the initial state

of the game system as p1 = p2 = p3 = q1 = q2 = q3 = 0.33.

That is, the attacker randomly selects a strategy from candidate

A1,A4, and A5 with equal probability 0.33 at the initial time.

Similarly, the defender randomly selects a action from candi-

date D1, D4, and D5 with equal probability. With the simula-

tion tool Matlab 2021, the stable equilibrium point is calcu-

lated by function fsolve() for ς = 5.0. The calculated stable

equilibrium point is {p1, p2, p3} = {0.172, 0.257, 0.571} and

{q1, q2, q3} = {0.087, 0.179, 0.734}. In this context, the

attacker is more likely to select {A1,A4,A5} with mixed

probability of {0.172, 0.257, 0.571}. Meanwhile, the optimal

defense strategy for the defender is to randomly implement

{D1,D4,D5} with mixed probability {0.087, 0.179, 0.734}.

The results show that the attacker is more likely to select

the aggressive strategy A5 = Execute Arbitrary Code with

probability 0.571. Since the attack of the Execute Arbitrary

Code is more harmful, to avoid the severe attack influence,

the corresponding optimal defense strategy is to select D5 =

Install Patch with a probability of 0.571.

Secondly, to analyze the influence of the system’s initial

state on strategy selections, we simulate the evolution tracks

of strategy selections with different first p1, p2, p3, q1, q2, q3
in Fig. 4a-4c and in Fig. 5a-5c. The abscissa t represents

the number of evolutions in decision-making. The ordinate

probability represents the probability of selecting a strategy.
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Fig. 4: Strategy Evolution of an Attacker

0 2 4 6 8 10 12 14 16 18 20
Evolution Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

D1:Block Unused port

p1,p2,q1,q2=0.15
p1,p2,q1,q2=0.25
p1,p2,q1,q2=0.35
p1,p2,q1,q2=0.5

(a) D1 =Close Unused ports

0 2 4 6 8 10 12 14 16 18 20
Evolution Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

D4:Block Malicious IPs

p1,p2,q1,q2=0.15
p1,p2,q1,q2=0.25
p1,p2,q1,q2=0.35
p1,p2,q1,q2=0.5

(b) D4 =Block malicious IPs

0 2 4 6 8 10 12 14 16 18 20
Evolution Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

D5:Patch Vulnerability

p1,p2,q1,q2=0.15
p1,p2,q1,q2=0.25
p1,p2,q1,q2=0.35
p1,p2,q1,q2=0.5

(c) D5 =Patch Vulnerability

Fig. 5: Strategy Evolution of a Defender

Fig. 4a-4c and Fig. 5a-5c can predict the defender’s best

strategy selection at different game moments.

Fig. 4a-4c and Fig. 5a-5c respectively show the evolution

tracks of {A1,A4,A5,D1,D4,D5}, when the initial states

of attacker and defender are the same with p1, p2, q1, q2 =
{0.15, 0.25, 0.35, 0.5}. From Fig. 4a-4c and Fig. 5a-5c, we

assume that the attacker and defender initially select the

strategy {A1,A4} and {D1,D4} with probability p1 = p2 =
q1 = q2 = 0.5, when t = 0. Then from the magenta curve of

Fig. 5a, the likelihood of selecting strategy D1 is falling over

time and stabilize to probability = 0.179, when t = 10. Also,

the possibility of choosing a strategy D4 is falling and stabilize

to probability = 0.017 from the magenta curve of Fig. 5b.

Herein, the optimal defense strategy is selecting D1,D4,D5

with mixed probability = {0.087, 0.179, 0.734}. This selec-

tion is stable and best when against different candidate attack

strategies.

Moreover, as we assume that the defender

selects the strategy {D1,D4,D5} with a probability

{q1, q2, q3}={0.5, 0.5, 0.0} initially, namely, the larger the

gap between the defender’s initial selection and the optimal

selection {q1 = 0.087, q2 = 0.179, q3 = 0.734}, the more

evolution times needed to achieve the best strategy. In

contrast to Nash equilibrium game model [6], our approach

can better explain the strategy evolution rules in adversarial

attack-defense and have stronger performance of attack

prediction.

Again, the higher the probability of selecting a strategy from

{A1,A4} at the initial time, the later the curve inflection point

appears. They are indicating that more number of repeated

games is required for decision-making and longer time takes.

The condition is due to that the attacker selects A1 or A4

with a very high probability at the initial time. The false

signal deceived the defender. It caused the defender mistakenly

to assume that the attacker will select the moderate attack

strategy about A1 and A4 while overlooking the ultimate attack

purpose A5 = Execute Arbitrary Code. Therefore, rational

defenders need to implement many evolution times to discover

the attacker’s real purpose and obtain the best defense strategy.

For example, when {p1 = 0.5, q2 = 0.5}, the probability of

selecting the strategy D4 denoted by the magenta curve in

Fig. 5b first increases to q2 = 0.54 at t = 0.466 and then

rebounds and finally stabilizes to q2 = 0.178 at t = 11.

The reason is that the proportion of the defender population

selecting strategy D4 at the initial time increases to high. With

the increase of the D4 payoff to the total payoff, the number of

individuals selecting D4 decreases gradually to ensure that the

proportion of population selecting D4 to the total population

is equal to the proportion of payoff selecting D4 to the total

payoffs.

As can be seen from each column in Fig. 4a-4c and in

Fig. 5a-5c, the optimal strategy for both defender and attacker

are the same regardless of their initial p1, p2, p3 and q1, q2, q3
selections. It is only related to the candidate strategy set,

player, and the strategy pays off. Moreover, the initial state

can only affect the stabilization time of the game system.

Finally, to analyze the influence of degrees of players’

rationality on strategy evolution, some simulations show in

Fig. Fig. 6a-6c and in Fig. 7a-7c and discussions are as

follows:

1) When, we assume that the players are irrational and set

ς = 0, assign initial p1 = 0.2, p2 = 0.3, q1 = 0.4, q2 =
0.1, then obtain the strategy evolution tracks in Fig. 6a.

Herein, the final result is to select the different candidate
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Fig. 6: The strategy evolution tracks with different rationality ς .
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Fig. 7: The strategy evolution tracks with different rationality ς .

strategy with the same probability of 0.33. It means that

players cannot distinguish the advantages and disadvantages

of varying candidate strategies since they have no cognitive

abilities. Meanwhile, from the LQRD Eqn. 7 of attack-

defense, there is only one solution {p1, p2, p3, q1, q2, q3} =
{0.33, 0.33, 0.33, 0.33, 0.33, 0.33} when ς = 0. The results

show that when the game players are irrational, regardless of

their initial selections, they cannot distinguish each strategy’s

merits and demerits since they do not have any learning and

cognitive capabilities. The candidate strategies are still selected

by game players randomly.

2) Suppose that the rational player degree ς > 0, we

simulate the strategy evolution in Fig. 6a-6c and in Fig. 7a-

7c. As time goes by, all the players can finally obtain the

correct strategy through several times of repeated games. The

main difference is that when the players have a high degree of

rationality, they can find the optimal strategy more quickly. For

example, when ς = 5, the game system can reach the stable

state through about 6 times of game evolution (shows in Fig.

7a ), while when ς = 10, they can be stable only through 4

times of game evolution (shows in Fig. 7a). The above results

demonstrate that when the defenders have a high degree of

rationality (have rich knowledge, skilled techniques, etc.), their

cognition, learning, and adjustment abilities are strong, which

helps the defenders identify the optimal strategy more quickly.

In general, both sides of attackers and defenders gain

increased decision-making experience through adversarial

attack-defense. Hence, a rational degree of ς increases during

the game process. Fig. 8 illustrates the results under different ς ,

where the abscissa ς represents the reasonable degree, and the

ordinate represents the probability of strategy selection. When

ς = 0, players have no rationality, so they choose candidate

strategies randomly. When ς = 0.1, the reasonable degree of

the players is very low as the replicator dynamics [6]. From

Fig. 8, the probability of defender selecting strategy D1 and

D4 rapidly decreases to 0 and D5 increases to 1, respectively,

which reflects the sensitivity of the decision-making system.

The corresponding equilibrium solution is {p1 = 0.33, p2 =
0.33, p3 = 0.34} and {q1 = 0.33, q2 = 0.33, q3 = 0.34}.

The result corresponds to the replicator dynamic equilibrium

[6]. Since the rational degree of dynamic replicator game

is very low, its equilibrium solution is pure strategy. When

ς > 0.1, the player rational degree increases, and both sides

of the attacker and defender always approach to complete

balanced Nash equilibrium as ς increases. When ς > 15,

the solution {p1 = 0.0003, p2 = 0.27, p3 = 0.97, q1 =
0.02, q2 = 0.1, q3 = 0.88} of LQRD in this paper is very

close to the Nash equilibrium solution. It indicates that the

player rationality is very close to complete rationality over

time, and the difference with the Nash equilibrium decreases

gradually through obtaining experience in the game process. It

is foreseeable that when ς towards infinity, then the proposed

LQRD equilibrium will approach Nash equilibrium. Com-

pared with the complete rational Nash equilibrium [6] and the

bounded rational replicator dynamic equilibrium, our approach

can depict the diversity of rationality of attacker and defender

players and reflect the real strategy selection rules.

V. CONCLUSION AND FUTURE WORKS:

This paper studies the strategy selection with a maximum

payoff in the EDS attack-defense dispute based on the evolu-

tionary bounded rationality game model. Advanced Persistent

Threat (APT) becomes more diverse with the complexity and

large-scale network information systems, leading the cyber
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Fig. 8: The impact of rationality (ς) on the strategy selections

attack-defense situation to change dynamically. How to com-

prehensively analyze defense costs and benefits, maximize

defense revenue, predict the possible attack strategy, select

the optimal defense strategy from the candidate strategies and

measure the strategy revenue is still assumed as a big chal-

lenge. Game theory is a useful tool to model the adversarial

cyber attack-defense. At present, game modeling of attack-

defense with bounded rationality is still in its infancy. There

are many limitations, such as player rationality quantification,

game structure, strategy type, and equilibrium calculation. To

a certain extent, it affects the scientificity and effectiveness of

game theory for cybersecurity. For this purpose, we construct

a novel evolutionary game model to describe attack-defense

using LQRD and expand the strategy set and type of existing

game structure. We build the differential equations of strategy

evolution, varying with time for attackers and defenders with

customized rational degrees. The strategy evolution tracks are

simulated in the real-world attack scenario of CrashOverride

to depict the best strategy formation. By analyzing the stable

evolutionary equilibrium, we can obtain the optimal defense

strategy at different game moments. Our approach is more

generalized comparing with replicator dynamics and the Nash

equilibrium model. Two case studies on Crash Override both

show that the proposed method is effective and practical.

The performances of attack prediction and defense decision-

making are improved significantly for winning cyber attack-

defense warfare. In the future, we will quantify the players’

rationality from network logs, host logs, and communication

protocols. We will then apply the machine learning and

Artificial Intelligence (AI) technique to achieve the automatic

analysis of attack-defense strategies to implement faster strat-

egy implementation.
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