
A Generic Service to Provide In-Network Aggregation for
Key-Value Streams

Yongchao He
IIIS, Tsinghua University

Beijing, China

Wenfei Wu∗

Peking University
Beijing, China

Yanfang Le
Intel, Barefoot Switch Division

Santa Clara, CA, USA

Ming Liu
University of Wisconsin-Madison

Madison, WI, USA

ChonLam Lao
Harvard University
Cambridge, MA, USA

ABSTRACT

Key-value stream aggregation is a common operation in distributed

systems, which requires intensive computation and network re-

sources. We propose a generic in-network aggregation service for

key-value streams, ASK, to accelerate the aggregation operations in

diverse distributed applications. ASK is a switch-host co-designed

system, where the programmable switch provides a best-effort ag-

gregation service, and the host runs a daemon to interact with

applications. ASK makes in-depth optimization tailored to traffic

characteristics, hardware restrictions, and network unreliable na-

tures: it vectorizes multiple key-value tuples’ aggregation of one

packet in one switch pipeline pass, which improves the per-host’s

goodput; it develops a lightweight reliability mechanism for key-

value stream’s asynchronous aggregation, which guarantees com-

putation correctness; it designs a hot-key agnostic prioritization

for key-skewed workloads, which improves the switch memory

utilization. We prototype ASK and use it to support Spark and

BytePS. The evaluation shows that ASK could accelerate pure key-

value aggregation tasks by up to 155 times and big data jobs by 3-5

times, and be backward compatible with existing INA-empowered

distributed training solutions with the same speedup.

CCS CONCEPTS

· Networks→ In-network processing.

KEYWORDS

In-Network Aggregation, P4, Key-Value, Big Data.

ACM Reference Format:

Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao. 2023. A

Generic Service to Provide In-Network Aggregation for Key-Value Streams.

In Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 2 (ASP-

LOS ’23), March 25ś29, 2023, Vancouver, BC, Canada. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3575693.3575708

∗Wenfei Wu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575708

1 INTRODUCTION

Aggregating multiple key-value streams is an operation widely ex-

isting in various distributed systems, e.g., reduce() in Big Data [7, 29,

68],AllReduce() in Distributed Training [32, 47, 61, 67],MPI_Reduce()

in High-Performance Computing (HPC) [12, 46], SUM() in Data-

base [17, 48, 64], etc. The aggregation operation may require in-

tensive resources on computation, disk IO, and network [56, 69],

and could dominate numerous workloads’ overall performance. For

example, in distributed training, the gradient aggregation can take

up to 79% of the training time [61], and in the typical MapReduce

job, such as WordCount, the ReduceByKey() operation takes 94.67%

of the time [37]. In addition, Reduce-related collective functions

are the most significantly used and time-consuming operators in

hundreds of open-source HPC applications [46].

Among the many acceleration solutions for aggregation, a recent

communication and computation primitive Ð In-Network Aggre-

gation (INA) [47, 61] Ð has gained wide attention. It uses a pro-

grammable switch1 to aggregate multiple traversing streams into

one, which reduces the network traffic volume and consequently

accelerates the entire aggregation task. One class of INA solutions

has demonstrated the success in scenarios such as distributed train-

ing [47, 52, 61, 66, 67] and HPC [33]. In addition to these end-to-end

systems, another class of preliminary showcases [25, 60], as well as

our strawman solution (ğ2.2), demonstrates the switch’s capability

to perform key-value stream aggregation much faster than hosts.

However, distributed training-oriented INA solutions [32, 33,

47, 52, 61, 66] are not generally applicable to the key-value stream

aggregation scenarios (ğ2.1.1). By comparative analysis (ğ2.1), we

reveal that these solutions target a traffic pattern of value stream

aggregation (ğ2.1.2), which is a special case of key-value stream

aggregation. Value stream aggregation is synchronous aggregation,

whose design is simplified by its traffic pattern. In contrast, the

key-value aggregation has to be asynchronous aggregation (ğ2.1.3),

which fails all existing reliability mechanisms [32, 34, 38, 47, 49].

Alternatively, the class of key-value aggregation showcases [25, 60]

lacks system-wide considerations such as application interfacing,

correctness guarantee, and performance maximization, and can

hardly be practical to support numerous distributed applications.

With state of the art insofar, building an end-to-end system to provide

in-network key-value aggregation for distributed applications, as

well as advancing the end-to-end performance, have not received

attention.

1We use łswitchž to denote programmable switch in the following text.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

In this paper, we propose a solution named ASK to provide cor-

rect and performant Aggregation Service for Key-value streams in

distributed systems. ASK is a general-purpose aggregation service

decoupled from specific applications, allowingmultiple applications

(instances) to multiplex it. ASK co-designs the switch and hosts,

where the host runs a dedicated service to exchange key-value data

with applications through inter-process communication, and the

switch performs a best-effort aggregation service for traversing key-

value streams between hosts (ğ3.1). To maximize the performance

gain without compromising the correctness, ASK makes in-depth

customization and optimization, tailored to the switch hardware re-

strictions, traffic characteristics, and the network unreliable natures.

In details, ASK overcomes three challenges (ğ2.3).

First, the system needs to vectorize one packet’s multi-tuple

aggregation in one switch pipeline pass to promote the system

goodput. However, the switch programmability and memory ac-

cess mode provided by Protocol Independent Switch Architecture

(PISA) [23] restrict the vectorization. ASK co-designs the switch

memory layout and host packetization to achieve the vectoriza-

tion and support variable-length keys in real-world workloads

(ğ3.2). Second, the system needs a reliability mechanism specif-

ically for asynchronous aggregation; but none of existing solutions

could function correctly, and vectorized packet aggregation further

complicates the switch states and logic. ASK carefully crafts the

host sliding-window scheme and the switch deduplication logic to

achieve reliability and correctness and additionally improves the

system scalability by reusing persistent connections in the host ser-

vice (ğ3.3). Third, the switch has to address keys to switch memory

in runtime. Still, the practical key-distribution-skewed workload

could lead to low utilization of switch memory when cold keys first

reserve the switch memory. ASK devises a shadow copy mechanism

to fetch the intermediate results from the switch periodically and

reset the switch memory, allowing hot keys a second chance to

reserve the switch memory (ğ3.4).

We prototypeASK and integrate it with Spark [68] and BytePS [39,

58]. Experiments on microbenchmark show that ASK can (1) im-

prove key-value aggregation throughput by up to 155 times with

the same CPU usage, (2) saturate the high-speed network at a line

rate of near 100Gbps, and (3) scale the total aggregation throughput

linearly with the number of the servers, up to 92.61Gbps×8 for eight

servers. Consider computation and communication together, ASK

can perform key-value aggregation at a higher speed than host-only

systems, e.g., speeding up big data jobs by up to 4.56 times while re-

ducing the CPU usage by 88.7%, and achieve the same acceleration

as INA-based training systems [47, 61] in distributed training.

In summary, the contributions of this paper are as follows:

• We build a general-purpose end-to-end system ASK to pro-

vide in-network key-value aggregation as a service to diverse

distributed applications.

• We vectorize the multi-key packet aggregation under switch

hardware restrictions to improve the network goodput, which

greatly boosts the overall performance of applications.

• We build a lightweight reliability mechanism specifically for

asynchronous aggregation, which guarantees the correctness

of aggregation computation.

{c,2} {a,2} {b,1} {c, 1}

src 1

{b,3} {d,1} {a,3}

src 2

{c,3} {a,5} {b,4} {d,1}dst

1 4 5 2

src 1

6 4 1 3

src 2

7 8 6 5dst

(b) Value stream aggregation(a) Key-value stream aggregation

Figure 1: Example of Aggregation Patterns.

• We agnostically prioritize hot-key aggregation, which im-

proves the switch memory utilization for key distribution

skewed workloads.

• We prototype ASK and make an extensive evaluation to

show that ASK supports diverse distributed applications and

accelerates system performance significantly.

2 BACKGROUND AND MOTIVATION

Key-value stream aggregation is asynchronous. Programmable

switches have the potential to accelerate the process, but the end-

to-end system design still faces several challenges.

2.1 Aggregation Patterns

2.1.1 Key-Value Stream Aggregation. Formally, a key-value stream

𝑓 (𝑚) is denoted as a sequence of key-value tuples,

𝑓 (𝑚) =< (𝑘
(𝑚)
1

, 𝑣
(𝑚)
1
), (𝑘

(𝑚)
2

, 𝑣
(𝑚)
2
), · · · , (𝑘

(𝑚)
𝐾𝑚

, 𝑣
(𝑚)
𝐾𝑚
) >, (1)

where𝐾𝑚 denotes the number of key-value tuples in the𝑚𝑡ℎ stream.

In multiple key-value stream aggregation (1 ≤ 𝑚 ≤ 𝑀), a key 𝑘 ′’s

value in the final result is denoted as

𝑣
′

←
∑︁𝑀

𝑚=1

∑︁𝐾𝑚

𝑖=1
𝑣
(𝑚)
𝑖 𝐼 (𝑘

(𝑚)
𝑖 = 𝑘

′

), (2)

where 𝐼 (𝑘
(𝑚)
𝑖 = 𝑘

′
) is the identity function returning 1 if two keys

are equal and 0 otherwise. Figure 1(a) illustrates this aggregation

pattern. Many workloads, e.g., MapReduce [30], in Big Data [62, 68]

and Streaming Processing [15, 24, 45] follow this pattern.

2.1.2 Value Stream Aggregation. The value stream aggregation is

actually vector aggregation and can be viewed as a special case

of the key-value aggregation. Each value stream is denoted as an

ordered sequence of 𝐾 values

𝑓 (𝑚) =< 𝑣
(𝑚)
1

, 𝑣
(𝑚)
2

, · · · , 𝑣
(𝑚)
𝐾

>, (3)

where the value index can be viewed as the key. After aggregating

𝑀 value streams, the value at index 𝑖 is

𝑣𝑖 ←
∑︁𝑀

𝑚=1
𝑣
(𝑚)
𝑖 . (4)

Figure 1(b) illustrates the aggregation pattern, in which the 𝑑𝑠𝑡

generates a new value from multiple values by value’s index in

the stream. The gradient [35] tensor aggregation in the distributed

training systems [47, 50, 61] is an typical example of value stream

aggregation. And the collective operations, e.g., AllReduce(), Re-

duce(), in HPC [12, 31, 52] also take this aggregation pattern.

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

Traffic

Manager

Stage 0

......

Stage 11 Stage 0 Stage 11

Ingress Pipeline Egress Pipeline
Parser Deparser

P
a
c
k
e
t

Figure 2: Protocol Independent Switch Architecture (PISA).

2.1.3 Synchronous v.s. Asynchronous INA.. INA [28, 47, 61, 66] has

shown the promising performance gain due to the recent advances

in programmable switches [4, 22, 23]. To perform INA, the switch

memory is organized as a pool of aggregators, which is the computa-

tion and storage unit. When key-value streams traverse the switch,

the switch assigns each key-value tuple to an aggregator by the key

using an addressing scheme, e.g., runtime random hashing [47] or

static linear allocation [61]. The aggregator performs the aggrega-

tion and consumes the packets. Upon aggregation completion, the

switch writes the aggregation result to a packet and sends it to the

destination host.

In value stream aggregation, all streams’ keys (indices) are lin-

ear, contiguous, and aligned, and all senders are synchronized to

send streams at the same pace. Thus, for each key, all its appear-

ances (across streams) at the switch are synchronized. The switch

can immediately know the aggregation completion, send the re-

sult to downstream, and release and reuse the aggregator; large

streams can circularly use the limited aggregators. We refer to this

aggregation pattern as synchronous aggregation.

In key-value stream aggregation, keys are unordered and unfore-

seeable (especially for real-time data streaming [15, 24, 45]), and

there is no synchronization among senders. Keys have to be dynam-

ically addressed to aggregators in runtime, and the switch has no

idea about a key’s last appearance as well as the key’s aggregation

completion. Thus, the switch cannot immediately send the result

to downstream, and release and reuse the aggregator; the excessive

keys in large streams have to fall back to hosts for processing.We re-

fer to this aggregation pattern as asynchronous aggregation. Notably,

we can forcibly adapt value streams to asynchronous aggregation,

but cannot adapt key-value streams to synchronous aggregation.

2.2 Promise of In-Network Key-Value
Aggregation

2.2.1 Potentials and Constraints of Programmable Switches. Pro-

grammable switches [5, 8, 18, 65] follow a PISA [23] architecture

(Figure 2). Compared with the traditional switch, the programmable

switch has ingress/egress pipelines to achieve the programmability

on packets. One pipeline consists of a sequence of match-action

stages, and each stage has circuits to run switch programs and mem-

ory (SRAM) to store states. The switch programs are user-defined

ones written in domain-specific languages such as P4 [22], which

can match packets on header fields and perform actions (e.g., arith-

metics) on packets and the stage states. In existing INA solutions,

the switch program writes values in packets to the switch memory

and performs the aggregation operation.

Programmable switches can run various switch programs at line

ratewithout affecting network functions (e.g., forwarding), typically

much faster than the network I/O speed on hosts. For example, the

total processing capacity of Intel𝑅 Tofino3𝑇𝑀 ASIC [4] can be up

to 25.6𝑇𝑏𝑝𝑠 (400Gbps×64 ports).

Programmable switches also have several constraints. (1) A

pipeline has very limited memory resources (~15MB SRAM), which

brings huge challenges for processing large streams. (2) The pro-

gramming model is constrained: the memory on stages is isolated,

and the program cannot use it as a uniform address space; a packet

can only traverse all stages of a pipeline sequentially in the runtime,

called one pass; memory can be declared as register arrays2 in the

program, but each register array can only perform one read and

one write in one pass. The limited programmability further causes

challenges to write correct and performant switch programs.

2.2.2 Strawman Solution. We present a strawman solution demon-

strating the performance gain of offloading key-value stream aggre-

gation to the switch. Since there is no end-to-end system designed

yet, we make three assumptions to simplify the design of the straw-

man solution.

(1) Each packet carries one key-value tuple. In value streams,

one packet can carry multiple values because the first value’s

index (key) can denote multiple contiguous values’ indices.

But in key-value streams, neighboring tuples cannot be rep-

resented by one key. And a switch memory register array

cannot process multiple tuples. Also, the key size is set to 4

bytes in concert with the switch memory register size.

(2) The network is reliable, and no packet loss occurs in the

experiment. Because asynchronous aggregation is a new pat-

tern not supported by existing systems, its specific reliability

mechanism is missing.

(3) All keys could fit into the switch memory. If not, the system

needs an addressing scheme to assign keys to aggregators,

which is still missing for asynchronous aggregation.

We set up the vanilla Spark [14] and the strawman solution on a

single machine to run WordCount [29] and measure the aggrega-

tion throughput, respectively. In the strawman solution, the host

sends each key-value tuple individually in a packet to the switch,

the switch addresses each key to an aggregator and merges tu-

ples, and the host finally fetches the result back. Other experiment

settings (e.g., key size) are in ğ5.2. Figure 3(a) and 3(b) show that

the in-network key-value aggregation outperforms the on-host

aggregation. With the same number of CPU cores (16 cores), the

maximum gain is up to 5 times; INA achieves line rate of 100Gbps

with 16 cores, but the vanilla Spark achieves the peak throughput

with 56 ones; even with all cores involved, the strawman solution’s

peak throughput is 3.4 times of the vanilla Spark. This experiment

demonstrates the promising prospect of the in-network key-value

aggregation, i.e., freeing up valuable CPU resources for complex

computations while gaining higher performance.

2.3 Challenges

The strawman solution demonstrates the promise of in-network

key-value aggregation, but the assumptions are not practical for

2A register acts as an aggregator in ASK, we use register and aggregator interchangeably
in the following text.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

1 4 8 16 24 32 40 48 56
Number of cores

(a) Spark

0

5

10

15

A
K
V
/s

(×
10

7
)

1 2 4 8 16 32
Number of cores
(b) Strawman

0

5

10

15

A
K
V
/s

(×
10

7
)

1 2 4 8 16 32
Number of cores

(c) ASK

0

50

100

150

A
K
V
/s

(×
10

7
)

4Bytes 8Bytes 12Bytes 16Bytes

Figure 3: Aggregated key-value tuples per-second (AKV/s) on a single machine.

real-world tasks. Assumption (1) does not exploit the network band-

width, assumption (2) could be violated in unreliable networks, and

assumption (3) may not hold for real-world traces. We relax these

assumptions and overcome three challenges to build a correct and

performant end-to-end system ASK. By exploiting the hardware

potentials (mainly the multi-key packet vectorization below) and

taking advantage of the traffic characteristics in practical workload,

ASK eventually achieves a performance boosting up to 155 times

compared with Spark (Figure 3(c)).

Vectorizemulti-key packet aggregationwith restricted switch

memory access mode. A key-value tuple could be small in size,

and a single-key packet would limit the network goodput. For

streams whose packets only have one key-value tuple in the pay-

load, even if the throughput reaches the line rate of 100Gbps, the

goodput would only be 9.76Gbps3. To improve the goodput, a packet

must carry multiple key-value tuples, called amulti-key packet. The

multi-key packet further requires the switch to vectorizemultiple tu-

ples’ aggregation within the packet’s one pass in the switch pipeline.

However, in a switch program, the hardware restricts the register

(aggregator) array to be read and written only once in one packet’s

pass, contradicting the need for vectorization.

ASK co-designs the switch memory layout, i.e., two-dimensional

aggregator arrays, and the host packet construction, i.e., flow space

partition, to achieve efficient multi-key packet vectorization. In

addition, ASK also devises coalesced key placement for variable-

length keys in real-world workloads. (ğ3.2)

Devise a reliability mechanism specifically for asynchronous

aggregation in unreliable networks. Applications expect the

computation results to be correct, i.e., each key-value tuple ag-

gregated exactly once. However, packet retransmission, common

in data center [20, 21], could cause a packet to be falsely aggre-

gated more than once. For asynchronous aggregation specifically,

none of the existing reliability mechanisms (TCP and existing INA)

could function correctly. In synchronous aggregation, e.g., ATP [47],

SwitchML [61], etc. [32, 52], each aggregator spares a 1-bit state

to record the appearance of a packet for deduplication. In asyn-

chronous aggregation, however, this method cannot be applied,

because a key’s last appearance in key-value streams is unforesee-

able, causing the state unbounded. To complicate matters further, a

3A packet has a 24-byte framing overhead [9], 54-byte Ethernet/IP/INA header [47, 52,
61], and a 4-byte key and 4-byte value payload.

vectorized multi-key packet can diverge in all tuples’ aggregation,

i.e., some aggregated but some not, and these partially-aggregated

packets require more complicated data structure and deduplication

logic in the switch.

ASK designs a fine-grained state to record łper-tuplež appearance

and co-designs the host sliding-window scheme and the switch

reliability mechanism with deduplication. ASK also leverages the

persistent connections in the host service to bound the state in the

switch, avoiding state explosion. (ğ3.3)

Agnostically prioritize hot keys in asynchronous aggrega-

tion. In asynchronous aggregation, the switch addresses keys to

aggregators in a First-Come-First-Serve (FCFS) scheme in the run-

time. But the key distribution in a real-world workload could be

skewed; an early cold key (less frequent) in the stream could occupy

an aggregator for the entire lifetime of its aggregation task, wast-

ing the aggregator’s opportunity to serve hot keys (more frequent).

Keys are unforeseeable, without providing a chance to pre-allocate

aggregators for hot keys.

ASK devises a shadow copy mechanism to agnostically prioritize

hot keys. The receiver periodically swaps the copy for aggregation,

guiding traffic to the new copy, and fetching and resetting the old

copy. Even if cold keys could occasionally preempt an aggregator

in one period, hot keys still have the chance (and are more likely)

to reseize aggregators back in the periodical swapping. (ğ3.4)

3 DESIGN

We design ASK to provide a correct and performant key-value ag-

gregation service for the application. On hosts, ASK runs a daemon

to exchange key-value data with applications through inter-process

communication and prepare packets; on switches, ASK aggregates

key-value tuples by keys in a best-effort manner (ğ3.1). The host

daemon packs multiple key-value tuples into a packet with careful

key addressing and placement to vectorize multi-tuple aggrega-

tion (ğ3.2). A lightweight, reliable transmission mechanism can

ensure that ASK can always provide correct aggregation results

even under unreliable network conditions (ğ3.3). ASK also provides

a key agnostic prioritization mechanism to prevent the cold key

from occupying the aggregator for the lifetime of the task, thereby

improving the aggregator utilization (ğ3.4). The description below

uses one switch as an example, but all the designs can be applied

to multiple switches.

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

controller Data Plane (Aggregators)

Switch

1

2

5

3

6 6

8

Server Server

Server Server

5
7 7

8

9

Message

Queue

Shared

Memory

Control

Channel

Data

Channel

Legends:

ASK Daemon

4

10

12 11

App1 (sender 1) App1 (sender 2)

App1(receiver1) App1(receiver2)

C

C

D

D D D D C

C D D D D C

Figure 4: Overview of ASK. Receiver1 and Receiver2 start two

concurrent aggregation tasks.

3.1 Architecture and Workflow

As shown in Figure 4, upon service booting, the switch initializes a

set of aggregators in its data plane. Due to the need for vectorization

(ğ3.2), the aggregator pool in ASK is organized as two-dimensional

aggregator array (AA), i.e., an array of AAs. The first dimension

accesses an AA, and the second one accesses an aggregator. All

AAs are of the same size.

ASK also sets up a daemon process on each server to interact with

the applications. Each daemon would initialize a control channel

and several data channels for aggregation tasks. These channels

persistently run in the whole lifetime of the ASK service, and would

serve multiple aggregation tasks. The data channel is between the

host and the switch, and works in a duplex transmission mode: it

can send key-value streams and receive the aggregation results. The

workflow of executing an aggregation task is depicted in Figure 4,

comprised of the following steps.

Task Setup. Applications submit aggregation tasks to ASK dae-

mons. An aggregation task has multiple senders and one receiver

on end-hosts and is initiated from the receiver (if senders decide

to start a task, they notify the receiver, which would initialize the

task, similarly to the receiver initiating it).

The receiver submits an aggregation task to its local ASK daemon

with a task ID (1○). The receiver-side daemon first allocates a piece

of shared memory on the host for the task (the shared memory re-

duces memory footprint to copy data between the ASK daemon and

the application) (2○), and then applies for a switch memory region

(range on AAs) from the switch controller (3○). The receiver-side

daemon notifies all sender-side daemons about the aggregation task

by the control channel (4○), including the task ID, the switch mem-

ory region, and the application-related context. Each sender-side

daemon passes the notification to the corresponding application via

a local message queue (5○). The sender application allocates a piece

pkt 3 ACK

AA 0 AA 1

pkt 2

AA 0 AA 1

pkt 1 ACK

AA 0 AA 1

bitmap key-value tuples time

dst dst dst

AA 0 AA 1

dst

collision
fetch

a, 1 b, 11 1

b, 1

11 c, 1 f, 1

a, 1

1 1 c, 1 b, 1

a, 1

c, 1 b, 1 c, 2

a, 1

b, 2

10 f, 1

f, 1 f, 1 f, 1 a, 1 c, 2 b, 2

1

2

3 4

ACK

Figure 5: An aggregation example in ASK. ASK packet format

is a bitmap followed by a list of key-value tuples. 𝐴𝐴0 and

𝐴𝐴1 are two aggregator arrays. 𝑑𝑠𝑡 is ASK daemon running

on receiver host.

of the shared memory, writes the key-value data into the shared

memory (6○), and then notifies its local daemon that the sending

task is ready by a message of task ID and the shared memory region

(7○).

The sender-side daemon assigns each sending task to one of its

data channels with load balancing, i.e., hash(ID) to a data channel.

Each sending task is enqueued to a data channel, and a data channel

serves multiple sending tasks in FIFO. The senders’ and receiver’s

data channels would temporarily form an aggregation hierarchy.

The sender streams the packets to the receiver with the task

ID and the destination IP address in the packet (8○). The ASK

switch uses the task ID to identify the aggregator memory region

and the destination IP address to route packets to the aggregation

task receiver. It then extracts the key-value tuples from the packet

and aggregates each key-value tuple individually. For a key-value

tuple, if the aggregator is available, the switch aggregates it and

marks on the packet that it has been aggregated. If the switch

aggregates all the key-value tuples within a packet, the switch

replies an acknowledgment packet (ACK) to the sender; otherwise,

it forwards this packet to the receiver. Upon receiving a data packet,

the receiver-side data channel aggregates the remaining key-value

tuples in the packet to the ID associated shared memory (allocated

in the task beginning), and replies with an ACK.

Task Teardown. When a sender’s key-value data are sent and

acknowledged, the sender-side data channel sends a FIN packet

to the receiver-side data channel. Upon receiving the FINs of all

senders, the receiver-side data channel fetches the results from

the switch AA regions, merges them with its local results (9○),

and notifies the receiver application about the aggregation task

completion with the shared memory address (12○). The receiver

application reads the aggregated results from the shared memory

(11○). Finally, the receiver-side daemon notifies the switch controller

to deallocate the switchmemory region for other future aggregation

tasks to reuse 10○.

Example. Figure 5 shows an example of the aggregation procedure

where the switch and the receiver host receive three consecutive

packets. There are two AAs in the switch in the example. Each

packet has a two-bit bitmap and carries two key-value tuples, where

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

the 𝑖𝑡ℎ bit in the bitmap indicates whether the 𝑖𝑡ℎ key-value tuple in

the packet exists. 𝑝𝑘𝑡1, 𝑝𝑘𝑡2, and 𝑝𝑘𝑡3 carry two key-value tuples;

thus, the bits in each packet’s bitmap are set. ➊ The first packet

𝑝𝑘𝑡1’s two key-value tuples (with key 𝑎 and 𝑏) are mapped indepen-

dently in the two AAs. Note that the 𝑖𝑡ℎ tuple in a packet will be

dynamically hashed to an aggregator in the 𝑖𝑡ℎ AA in the switch. As

both aggregators are available to 𝑝𝑘𝑡1, all the tuples in the packet

are aggregated in the switch and the switch replies an ACK to the

sender. The ACK packet carries the same sequence number as 𝑝𝑘𝑡1.

➋ The second packet 𝑝𝑘𝑡2 is łpartially aggregatedž: its key-value

tuple (𝑐, 1) reserves a new aggregator, but (𝑓 , 1) collides with (𝑏, 1)

at the aggregator in 𝐴𝐴1. When the 𝑖𝑡ℎ tuple is consumed by the

switch, the switch unsets the 𝑖𝑡ℎ bit in bitmap at the packet header.

The packet, e.g., 𝑝𝑘𝑡2, is forwarded with the new bitmap to the

destination host. The receiver host uses the bitmap in the packet

to find the remaining tuple, e.g., (𝑓 , 1) in 𝑝𝑘𝑡2, and aggregates it at

the destination node. Finally, it replies with an ACK as the whole

packet gets consumed there. ➌ The third packet 𝑝𝑘𝑡3’s two key-

value tuples (with key 𝑐 and 𝑏) are absorbed by the two AAs and

replied ACK from the switch. Note that key 𝑏 appears twice (in 𝑝𝑘𝑡1
and 𝑝𝑘𝑡3), it always belongs to the second key subspace (ğ3.2.2),

and is encoded to the second tuple slot in packet payload and pro-

cessed by the second AA (𝐴𝐴1). ➍ Finally, the destination node

fetches aggregated results from the switch, merges them with its

local results, and clears the switch aggregators.

3.2 Multi-key Addressing and Placement

ASK co-designs the switch memory layout and the packet con-

struction to vectorize the multi-key packet aggregation, improve

aggregator utilization, and coalesce aggregators to support variable-

length keys. We carefully divide the logic across host and switch

to avoid the single-key multiple-spot and partial matching effects ,

and maximize the switch aggregator occupancy percentage.

3.2.1 VectorizeMulti-key Packet Aggregation. In the switch, a packet

would sequentially traverse the multiple stages of the packet pro-

cessing pipeline [23], each stage with isolated and scarce SRAM

(1280KB/stage × 16 stage/pipeline × 4 pipelines in Tofino3 [4]).

SRAM are declared as register arrays in the switch program. Due to

the hardware limitation, a register (aggregator) array can only be

read/written once (ğ2.2.1) in one packet pass, but each stage allows

4 register arrays to be declared. Thus, ASK declares multiple regis-

ter arrays to vectorize multi-tuple aggregation. The register arrays

form a two-dimensional aggregator array (AA). All AAs are of the

same size, with each AA processing one tuple in the packet. Figure 6

shows the AA allocation on the switch memory. The first dimension

accesses an AA, and the second one accesses an aggregator.

Each aggregator has a fixed size, denoted as 2𝑛 bits, e.g., 16/32/64bits.

When storing a key-value tuple {key, val}, ASK uses bits 0 to𝑛−1

(vPart) and bits 𝑛 to 2𝑛−1 (kPart) to store val and key, respectively.

If a key is less than 𝑛 bits, ASK pads it 𝑛 bits.

An ASK packet contains the ASK header after the IP header and

the ASK payload. The payload has multiple slots with the same

number as the AAs in the switch, and each slot can carry a key-value

tuple to an AA in the switch.

Switch Memory Layout

AA

stage 0

AA

AA

stage 1

AA

AA

stage M-2

AA

AA

stage M-1

AA

......

Hi

Ha

1

1

s 10key val

A
g
g
re

g
at

o
r

("Hi", 1) ("Ha", 1) ("your", 0) ("s", 1)

your......

Pkt

...

bitmap key-value tuples

(11...11...)2
......

Figure 6: Switch memory layout with the aggregators. (AAs

located in the same stage work in parallel.)

The overall aggregation process is similar to prior INAworks [47,

61] for tuples whose keys fit in 𝑛 bits. To support multi-key vector-

ization, ASK adds three functions. First, the host attaches an 𝑁 -bit

bitmap (the number of keys) to the packet header, where the 𝑖𝑡ℎ

(𝑖 = 0, · · · , 𝑁 − 1) bit indicates the existence of the 𝑖𝑡ℎ key-value

tuple in the payload. Second, when the switch performs the aggre-

gation for an incoming packet, it feeds the 𝑖𝑡ℎ key-value tuple to the

𝑖𝑡ℎ AA. The example in Figure 6 shows that the tuple ("Ha", 1),

which is placed in the second slot within the packet, is indexed to

the second AA. ASK calculates the aggregator index within the AA,

i.e., ℎ𝑎𝑠ℎ(𝑘𝑒𝑦), reads the corresponding aggregator’s kPart 𝑘𝑒𝑦
′
,

and compares it with the 𝑘𝑒𝑦. The switch performs aggregation

only if 𝑘𝑒𝑦
′
is blank or 𝑘𝑒𝑦

′
= 𝑘𝑒𝑦; otherwise, the tuple’s aggrega-

tion fails, and it is forwarded to the destination host along with the

packet for further processing. Third, upon a successful aggregation,

ASK unsets the corresponding bit in bitmap to 0. If all key-value

tuples in a packet are aggregated, the switch drops the packet and

acknowledges the sender an ACK with the same sequence number

as the data packet; otherwise, the switch sends the packet with

remaining (with bit 1 in bitmap) key-value tuples to the receiver

host. This procedure also indicates that a valid key-value tuple will

be aggregated at either the host or the switch. Note that ASK is a

best-effort service, but we can guarantee aggregation correctness

(discussed in ğ 3.3).

3.2.2 Sender-Assisted Addressing. If a key’s multiple tuples are

placed at different slots in packets, that key will occupy multiple ag-

gregators in different AAs, which wastes aggregators. To avoid the

single-key-multiple-spot problem, ASK further devises the packet

construction at the sender. One crucial feature in key-value aggrega-

tion is that the operation is commutative, allowing us to arbitrarily

change the key aggregation order. Further, the key stream is un-

foreseeable and could be unbounded, but the switch memory is

scarce. Thus, stateful addressing schemes within the switch would

be impractical. Hence, we develop an ordered key-space partition

mechanism at the sender to classify each key to a dedicated AA

and apply runtime addressing within the AA. So that one key will

always be mapped to a single dedicated AA in the switch.

Assuming the keyspace is K, and there are 𝑁 𝐴𝐴s on the switch,

ASK partitionsK into𝑁 non-overlapping subspacesK𝑖 (𝑖 = 0, · · · , 𝑁−

1), where K =
⋃𝑁−1
𝑖=0 K𝑖 and K𝑖

⋂

K𝑗 = ∅, 𝑖 ≠ 𝑗 . A key-value tuple

{key, val} then falls into one subspace K𝑖 with a hash function F,

i.e., 𝑖 = F(𝑘𝑒𝑦)%𝑁 .

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

When constructing a packet, the sender packs key-value tuples

following the key subspaces ś sequentially picking a key-value

tuple from K𝑖 and placing it in the 𝑖𝑡ℎ slot in the payload. If no

key-value tuple is in K𝑖 , ASK will leave the 𝑖𝑡ℎ slot blank. The same

key across different packets is always placed at the same slot in the

payload and processed by the same AA on the switch. Note that

the hash function F(·)%𝑁 should be uniform so that keys can be

evenly distributed across subspaces.

3.2.3 Coalesced Placement for Variable-Length Keys. Practical work-

loads could contain keys whose length is beyond an aggregator’s

kPart. ASK uses multiple aggregators to store a key-value tuple,

where the key size could be variable. A naïve approach to aggregate

4∼15-byte keys under 32-bit aggregators is dividing each key into

four segments, placing them independently in their AAs based on

the hash function, performing four lookups sequentially during the

aggregation phase, and aggregating the value only if all segments

are matched. Unfortunately, this design could lead to aggregation

errors. When two long keys 𝑋1𝑋2 and 𝑌1𝑌2 reserve four aggrega-

tors in two AAs independently, a third key 𝑋1𝑌2 would be falsely

recognized as an existing key if the switch validates each of its

segments independently.

The fundamental problem of the naïve design is that the seg-

ments in one long key have an association instead of independence.

Thus, we advocate a design that coalesces multiple AAs in physi-

cally adjacent stages to store the whole long key-value tuple and

addresses the key with a łunifiedž index (i.e., hashing the entire

long key) in all AAs (Figure 6). After dividing a key-value tuple

(𝑘𝑒𝑦, 𝑣𝑎𝑙) into 𝑘 parts, 𝑣𝑎𝑙 is only stored in the last aggregator while

others are left blank, i.e., (𝑘𝑒𝑦, 𝑣𝑎𝑙) = {(𝑘𝑒𝑦1, 0), · · · , (𝑘𝑒𝑦𝑘 , 𝑣𝑎𝑙)}.

As an example in Figure 6, a key-value tuple ("yours", 1)

is divided into two parts {("your", 0), ("s", 1)}, and fed

to 𝐴𝐴𝑀−2 and 𝐴𝐴𝑀−1, where both AAs use the unified array in-

dex (i.e., hash("yours")). Whereas in another key "yourself",

the "your" part would reserve a different aggregator (hashing

"yourself") other than that in "yours".

ASK dedicates 𝑘 groups of AAs for variable-length keys, each

groupwith𝑚 AAs on physical adjacent stages (𝐴𝐴𝑖 to𝐴𝐴𝑖+𝑚−1, · · · ,

𝐴𝐴𝑖+(𝑘−1)𝑚 to 𝐴𝐴𝑖+𝑘𝑚−1). Each group could handle keys with the

length in the range [𝑛, 𝑛𝑚) (𝑛 is the length of the aggregator kPart).

We name these keys medium keys. Medium Keys are padded to 𝑛𝑚.

And each packet could carry 𝑘 medium keys (for the 𝑘 groups).

Note that the dedicated AAs would not process short keys, because

that would cause aggregation errors, e.g., a short key "your" could

not be aggregated by at the aggregator reserved by "yourself".

Together, the whole key space is first divided into short, medium,

and long keys. The short and medium key subspace is further

divided into subspaces as in ğ3.2.2. Long keyswould be collected and

sent to the receiver separately to the host receiver for processing,

bypassing the switch. The choice of𝑚 should adapt to the key size

distribution: a small𝑚 would cause more long keys without INA,

but a large𝑚 would possibly cause packet payload and AAs to be

wasted if medium keys cannot fill in the key-value tuple slots in

the packet payload. In the current implementation, we empirically

choose𝑚 to be 2 and 𝑘 to be 8, and this value is suitable for most

real-world datasets that we studied [1, 2, 16, 19].

3.3 Reliability and Correctness

Unreliable network conditions could lead to packet loss and retrans-

mission. Duplicated packet appearance should not lead to values

being aggregated again. In traditional TCP, the end-to-end reliabil-

ity mechanism would remove the duplicated packet at the receiver,

but ASK is more complicated: as a flow has three endpoints: the

sender, the switch receiver, and the host receiver, if a łpartially

aggregatedž packet is retransmitted, duplicated key-value tuples in

the packet should be eliminated separately at the switch and the

host receiver.

For example, a packet with two key-value tuples [(𝑎, 1), (𝑏, 1)]

is partially aggregated at the switch Ð (𝑎, 1) aggregated but (𝑏, 1)

not, and then lost before arriving at the host receiver. The sender

retransmits the packet to the switch. If the switch aggregates this

packet directly, (𝑎, 1) would be aggregated twice. Still, if the switch

forwards this packet directly, (𝑎, 1) would be aggregated by the

host receiver and eventually aggregated twice when both receivers’

results are merged. Either case is incorrect. The correct behavior

should be łdroppingž (𝑎, 1) and carrying (𝑏, 1) to the host receiver.

A straightforward way to avoid repeated aggregation is to imple-

ment a reliability mechanism at the switch and break the end-to-end

flow into two separate reliable flows, where the switch serves as

the receiver endpoint of the sender host, and the sender endpoint

of the receiver host. Since switch memory is too scarce to record

an unbounded key-value stream, we implemented a lightweight

reliability mechanism, where the switch only maintains the per-

tuple states for a window of packets in each flow. Furthermore, the

switch only serves as the receiver endpoint, thus, the sender side

functions, e.g., retransmission and timeout, are still on the host;

and the ACK packets sent from the switch do not require any states

maintained in the switch.

Host Sender. The sender maintains a sliding window whose max-

imum size is𝑊 packets. The sender always sends packets in the

window, and ACKs would move the window forward and trigger

sending new packets. A packet is retransmitted if its ACK does not

arrive for a timeout. ASK does not use out-of-order ACKs to trig-

ger retransmission, because both the switch and the host receiver

could reply ACKs, causing out-of-order packets, which could be

misinterpreted by the sender as packet loss; instead, ASK chooses

a fined-grained timeout (100us v.s. Linux default 200ms). When

all packets of one aggregation task are sent and acknowledged,

the sender sends a FIN packet to the aggregation receiver, which

fetches the aggregation results from the switch.

Switch Receiver. The switch maintains a receive window for a

sender (data channel), which is a 2𝑊 -bit array named seen. seen is

circularly used to record each packet’s appearance in the unbound

key-value flow. There would be at most𝑊 packets in flight, and

each is indicated by one bit in seen.

𝑖𝑑𝑥 ← 𝑝𝑘𝑡 .𝑠𝑒𝑞%(2𝑊),

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ← 𝑠𝑤𝑖𝑡𝑐ℎ.𝑠𝑒𝑒𝑛[𝑖𝑑𝑥] .
(5)

The switch uses the packet sequence number to find the bit index

in the seen bitmap and obtain the state from the seen bitmap. If a

packet appears for the first time, i.e., its bit is unset, it is recorded

and further participates in the aggregation procedure in ğ3.2.1;

otherwise, it is a retransmitted packet, which would skip the switch

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

aggregation. In both cases, the packet’s indication bit in seen is set.

𝑠𝑤𝑖𝑡𝑐ℎ.𝑠𝑒𝑒𝑛[𝑖𝑑𝑥] ← 1. (6)

As the array is circularly used, each packet would also clear a bit

one window away for a future packet to use (at 𝑖𝑑𝑥 +𝑊).

𝑠𝑤𝑖𝑡𝑐ℎ.𝑠𝑒𝑒𝑛[(𝑖𝑑𝑥 +𝑊)%(2𝑊)] ← 0. (7)

There is a corner case where a very stale packet earlier than the

current sliding window arrives at the switch (due to some long-

time network delay), and it falsely overwrites the bit in seen. For

example, the switch currently maintains a window with sequence

number from 2𝑊 to 3𝑊 . A packet with a sequence number of𝑊

arrives at the switch, which could falsely overwrite the state of the

packet sequence 3𝑊 in seen. To resolve this issue, ASK additionally

records the current window boundary and drops packets out of

the boundary. ASK always records the maximum sequence number

observed:𝑚𝑎𝑥_𝑠𝑒𝑞 =𝑚𝑎𝑥 (𝑚𝑎𝑥_𝑠𝑒𝑞, 𝑝𝑘𝑡 .𝑠𝑒𝑞) for each packet. The

current window range is (𝑚𝑎𝑥_𝑠𝑒𝑞 −𝑊,𝑚𝑎𝑥_𝑠𝑒𝑞]. If a packet has

a sequence number smaller than or equal to𝑚𝑎𝑥_𝑠𝑒𝑞 −𝑊 , it is a

stale packet (earlier than the current window) and is dropped.

We note that (1) the array size should be at least 2𝑊 to guarantee

that the record/clearance operation is correct. Because when ob-

serving the 𝑖𝑡ℎ packet, all packets in the range [𝑖 −𝑊 + 1, 𝑖 +𝑊 − 1]

are possibly in the current window, and the cleared bit should

be out of this range (whose size is 2𝑊 − 1). (2) The receive win-

dow abstraction has a memory-compact design using the switch’s

atomic łtest-and-setž instructions set_bit(b)4 and clr_bitc(b)5.

Its array size is𝑊 , saving 50% memory for seen. The design is as

follows.

A Compact seen. The array seen is designed with 𝑊 bits. The

packet sequence 0 · · · , 𝑆 − 1 is divided into segments of size𝑊 ,

i.e., for a packet with a sequence number 𝑠 , it is in the segment of

𝑞 = ⌊𝑠/𝑊 ⌋ and its offset within the segment is 𝑟 = 𝑠%𝑊 .

According to 𝑞%2, the segment can be an even segment or an odd

one. The switch would iteratively observe packets from even and

odd segments. In this design, seen uses 1/0 to denote the appearance

of a packet in an even/odd segment. The operation for a packet is

as follows.

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ←

{

𝑠𝑒𝑡_𝑏𝑖𝑡 (𝑠𝑒𝑒𝑛[𝑟]) if 𝑞 𝑚𝑜𝑑 2 = 0,

𝑐𝑙𝑟_𝑏𝑖𝑡𝑐 (𝑠𝑒𝑒𝑐 [𝑟]) if 𝑞 𝑚𝑜𝑑 2 = 1.
(8)

There are four cases when a packet arrives at the switch, and all

cases correctly record the appearance and return the observation

state.

• Case 1: An even-segment packet arrives, and its bit is 0. The

operation would return 0, and set the bit.

• Case 2: An even-segment packet arrives, and its bit is 1. The

operation would return 1, and set the bit.

• Case 3: An odd-segment packet arrives, and its bit is 1. The

operation would return 0, and unset the bit.

• Case 4: An odd-segment packet arrives, and its bit is 0. The

operation would return 1, and unset the bit.

4An atomic instruction that sets the bit b and returns the previous bit value.
5An atomic instruction that unsets the bit b and returns the complement of the previous
bit value.

A single set_bit()/clr_bitc() instruction undertakes the three

functions in the original design: recording the observation, return-

ing previous record (flipped for odd-segment packets), and initializ-

ing the bit state one-window away. In returning previous record, for

the odd segment’s packets, 0 in seenmeans observed and returning

its complement flips it to 1, matching the semantic of observed.

In initializing the future bit, set_bit in an even segment would

set the bit (to 1), making it prepared for the next odd segment, and

clr_bitc in an odd segment would unset the bit (to 0), making it

prepared for the next even segment.

There are two cases if a packet is identified as a retransmitted

packet. If the packet was fully aggregated, it is dropped, and the

switch replies its ACK. If the packet was łpartially aggregatedž, the

switch should łdropž the aggregated key-value tuples, then forward

the packet with the remaining key-value tuples to the destination

node.

To handle the partially-aggregated packets, we record packets’

aggregation states, i.e., their bitmaps, at the end of the switch

pipeline. The states are stored in a circular array of the same size

as the window, called PktState, each array unit storing a bitmap.

Each bit in a PktState unit indicates whether a tuple in one packet

has been aggregated in the switch. When a packet is first observed

(observed = 0), the packet’s aggregation result is recorded by copying

the packet’s bitmap to the PktState as shown in Equation (9).

𝑠𝑤𝑖𝑡𝑐ℎ.𝑃𝑘𝑡𝑆𝑡𝑎𝑡𝑒 [𝑖𝑑𝑥%𝑊] ← 𝑝𝑘𝑡 .𝑏𝑖𝑡𝑚𝑎𝑝. (9)

When a packet is observed again (observed = 1) at the switch, the

aggregation state is written back to the packet as shown in Equa-

tion (10).

𝑝𝑘𝑡 .𝑏𝑖𝑡𝑚𝑎𝑝 ← 𝑠𝑤𝑖𝑡𝑐ℎ.𝑃𝑘𝑡𝑆𝑡𝑎𝑡𝑒 [𝑖𝑑𝑥%𝑊] . (10)

Thus, retransmitted partial-aggregated packets only carry valid key-

value tuples (with bit 1 in bitmap) to the host receiver for further

aggregation.

Host Receiver. The receiver host similarly maintains a receive

window to record the packet’s appearance. On the first appearance,

a packet will be processed, i.e., an unaggregated key-value tuple

in the packet is aggregated locally; on the later appearances, the

packet is dropped; in both cases, the receiver replies with an ACK

to the sender.

Bounding Switch States. The reliability mechanism requires the

switch to maintain a per-flow state, which could affect the system’s

scalability. Since all streams on the same server multiplex the ASK

data channels, the per-flow state (seen and PktState) can be asso-

ciated with each data channel. In the current implementation, the

max sliding window size is set to be 256, thus 256 + 256 × 32 bits

(1056𝐵, for seen and PktState) are needed for one data channel

on the switch. A top-of-rack (TOR) switch can spare 264KB SRAM

(out of ~15MB) to sufficiently support 64 servers.

3.4 Hot-Key Agnostic Prioritization

Key-value streams arrive at ASK online, and keys are unforeseeable.

That is, each key’s multiple appearances arrive asynchronously.

In asynchronous aggregation, key-value tuples are addressed to

aggregation in runtime in a First-Come-First-Serve (FCFS) manner;

a reversed aggregator would be held by its key in the entire lifetime

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

Algorithm 1: Shadow Copy

1 Switch():

2 copy_indicator← not(copy_indicator)

3 Read(key):

4 read_part← 1 - copy_indicator

5 index← hash(key) % N + read_part * N

6 return AA[index].val

7 Write(key, val):

8 write_part← copy_indicator

9 index← hash(key) % N + write_part * N

10 key′← AA[index].key

11 if key′ == key or is_blank(key′) then

12 Aggregate {key, val} into AA[index]

13 return true /* aggregation success */

14 ˙ return false /* conflict */

of the aggregation task, because the key’s last appearance is un-

known. However, real-world key-value streams could exhibit key

distribution skewness. For example, according to Zipf’s law [44], in

all languages, the frequency of a word is inversely proportional to

its index (index starts from 1) if all words are sorted in descending

order by their frequency. If a low-frequency key, a.k.a. cold key,

reserves an aggregator during the entire aggregation task, the late-

arrived high-frequency keys, a.k.a., hot keys, could not preempt

the aggregator. As a result, the aggregators would not be utilized

to the best extent.

ASK makes a key-distribution agnostic design. It builds a shadow

copy [61] for each AA, and periodically swaps between copies in

runtime. When switching to a new copy, key-value tuples would

get a new chance to reserve the empty aggregators. Statistically

(for many rounds), hot keys would have more opportunity than

(collided) cold keys to reserve the aggregator, and the overall ag-

gregation efficiency could be improved.

For an AA with 2N aggregators, we divide it into two copies,

referring to the first N aggregators and the last N aggregators.When

the switch performs an aggregation operation on one of the copies,

the host receiver can read the intermediate results on the other

copy. The switch is modified with a copy indicator (one bit) to direct

packets to one of the two copies. As shown in Algorithm 1, when

the number of arrived packets at the host receiver reaches a tunable

threshold, the host receiver sends a swapping notification to the

switch; the switch flips the copy indicator (Switch() in line 1),

which directs packets to the new copy; the receiver further fetches

the results in the old copy and cleans up the old copy (Read() in

line 3-6). At the same time, the switch will use the new copy to

perform the aggregation operation (Write() in line 7-14).

Since PISA [23] restricts that each stage can only process one

data packet at a time, when the switch pipeline is processing a

copy-switching notification packet, there must be no other packets

reading the copy indicator, thus ensuring the Switch() operation to

be atomic. Moreover, in the runtime, Read() and Write() operate

on two physically disjoint areas, avoiding the problem of read-write

conflicts and ensuring the correctness of the final result.

4 IMPLEMENTATION

ASK consists of the aggregation function on the switch, and the

network stack and service framework on hosts. The ASK switch

aggregation function is implemented in P4 [22] with ~5000 lines of

code, and the ASK network stack and service framework on hosts

are implemented in DPDK [3] with ~4500 lines of C code. There

are 32 AAs per pipeline, and each AA has 32768 aggregators. The

switch’s multiple pipelines can be used independently or chained

together to form a longer pipeline. Thus, one packet can pack 32

8-byte key-value tuples using one pipeline or up to 128 8-byte key-

value tuples if chaining pipelines. On the host, ASK daemon is

implemented as a DPDK process with a thread pool. ASK uses one

thread as the control channel and binds each data channel to one

remaining thread in the pool.

The application interacts with ASK through a plugin. This plugin

can convert data formats between the application and ASK. We

build plugins for Spark and BytePS. The Spark [14] plugin has ~1800

lines of JAVA code, and the BytePS [6] plugin has ~500 lines of C++

code.

5 EVALUATION

In this section, we show ASK’s good properties in supporting key-

value stream aggregation.

• ASK effectively supports real-world and artificial key-value

stream aggregation, and the performance gain is from both

traffic reduction and computation offload (ğ5.2).

• The design choices of multi-key vectorization and hot-key

prioritization effectively improve the system performance

(ğ5.3 and ğ5.4).

• ASK accelerates the big data system (ğ5.5) and is backward

compatible with value stream aggregation systems like dis-

tributed training (ğ5.6).

5.1 Experiment Settings

Cluster Setup. We conduct the experiment using one 32-port

Tofino [5] switch and nine servers. Each server runs Ubuntu 18.04

(kernel 4.15.0-20) and has 56 Xeon𝑅 Gold 5120T cores, 192GB RAM,

19TB disk, and one NVIDIA GeForce RTX 2080Ti GPU with driver

version 430.34 and CUDA 10.0, and is connected to one of the switch

port with a 100Gbps ConnectX-5 NIC [10].

Baselines. We evaluate ASK6 in benchmarks, a big data system,

and distributed training. (1) In benchmarking, we compare ASK

with a host-only aggregation solution (PreAggr) 7 to demonstrate

ASK can reduce CPU overhead while speeding up the key-value

stream aggregation. (2) In big data system, the baseline is the

vanilla Spark [68], Spark with RDMA for network IO acceleration

(SparkRDMA [11]), and Spark with shared memory (SparkSHM8)

which writes intermediate data on shared memory to exclude disk

IO overhead. (3) In distributed training, we compare ASK with

ATP [47] and SwitchML [61] to show that ASK can seamlessly sup-

port value stream aggregation, and have similar performance with

6By default, 4 ASK Data Channels are configured on each host.
7PreAggr: Instead of aggregating all key-value tuples at the receiver, each sender will
aggregate key-value tuples by sorting them by key first and then merging neighboring
tuples with the same key [14] (aka pre-aggregation).
8SparkSHM only use ASK for data transmission but does not perform INA, which
excludes the influence of ASK’s engineering optimization.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

8 16 32 64 128

Number of mappers/reducers
(a) Job completion time

0

30

60

90

120

J
C
T

(s
ec
on

d
s)

ASK (1 dCh)

ASK (2 dCh)

ASK (4 dCh)

PreAggr

8 16 32 64 128

Number of mappers/reducers
(b) Normalized CPU usage

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

C
P
U

ASK (1 dCh)

ASK (2 dCh)

ASK (4 dCh)

PreAggr

Figure 7: Comparison of ASK (1/2/4 Data Channels (dCh))

and end host based solution.

single-key INA systems. (4) Finally, we compare ASK with pure

network transmission (denoted as NoAggr) to study the system

overhead, scalability, and tradeoff, explore how small packet size

impacts the aggregation throughput, and give an analysis of ASK’s

scalability.

Datasets. When benchmarking the big data system, we use traces

from production, including yelp [19], NG [2], BAC [16], and LMDB [55].

We also generate artificial traces such as uniform distribution and

Zipf distribution [44] to understand the effectiveness of hot-key ag-

nostic prioritization. In distributed training, we use popular models

(ResNet50/101/152 and VGG11/16/19) with ImageNet [36, 63].

Metrics. We measure following metrics to compare different solu-

tions’ performance and overhead: (1) Job Completion time (JCT),

a job’s (multiple aggregation tasks) total execution time; (2) through-

put/goodput of each host; (3) the training throughput (image/second)

of image classification tasks in distributed training, and (4) CPU

utilization.

5.2 In-Network Aggregation Benchmark

5.2.1 Computation Offload. Like other INA solutions, ASK offloads

computation from hosts to the switch, which can reduce CPU over-

head significantly while speeding up the performance. We show the

computation offload in a MapReduce [30] job by comparing ASK

with the host-only solution łPreAggrž. We use only one sending

host whose bandwidth equals the receiver’s, excluding the network

bottleneck’s impact. In this experiment, we start the same number

ofmap threads (mapper) and reduce threads (reducer) on the sending

host and receiving host, respectively. Among them, the map thread

is used to generate key-value streams, and the reduce thread is used

to aggregate key-value tuples. In all experiments, the total data vol-

ume (key-value tuples) is fixed and follows a uniform distribution.

The number of mapper/reducer threads is tunable.

Figure 7 shows that ASK consistently outperforms PreAggr in

terms of JCT but consumes much fewer CPU cycles. In PreAggr,

1 8 16 32 48 64
KV tuples per packet

(a) Single server goodput

0

20

40

60

80

100

G
o
o
d
p
u
t
(G

b
p
s)

ASK

Ideal

1 4 8 16 24 32
Non-blank KV tuples per packet

(b) Cumulative distribution

0

0.2

0.4

0.6

0.8

1.0

C
D
F

Uniform

yelp

BAC

NG

IMDB

Figure 8: Impact of multi-key design on single server’s good-

put and Non-blank key-value tuples per packet.

Table 1: Traffic reduction on different datasets. The traf-

fic reduction is defined as
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑡𝑢𝑝𝑙𝑒𝑠
𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑡𝑢𝑝𝑙𝑒𝑠

(first line) and

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

(second line), respectively.

Dataset yelp NG BAC LMDB
Aggregated key-value tuples (%) 92.18 85.73 94.32 91.49

Switch ACKed Packets (%) 72.01 84.35 90.36 88.59

mappers’ local aggregation reduces data volume significantly, from

51.2GB raw data to 256MB intermediate results, and the network

transmission time is negligible. ASK achieves a JCT of about 16

seconds with 1 data channel, and a minimum JCT of about 6 sec-

onds with 4 data channels; PreAggr spends 111.20s/33.22s with

8/32 threads. Because ASK consumes CPU only for packet IO

(1.78%/3.57%/7.14% CPU for 1/2/4 data channels) but PreAggr con-

sumes CPU for both computation and IO (14.3% for 8 threads, and

100% at the peak for 56 threads).

5.2.2 Traffic Reduction in Real-World Traces. In data-intensive sce-

narios such as big data or distributed training, a large amount of

traffic will put a huge burden on the network and affect the perfor-

mance of other tasks. Reducing network traffic is crucial to allevi-

ating network congestion and improving application performance.

ASK can significantly reduce network traffic by aggregating traffic

on TOR and actively discards the aggregated packets to prevent

them from entering the network further and causing congestion.

We repeat the experiment above with production datasets and count

the ratio of key-value tuples/packets aggregated by the switch. As

shown in Table 1, the switch can aggregate 85.73% ∼ 94.32% key-

value tuples and absorb 72.01% ∼ 90.36% network traffic.

5.3 Effectiveness of Multi-key Vectorization

The multi-key design can effectively improve the goodput. Assum-

ing one packet contains 𝑥 8-byte key-value tuples and the overhead

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

1

64

1

32

1

16

1

8

1

4

1

2
1

Number of Aggregators
Number of Distinct Keys

(a) Without Prioritization

0

20

40

60

80

100

IN
A

P
er
ce
n
ta
ge

Zipf

Uniform

Zipf (Reverse)

1

64

1

32

1

16

1

8

1

4

1

2
1

Number of Aggregators
Number of Distinct Keys

(b) With Prioritization

0

20

40

60

80

100

IN
A

P
er
ce
n
ta
ge Zipf

Uniform

Zipf (Reverse)

Figure 9: Key-value tuples aggregated by the switch

with/without agnostic prioritization, varying with the ratio

of the total number of aggregators to the number of distinct

keys in the aggregation task.

of sending a packet is 78 bytes9. In the 100Gbps network, the ideal

goodput will be 8𝑥
8𝑥+78 × 100𝐺𝑏𝑝𝑠 . We conduct data transfer ex-

periments between two servers and vary the number of key-value

tuples per packet from 1 to 64, then measure the actual goodput.

Figure 8(a) compares the results of ASK with the theoretical ideal

goodput. When the key-value tuples per packet do not exceed 32,

the goodput increases almost linearly with the packet size. In this

range, ASK’s throughput is bounded by the PPS on the host. The

small glitches (at 18 and 26 on the X-axis) out of the linearity are

caused by the overhead of transferring a packet from the memory

to the NIC via PCIe10. When the tuples per packet exceed 32, the

experiment result matches the theoretical value.

ASK’s key space partition to construct multi-key packets could

cause some tuple slots in the packet to be blank when packing

keys in a key-skewed dataset. Figure 8(b) measures the cumulative

distribution of the number of non-blank (valid) key-value tuples

contained in packets constructed from different datasets. Ideally,

when the key distribution is uniform (line Uniform), there is no

blank tuple in almost every packet. Real-world traces show a bit

worse efficiency, but the worst traces (yelp [19]) still contains aver-

age 16.91 valid key-value tuples per packet, better than previous

works [41, 47, 64] which only support one key per packet.

5.4 Effectiveness of Key Agnostic Prioritization

We show that the key agnostic prioritization in ASK can improve

aggregator utilization, i.e., aggregating more hot keys with fewer

aggregators. We generate two datasets from uniform distribution

978 = 12 (Inter-Packet Gap) + 7 (Preamble) + 1 (Start Frame Delimiter) + 14 (Ethernet
Header) + 20 (IP Header) + 20 (ASK Header) + 4 (CRC).
10The Transaction Layer Packet (TLP [13]) transferred from the memory to NIC needs
to start from PCIe lane0 (16 lanes in total) and at an even cycle of the CPU clock, and
each TLP has at least 24 bytes overhead on the PCIe.

5 10 15 20

Key-value tuples/mapper (×107)

0

5

10

15

20

25

J
C
T

(s
ec
on

d
s)

ASK

SparkSHM

SparkRDMA

Spark

Figure 10: A comparison of ASK and Spark in terms of job

completion time.

and Zipf distribution (ğ3.4) [44], respectively. The Zipf distribu-

tion has a skewed key distribution, which holds for all natural

languages [57] and even artificial systems [59]. In the experiment,

the Zipf dataset means that hot keys appear in the front and the

cold keys appear in the rear in the key-value stream; Zipf (reverse)

dataset reverses the key appearance order, making cold keys in the

front and hot keys in the rear; in Uniform dataset, all keys have

the same frequency (no hot and cold keys). We fix the number of

distinct keys to 216 (each dataset contains about 108 keys), and vary

the number of aggregators from 24 to 216.

Figure 9(a) shows that switch aggregators are underutilized with-

out key-agnostic prioritization. Because an aggregator could be

occupied by a cold key (never appearing in the future), it will not

be released until the end of the aggregation task. Increasing the

number of aggregators, allowing more keys to be held in the switch,

could increase the switch aggregation ratio. Making the hot keys

appear early and occupy the aggregator, could also increase that

ratio Ð ASK performs better on Zipf than Zipf (reverse). Both meth-

ods do not always apply Ð for the former, the switch momory

could be scarce and limited; for the latter, key-value streams could

be unforeseeable without being sortable by frequency ahead of

sending.

Figure 9(b) shows that key-agnostic prioritization significantly

improves the aggregator utilization, avoiding a cold key occupying

the aggregator for the entire task. We can use much fewer aggre-

gators than distinct keys to complete the aggregation of almost all

key-value tuples, e.g., the aggregator-to-distinct-key ratio of 1/16,

achieving 95.85% on-switch aggregation.

5.5 Effectiveness in Data Analytic Systems

We measure the ASK’s synthetic performance acceleration to the

Big Data system. We run WordCount in HiBench’s SparkBench [7].

In the experiments, we set up 3 machines, each with 32 mappers (a

map task in Spark [68]) and 32 reducers (a reduce task in Spark);

each mapper has 218 distinct keys. We randomly generate 5 × 107,

10 × 107, 15 × 107 and 20 × 107 key-value tuples per mapper. The

baselines are Spark, SparkSHM, and SparkRDMA (ğ5.1 baselines).

Figure 10 shows the results, and we get the following observations.

First, SparkRDMA and SparkSHM do not provide significant per-

formance gain to Spark. Because after pre-aggregation in mappers,

the intermediate results’ volume is very small. Thus, improving the

network throughput and disk I/O cannot obviously improve the

overall JCT for aggregation jobs.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

0 5 10 15 20 25

Time (s)
(a) map task

0

0.2

0.4

0.6

0.8

1.0

C
D
F

ASK

Spark

SparkRDMA

SparkSHM

0 1 2 3 4 5

Time (s)
(b) reduce task

0

0.2

0.4

0.6

0.8

1.0

C
D
F

ASK

Spark

SparkRDMA

SparkSHM

Figure 11: A comparison of ASK and Spark in terms of task

completion time.

Second, ASK outperforms all other baselines in terms of JCT. Its

JCT can be reduced by 67.3% to 75.1% compared with other base-

lines in all settings. The performance gain is from the computation

offload. The aggregation is performed on the switch at the line

rate instead of the CPU. Figure 11 shows the task completion time

(TCT) of mappers and reducers, further validating the reason for

the performance gain. In Spark with ASK, the mappers’ TCT is

significantly shorter than other baselines (mean 1.67s v.s. 15.89s-

17.67s in the other three), because ASK’s mappers do not use CPU

for aggregation. ASK reducers have a longer TCT because some

mappers are co-located with the reducer on the same machine, and

these mappers’ data needs to be aggregated by the local reducers.

The mapper TCT decrement is more significant than the reducer

TCT increment, so the overall JCT is reduced.

5.6 Extend to Deep Learning Systems

ASK can also cover the special case of value stream aggregation and

be compatible with distributed training. We implement a parame-

ter server system for distributed training by integrating ASK with

BytePS [39]. We compare ASK with existing INA-based distributed

training frameworks ATP [47] and SwitchML [61] on model train-

ing, and measure the training speed (image/second).

Figure 12 shows that ASK, ATP, and SwitchML have similar per-

formance because they all use the switch to accelerate the gradient

aggregation process. ASK and ATP slightly outperform SwitchML

on some models because SwitchML’s small packet size cannot fully

utilize the network bandwidth.

5.7 Overhead and Scalability

We compare ASK with pure network transmission to study its

bandwidth overhead and analyze the tradeoff between overhead, ef-

ficiency, and scalability. Compared with pure network transmission,

ASK packets introduce overhead to bandwidth efficiency, and we

ResNet50 ResNet101 ResNet152 VGG11 VGG16 VGG19
0

100

200

30

Im
ag
e/
S
ec
on

d

ASK ATP SwitchML

Figure 12: Single job throughput in distributed training.

argue that the overhead is acceptable compared with the significant

computation acceleration and excellent scalability.

5.7.1 Bandwidth Overhead. With one pipeline, the hardware limi-

tation restricts the number of AAs to be 32 and the packet payload to

be 256Bytes. Figure 13(a) shows the aggregation throughput when

there are only one sending host and one receiving host. łNoAggrž

transmits packets with DPDK and 1500 bytes MTU. We tune the

number of data channels. Overall, both ASK and NoAggr can sat-

urate the NIC bandwidth, but the goodput of NoAggr and ASK

is 91.75Gbps v.s. 73.96Gbps; and NoAggr saturates the bandwidth

with 2 cores while ASK with 4 ones.

5.7.2 Scalability. ASK’s processing speed could linearly scale with

the number of senders, which significantly outperforms host-only

solutions. We use one host as the receiver, tune the number of send-

ing hosts, and show the average sender throughput in Figure 13(b).

ASK’s average throughput stays constant even with more servers

because most of the traffic is directly aggregated and acknowledged

by the switch, eliminating the bottleneck at the receiving host. But

the average throughput in NoAggr is inversely proportional to the

number of sending hosts (e.g., 11.88Gbps for 8 servers), where the

receiving host’s link becomes the bottleneck.

We argue that ASK’s bandwidth overhead is acceptable consid-

ering its benefits. (1) The CPU cycles saved by computation offload

are much larger than the ones cost in sending small packets (see

Figure 3); (2) ASK shows excellent scalability, which is critical for

distributed systems. (3) If the switch can spare more port band-

width to chain pipelines and recirculate packets, the goodput can

be further promoted (e.g., 4 pipelines achieving ~90Gbps/host).

6 RELATED WORK

INA has been deeply explored in distributed machine learning. Un-

der some circumstances, the network would be the bottleneck in

communication-intensive models [54]. ATP [47], SwitchML [61],

SHARP [33], NetReduce [52], iSwitch [51], NVIDIA’s accelerator

centric network [43], and PANAMA [32] propose to apply INA to ac-

celerate the gradient aggregation in distributed training. Flare [28]

proposes a RISC-V-based switch module to aggregate vectors. The

INA solutions above target value stream aggregation. Some other

works deploy middleboxes [56] or high-performance dedicated

servers [27, 50] other than switches to achieve in-network aggre-

gation in specific scenarios, such as wireless communication and

MapReduce. ASK is the first on-switch, generic, vectorized, reliable,

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

1 2 3 4 5 6 7 8
Number of Data Channels

(a) Throughput on a single server

0

50

100

T
h
ro
u
gh

p
u
t
(G

b
p
s)

ASK NoAggr

1 2 3 4 5 6 7 8
Number of servers

(b) Throughput per server

0

50

100

T
h
ro
u
gh

p
u
t
(G

b
p
s)

ASK NoAggr

Figure 13: Aggregation throughput. The filled bar represents

the goodput, and the empty bar represents bandwidth over-

head consumed by the packet header, crc, etc.

and hot-key prioritized key-value aggregation service for diverse

applications.

Key-value stream aggregation can also be accelerated by speed-

ing up the network transmission, e.g., using the high-speed network

(SparkRDMA [11]), or compressing traffic (OmniReduce [31]). ASK

is complementary with these methods. Programmable switches

can also accelerate operations other than aggregation, e.g., storage

(NetCache [41] and DistCache [53]), replication (NetChain [40], Hy-

perLoop [42] and Harmonia [70]), load balancing (AppSwitch [26]),

and filter (Cheetah [64], FPISA [67], and NetAccel [48]), and ASK

can work together with these operators in system building.

Trio [66] is a new type of programmable switch that adopts

the run-to-completion architecture instead of the pipeline. Trio in-

creases the memory available to the data plane of the programmable

switch from 𝑂 (10𝑀𝐵) to 𝑂 (1𝐺𝐵) while reducing restrictions on

memory access and increasing programmability at the cost of pro-

cessing speed. The design of ASK can be very well adapted to this

architecture. With Trio, the shadow copy mechanism and variable-

length key processing of ASK can be further improved to support

more jobs.

7 DISCUSSION

Deployment in Mutli-rack networks.When ASK is extended to

the hierarchical aggregation, the senders are leaf nodes, the receiver

is the root, and switches are the intermediate nodes. However, each

switchmustmaintain the states for all data channels of its leaf nodes,

where states could explode. To avoid state explosion, ASK could

be deployed on TOR switches, providing a best-effort service only

to hosts within one rack. And cross-rack traffic would bypass the

receiver TOR switch and proceed to the receiver host for eventual

aggregation.

CongestionControl.Whenmultiple jobs coexist in the cluster and

contend for bandwidth, a congestion control mechanism is needed

for the jobs to share and saturate the bandwidth. ASK is compatible

with existing ECN-based and loss-based INA congestion control

mechanisms, e.g., ATP [47] and PANAMA [32]. When applying a

congestion control mechanism, the congestion window should not

exceed the maximum window defined in the reliability mechanism

(ğ3.3), protecting the switch receive window from malfunctioning.

Multi-Tenancy. ASK supports multi-tenancy. When there are ag-

gregation tasks from multiple tenants, these tasks need to encode

the tenant ID into the task ID. Then the ASK daemon would isolate

these tasks on the host, and ASK switch controller would isolate

these tasks’ memory regions in the switch.

Whether there is an alternative design of the Shadow Copy

Mechanism. The shadow copy mechanism aims to process more

hot keys in the limited switch memory. A seemingly obvious ap-

proach is to manage the AAs as set associative with a replacement

policy such as LRU. However, this approach cannot be simply im-

plemented on the programmable switch. In an łunreliablež network,

the action of łevicting cold items to the receiverž (making space

for hot items) requires the switch to make Active Repeat Request

(ARQ) until the eviction succeeds (identified by a receiver-to-switch

acknowledgement), but the switch programming language does not

natively support repeat requests, and it is not practical to suspend

packet processing for the trial-and-error eviction operation.

Actually, the two copies in the ASK shadow copy mechanism

form an AA set as mentioned in the approach above. ASKmakes the

receiver periodically initiate the łeviction and replacementž, which

is triggered by the statistics on the receiver. And implementing

ARQ (i.e., reliable Read() in ğ3.4) for eviction is more feasible on

the receiver host than the switch.

8 CONCLUSION

In-network computing provides a novel architecture for improving

the performance of distributed systems. Although in-network com-

puting has demonstrated its potential in distributed training, there

is still a lack of sound system design to support a broader range

of aggregation jobs. ASK is the first switch-host co-designed sys-

tem that provides key-value stream aggregation service to diverse

applications simultaneously, which can accelerate applications’ per-

formance by reducing traffic volume and offloading computation.

ASK overcomes challenges of vectorizing multi-key by key ad-

dressing and placement, correctness guarantee by a lightweight

reliability mechanism, and utilizing switch memory to a better ex-

tent by hot-key agnostic prioritization. The evaluation shows that

ASK could significantly accelerate key-value stream aggregation

and applications such as big data and distributed training.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the valuable comments.

Wenfei Wu is supported by Peking University Start-up funding.

Ming Liu is supported in part by NSF grants CNS-2106199 and

CNS-2212192.

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

REFERENCES
[1] 2011. Large Movie Review Dataset. https://ai.stanford.edu/~amaas/data/

sentiment/.
[2] 2020. 20 Newsgroups. http://qwone.com/~jason/20Newsgroups/.
[3] 2020. DPDK (Data Plane Development Kit). http://dpdk.org.

[4] 2021. Intel@ Tofino𝑇𝑀 3. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch.html.

[5] 2021. Intel@ Tofino𝑇𝑀 Series of P4-Programmable Ethernet Switch
ASIC. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html.

[6] 2022. BytePS. https://github.com/bytedance/byteps.
[7] 2022. HiBench. https://github.com/Intel-bigdata/HiBench.git.
[8] 2022. Intel FlexPipe. https://www.intel.com/content/dam/www/public/us/en/

documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf.
[9] 2022. IP Packet Overhead. https://infohub.delltechnologies.com/l/powerscale-

network-design-considerations/ip-packet-overhead.
[10] 2022. Mellanox ConnectX-5. http://www.mellanox.com/related-docs/user_

manuals/ConnectX-5_VPI_Card.pdf.
[11] 2022. Mellanox SparkRDMA. https://github.com/Mellanox/SparkRDMA.git.
[12] 2022. MPI Forum. https://www.mpi-forum.org.
[13] 2022. PCI Express. https://en.wikipedia.org/wiki/PCI_Express.
[14] 2022. Spark. https://spark.apache.org.
[15] 2022. Spark Stream. https://spark.apache.org/streaming/.
[16] 2022. The Blog Authorship Corpus. http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm.
[17] 2022. TPC-H Benchmark. http://www.tpc.org/tpch/.
[18] 2022. XPliant Ethernet Switch Product Family. http://www.cavium.com/XPliant-

Ethernet-Switch-Product-Family.html.
[19] 2022. Yelp Open Dataset. https://www.yelp.com/dataset.
[20] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In SIGCOMM (New Delhi, India).

[21] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. 2016. Enabling {ECN} in multi-
service multi-queue data centers. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16). 537ś549.

[22] Pat Bosshart et al. 2014. P4: Programming Protocol-Independent Packet Proces-
sors. ACM SIGCOMM Computer Communication Review 44, 3 (2014).

[23] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China)
(SIGCOMM ’13). Association for Computing Machinery, New York, NY, USA,
99ś110. https://doi.org/10.1145/2486001.2486011

[24] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[25] Ge Chen, Gaoxiong Zeng, and Li Chen. 2021. P4COM: In-Network Computation
with Programmable Switches. arXiv preprint arXiv:2107.13694 (2021).

[26] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McKeown. 2017. AppSwitch:
Application-Layer Load Balancing within a Software Switch. In Proceedings of
the First Asia-Pacific Workshop on Networking (Hong Kong, China) (APNet’17).
Association for Computing Machinery, New York, NY, USA, 64ś70. https://doi.
org/10.1145/3106989.3106998

[27] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. 2012. Cam-
doop: Exploiting In-network Aggregation for Big Data Applications. In 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12).
USENIX Association, San Jose, CA, 29ś42. https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/costa

[28] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li, and
Torsten Hoefler. 2021. Flare: Flexible In-Network Allreduce. arXiv preprint
arXiv:2106.15565 (2021).

[29] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation - Volume 6 (San Francisco, CA) (OSDI’04).
USENIX Association, USA, 10.

[30] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107ś113.

[31] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. 2021.
Efficient sparse collective communication and its application to accelerate dis-
tributed deep learning. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
676ś691.

[32] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. 2021. In-network Aggregation
for Shared Machine Learning Clusters. Proceedings of Machine Learning and
Systems 3 (2021), 829ś844.

[33] Richard L Graham, Lion Levi, Devendar Burredy, Gil Bloch, Gilad Shainer, David
Cho, George Elias, Daniel Klein, Joshua Ladd, Ophir Maor, et al. 2020. Scalable hi-
erarchical aggregation and reduction protocol (sharp) tm streaming-aggregation

hardware design and evaluation. In International Conference on High Performance
Computing. Springer, 41ś59.

[34] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
SIGCOMM. ACM, New York, NY, USA. https://doi.org/10.1145/2934872.2934908

[35] Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better:
Stability of stochastic gradient descent. In International Conference on Machine
Learning. PMLR, 1225ś1234.

[36] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770ś778. https://doi.org/10.1109/CVPR.2016.90

[37] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The
HiBench benchmark suite: Characterization of the MapReduce-based data anal-
ysis. In 2010 IEEE 26th International conference on data engineering workshops
(ICDEW 2010). IEEE, 41ś51.

[38] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association.

[39] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association.

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 35ś49. https://www.usenix.org/
conference/nsdi18/presentation/jin

[41] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing Ma-
chinery, New York, NY, USA, 121ś136. https://doi.org/10.1145/3132747.3132764

[42] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. 2018. Hyperloop: Group-Based NIC-Offloading to Accel-
erate Replicated Transactions in Multi-Tenant Storage Systems. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 297ś312. https://doi.org/10.1145/3230543.3230572

[43] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020. An in-
network architecture for accelerating shared-memory multiprocessor collectives.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 996ś1009.

[44] Clyde Kluckhohn. 1950. Human behavior and the principle of least effort.
[45] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging

system for log processing. In Proceedings of the NetDB, Vol. 11. 1ś7.
[46] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony

Skjellum, and Nawrin Sultana. 2019. A large-scale study of MPI usage in open-
source HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1ś14.

[47] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, 741ś761. https://www.usenix.org/
conference/nsdi21/presentation/lao

[48] Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux. 2019. The Case for
Network Accelerated Query Processing. In CIDR.

[49] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. 2019. SocksDirect:
Datacenter sockets can be fast and compatible. In Proceedings of the ACM Special
Interest Group on Data Communication. 90ś103.

[50] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583ś598.

[51] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating distributed reinforcement learning with in-switch
computing. In 2019 ACM/IEEE 46th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 279ś291. https://ieeexplore.ieee.org/abstract/
document/8980345.

[52] Shuo Liu, Qiaoling Wang, Junyi Zhang, Qinliang Lin, Yao Liu, Meng Xu, Ray CC
Chueng, and Jianfei He. 2020. NetReduce: RDMA-Compatible In-Network Reduc-
tion for Distributed DNN Training Acceleration. arXiv preprint arXiv:2009.09736
(2020).

[53] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing for
Large-Scale Storage SystemswithDistributed Caching. In 17th USENIX Conference
on File and Storage Technologies (FAST 19). USENIX Association, Boston, MA,

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

143ś157. https://www.usenix.org/conference/fast19/presentation/liu
[54] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-

murthy. 2018. Parameter Hub: A Rack-Scale Parameter Server for Distributed
Deep Neural Network Training. In Proceedings of the ACM Symposium on Cloud
Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing Machin-
ery, New York, NY, USA, 41ś54. https://doi.org/10.1145/3267809.3267840

[55] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, DanHuang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142ś150. http://www.aclweb.org/anthology/P11-1015

[56] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migliavacca, Pe-
ter Pietzuch, and Alexander L. Wolf. 2014. NetAgg: Using Middleboxes for
Application-Specific On-Path Aggregation in Data Centres. In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies (Sydney, Australia) (CoNEXT ’14). Association for Computing Ma-
chinery, New York, NY, USA, 249ś262. https://doi.org/10.1145/2674005.2674996

[57] Bill Z Manaris, Luca Pellicoro, George Pothering, and Harland Hodges. 2006.
Investigating Esperanto’s Statistical Proportions Relative to other Languages
using Neural Networks and Zipf’s Law.. In Artificial Intelligence and Applications.
102ś108.

[58] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. 2019. A Generic Communication Sched-
uler for Distributed DNN Training Acceleration. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 16ś29.
https://doi.org/10.1145/3341301.3359642

[59] Steven T Piantadosi. 2014. Zipf’s word frequency law in natural language: A
critical review and future directions. Psychonomic bulletin & review 21, 5 (2014),
1112ś1130.

[60] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks (Palo Alto,
CA, USA) (HotNets-XVI). Association for Computing Machinery, New York, NY,
USA, 150ś156. https://doi.org/10.1145/3152434.3152461

[61] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 21). USENIX Association, 785ś808. https://www.usenix.org/conference/
nsdi21/presentation/sapio

[62] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1ś10.

[63] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[64] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020. Cheetah:
Accelerating Database Queries with Switch Pruning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2407ś2422.

[65] Sven Ulland. 2011. Kernel panic/crash, bnx2 flow control flooding and network
outages. Linux-PowerEdge ś Linux on Dell PowerEdge Servers discussion http:
//lists.us.dell.com/pipermail/linux-poweredge/2011-October/045485.html.

[66] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy
Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Using
trio: juniper networks’ programmable chipset-for emerging in-network applica-
tions. In Proceedings of the ACM SIGCOMM 2022 Conference. 633ś648.

[67] Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson, Dan R. K. Ports, Amedeo Sapio,
Marco Canini, and Nam Sung Kim. 2022. Unlocking the Power of Inline Floating-
Point Operations on Programmable Switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA. https://www.usenix.org/conference/nsdi22/presentation/yuan

[68] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). USENIX Association, San Jose, CA, 15ś28. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[69] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J Freedman.
2018. Riffle: optimized shuffle service for large-scale data analytics. In Proceedings
of the Thirteenth EuroSys Conference. 1ś15.

[70] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (Nov. 2019), 376ś389.
https://doi.org/10.14778/3368289.3368301

Received 2022-07-07; accepted 2022-09-22

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Aggregation Patterns
	2.2 Promise of In-Network Key-Value Aggregation
	2.3 Challenges

	3 Design
	3.1 Architecture and Workflow
	3.2 Multi-key Addressing and Placement
	3.3 Reliability and Correctness
	3.4 Hot-Key Agnostic Prioritization

	4 Implementation
	5 Evaluation
	5.1 Experiment Settings
	5.2 In-Network Aggregation Benchmark
	5.3 Effectiveness of Multi-key Vectorization
	5.4 Effectiveness of Key Agnostic Prioritization
	5.5 Effectiveness in Data Analytic Systems
	5.6 Extend to Deep Learning Systems
	5.7 Overhead and Scalability

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

