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Abstract—Advanced Persistent Threat (APT) has dramatically
changed the landscape of cybersecurity. APT is carried out
by stealthy, continuous, sophisticated, and well-funded attack
processes for long-term malicious gain thwarting most current
defense mechanisms. There is a need for a defense strategy
that continuously combats APT over a long time-span in imper-
fect/incomplete information on attacker’s actions. We propose
the stochastic evolutionary game model to simulate the dynamic
adversary to address this need in this work. We add the player’s
rationality parameter ¢ to the Logit Quantal Response Dynamics
(LQRD) model to quantify the cognitive differences of real-
world players. We propose an optimal decision-making plan
by calculating the stable evolutionary equilibrium that balances
a trade-off between defense cost and benefit. Cases studies
conducted on Energy Delivery Systems (EDS) indicate that the
proposed method can help the defender predict possible attack
action, select the related optimal cyber defense remediation over
time, and gain the maximum defense payoff.

Index Terms—APT, Cyber Defense, Cyber-Physical Systems
(CPS), Energy Delivery Systems (EDS)

I. BACKGROUND

Advanced Persistent Threat (APT) has dramatically changed
the landscape of cybersecurity. APT is carried out by stealthy,
continuous, sophisticated, and well-funded attack processes
for long-term malicious gain thwarting most current defense
mechanisms. There is a need for a defense strategy that
continuously combats APT over a long time-span in imper-
fect/incomplete information on attacker’s actions. We pro-
pose the stochastic evolutionary game model to simulate the
dynamic adversary to address this need in this work. We
add the player’s rationality parameter ¢ to the Logit Quantal
Response Dynamics (LQRD) model to quantify the cognitive
differences of real-world players. We propose an optimal
decision-making plan by calculating the stable evolutionary
equilibrium that balances a trade-off between defense cost and
benefit. Cases studies conducted on Energy Delivery Systems
(EDS) indicate that the proposed method can help the defender
predict possible attack action, select the related optimal cyber
defense remediation over time, and gain the maximum defense
payoff. In this work, we use EDS as an instance of CPS for
case study.

978-1-6&3{}{9726- 22

Game theory is a decision-making theory for studying the
direct interaction among decision-makers [1], whose goal is to
maximize the earnings of players and is suitable for analyzing
the strategy selection issue when the behaviors of decision-
makers interact directly. It mainly includes player, state, action,
information, strategy, payoff, and equilibrium elements. Game
theory has the characteristics of objective opposition, non-
cooperative, and strategic interdependence and aligned with
the essential attributes of cyber attack-defense [2]. Therefore,
applying the game theory to model and analyze the cyber
attack-defense process has become a hot research issue in
recent years [3]. However, researchers have to address some
challenges. To our best knowledge, existing game models
for cyber attack-defense are mainly on the hypothesis of
complete rational players [4] [5] [6]. Complete rationality
includes several preconditions that are difficult to achieve,
such as perfect rational consciousness, the perfectability of
analyzing and inferring, identifying and judging, memoriz-
ing, and computing. If players can not reach any of these
conditions, then it belongs to bounded rationality. The strict
requirement of complete rationality is too harsh for the social
attacker and defender. Real-world attackers and defenders have
different cognizance abilities, which is determined by their
interests, such as safety knowledge, skill level, experience,
and so on [7]. In a word, the selection of strategy affected by
various uncertain factors leads to the bounded rational game.
At present, this issue assumes a significant challenge.

To sum up the above, APT calls for a framework that could
characterize the continuous interplay of advanced defense-
attack on system resources with imper fect/incomplete op-
ponent’s actions in a long time-span. This study involves (1) a
model to accurately capture the continuously evolving process
of the system status and how attackers influence it and de-
fender’s actions; and (2) dynamic defense/attack strategies that
judiciously and continuously take steps to minimize/maximize
the long-term system damage without knowing the opponent’s
behavior.

The main contributions of this paper are as follows:

(1). We construct the dynamic stochastic attack-defense
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game model for describing the evolutionary process of cyber
attack-defense remediation.

(2). Then we analyze the improved strategy payoff calcula-
tion and formation of the optimal strategies.

(3) We also design the optimal cyber defense remediation
selection approach for a multistep attack.

II. RELATED WORKS
A. Advanced Persistent Threat

The cybersecurity domain has been changed dramatically
by a new class of threats, referred to as Advanced Persistent
Threat (APT) by industry. The earliest well known APT case
Stuznet [8] designed to modify industrial Programmable
Logic Controllers and force them to diverge from the expected
behaviors by exploiting a vast majority of security holes
and tools. Another famous APT case is Operation Aurora
[9], which targets at Google and dozens of other companies.
The APT attacker can exploit the zero-day vulnerability in
the Internet Explorer. [10] introduces the definition of APT
and unique characteristics, making it different from traditional
security issues. Sengupta et al. [11] propose a game-theoretic
approach to model the stealthy- takeover property of APT and
provide several guidelines for the system design based on the
analytic results.

B. Game Theory in Cyber Security

Depending on the players’ rational degree, existing research
can be divided into two categories: complete rational game and
bounded rational game.

A complete rationale game takes the hypothesis that the
players have full cognition. Each player can select the best
strategy to maximize its payoff and predict other players’
strategy selections. The Nash equilibrium calculates the opti-
mal response of each player through maximizing the expected
defense payoff. Orojloo et al. [12] regarded both attacker
and defender as players in the game and treated the attack-
defense adversary as the zero-sum game. They considered
players have complete information and act simultaneously.
They constructed the non-cooperative static game model based
on a defense graph to analyze attack intention and select the
optimal defense strategy. Aiming at sensor networks’ security
issue, Li et al. [5] constructed a non-cooperative game model
between attackers and trusted sensor nodes to balance costs
and benefits. Due to the Nash equilibrium solution’s restric-
tions, Li et al. [6] used the Pareto optimization to calculate
the equilibrium. Do et al. [2] analyzed the impact of attack-
defense strategy changes on the defense evaluation of worm
attack-defense performance with the Bayes game model’s
help. However, this method is limited to pure strategy Nash
equilibrium. Etesami et al. [13] analyzed the optimal mixed
strategy of IDS intrusion response. Pawlick et al. [14] regarded
the defender as the signal sender and the attacker as the signal
receiver and built an attack-defense signal game model. The
attacker identifies and adjusts the cognition of the defender
according to the defense signal. Then the single-stage and
multi-stage signal game models are developed, respectively.

The identified optimal defense strategy by calculating each
stage’s equilibrium helps defenders decide during various
stages. Almost the same time, Lei et al. [15] constructed
the multi-stage repeated game model of attack-defense. The
defender inferred attacker type depending on a priori attack
strategy, and the posterior inference was revised to improve the
accuracy of the decision progressively. The above multi-stage
models mainly analyze erratic behaviors in discrete periods.

In summary, all the studies above are based on the complete
rationality assumption of players. They first quantify the
strategy payoffs according to their types and then construct the
payoff matrices to calculate the Nash equilibrium. However,
they do not consider whether the players’ complete rationality
is in line with the reality of players’ biology property. The
environment and individual factors affect the attack-defense
players, so their behaviors can hardly reach complete rational-
ity. To a certain extent, they are bounded rational agents [16],
and the strategy selection is the process of continuous learning
and adjustment. Although Hu et al. [17] proposed an evolution-
ary game model of bounded rationality, this model is restricted
from analyzing the payoff between two strategies only. Also,
the stable equilibrium states, according to rationality changes,
did not notify accordingly in the simulation result. So, without
the premise of bounded rationality in a diversified strategy
selection, the modeling and analysis of attack-defense may be
impractical. Therefore, studying the attack-defense game rules
under bounded rationality is an applied and promising research
issue.

III. THE SYSTEMS MODEL OF OUR OPTIMAL CYBER
DEFENSE REMEDIATION

The architecture of our optimal defense decision-making
approach illustrates in Fig. 1. The input includes evidence
such as vulnerability database, Nessus scanned logs, Attack
Graph (AG), Intrusion Detection System’s (IDS) real-time
alert, security configuration, network topology, and MITRE
ATT&CK [18], and the output is the optimal defense strategy.
The decision-making process involves five steps: (1) Deter-
mine the targets and critical attack paths to strategy selection
targets. (2) Extract candidate attack-defense strategies from
the input security data according to the enhanced AG of
attack evidence and abnormal evidence. (3) Model the attack-
defense process as the stochastic evolutionary game based on
the LQRD model. (4) Evaluate the strategy payoff based on
cost-benefit analysis. (5) Generate optimal defense strategy.

Besides, as a typical cyber adversary scenario consists of
multiple players, we also extract the set of candidate defense
strategies by analyzing the network environment informa-
tion, including the vulnerability repairs, firewall access rules,
security configuration, etc. We further collect alert data of
firewall, IDS, and virus detection system and host audit log.
By analyzing the attack behavior information, we can extract
the set of candidate attack strategies by referring to the tactics
and techniques in the MITRE ATT&CK framework [18].
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Fig. 1: The architecture of our cyber defense remediation method

A. Game Modeling of Attack-Defense Based on LQRD:

The evolutionary game model includes four essential ele-
ments: player sets, candidate strategy set, belief set, and payoff
set.

Definition 1. A four-tuple can denote the model of the
Attack-defense Stochastic Evolutionary Game (ASEGM).

1) M = Ny, Nwp) is the population set of attack-defense
players, where 91y and 91p are the populations of attackers
and defenders, respectively.

2) 6 = (Gy,6Gp) is the set of candidate attack-defense
strategies, in which Gy = {201, ....., 2, } is the set of the
candidate strategies for attackers, G = {D1,D2,.....,Dp}
is the set of candidate strategies for defenders. n and m are the
numbers of attack and defense strategies, respectively. where
m,neN*t and n,m > 2

(3) © = (B, Q) is the belief set of the attack-defense game,
where p; €3 represents the probability that the attacker selects
candidate strategy 2;, ¢;eLQ represents the probability that
defender chooses candidate strategy ©;, where 1 < i < n,
1<j<m Yy pi=1,27"¢=1

@ U4 = (Ug,4p) is the payoff function set. $ly and
il represent the payoff functions of attack and defense,
respectively.

B. Game Payoff Quantification of Attack-Defense Strategy

Considering the condition (4) of Definition 1, the payoff
quantification of the attack-defense strategy is the basis of
defense strategy selection. Therefore, its accuracy directly

affects the selecting results. We summarized the types of
different attack-defense strategies and proposed the payoff
metric based on cost-benefit analysis.

Definition 2: Attack Benefit (ADB) is the earned network
resources through a series of attack actions or the level of
network damage, which reflects the capability of controlling
the targeted network system.

Definition 3: Attack Cost (AC) is the cost or effort that an
attacker pays to obtain network resources or cause losses to
the network system.

Definition 4: Defense Benefit (D B) includes direct benefit
and indirect benefit. The immediate benefit is the level of
security reinforcement. Security measures only consider the
direct benefits, and we further add the indirect benefits of
the defender through the counterattack. For example, the
electronic evidence of port scanning time, port number, source
IP address, and destination IP address can use to reconstruct
the attack chain. Through which the defender can earn indirect
benefits through investigating criminal responsibility.

Definition 5: Defense Cost (DC) is the cost or effort
that defenders take against the possible attacks, including the
human and time cost of the implementation of security devices,
and the economic value of affecting the regular operation of
service (a.k.a.negative impact of control measures.).

Definition 6: Attack-defense payoff matrices M are as
follows. In which, a;; and 9;; represent the attack and defense
payoff of selecting strategy combination (2l;, ®;) respectively,
aij = AB — AC, 05 = DB — DC'. The payoff matrices M is
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as below:
011,011 012,012 G1m, 01m
021,021 022,022 a2m, 02m
= (D
anluanl an27an2 anm7anm

C. Construction of Evolution Equations for Attack-Defense
Decision Making

Evolutionary stable strategy (ESS) is an optimal decision
of the game system in long-time strategy evolution. The
definition of the permanent evolutionary strategy of cyber
attack-defense is as follows:

Definition 7: Suppose the attacker population selects the
candidate strategy set Sy = (2, 2o, .., 2, ) with the probabil-
ity distribution 8 = (p1, pa, .., n), and the defender popula-
tion selects the candidate strategy set Sp = (D1, D2, .., D)
with the probability distribution Q = (g1, g2, .-, ¢ ). It means
that individuals in the attacker and defense population ran-
domly selects and implements their pure strategies with the
probability distribution 3 and Q in the actual adversary. We
call o* = (,Q) as the stable strategy of attack-defense if
the following conditions hold.

(1). (stability) (c*c*) > (o, 0*)

(2). (balance) $(c*,0*) = U(c,0*) = U(c*,0) > U(o,0)

Where, i(c*,0*) denotes the payoff when attacker and
defender both select o*. For any o # o*, {(c*,0) is the
payoff when either side changes its strategy.

Condition (1) guarantees that both attacker and the defender
cannot earn more if either side changes strategy. In a policy
containing a large number of ¢* and a small number of o,
it is necessary to meet that G is the best response to itself;
otherwise, other strategies may invade and develop.

Condition (2) guarantees that if there is another optimal
strategy, o, o™ is required to react better than o, which ensures
that o cannot develop even if the approach mutates to o.

Definition 7 provides the condition of whether a strategy
is an evolutionarily stable strategy, but does not characterize
the track of players’ selection on this strategy and the attack-
defense players search for the best approach and are disturbed
by stochastic error. This Sub-section describes the strategy
evolution track by modifying the LQRD equation to indicate
the randomness of selection. The LQRD uses Fisher-Tippett
(an independent-identical-distribution) to depict the degree of
noise influence on different players [19]. That is to say, and
the player selects the strategy with the exponential probability
distribution, which is in line with the law of evolution of most
things in the real world. Herein, we first give the deduction
of the proposed LQRD equation combined with Eqns. 2-4.
So, the differential equation of the probability of selecting this
strategy is [20]:

dt = E PkCri — E DiCiy )
k=1 y=1

dpi .
Where, p; is the probability of selecting strategy 2, , d—i is

the probability that selects strategy 2I; varying with time. cy; is
the conditional transition probability of the attackers selection
from strategy 2, to strategy 2(;, which describes the updating
rules of strategy selections.

The core of the attack-defense evolutionary game is to study
the dynamic change speed of the proportion of individual
selecting strategy in the total population. That is, we need to
calculate the selecting probabilities of different techniques. For
conditional transition probability, we use the LG RD equation
to describe the rules of strategy updating and add an extra
rationality parameter ¢ to quantify the cognitive capabilities
of different game players. The improved LQRD transition
probability equation is defined as follows:

o cap(stla)
M S eap(stla,)

Set the rational parameters (¢ > 0) based on the historical
rational degrees of players. The bigger < is, the higher the
degree of rationality is. The payoff is 4 = U + ¢, where U is
the payoff of observable factors, € is the payoff of uncertain
factors. The deduction of cy; in Eqn. 3 can be referred to [19].
Take the formula in Eqn. 3 into Eqn. 2 and get the LQRD
equation as following:

3)

dpi _ __erp(tla)
di Yy eap(sta)

The Eqn. 4 shows that the change rate of the population
proportion of player selecting strategy %l; is proportional to
the difference between the ratio of individual expected payoff
to the total gain and the balance of unique numbers of choosing
this strategy to the whole numbers. It also shows that in the
attacker population composed of bounded rational players, the
number change rate of players selecting a specific candidate
strategy varies with the proportion of this strategy payoff to
the total gain.

To construct the LQRD equations of attack-defense, from
condition (3) of Definition 1, we denote the strategy of
probability vectors ¥ and £ is the mixed probability of
selecting Gg and Gp respectively. The evolution equations
are as follows:

(1). Evolution equation of attack strategy over time The
expected payoff iy, of an attacker selecting candidate strategy
2, is as follows, 1 = 1,2,....,n

4)

o, = qra12 + @212 + . + G Qim
Ug, = qrag1 + g2tz + ... + gmazm

m
Ui, = @151 + @232 + oo + G Gin = Zq]'ﬂij
j=1

ug[n = q10p1 + G20n2 + ... + G Onm
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The changing rate of the proportion of individuals selecting

d.
Pi qe
t

reflects the learning and improving selecting strategy %2,
for bounded rational attacker through repeated games. The
LQRD differential equation of change rate from Eqn. 4 is:

strategy 2l; in the attacker population overtime is

dp; _ ewp(s D5t 4504) ) )
dt Yi_yeap(s 3ol qioks)
(2). Evolution equation of defense strategy over time.
The expected payoff ilp . of an attacker selecting candidate
strategy D is as follows, j =1,2,...,m

u®1 = plbll +P2021 + ... +pnbnl
Up, = p1012 + p2daz + ... +Pp0p2

n
o, = p101j + padaj + oo + Ppdnj = Zpiaij
i=1

Ll@m = plolm +p202m + ... +pnanm

The changing rate of the proportion of individuals selecting

strategy ®©; in the defender population overtime is iy

t
reflects the learning and improving selecting strategy 5 4 for
bounded rational defender through repeated games. So, the
LQRD differential equation of change rate is:

dgj _ eap(¢ i pidi) ©
dt S e S i)

The practical significance of the above evolution equation
is: taking the defense strategy D; as an example, if the number
proportion of individual selecting the pure strategy D; is
smaller than the payoff proportion of individual obtaining
from D;. The growth rate of the defender number choosing
Dj is larger than zero. Otherwise, the growth rate is less
than zero. If the number proportion is exactly equal to the
payoff proportion, then the growth rate of the numbefj of
Pi
J dt’
G(g;) = &, and then combine the above equations to equate

defender selecting strategy D, is zero. Set F(p;) =

below condition:
F(p;
Y (pi,q;) = (ngg) =0 7

This will give us the stable equilibrium of attack-defense
adversary.

IV. IMPLEMENTATION, RESULT, AND ANALYSIS:

The Industroyer malware has unleashed a major escala-
tion in cyber-attacks on Industrial Control Systems (ICS) by
combining a multi-stage APT attack with in-depth domain
knowledge. Industroyer (also referred to as Crash-override)
is a malware framework considered to have been used in
the cyber-attack on Ukraine’s power grid on December 17,

2016. The attack cut a fifth of Kyiv, the capital, off power
for one hour and considered a large-scale test [21]. The Kyiv
incident was the second cyber-attack on Ukraine’s power grid
in less than a year. The first attack occurred on December 23,
2015. Industroyer is the first-ever known malware specifically
designed to attack electrical grids. Simultaneously, it is the
fourth malware publicly revealed to target industrial control
systems, after Stuxnet, Havex, and BlackEnergy.

In this section, we take the invasion and proactive defense
against Industroyer in the real-world Energy Delivery System
(EDS) network as an example. We analyze the adversarial
attack-defense process against Industroyer, verify the proposed
approach for optimal defense strategy selection. The results of
the two scenarios with different strategy payoffs are compared
and analyzed. Besides, we summarize the general evolution
rules of the best defense strategy in the targeted network
system. Finally, we compare our methods with the existing
research comprehensively.

A. EDS Network Implementation:

We implemented an EDS network that is shown in Fig. 2
from [22]. The entire test-bed is connected to a network switch
and a router, and the zoning is implemented using VLAN and
firewall rules. There are five subnets created by an external and
internal firewall. The IT Workstations (WSs) were located at
the IT subnet. A Web Server (WebS) is located at the DMZ
subnet and is directly accessible from the Internet through an
external firewall. Supervisory Control and Data Acquisition
(SCADA) servers (L3/L2), Remote Transmit Unit (RTUs) (L1)
are in different subnets under larger Operational Technology
(OT) subnet that holds critical communication. The SCADA1
servers and SCADA?2 servers are only accessible from the
WebS of the DMZ. The WebS is accessible from user WS
and other hosts from level 4 or 5. The user subnet contains the
user’s WS. The firewalls allow all outbound traffic from users
subnet. The test-bed also includes Intrusion Detection System
(IDS) running both IT and OT specific rules and a commercial
OT Asset Discovery and Management (ADM). They are both
connected to the span port of the switch to inspect the entire
ICS traffic. For the Industroyer attack simulation, we injected
vulnerabilities on the test-bed machines. The user worksta-
tions contained the vulnerability CVE-2009-1918 in Internet
Explorer (IE). If a user accesses malicious content using
the vulnerable IE browser, the device may be compromised.
The WebS contained the vulnerability CVE-2006-3747 in the
Apache HTTP service, resulting in a remote attacker executing
arbitrary code on the machine. The SCADA1 and SCADA2
server had the vulnerability CVE-2018-5313, allowing priv-
ilege escalation up to the administrator level. The SCADAI1
server controls 10 RTUs of substation 1, whereas the SCADA2
server controls 7 RTUs of substation 2. We assume that if an
attacker acquires control over the SCADAs, the RTUs can be
acquired as well.

As a defender, the network center’s administrator is re-
sponsible for the security of the EDS’s whole intranet. The
attacker comes from the external network and attacks the
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intranet through the Internet. The purpose is to erase system-
crucial registry keys and overwrite all ICS configuration files
to make the system unbootable and recovery from the attack
harder. Industroyer attacks can be divided mainly into two
steps, the first is to break through the boundary, and the second
is to penetrate the intranet horizontally. Due to the firewall
rules, external attackers can only communicate with the IT
network’s Work Station (WS) and mail server but cannot
access the Operation Technology (OT) network. The security
protection devices are composed of the firewall, Intrusion
Protection System (IPS), virus detection system (VDS), and
patch management system. We used the Nessus scanning tool
to scan the EDS network. Table I shows the results of the
principal vulnerabilities.

IT Network
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| Seore=1) 1
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Fig. 2: Logical view of EDS Test-bed

B. Candidate Strategy Extraction and Payoff Calculation:

In this experiment, based on the network topology and
vulnerabilities, the logical Attack Graph (AG) is created
using the open-source tool MulV AL as illustrated in Fig.
3 [22]. The MulV AL is a reasoning toolkit for automatically
identifying vulnerabilities in IT and OT networks [23]. The
different shapes represent the network state, and the edge
represents the atomic attack action. By referring to the attack-
defense behavior database of MITRE for Industrial Control
Systems (ICS) [24], we extracted the atomic attack and defense

actions that can be launched in the network system. All the
possible atomic actions are shown in Table II.

0. attackerlocated (internet)

1. victim browse a malicious wehsite

2. canAccessMaliciousinput (workStation,user,|E)
3. remote explot of CYE-2009-1918

4, execCode (workStation, userAccount)

5. multi-hop access

6, netAccess (wehServer,tcp,B0)

7. remote exploit of CVE-2006-3747

8. execCode (webServer,apache)

9. multi-hop access

IT domain

10a. netAccessto SCADA 1 (SCADA Server tep,3306)
10b. netAccessto SCADA 2 (SCADA Server tcp,3306)

11a. local escalate of privilege CVE-2018-5313

11h. local escalate of privilege CYE-2018-5313
12a. escalatePrivilege (SCADA 1, UserAccount)

12b. escalatePrivilege (SCADA 2, UserAccount)
13. direct network access

6.84 0.985 '

C= Criticality of the node
R= Node's Risk

OT domain

Fig. 3: The AG of test-bed based EDS
[22]

We find that the attacker first conducted port scanning action
21y through port 25 of the mail server at the IT domain.
Furthermore, the attacker collected open service information
to prepare for subsequent attacks. Since port scanning is a
concealed means of attacking, which is the passive attack
virtually, we denote it as %l =Scan Port. Based on further
detections and analyses of alert information, we find that some
adventurous attackers may execute atomic attacks, 24, and 25
shown in Table II along the most critical path from the alert
node to a goal SCADA 1/SCADA 2 [22]. The unauthenticated
attackers exploit the vulnerability CVE-2006-3747 of Webs at
DMZ to allows remote attackers to cause a denial of service
(application crash) and possibly execute arbitrary code via
crafted URLs that are not adequately handled using certain
rewrite rules. We denote this candidate strategy as A4=Denial
Of Service (DoS), which is an active attack. After the WebS
is compromised as the next stage of an APT, the attacker
starts exploiting CVE-2018-5313 of SCADA 1/SCADA 2. We
denote this candidate strategy as s = Execute Arbitrary
Code, which is also an active attack. So, in this experiment
three candidate defense strategies ®1 = Close Unused Ports,
4 =Block Unwanted IP Address, and ®5 = Install Patches
are mapped from Table II as an extraction for that critical APT
chain.
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TABLE I: Network Configuration and Vulnerability Information

Nodes Configuration CVE Description
WS Microsoft Internet Explorer CVE-2009-1918 Allows remote attackers to execute arbitrary code via
(IE) a crafted HTML document

WebS Apache Web Server CVE-2006-3747 allows remote attackers to cause a denial of service
(application crash) and possibly execute arbitrary
code via crafted URLs

SCADA 1 SCADA Master server CVE-2018-5313 An attacker can leverage this vulnerability to execute
arbitrary code under the context of Administrator

SCADA 2 SCADA Master server CVE-2018-5313 An attacker can leverage this vulnerability to execute
arbitrary code under the context of Administrator

TABLE II: Cyber Attack and Defense Actions

No. Attack Action No. Defense Option

Aq Scan Port D1 Close Unused Port

Ao Obtain Root Privilege Do Restart Device

As Buffer Overflow D3 Offline Network

Ay Denial of Service Dy Block unwanted IPs

As Execute Arbitrary D5 Install Patches
Code

From Eqn. 1, the payoff matrix of attack-defense is as

011,011 012,012 013,013
follows: M = | as1,021 @22,029 23,003
a31,031 032,032 033,033

C. Evolution of Equations for Decision Making:

Firstly, we set the attackers and defenders with equal
degrees of rationality. Furthermore, we assign the proportion
of the number of players selecting strategy 24, 204, and 25, in
the attacker population as p1,p2, and ps respectively. Secondly,
we assign the proposition of defender population selecting
strategy ©1, ®4, and D5, as g1, g2, and g3 respectively.
Besides, we construct the LQRD equation of attack-defense
strategy as follows, respectively.

The expected payoff of attacker selecting strategy 2; = port
scan attack is s, = a11q1 +a12qg2 + a13¢3, the expected gain
of denial of service is g, = a1q1 + a22q2 + a23q3, and the
expected payoff of attacker selecting strategy A5 = Execute
Arbitrary Code is L[Q[s = a31q1 + a32¢2 + assqs . Then, we
can obtain the evolution equation of strategy 2, 2(4, and 25
from Eqn. 5:

The expected payoff of defender selecting strategy ©; =
close unused port is gy, = 011p1+021p2+031p3, the expected
gain of denial of service is tp, = 012p1 + 022P2 + 032D3,
and the expected payoff of defender selecting strategy D5 =
Execute Arbitrary Code is p, = 01301 +02302+033p3 . Then,
we can obtain the evolution equation of strategy ©1,9,4, and
®5 from Eqn. 6:

Then, according to Eqn. 7, equalize all equations to zero.
The solution of those equations is the stable evolutionary
equilibrium of attack-defense decision-making, and defender’s
optimal defense strategy is selecting strategy {®1, D4, D5}
with mixed probability {q1, g2, q3}

D. Result and Analysis:

We consider two numerical experiments: Scenario 1 (with-
out considering counterattack payoff) and Scenario 2 (consid-
ering counterattack payoff). In this work, we only consider
Scenario 1.

Scenario 1: We combine the Definition 2 - Definition 5 and
security behaviors database and then obtain the game payoff
of attack-defense as organized in Table III.

TABLE III: Game Pay-off of Scenario 1

Candidate Candidate Defense Strategy
Attack Strategy

Dq Dy D5
Aq (0.16,0.06) (0.16,-0.15) (0.16,-0.3)
Ay (0.24,-0.2) (0.24,0.39) (0.24,-0.3)
As (0.4,-0.2) (0.4,-0.15) (0.4,0.7)

In general, the degree of player rationality in the real world
is medium, and here we set ¢ = 5.0, and set the initial state
of the game system as p; = p2 = p3 = q1 = g2 = q3 = 0.33.
That is, the attacker randomly selects a strategy from candidate
21,204, and A5 with equal probability 0.33 at the initial time.
Similarly, the defender randomly selects a action from candi-
date 1, 94, and D5 with equal probability. With the simula-
tion tool Matlab 2021, the stable equilibrium point is calcu-
lated by function fsolve() for ¢ = 5.0. The calculated stable
equilibrium point is {p1,p2,p3} = {0.172,0.257,0.571} and
{¢1,92,q3} = {0.087,0.179,0.734}. In this context, the
attacker is more likely to select {2;,24,%A5} with mixed
probability of {0.172,0.257,0.571}. Meanwhile, the optimal
defense strategy for the defender is to randomly implement
{D1,D4,D5} with mixed probability {0.087,0.179,0.734}.
The results show that the attacker is more likely to select
the aggressive strategy 2As = Execute Arbitrary Code with
probability 0.571. Since the attack of the Execute Arbitrary
Code is more harmful, to avoid the severe attack influence,
the corresponding optimal defense strategy is to select D5 =
Install Patch with a probability of 0.571.

Secondly, to analyze the influence of the system’s initial
state on strategy selections, we simulate the evolution tracks
of strategy selections with different first py, p2, ps3, q1, 42, q3
in Fig. 4a-4c and in Fig. 5a-5c. The abscissa ¢ represents
the number of evolutions in decision-making. The ordinate
probability represents the probability of selecting a strategy.
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Fig. 4a-4c and Fig. 5a-5c¢ can predict the defender’s best
strategy selection at different game moments.

Fig. 4a-4c and Fig. 5a-5c respectively show the evolution
tracks of {2y,24,As,D1,Dy, D5}, when the initial states
of attacker and defender are the same with py,p2,q1,q2 =
{0.15,0.25,0.35,0.5}. From Fig. 4a-4c and Fig. 5a-5c, we
assume that the attacker and defender initially select the
strategy {201,204} and {D,D4} with probability p; = ps =
q1 = q2 = 0.5, when t = 0. Then from the magenta curve of
Fig. 5a, the likelihood of selecting strategy ©; is falling over
time and stabilize to probability = 0.179, when ¢ = 10. Also,
the possibility of choosing a strategy ©, is falling and stabilize
to probability = 0.017 from the magenta curve of Fig. 5b.
Herein, the optimal defense strategy is selecting ®1, 94, D5
with mixed probability = {0.087,0.179,0.734}. This selec-
tion is stable and best when against different candidate attack
strategies.

Moreover, as we assume that the defender
selects the strategy {©1,D4,D5} with a probability
{¢1,92,93}={0.5,0.5,0.0} initially, namely, the larger the
gap between the defender’s initial selection and the optimal
selection {g; = 0.087,¢q2 = 0.179,¢3 = 0.734}, the more
evolution times needed to achieve the best strategy. In
contrast to Nash equilibrium game model [6], our approach
can better explain the strategy evolution rules in adversarial
attack-defense and have stronger performance of attack
prediction.

Again, the higher the probability of selecting a strategy from
{A;,4} at the initial time, the later the curve inflection point
appears. They are indicating that more number of repeated
games is required for decision-making and longer time takes.
The condition is due to that the attacker selects 2(; or 24

with a very high probability at the initial time. The false
signal deceived the defender. It caused the defender mistakenly
to assume that the attacker will select the moderate attack
strategy about 2(; and 2[4 while overlooking the ultimate attack
purpose s = Execute Arbitrary Code. Therefore, rational
defenders need to implement many evolution times to discover
the attacker’s real purpose and obtain the best defense strategy.
For example, when {p; = 0.5,¢92 = 0.5}, the probability of
selecting the strategy ©, denoted by the magenta curve in
Fig. 5b first increases to g2 = 0.54 at ¢ = 0.466 and then
rebounds and finally stabilizes to ¢» = 0.178 at ¢ = 11.
The reason is that the proportion of the defender population
selecting strategy 4 at the initial time increases to high. With
the increase of the ®4 payoff to the total payoff, the number of
individuals selecting ©, decreases gradually to ensure that the
proportion of population selecting ®4 to the total population
is equal to the proportion of payoff selecting ®4 to the total
payoffs.

As can be seen from each column in Fig. 4a-4c and in
Fig. 5a-5c, the optimal strategy for both defender and attacker
are the same regardless of their initial pi, po, ps and q1, g2, q3
selections. It is only related to the candidate strategy set,
player, and the strategy pays off. Moreover, the initial state
can only affect the stabilization time of the game system.

Finally, to analyze the influence of degrees of players’
rationality on strategy evolution, some simulations show in
Fig. Fig. 6a-6¢c and in Fig. 7a-7c and discussions are as
follows:

1) When, we assume that the players are irrational and set
¢ = 0, assign initial p; = 0.2,ps = 0.3,¢1 = 04,¢q2 =
0.1, then obtain the strategy evolution tracks in Fig. 6a.
Herein, the final result is to select the different candidate
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strategy with the same probability of 0.33. It means that
players cannot distinguish the advantages and disadvantages
of varying candidate strategies since they have no cognitive
abilities. Meanwhile, from the LQRD Eqn. 7 of attack-
defense, there is only one solution {pi,p2,p3,41,92,q3} =
{0.33,0.33,0.33,0.33,0.33,0.33} when ¢ = 0. The results
show that when the game players are irrational, regardless of
their initial selections, they cannot distinguish each strategy’s
merits and demerits since they do not have any learning and
cognitive capabilities. The candidate strategies are still selected
by game players randomly.

2) Suppose that the rational player degree ¢ > 0, we
simulate the strategy evolution in Fig. 6a-6¢c and in Fig. 7a-
7c. As time goes by, all the players can finally obtain the
correct strategy through several times of repeated games. The
main difference is that when the players have a high degree of
rationality, they can find the optimal strategy more quickly. For
example, when ¢ = 5, the game system can reach the stable
state through about 6 times of game evolution (shows in Fig.
7a ), while when ¢ = 10, they can be stable only through 4
times of game evolution (shows in Fig. 7a). The above results
demonstrate that when the defenders have a high degree of
rationality (have rich knowledge, skilled techniques, etc.), their
cognition, learning, and adjustment abilities are strong, which
helps the defenders identify the optimal strategy more quickly.

In general, both sides of attackers and defenders gain
increased decision-making experience through adversarial
attack-defense. Hence, a rational degree of ¢ increases during
the game process. Fig. 8 illustrates the results under different ¢,
where the abscissa ¢ represents the reasonable degree, and the
ordinate represents the probability of strategy selection. When
¢ = 0, players have no rationality, so they choose candidate

8 0 12
Evolution Times

(b) ¢ =10.0,p1,p2 = 0.33,q1,92 = 0.33 (¢) ¢ = 15.0,p1,p2 = 0.33,q1,q2 = 0.33

The strategy evolution tracks with different rationality <.

strategies randomly. When ¢ = 0.1, the reasonable degree of
the players is very low as the replicator dynamics [6]. From
Fig. 8, the probability of defender selecting strategy ©; and
®4 rapidly decreases to 0 and ®5 increases to 1, respectively,
which reflects the sensitivity of the decision-making system.
The corresponding equilibrium solution is {p; = 0.33,py =
0.33,p3 = 0.34} and {q; = 0.33,¢2 = 0.33,q3 = 0.34}.
The result corresponds to the replicator dynamic equilibrium
[6]. Since the rational degree of dynamic replicator game
is very low, its equilibrium solution is pure strategy. When
¢ > 0.1, the player rational degree increases, and both sides
of the attacker and defender always approach to complete
balanced Nash equilibrium as ¢ increases. When ¢ > 15,
the solution {p; = 0.0003,p2 = 0.27,p5 = 0.97,¢1 =
0.02,¢g2 = 0.1,q35 = 0.88} of LQRD in this paper is very
close to the Nash equilibrium solution. It indicates that the
player rationality is very close to complete rationality over
time, and the difference with the Nash equilibrium decreases
gradually through obtaining experience in the game process. It
is foreseeable that when ¢ towards infinity, then the proposed
LQRD equilibrium will approach Nash equilibrium. Com-
pared with the complete rational Nash equilibrium [6] and the
bounded rational replicator dynamic equilibrium, our approach
can depict the diversity of rationality of attacker and defender
players and reflect the real strategy selection rules.

V. CONCLUSION AND FUTURE WORKS:

This paper studies the strategy selection with a maximum
payoff in the EDS attack-defense dispute based on the evolu-
tionary bounded rationality game model. Advanced Persistent
Threat (APT) becomes more diverse with the complexity and
large-scale network information systems, leading the cyber
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attack-defense situation to change dynamically. How to com-
prehensively analyze defense costs and benefits, maximize
defense revenue, predict the possible attack strategy, select
the optimal defense strategy from the candidate strategies and
measure the strategy revenue is still assumed as a big chal-
lenge. Game theory is a useful tool to model the adversarial
cyber attack-defense. At present, game modeling of attack-
defense with bounded rationality is still in its infancy. There
are many limitations, such as player rationality quantification,
game structure, strategy type, and equilibrium calculation. To
a certain extent, it affects the scientificity and effectiveness of
game theory for cybersecurity. For this purpose, we construct
a novel evolutionary game model to describe attack-defense
using LQRD and expand the strategy set and type of existing
game structure. We build the differential equations of strategy
evolution, varying with time for attackers and defenders with
customized rational degrees. The strategy evolution tracks are
simulated in the real-world attack scenario of CrashOverride
to depict the best strategy formation. By analyzing the stable
evolutionary equilibrium, we can obtain the optimal defense
strategy at different game moments. Our approach is more
generalized comparing with replicator dynamics and the Nash
equilibrium model. Two case studies on Crash Override both
show that the proposed method is effective and practical.
The performances of attack prediction and defense decision-
making are improved significantly for winning cyber attack-
defense warfare. In the future, we will quantify the players’
rationality from network logs, host logs, and communication
protocols. We will then apply the machine learning and
Artificial Intelligence (AI) technique to achieve the automatic
analysis of attack-defense strategies to implement faster strat-
egy implementation.
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