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Abstract

Catchment discretization plays a key role in constructing stormwater models. Traditional methods usually require aerial or
topographic data to manually partition the catchment, but this approach is challenging in areas with poor data access. Here,
we propose an alternative approach, by drawing Thiessen polygons around sewer nodes to construct a sewershed model. The
utility of this approach is evaluated using the EPA’s Storm Water Management Model (SWMM) to simulate pipe flow in a
sewershed in the City of Pittsburgh. Parameter sensitivities and model uncertainties were explored via Monte Carlo simula-
tions and a simple algorithm applied to calibrate the model. The calibrated model could reliably simulate pipe flow, with a
Nash-Sutcliffe efficiency (NSE) of 0.82 when compared to measured flow. The potential influence of sewer data availability
on model performance was tested as a function of the number of nodes used to build the model. No statistical differences
were observed in model performance when randomly reducing the number of nodes used to build the model (up to 40%).
Based on our analyses, the Thiessen polygon approach can be used to construct urban stormwater models and generate good
pipe flow simulations even for sewer data limited scenarios.
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Introduction

Urbanization dramatically changes the landscape by increas-
ing impervious surfaces (Arnold and Gibbons 1996). Higher
impervious cover reduces infiltration, increases the velocity
and volume of stormwater runoff, and accelerates the trans-
port of nutrients and contaminants (Arnold and Gibbons
1996; Lee et al. 2012; Schueler et al. 2009; Li et al. 2009).
Urban stormwater is one of the leading sources of water pol-
lution in the USA (National Research Council 2009). Studies
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evaluating stormwater impact mitigation have pursued inno-
vative stormwater management methods, in particular green
infrastructure (GI), which aims to protect, mimic and main-
tain natural hydrologic conditions by using decentralized ret-
rofit practices (Coffman et al. 1999; Ahiablame et al. 2012).

To evaluate the effectiveness of urban stormwater mitiga-
tion methods a number of modeling tools (Eckart et al. 2017)
have been developed. Among these, the US Environmental
Protection Agency (EPA) Storm Water Management Model
(SWMM) has been widely applied for urban rainfall-runoff
simulations (Eckart et al. 2017; Tsai et al. 2017). In recent
years, SWMM has been used to study the hydrologic impacts
of urbanization (Jang et al. 2007), to model the effects of
green and grey infrastructure practices to reduce combined
sewer overflows (CSO) (Alves et al. 2016), to investigate
the impacts of GI on hydrological responses in urban areas
(Palla and Gnecco 2015; Aad et al. 2010) and to simulate
chemical transport(McCall et al. 2017).

Despite these practical applications, improved effi-
ciency in model parameterization while maintaining model
performance remains a critical need, particularly for large
urban systems and areas with poor data availability. In
recent years, high-resolution data (e.g., aerial images) have
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been used to identify and describe detailed surface infor-
mation in SWMM simulations (Krebs et al. 2013; 2014;
Sun et al. 2013), such as buildings and roads, which can
help to build a model that closely reflects reality. This is
especially important in urban systems where the details of
building topology and road edges may influence the rout-
ing of surface flows to storm sewers in ways not captured
by lower resolution topography. However, delineation of
subcatchments based on high-resolution data and sewer
maps is time-intensive for large-scale simulations (beyond
a few city blocks). In addition, some areas may lack high-
quality topographical data. Information about the distribu-
tions and geometries of sewer networks may also be una-
vailable or incomplete. Missing data makes describing the
relationship between urban watersheds and sewer systems
challenging and data needs make traditional approaches
less efficient for building sewershed-scale models and
specifying corresponding parameters.

More efficient discretization methods exist, but have spe-
cific shortcomings when used in urban areas. For example,
hydrologic partitioning based on digital elevation model
(DEM) (Tsai et al. 2017) preserves terrain information, but
neglects the surface connections to subsurface drainage
networks which are crucial for sewer flow hydraulic simu-
lations. On the other hand, pipe network—guided division
(Huang and Jin 2019) provides the links between surface
and sewer nodes, but the surface flow routing is uncertain
because it does not consider the influence of topography. The
limits of these easily applied approaches for flow routing
between subcatchments and in-pipe conveyance need to be
understood and evaluated in urban areas.

Fig. 1 Location and pipe
network of sewershed M29 in
the city of Pittsburgh. A Sew-
ersheds in Allegheny County
(Allegheny County Division of
Computer Services Geographic
Information Systems Group
2016) (PA, USA). B The sewer
network in M29. Hill shade
derived from 1.8 m LiDAR
DEM. (Allegheny County Divi-
sion of Computer Services Geo-
graphic Information Systems
Group 2017)
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This study tests the utility of using the Thiessen polygon
approach (Okabe et al. 2000) to efficiently partition an urban
sewershed. We built a sewershed model in the City of Pitts-
burgh, a city vulnerable to flash floods and combined sewer
overflows (Hopkins et al. 2014). The Thiessen polygon
approach was used to generate subcatchments. To connect
subcatchments to the sewer system a simplifying assumption
was made that all surface water within the subcatchment
drains to the corresponding node. Parameter distributions
were constructed based on the frequencies of initial esti-
mates for each parameter across all the model elements. Fur-
ther, parameter sensitivities and model uncertainties were
analyzed via Monte Carlo simulations and a simple model
calibration algorithm combined with generalized likelihood
uncertainty estimation was applied to calibrate the model.
Based on these analyses, we evaluated the capability of pro-
posed approaches for urban stormwater simulations, which
might enable stormwater model development even in areas
that lack data.

Materials and methods

Study area and data sources

Sewershed M29 in the city of Pittsburgh (Fig. 1) was mod-
eled with a drainage area of approximately 9.7km?. Land-
cover in this sewershed varies from highly urbanized to
parkland, and the terrain is rugged. In addition, M29 has a
large sewer network with over 600 nodes and pipe segments.
These characteristics provide the opportunity to investigate
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the relationship among various surface physical properties,
the sewer networks, and model responses.

The model was built using multiple spatial data (Table 1).
The main input data included: (1) 15-min rainfall intensity
data (3 Rivers Wet Weather (3BRWW) 2008) obtained from
the University of Pittsburgh rain gauge (April 2008); (2)
sewer data digitized on the basis of a system-wide sewer
map (Allegheny County Sanitary Authority (ALCOSAN)
2022) and then corrected and validated by comparing
with GIS data provided by the Allegheny County Sani-
tary Authority (ALCOSAN); (3) 30 m land cover data (US
Geological Survey 2014); (4) 1.8-m Lidar digital elevation
model (DEM) (Allegheny County Division of Computer
Services Geographic Information Systems Group 2017). We
evaluated and calibrated the model by comparing simula-
tion results with monitored pipe flow (April 2008, provided
by ALCOSAN), which included both dry and wet weather
conditions.

To capture the input sewage base flow during dry weather
conditions, we randomly picked two days of pipe flow data
from each month with no rainfall records. We then averaged
these flows to a daily flow pattern to serve as the sewage
base flow (Supplemental Information, SI Fig. S1).

SWMM governing equations

The general simulation in SWMM is of a system that first
receives precipitation and then generates surface runoff
within subcatchments. At the outlet of the subcatchment,
the pipe node or the channel receives the surface water and
routes this runoff as pipe flow through the drainage system.
SWMM surface runoff is mainly governed by precipitation,
infiltration, and evaporation, modeled as a nonlinear reser-
voir to derive the governing equation (Rossman and Huber,
2016) (Eq. 1).

%:i—e—f—%’sé(d—ds)? (1
where da—‘f is the change in water depth d over time #; i is the
precipitation rate; e is the evaporation rate; fis the infiltra-
tion rate; k is the unit conversion constant (1 for SI units and
1.49 for English units); W is the width of the subcatchment;
A is the surface area of subcatchment; n is the Manning’s
roughness coefficient; S is the slope; ds is the depression
storage.

The pipe flow in SWMM is derived from the St. Venant
conservation of mass and momentum equations in Eq. (2)
(Rossman 2017).
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where % is the change of flow rate per unit of time; v is the
velocity; g is the gravitational acceleration; H is the hydrau-
lic head; Q is the flow rate; R is the hydraulic radius. Note
that in Eq. (2) A is the flow cross-section area rather than the

surface area of the subcatchment.
Model delineation and parameterization

In sewershed (M29), stormwater drains, described as nodes
hereafter, are distributed densely throughout the developed
areas. To simplify the model, we merged sets of adjacent
nodes (within 5 m) into a single node. Corresponding pipe
segments were then merged as well. The simplified sewer
network consists of 638 nodes and 636 pipes. Thiessen poly-
gons were used to partition the subcatchments in ArcMap
(Esri Inc. 2016), based on the simplified sewer nodes, with
each plane enclosing only one node (Fig. S2). This method
is widely used to analyze precipitation data from unevenly
distributed rain gauges, by finding points within a plane that
are closest to the target point (Brassel and Reif 2010). In
our case, the target point is a node (storm drain). To route
surface flow, we assumed that surface water generated within
a subcatchment drains to the corresponding node, selecting
the option in SWMM that routes all surface water to outlets
(here representing the pipe nodes).

The width of each subcatchment polygon was estimated
by dividing the subcatchment area by the longest distance
from any point in the subcatchment (polygon) to the node.
To estimate imperviousness, land types were extracted from
land use data, and each type was assigned imperviousness
values based on literature (Rossman and Huber 2016; US
EPA 2014). Then, an area-weighted average was used to
estimate the imperviousness for each subcatchment. Simi-
lar strategies were used to estimate depression storage and
Manning’s roughness of subcatchments followed by assign-
ing literature values (e.g., Manning’s roughness (American
Society of Civil Engineers and Water Environment Federa-
tion 2018; Bizier 2007) and depression storage (American

Table 1 Data sources

Data Resolution Sources Year
Land cover 30mx30m United States Geological Survey (USGS) 2011
DEM 1.8mx1.8m Allegheny County Lidar and Terrain Products 2017
Sewer data N.A Allegheny County Sanitary Authority (ALCOSAN) 2022
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Society of Civil Engineers and Water Environment Federa-
tion 2018)) associated with land uses.

Evapotranspiration was not included in this model, as fast
flow storm periods were the primary interest in the study.
Slope maps were derived from DEM, and the average slope
was assigned to each subcatchment. Infiltration-related
parameters were based on Horton’s method (Rossman and
Huber 2016; Horton 1941) as built into SWMM.

Based on the sewer data from ALCOSAN, pipe diameters
in M29 range from 0.24 m up to 4.3 m. Simplifying the
sewer network by combining nodes and pipes would result
in changes to actual pipe geometric dimensions. We assumed
circular cross-sections and an initial pipe diameter of 2.4 m,
then created distributions from which diameters could be
drawn for the Monte Carlo sampling process described in
the next section.

Sensitivity analysis

Monte Carlo-based sensitivity analysis (Saltelli et al.
2000) was conducted to identify the influence of model
inputs on predictions and to create simulations for model
calibration discussed in the next sections. We focused on
impacts of parameters on two types of model results: (1)
single model outputs (within subcatchments or pipes), e.g.,
surface peak flow, runoff volume and maximum pipe flow;
(2) the overall goodness-of-fit between simulated pipe flow
and monitored pipe flow near the outlet of the sewershed.
To quantify the influence of model parameters on single

model outputs, we calculated the Spearman correlation
coefficient (Spearman 1904) between model outputs —
surface runoff peak flow, total runoff volume and maxi-
mum pipe flow — and parameters for each subcatchment
or pipe. Goodness-of-fit is indicated by the Nash—Sutcliffe
efficiency (NSE) in Eq. (3) (McCuen et al. 2000).

Z?: (Qo,i - Qx,i)2
NSE=1- ! 3)

Y Q=00

here Q,,; and Q ; are the observed and simulated flow dis-
charge values, respectively, and Q_O is the observed mean
flow. An NSE value closer to 1 suggests a better prediction
was achieved.

The distributions used for the input parameters related
to surface runoff and pipe flow are listed in Table 2. To
create the distributions for each parameter, two strategies
were used. First, lognormal distributions were used for
the parameters extracted and estimated from spatial data
and those estimated using literature values across the sub-
catchments. The mean was set to the estimated parameter
values based on the area-weighted average. The variance
was calculated using the estimated parameter values of all
the subcatchments or pipes. For example, for the impervi-
ousness, the mean is the weighted mean imperviousness,
and the variance is calculated based on the mean impervi-
ousness values from the 638 subcatchments. Therefore, in
each subcatchment, the distribution of a specific parameter
will have a different mean but the same variance.

Table 2 Distributions of parameters included in sensitivity analysis for sewershed M29

Parameter; units Distribution (a, b)
Subcatchment Width; m Uniform (0.5xEstimation, 1.5xEstimation)
Imperviousness (Imper); % Lognormal (Individual subcatchment mean, 0.24)
Slope; % Lognormal (Individual subcatchment mean, 0.51)
Impervious N (N-imp); [-] Lognormal (Individual subcatchment mean, 0.559)
Pervious N (N-perv); [-] Lognormal (Individual subcatchment mean, 0.0867)
Impervious D (D-imper); ~ Uniform (0.05,0.1)
in
Pervious D (D-perv); in Lognormal (Individual subcatchment mean, 0.369)
Infiltration (Horton) Maximum infiltration rate ~ Uniform 4, 8)
(MaxIR); in/h
Minimum infiltration rate ~ Uniform (0.1, 0.3)
(MinlIR); in/h
Decay rate (Decay); 1/h Uniform 2,7)
Sewer system Pipe length; m Lognormal (Individual pipe mean, 0.04)
Roughness; Uniform (0.011, 0.015)
Diameter; m Lognormal (2.4,047)

(a, b) for lognormal distribution: a — mean of lognormal distribution (the subcatchment mean or pipe mean), b — standard deviation of corre-
sponding transformed normal distribution; (a, b) for uniform distribution: a — minimum, b — maximum. As parameter values vary by subcatch-

ment, the mean of the distribution is not reported
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The second strategy was to use uniform distributions for
the parameters that were constant across subcatchments or for
which no information on variability was available. The two
bounds of the uniform distributions were assumed by consider-
ing typical literature values (Rossman and Huber 2016; Horton
1941; American Society of Civil Engineers and Water Envi-
ronment Federation 2018; Bizier 2007). Once distributions
were established for all relevant parameters, 1000 Monte Carlo
simulations were run using Latin hypercube sampling (LHS)
(McKay et al. 2000) to evaluate the relationship between the
model parameters and predicted outputs.

To understand how model discretization and parameteri-
zation influence overall simulation results, rather than assess
their influence within each subcatchment or pipe segment,
we chose the 5% best and 5% worst simulations (highest
NSE and lowest NSE, respectively) to evaluate the change
in parameter values that most improved overall model per-
formance (NSE). As the model became more accurate (i.e.,
higher NSE values) the corresponding parameters selected
across the LHS-based Monte Carlo samples were assumed
to represent better estimates. In addition, those parameters
changing the most when comparing the worst performance
to best performance were of particular interest (e.g., they
may have had particularly poor initial settings).

We calculated the difference (Eq. 4) in parameter val-
ues between the best and worst simulations (5%) for each
model element (i.e., each subcatchment or pipe). The dif-
ferences were then normalized by dividing the mean of the
parameters (based on all generated samples) to eliminate the
influence of different units. The differences in Eq. (4) were
calculated by both types of parameters and each specific
subcatchment or pipe.

_ Bestsq, — Worstsy,

pc Mean

“

We then calculated the sum of the absolute differences
as the contributions of model parameters (p) or model ele-
ments (c) (the specific pipe or subcatchment) to improve
NSE values from the worst to best based on the 1000 simula-
tions. The change of parameters (A, .) relates to the specific
parameter or model element. Therefore, the contribution of
each element or parameter (contribution,, or contributionp,
Eq. (5)) is represented by the sum of the changes related
to specific parameter or element (A, or A ) divided by the
total changes. We also normalized the contribution of each
subcatchment (contribution,’, Eq. (6)) by area to control for
the influence of the subcatchment size.

(14,,D
Contribution, = Z—p/ (5)

D YT

..+ Contribution,
Contribution = ——8 6)
¢ Area,
In these equations, p indicates the parameters whereas ¢
indicates model elements (i.e., subcatchment or pipe).

Model uncertainties on surface delineation

Sewer network simplification and the use of the Thies-
sen polygon approach inevitably introduced uncertainties
to the model outputs. A clear drawback of the Thiessen
polygon—based partition approach is that it ignores surface
topography to route surface flow to the sewer system. We
assumed the water from each subcatchment was routed to the
corresponding node, which simplifies the process to deter-
mine which nodes the surface inflow drains to. However, we
do not consider the influence of topography on subcatchment
partitioning; this assumption can be violated if the subcatch-
ment elevation is lower than the node elevation. Therefore,
after subcatchment discretization, we checked this assump-
tion by comparing the subcatchment average elevation with
the node elevation across the sewershed.

In addition, we evaluated the proposed approach by
comparing it to the more common approach of partition-
ing subcatchments according to topography. We built two
small-scale models within the Panther Hollow watershed,
which lies within our greater M29 study area, by using delin-
eated subcatchments provided by the Pittsburgh Water &
Sewer Authority (PWSA). The Panther Hollow watershed
has an area of 185 acres (Fig. 1). To compare the land area
covered by our polygon-based model to the PWSA deline-
ated topography-based Panther Hollow model, we merged
all the polygons related to that section of the sewer network.
We then compared the simulations with observed pipe flow
(April-May 2014) at the outfall point.

Finally, the proposed subcatchment partitioning approach
was evaluated as a function of the amount of sewer network
data available, represented by number of nodes. In some areas,
detailed sewer data may be unavailable, leading modelers to use
street intersections to estimate information about the sewer net-
work. To explore the potential influence of sewer system struc-
ture uncertainty on model performance, we tested two scenarios:
(1) randomly removing nodes but using the original sewer seg-
ments to routing flow; and (2) randomly removing nodes and
building new sewer segments by connecting the remaining nodes
based on their elevation. For each scenario, we conducted 4 tri-
als, randomly removing 10%, 20%, 30%, and 40% of the total
nodes (except for nodes on major trunk sewers). One hundred
simulations were made for each trial, and the NSE values were
calculated. Two locations with monitored flow were considered
for NSE calculations: one near the outlet of the sewershed; the
other on the northwest side of the sewer network (Fig. S3).
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For the comparison between the Thiessen polygon and
topography-based polygons within the Panther Hollow sub-
watershed, we could not use the NSE as a goodness-of-fit
measure, because observed fluctuations in sanitary base
flow was not captured in the simulation and the NSE cal-
culation heavily penalizes the model for these small flow
errors, limiting the value of the assessment for evaluating
stormflow predictions. Instead, the comparison of peak
flow errors provided a reasonable method to evaluate the
behavior of the two delineation methods relative to one
another.

Model calibration

A Monte Carlo-based calibration algorithm was applied
based on generalized likelihood uncertainty estimation
(GLUE) (Beven 1993), which has been proposed as a
Bayesian approach to derive model uncertainties. This
approach often uses informal likelihood functions rather
than a correct statistical error model, which is not entirely
consistent with the Bayesian inference process (Stedinger
et al. 2008; Mantovan and Todini 2006), but its ease of
implementation and flexibility for combining different
model inputs provide capability to deal with a large number
of parameters for model calibration. Thus, we combined

the GLUE procedure into the proposed calibration algo-
rithm described as follows (Fig. 2):

(1) Define distributions of model parameters (x;). The
initial distributions were defined as shown in Table 2. (2)
Draw parameter samples by using Latin hypercube sampling
(LHS) and run Monte Carlo simulations. (3) Choose objective
functions as response variables (Y). Here, the single objec-
tive function of NSE (Eq. 3) was used. (4) Divide simulations
defined as “behavioral model runs” and “non-behavioral model
runs”, in this case based on the median of the NSE values. That
is, behavioral model runs were simulations with NSE values
larger than the median. (5) Calculate the NSE weights w; (Eq.7)
based on the behavioral model runs; j is the index of behavioral
model runs. (6) Calculate the new mean y,; and variance o7,
for parameter x;. (7) Assume the family of distributions cor-
responding to parameters does not change and then use the new
mean (Eq. 8) and variance (Eq. 9) to draw new samples. (8)
Repeat steps (2)—(7) until acceptable NSE values are achieved.
The final means of the distributions are treated as optimal values
for parameters

W N8B
/7~ Y NSE @)

Fig.2 Pseudocode table of
calibration algorithm

Algorithm 1: Calibration

Input: inital parameter distributions fs, ,..,..,, demand samples (n =
1000), number of iteration N
Result: optimal parameter values x;,

1n<+1;
2 fxz — f$i,initial;
3 while n < N do
4 draw samples with LHS based on f,;
5 run Monte Carlo simulations;
6 caclulate NSFE values;
7 threshold <+ NSEcdian;
8 if NSE > threshold then
9 | behavioral runs < NSE;;
10 else
11 ‘ non-behavioral runs <~ NSE}
12 end
13 WJFNSEJ/ZNSEJ,
14 update parameter (z;) distribution fg, .. ;
15 i — Y Wy X x45;
16 O; < ZWQ X (xij — ui)Q;
17 Jui fx’i,,'n/c'(u;
18 n<+n+1;
19 end
20 optimal x; < u; ;
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Ufi = Z Wj X (x[j - yxi)z 9)

Results and discussion

Parameter sensitivity analyses for subcatchments
and pipes

Based on the Spearman correlation coefficients for total run-
off volume, imperviousness had the highest correlation coef-
ficient and dominated total runoff predictions (Fig. S5 (A)).
The remaining parameters all have correlation coefficient
distributions with a median of zero that cover positive and
negative signs (Fig. S5 (A)), indicating that these parameters
have no consistent effects on total runoff.

The influence of parameters on the predictions of peak flow
is much clearer in both their magnitudes and signs (Fig. S5
(B)). The most influential parameter is also the impervious-
ness, with a median of 0.63 (range of 0.5 to 1.0). Manning’s
roughness for pervious area has a negative influence, while
width and slope have positive influence that are comparable to
one another. Our findings are similar to previous work docu-
menting the fundamental role of imperviousness (Muleta et al.
2013; Barco et al. 2008) and consistent with observations that
the Manning’s roughness and width have effects on SWMM
hydrology simulations (Tsai et al. 2017; C. Li et al. 2014) and
flow is less sensitive to infiltration parameters (Li et al. 2014).

All Spearman correlation coefficients for pipe parameters
have a zero median with a range between —0.1 and 0.1, indi-
cating that the three pipe parameters influence pipe flow
minimally, inconsistent with previous studies that indicated
pipe Manning’s roughness (Sun et al. 2013; Li et al. 2014)
and the conduit geometry (Peterson and Wicks 2006) can
impact the flow rates. The disagreements in estimations of

parameter importance across different studies may be caused
by assuming different ranges for parameter distributions. For
example, this study assumed a uniform distribution for Man-
ning’s roughness in pipes with a range of 0.011 and 0.015, a
typical range for pipes (American Society of Civil Engineers
and Water Environment Federation 2018; Bizier 2007). A
much wider distribution, between 0 and 0.1, was assumed by
Sun (Sun et al. 2013), which resulted in a higher influence
of pipe roughness. However, it is not clear these roughness
values are plausible in real pipe environments.

Parameter contribution to overall
model performance

Global parameter contributions show the Manning’s rough-
ness for impervious area contributed substantially to improv-
ing overall model performance (Fig. 3). However, the imper-
viousness did not contribute as much as the slope and width.
Parameters related to infiltration together contributed nearly
25% to higher model performance when parameter values
were varied. The influence of pipe length and diameter con-
tributed as much as 92% to improved NSE values, highlight-
ing the importance of the geometric parameters. However,
the influence of pipe geometric parameters is small based on
their Spearman correlation coefficients (Fig. S5). This may
suggest that the contribution of parameters to improve NSE
includes correlated information among subcatchments and
pipes that has not been captured by the Spearman correlation
coefficient, because they are calculated independently within
each specific subcatchment or pipe line, but the parameter
contributions to higher NSE values reflect the influence of
parameters from all the subcatchments and pipes together.
We evaluated the contribution of each model element
(subcatchment or pipe) to model performance, to explore
cases where the parameters varied widely when compar-
ing best-performing model runs with worst-performing
ones. Subcatchments in the center of our study area did

Fig.3 Parameter contributions
for subcatchments and pipes to
achieve better model perfor-
mance (higher NSE values)
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not contribute much to model improvement (Fig. 4). These
subcatchments are in Schenley Park, a relatively undevel-
oped area (parkland) with low imperviousness. The higher
impervious areas in subcatchments surrounding the park
contribute relatively more, requiring greater changes from
worst-performing parameter sets before model performance
improvements were observed.

We assumed the mean of pipe diameters was 2.4 m. Under
Monte Carlo simulations, the smallest diameter observed in
the parameters from the best simulation is 0.65 m. The actual
upstream pipe diameters are also less than 0.91 m based
on available data from ALCOSAN. After simplification
during model construction, some of those pipes effectively
had larger diameters when multiple pipes were combined
into a simplified network. However, based on this analysis
2.4 m may still be too large a value for upstream pipes and
may cause pipe segments at the top of the sewer system to
have inordinately large contributions to model performance
(darker orange lines, Fig. 4). The pipe segments close to the
end-node reach a diameter as large as 4.2 m based on the
sewer data from ALCOSAN, but in our system, the diam-
eter could also be much larger (> 8.4 m) due to the effect
of merged pipe segments. Therefore, in Monte Carlo runs
with good model performance (high NSE values), down-
stream pipe diameters were sampled from the higher end
of the assumed parameter distribution and functioned to
allow more water to flow through these lower portions of
the sewershed.

Uncertainties associated with model discretization

The subcatchments delineated by using two approaches are
shown in Fig. 5. The area of merged polygons within Panther
Hollow watershed is 221 acres, which is larger than the area
of Panther Hollow watershed of 185 acres.

A comparison between the two small-scale Pan-
ther Hollow models shows similar results for pipe flow
simulations (Fig. S6). For simulated peak errors, the
terrain-based model has a peak flow error with a median
of — 1.05% (mean — 0.019%, range — 39 to 40%), while the

*
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Fig.5 Comparison of model subcatchments, overlaying Thiessen
polygons and terrain-based subcatchments delineated by PWSA in the
Panther Hollow watershed

Fig.4 Contribution of model
elements (subcatchments or
pipes) to NSE improvements

Legend

— General Pipe flow direction

-$— Flow monitoring station

Contribution to model performance

improvements(%)

Subcatchments Pipes

[ Joo-007 oo
[ oo7-011 _— oo0s
B o11-015 — o010
I 0.15-020 == 050
Il 020-030 e 1.00

0 03 06 1.2 Kilometers

@ Springer



Environmental Science and Pollution Research (2023) 30:30295-30307

30303

polygon-based model has a median error of 1.27% (mean
7.67%, range — 31 to 61%). Compared to the delineation
that considers topography, the Thiessen polygon—based
model can simulate peaks with similar fidelity to observed
flows, although it tends to generate higher peaks and leads
to more positive peak errors than those simulated by the
topography-based model.

When comparing the subcatchment average elevations
with the node elevations, there are 230 subcatchments
(35% of the total subcatchments) that violate the surface
routing assumption (from surface to node), with elevation
differences between 0.004 and 15% (Fig. S7). However,
some small elevation differences can be caused by the
intrinsic errors in DEM. Thus, we only considered routing
errors for subcatchments with mean elevations more than
1% lower than the node elevation (Fig. 6). This resulted in
44 subcatchments (6.8%) that violated the routing assump-
tion, many of which are located in rugged portions of the
sewershed. This finding suggests even though the naive
assumptions that the nodes receive surface flow can be
violated, in the majority of cases the routing assumption
is satisfied. Based on these results, the fast and efficient
Thiessen polygon approach is appropriate to use for rela-
tively flat areas, but care must be taken for rugged areas in
which polygons may need to be further manually adjusted.

The results of tests on the influence of level of sewer
network information on model performance show there
are no statistical differences among these simulations.
We simulated increasing uncertainty regarding the sewer

Fig. 6 Comparison between
subcatchment average elevation
and node elevation with 1% dif-
ference threshold

Legend
D Sewershed border

Subcatchments
|"__] Difference < 1%
ﬂ Difference > 1%

Hillshade
Value
- High : 254

Low : 0

network by conducting simulations with 10-40% of nodes
randomly removed. In the first case, we kept the infor-
mation about the pipe network the same as the original
model, so that the lack of knowledge simulated was only
about the location of the nodes (stormwater inlets). In the
second case, we removed the nodes and reconnected the
pipe sewers only around the “known” nodes. Even though
the variance of the NSE values for predicted flow at the
two flow monitoring locations increased as more nodes
were removed (Fig. 7), the values remained larger than
0.7 for all 800 simulations (slightly higher at location 2).
According to these simulations, no obvious influence of
the pipe nodes used to draw polygons on overall model
performance (NSE) could be observed, for both fixed
sewer segments (Fig. 7A, B) and rebuilt sewer segments
(Fig. 7C, D). This suggests that the polygon approach can
robustly estimate urban sewershed surface-pipe linkages
even when using limited data, provided the major trunk
lines are known.

Model calibration

Based on the results of sensitivity analyses, eight parameters
were chosen to calibrate the model, including six subcatchment
parameters: slope, width, imperviousness, Manning’s rough-
ness in impervious area, depression storage in pervious area
and decay coefficient of infiltration. Two pipe parameters were
also chosen: pipe diameter and Manning’s roughness. Three
iterations (3000 simulations) of the calibration procedure
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Fig.7 Model performance
(NSE) as a function of number
of nodes used to build the
model: A location 1 with fixed
sewer network; B location 2
with fixed sewer network; C
location 1 with rebuilt sewer
network; D location 2 with
rebuilt sewer network
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were conducted and achieved a median NSE larger than 0.8.
Changes of the variance of parameters are shown in Fig. S8, in
which the variance of parameters within most of the subcatch-
ments or pipes decreased after calibration, leading to smaller
95% confidence intervals (CI) for simulated pipe flows (shown
in Fig. S9). This suggests it is feasible to use high-performance
model runs to update parameters. After calibration, the model
has an NSE of 0.82 and RMSE of 1.46. The shapes and magni-
tudes of flows are well predicted and the time to peak also cor-
responds well with most observed data, particularly for large
rain events in late April (Fig. 8C-D).

Conclusion

In this study, we demonstrated an efficient means to build
an urban sewershed stormwater model by drawing Thiessen
polygons around sewer nodes. We assumed that the surface
flow within subcatchments drained to their corresponding
nodes and did not re-route any flow between subcatchments.
After calibration, predicted flow patterns near the outlet of
the sewershed during the month of April 2008 showed good
agreement with monitored pipe flow data (NSE of 0.82). The
number of nodes used to build the sewershed model did not
dramatically influence model performance (NSE), provided
the location of key trunk sewers was known. The proposed
calibration algorithm was easy to apply even with a model
with a large number of parameters. Therefore, this simple and
efficient partitioning approach can be successfully used to
build a reasonable sewershed model for predicting pipe flow.

We characterized the influence of SWMM parameters on
total surface runoff volume, surface runoff peak flow, maxi-
mum pipe flow and NSE values. The four most important
parameters influencing peak flow were imperviousness >Man-
ning’s roughness for impervious area > width > slope. Maxi-
mum pipe flow was not sensitive to the pipe geometry when
evaluated based on the Spearman correlation coefficients, but
its influence was clear when parameter contributions were
analyzed based on comparison of low and high NSE Monte
Carlo runs. This suggests, for model calibration, that the focus
on improving parameter estimates can be different with dif-
ferent model output objectives.

One limitation of our approach is that it cannot fully
analyze the correlated influence among parameters on the
model outputs. We used the Spearman correlation coeffi-
cients to evaluate the relationship between parameters and
their related individual elements (subcatchments or pipes)
separately. However, the influences of surface parameters
on pipe peak flow were not captured by the Spearman cor-
relation coefficients. In model calibration, we only con-
sidered a single objective function (NSE). Although it is
believed parameter space can be generated by combining
behavior model runs with multiple criteria, we did not test

the capability of algorithm to calibrate multiple objectives.
Our model assumption that subcatchments route surface
water to nodes should be tested in other urban areas to
validate its feasibility and limits of such an approach. As
evidenced by the violation of routing for particularly rug-
ged areas of our sewershed, when the subcatchment strad-
dles a topographic feature like a sheer wall, the averaged
elevation does not reflect the flow dynamics throughout
the subcatchment.

In all, the proposed Thiessen polygon approach could
generate good pipe flow simulations even when minimal
detail is provided on topography and surface cover. There-
fore, it is possible to build urban stormwater models using
the Thiessen polygon approach in areas that lack sewer
data, particularly if the focus is to simulate pipe flow near
the outlet of an urban sewershed.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11356-022-24162-7.
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