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Abstract
Catchment discretization plays a key role in constructing stormwater models. Traditional methods usually require aerial or 
topographic data to manually partition the catchment, but this approach is challenging in areas with poor data access. Here, 
we propose an alternative approach, by drawing Thiessen polygons around sewer nodes to construct a sewershed model. The 
utility of this approach is evaluated using the EPA’s Storm Water Management Model (SWMM) to simulate pipe flow in a 
sewershed in the City of Pittsburgh. Parameter sensitivities and model uncertainties were explored via Monte Carlo simula-
tions and a simple algorithm applied to calibrate the model. The calibrated model could reliably simulate pipe flow, with a 
Nash–Sutcliffe efficiency (NSE) of 0.82 when compared to measured flow. The potential influence of sewer data availability 
on model performance was tested as a function of the number of nodes used to build the model. No statistical differences 
were observed in model performance when randomly reducing the number of nodes used to build the model (up to 40%). 
Based on our analyses, the Thiessen polygon approach can be used to construct urban stormwater models and generate good 
pipe flow simulations even for sewer data limited scenarios.
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Introduction

Urbanization dramatically changes the landscape by increas-
ing impervious surfaces (Arnold and Gibbons 1996). Higher 
impervious cover reduces infiltration, increases the velocity 
and volume of stormwater runoff, and accelerates the trans-
port of nutrients and contaminants (Arnold and Gibbons 
1996; Lee et al. 2012; Schueler et al. 2009; Li et al. 2009). 
Urban stormwater is one of the leading sources of water pol-
lution in the USA (National Research Council 2009). Studies 

evaluating stormwater impact mitigation have pursued inno-
vative stormwater management methods, in particular green 
infrastructure (GI), which aims to protect, mimic and main-
tain natural hydrologic conditions by using decentralized ret-
rofit practices (Coffman et al. 1999; Ahiablame et al. 2012).

To evaluate the effectiveness of urban stormwater mitiga-
tion methods a number of modeling tools (Eckart et al. 2017) 
have been developed. Among these, the US Environmental 
Protection Agency (EPA) Storm Water Management Model 
(SWMM) has been widely applied for urban rainfall–runoff 
simulations (Eckart et al. 2017; Tsai et al. 2017). In recent 
years, SWMM has been used to study the hydrologic impacts 
of urbanization (Jang et al. 2007), to model the effects of 
green and grey infrastructure practices to reduce combined 
sewer overflows (CSO) (Alves et al. 2016), to investigate 
the impacts of GI on hydrological responses in urban areas 
(Palla and Gnecco 2015; Aad et al. 2010) and to simulate 
chemical transport(McCall et al. 2017).

Despite these practical applications, improved effi-
ciency in model parameterization while maintaining model 
performance remains a critical need, particularly for large 
urban systems and areas with poor data availability. In 
recent years, high-resolution data (e.g., aerial images) have 
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been used to identify and describe detailed surface infor-
mation in SWMM simulations (Krebs et al. 2013; 2014; 
Sun et al. 2013), such as buildings and roads, which can 
help to build a model that closely reflects reality. This is 
especially important in urban systems where the details of 
building topology and road edges may influence the rout-
ing of surface flows to storm sewers in ways not captured 
by lower resolution topography. However, delineation of 
subcatchments based on high-resolution data and sewer 
maps is time-intensive for large-scale simulations (beyond 
a few city blocks). In addition, some areas may lack high-
quality topographical data. Information about the distribu-
tions and geometries of sewer networks may also be una-
vailable or incomplete. Missing data makes describing the 
relationship between urban watersheds and sewer systems 
challenging and data needs make traditional approaches 
less efficient for building sewershed-scale models and 
specifying corresponding parameters.

More efficient discretization methods exist, but have spe-
cific shortcomings when used in urban areas. For example, 
hydrologic partitioning based on digital elevation model 
(DEM) (Tsai et al. 2017) preserves terrain information, but 
neglects the surface connections to subsurface drainage 
networks which are crucial for sewer flow hydraulic simu-
lations. On the other hand, pipe network–guided division 
(Huang and Jin 2019) provides the links between surface 
and sewer nodes, but the surface flow routing is uncertain 
because it does not consider the influence of topography. The 
limits of these easily applied approaches for flow routing 
between subcatchments and in-pipe conveyance need to be 
understood and evaluated in urban areas.

This study tests the utility of using the Thiessen polygon 
approach (Okabe et al. 2000) to efficiently partition an urban 
sewershed. We built a sewershed model in the City of Pitts-
burgh, a city vulnerable to flash floods and combined sewer 
overflows (Hopkins et  al. 2014). The Thiessen polygon 
approach was used to generate subcatchments. To connect 
subcatchments to the sewer system a simplifying assumption 
was made that all surface water within the subcatchment 
drains to the corresponding node. Parameter distributions 
were constructed based on the frequencies of initial esti-
mates for each parameter across all the model elements. Fur-
ther, parameter sensitivities and model uncertainties were 
analyzed via Monte Carlo simulations and a simple model 
calibration algorithm combined with generalized likelihood 
uncertainty estimation was applied to calibrate the model. 
Based on these analyses, we evaluated the capability of pro-
posed approaches for urban stormwater simulations, which 
might enable stormwater model development even in areas 
that lack data.

Materials and methods

Study area and data sources

Sewershed M29 in the city of Pittsburgh (Fig. 1) was mod-
eled with a drainage area of approximately 9.7km2 . Land-
cover in this sewershed varies from highly urbanized to 
parkland, and the terrain is rugged. In addition, M29 has a 
large sewer network with over 600 nodes and pipe segments. 
These characteristics provide the opportunity to investigate 

Fig. 1   Location and pipe 
network of sewershed M29 in 
the city of Pittsburgh. A Sew-
ersheds in Allegheny County 
(Allegheny County Division of 
Computer Services Geographic 
Information Systems Group 
2016) (PA, USA). B The sewer 
network in M29. Hill shade 
derived from 1.8 m LiDAR 
DEM. (Allegheny County Divi-
sion of Computer Services Geo-
graphic Information Systems 
Group 2017)
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the relationship among various surface physical properties, 
the sewer networks, and model responses.

The model was built using multiple spatial data (Table 1). 
The main input data included: (1) 15-min rainfall intensity 
data (3 Rivers Wet Weather (3RWW) 2008) obtained from 
the University of Pittsburgh rain gauge (April 2008); (2) 
sewer data digitized on the basis of a system-wide sewer 
map (Allegheny County Sanitary Authority (ALCOSAN) 
2022) and then corrected and validated by comparing 
with GIS data provided by the Allegheny County Sani-
tary Authority (ALCOSAN); (3) 30 m land cover data (US 
Geological Survey 2014); (4) 1.8-m Lidar digital elevation 
model (DEM) (Allegheny County Division of Computer 
Services Geographic Information Systems Group 2017). We 
evaluated and calibrated the model by comparing simula-
tion results with monitored pipe flow (April 2008, provided 
by ALCOSAN), which included both dry and wet weather 
conditions.

To capture the input sewage base flow during dry weather 
conditions, we randomly picked two days of pipe flow data 
from each month with no rainfall records. We then averaged 
these flows to a daily flow pattern to serve as the sewage 
base flow (Supplemental Information, SI Fig. S1).

SWMM governing equations

The general simulation in SWMM is of a system that first 
receives precipitation and then generates surface runoff 
within subcatchments. At the outlet of the subcatchment, 
the pipe node or the channel receives the surface water and 
routes this runoff as pipe flow through the drainage system. 
SWMM surface runoff is mainly governed by precipitation, 
infiltration, and evaporation, modeled as a nonlinear reser-
voir to derive the governing equation (Rossman and Huber, 
2016) (Eq. 1).

where �d
�t

 is the change in water depth d over time t; i is the 
precipitation rate; e is the evaporation rate; f is the infiltra-
tion rate; k is the unit conversion constant (1 for SI units and 
1.49 for English units); W is the width of the subcatchment; 
A is the surface area of subcatchment; n is the Manning’s 
roughness coefficient; S is the slope; ds is the depression 
storage.

(1)
�d

�t
= i − e − f −

kW

An
S

1

2 (d − ds)
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3

The pipe flow in SWMM is derived from the St. Venant 
conservation of mass and momentum equations in Eq. (2) 
(Rossman 2017).

where �Q
�t

 is the change of flow rate per unit of time; v is the 
velocity; g is the gravitational acceleration; H is the hydrau-
lic head; Q is the flow rate; R is the hydraulic radius. Note 
that in Eq. (2) A is the flow cross-section area rather than the 
surface area of the subcatchment.

Model delineation and parameterization

In sewershed (M29), stormwater drains, described as nodes 
hereafter, are distributed densely throughout the developed 
areas. To simplify the model, we merged sets of adjacent 
nodes (within 5 m) into a single node. Corresponding pipe 
segments were then merged as well. The simplified sewer 
network consists of 638 nodes and 636 pipes. Thiessen poly-
gons were used to partition the subcatchments in ArcMap 
(Esri Inc. 2016), based on the simplified sewer nodes, with 
each plane enclosing only one node (Fig. S2). This method 
is widely used to analyze precipitation data from unevenly 
distributed rain gauges, by finding points within a plane that 
are closest to the target point (Brassel and Reif 2010). In 
our case, the target point is a node (storm drain). To route 
surface flow, we assumed that surface water generated within 
a subcatchment drains to the corresponding node, selecting 
the option in SWMM that routes all surface water to outlets 
(here representing the pipe nodes).

The width of each subcatchment polygon was estimated 
by dividing the subcatchment area by the longest distance 
from any point in the subcatchment (polygon) to the node. 
To estimate imperviousness, land types were extracted from 
land use data, and each type was assigned imperviousness 
values based on literature (Rossman and Huber 2016; US 
EPA 2014). Then, an area-weighted average was used to 
estimate the imperviousness for each subcatchment. Simi-
lar strategies were used to estimate depression storage and 
Manning’s roughness of subcatchments followed by assign-
ing literature values (e.g., Manning’s roughness (American 
Society of Civil Engineers and Water Environment Federa-
tion 2018; Bizier 2007) and depression storage (American 

(2)
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Table 1   Data sources Data Resolution Sources Year

Land cover 30 m × 30 m United States Geological Survey (USGS) 2011
DEM 1.8 m × 1.8 m Allegheny County Lidar and Terrain Products 2017
Sewer data N.A Allegheny County Sanitary Authority (ALCOSAN) 2022
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Society of Civil Engineers and Water Environment Federa-
tion 2018)) associated with land uses.

Evapotranspiration was not included in this model, as fast 
flow storm periods were the primary interest in the study. 
Slope maps were derived from DEM, and the average slope 
was assigned to each subcatchment. Infiltration-related 
parameters were based on Horton’s method (Rossman and 
Huber 2016; Horton 1941) as built into SWMM.

Based on the sewer data from ALCOSAN, pipe diameters 
in M29 range from 0.24 m up to 4.3 m. Simplifying the 
sewer network by combining nodes and pipes would result 
in changes to actual pipe geometric dimensions. We assumed 
circular cross-sections and an initial pipe diameter of 2.4 m, 
then created distributions from which diameters could be 
drawn for the Monte Carlo sampling process described in 
the next section.

Sensitivity analysis

Monte Carlo–based sensitivity analysis (Saltelli et  al. 
2000) was conducted to identify the influence of model 
inputs on predictions and to create simulations for model 
calibration discussed in the next sections. We focused on 
impacts of parameters on two types of model results: (1) 
single model outputs (within subcatchments or pipes), e.g., 
surface peak flow, runoff volume and maximum pipe flow; 
(2) the overall goodness-of-fit between simulated pipe flow 
and monitored pipe flow near the outlet of the sewershed. 
To quantify the influence of model parameters on single 

model outputs, we calculated the Spearman correlation 
coefficient (Spearman 1904) between model outputs — 
surface runoff peak flow, total runoff volume and maxi-
mum pipe flow — and parameters for each subcatchment 
or pipe. Goodness-of-fit is indicated by the Nash–Sutcliffe 
efficiency (NSE) in Eq. (3) (McCuen et al. 2006).

here Qo,i and Qs,i are the observed and simulated flow dis-
charge values, respectively, and QO is the observed mean 
flow. An NSE value closer to 1 suggests a better prediction 
was achieved.

The distributions used for the input parameters related 
to surface runoff and pipe flow are listed in Table 2. To 
create the distributions for each parameter, two strategies 
were used. First, lognormal distributions were used for 
the parameters extracted and estimated from spatial data 
and those estimated using literature values across the sub-
catchments. The mean was set to the estimated parameter 
values based on the area-weighted average. The variance 
was calculated using the estimated parameter values of all 
the subcatchments or pipes. For example, for the impervi-
ousness, the mean is the weighted mean imperviousness, 
and the variance is calculated based on the mean impervi-
ousness values from the 638 subcatchments. Therefore, in 
each subcatchment, the distribution of a specific parameter 
will have a different mean but the same variance.

(3)NSE = 1 −

∑n

i=1
(Qo,i − Qs,i)

2

∑n

i=1
(Qo,i − QO)

2

Table 2   Distributions of parameters included in sensitivity analysis for sewershed M29

(a, b) for lognormal distribution: a — mean of lognormal distribution (the subcatchment mean or pipe mean), b — standard deviation of corre-
sponding transformed normal distribution; (a, b) for uniform distribution: a – minimum, b — maximum. As parameter values vary by subcatch-
ment, the mean of the distribution is not reported

Parameter; units Distribution (a, b)

Subcatchment Width; m Uniform (0.5×Estimation,1.5×Estimation)
Imperviousness (Imper); % Lognormal (Individual subcatchment mean, 0.24)
Slope; % Lognormal (Individual subcatchment mean, 0.51)
Impervious N (N-imp); [-] Lognormal (Individual subcatchment mean, 0.559)
Pervious N (N-perv); [-] Lognormal (Individual subcatchment mean, 0.0867)
Impervious D (D-imper); 

in
Uniform (0.05, 0.1)

Pervious D (D-perv); in Lognormal (Individual subcatchment mean, 0.369)
Infiltration (Horton) Maximum infiltration rate 

(MaxIR); in/h
Uniform (4, 8)

Minimum infiltration rate 
(MinIR); in/h

Uniform (0.1, 0.3)

Decay rate (Decay); 1/h Uniform (2,7)
Sewer system Pipe length; m Lognormal (Individual pipe mean, 0.04)

Roughness; Uniform (0.011, 0.015)
Diameter; m Lognormal (2.4, 0.47)
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The second strategy was to use uniform distributions for 
the parameters that were constant across subcatchments or for 
which no information on variability was available. The two 
bounds of the uniform distributions were assumed by consider-
ing typical literature values (Rossman and Huber 2016; Horton 
1941; American Society of Civil Engineers and Water Envi-
ronment Federation 2018; Bizier 2007). Once distributions 
were established for all relevant parameters, 1000 Monte Carlo 
simulations were run using Latin hypercube sampling (LHS) 
(McKay et al. 2000) to evaluate the relationship between the 
model parameters and predicted outputs.

To understand how model discretization and parameteri-
zation influence overall simulation results, rather than assess 
their influence within each subcatchment or pipe segment, 
we chose the 5% best and 5% worst simulations (highest 
NSE and lowest NSE, respectively) to evaluate the change 
in parameter values that most improved overall model per-
formance (NSE). As the model became more accurate (i.e., 
higher NSE values) the corresponding parameters selected 
across the LHS-based Monte Carlo samples were assumed 
to represent better estimates. In addition, those parameters 
changing the most when comparing the worst performance 
to best performance were of particular interest (e.g., they 
may have had particularly poor initial settings).

We calculated the difference (Eq. 4) in parameter val-
ues between the best and worst simulations (5%) for each 
model element (i.e., each subcatchment or pipe). The dif-
ferences were then normalized by dividing the mean of the 
parameters (based on all generated samples) to eliminate the 
influence of different units. The differences in Eq. (4) were 
calculated by both types of parameters and each specific 
subcatchment or pipe.

We then calculated the sum of the absolute differences 
as the contributions of model parameters (p) or model ele-
ments (c) (the specific pipe or subcatchment) to improve 
NSE values from the worst to best based on the 1000 simula-
tions. The change of parameters ( Δp,c ) relates to the specific 
parameter or model element. Therefore, the contribution of 
each element or parameter ( contributionc , or contributionp , 
Eq. (5)) is represented by the sum of the changes related 
to specific parameter or element ( Δp or Δc ) divided by the 
total changes. We also normalized the contribution of each 
subcatchment ( contributionc′ , Eq. (6)) by area to control for 
the influence of the subcatchment size.

(4)Δp,c =
Best5% −Worst5%

Mean

(5)Contribution p

c

=

∑
(�Δp∕c�)∑
(�Δp,c�)

In these equations, p indicates the parameters whereas c 
indicates model elements (i.e., subcatchment or pipe).

Model uncertainties on surface delineation

Sewer network simplification and the use of the Thies-
sen polygon approach inevitably introduced uncertainties 
to the model outputs. A clear drawback of the Thiessen 
polygon–based partition approach is that it ignores surface 
topography to route surface flow to the sewer system. We 
assumed the water from each subcatchment was routed to the 
corresponding node, which simplifies the process to deter-
mine which nodes the surface inflow drains to. However, we 
do not consider the influence of topography on subcatchment 
partitioning; this assumption can be violated if the subcatch-
ment elevation is lower than the node elevation. Therefore, 
after subcatchment discretization, we checked this assump-
tion by comparing the subcatchment average elevation with 
the node elevation across the sewershed.

In addition, we evaluated the proposed approach by 
comparing it to the more common approach of partition-
ing subcatchments according to topography. We built two 
small-scale models within the Panther Hollow watershed, 
which lies within our greater M29 study area, by using delin-
eated subcatchments provided by the Pittsburgh Water & 
Sewer Authority (PWSA). The Panther Hollow watershed 
has an area of 185 acres (Fig. 1). To compare the land area 
covered by our polygon-based model to the PWSA deline-
ated topography-based Panther Hollow model, we merged 
all the polygons related to that section of the sewer network. 
We then compared the simulations with observed pipe flow 
(April–May 2014) at the outfall point.

Finally, the proposed subcatchment partitioning approach 
was evaluated as a function of the amount of sewer network 
data available, represented by number of nodes. In some areas, 
detailed sewer data may be unavailable, leading modelers to use 
street intersections to estimate information about the sewer net-
work. To explore the potential influence of sewer system struc-
ture uncertainty on model performance, we tested two scenarios: 
(1) randomly removing nodes but using the original sewer seg-
ments to routing flow; and (2) randomly removing nodes and 
building new sewer segments by connecting the remaining nodes 
based on their elevation. For each scenario, we conducted 4 tri-
als, randomly removing 10%, 20%, 30%, and 40% of the total 
nodes (except for nodes on major trunk sewers). One hundred 
simulations were made for each trial, and the NSE values were 
calculated. Two locations with monitored flow were considered 
for NSE calculations: one near the outlet of the sewershed; the 
other on the northwest side of the sewer network (Fig. S3).

(6)Contribution
�

c
=

Contributionc

Areac
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For the comparison between the Thiessen polygon and 
topography-based polygons within the Panther Hollow sub-
watershed, we could not use the NSE as a goodness-of-fit 
measure, because observed fluctuations in sanitary base 
flow was not captured in the simulation and the NSE cal-
culation heavily penalizes the model for these small flow 
errors, limiting the value of the assessment for evaluating 
stormflow predictions. Instead, the comparison of peak 
flow errors provided a reasonable method to evaluate the 
behavior of the two delineation methods relative to one 
another.

Model calibration

A Monte Carlo–based calibration algorithm was applied 
based on generalized likelihood uncertainty estimation 
(GLUE) (Beven 1993), which has been proposed as a 
Bayesian approach to derive model uncertainties. This 
approach often uses informal likelihood functions rather 
than a correct statistical error model, which is not entirely 
consistent with the Bayesian inference process (Stedinger 
et al. 2008; Mantovan and Todini 2006), but its ease of 
implementation and flexibility for combining different 
model inputs provide capability to deal with a large number 
of parameters for model calibration. Thus, we combined 

the GLUE procedure into the proposed calibration algo-
rithm described as follows (Fig. 2):

(1) Define distributions of model parameters ( xi) . The 
initial distributions were defined as shown in Table 2. (2) 
Draw parameter samples by using Latin hypercube sampling 
(LHS) and run Monte Carlo simulations. (3) Choose objective 
functions as response variables (Y). Here, the single objec-
tive function of NSE (Eq. 3) was used. (4) Divide simulations 
defined as “behavioral model runs” and “non-behavioral model 
runs”, in this case based on the median of the NSE values. That 
is, behavioral model runs were simulations with NSE values 
larger than the median. (5) Calculate the NSE weights Wj (Eq. 7) 
based on the behavioral model runs; j is the index of behavioral 
model runs. (6) Calculate the new mean �xi and variance �2

xi
 

for parameter xi . (7) Assume the family of distributions cor-
responding to parameters does not change and then use the new 
mean (Eq. 8) and variance (Eq. 9) to draw new samples. (8) 
Repeat steps (2)–(7) until acceptable NSE values are achieved. 
The final means of the distributions are treated as optimal values 
for parameters

(7)Wj =
NSEj∑
NSEj

Fig. 2   Pseudocode table of 
calibration algorithm
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Results and discussion

Parameter sensitivity analyses for subcatchments 
and pipes

Based on the Spearman correlation coefficients for total run-
off volume, imperviousness had the highest correlation coef-
ficient and dominated total runoff predictions (Fig. S5 (A)). 
The remaining parameters all have correlation coefficient 
distributions with a median of zero that cover positive and 
negative signs (Fig. S5 (A)), indicating that these parameters 
have no consistent effects on total runoff.

The influence of parameters on the predictions of peak flow 
is much clearer in both their magnitudes and signs (Fig. S5 
(B)). The most influential parameter is also the impervious-
ness, with a median of 0.63 (range of 0.5 to 1.0). Manning’s 
roughness for pervious area has a negative influence, while 
width and slope have positive influence that are comparable to 
one another. Our findings are similar to previous work docu-
menting the fundamental role of imperviousness (Muleta et al. 
2013; Barco et al. 2008) and consistent with observations that 
the Manning’s roughness and width have effects on SWMM 
hydrology simulations (Tsai et al. 2017; C. Li et al. 2014) and 
flow is less sensitive to infiltration parameters (Li et al. 2014).

All Spearman correlation coefficients for pipe parameters 
have a zero median with a range between  −0.1 and 0.1, indi-
cating that the three pipe parameters influence pipe flow 
minimally, inconsistent with previous studies that indicated 
pipe Manning’s roughness (Sun et al. 2013; Li et al. 2014) 
and the conduit geometry (Peterson and Wicks 2006) can 
impact the flow rates. The disagreements in estimations of 

(8)�xi =
∑

Wj × xij

(9)�2

xi
=
∑

Wj × (xij − �xi)
2

parameter importance across different studies may be caused 
by assuming different ranges for parameter distributions. For 
example, this study assumed a uniform distribution for Man-
ning’s roughness in pipes with a range of 0.011 and 0.015, a 
typical range for pipes (American Society of Civil Engineers 
and Water Environment Federation 2018; Bizier 2007). A 
much wider distribution, between 0 and 0.1, was assumed by 
Sun (Sun et al. 2013), which resulted in a higher influence 
of pipe roughness. However, it is not clear these roughness 
values are plausible in real pipe environments.

Parameter contribution to overall 
model performance

Global parameter contributions show the Manning’s rough-
ness for impervious area contributed substantially to improv-
ing overall model performance (Fig. 3). However, the imper-
viousness did not contribute as much as the slope and width. 
Parameters related to infiltration together contributed nearly 
25% to higher model performance when parameter values 
were varied. The influence of pipe length and diameter con-
tributed as much as 92% to improved NSE values, highlight-
ing the importance of the geometric parameters. However, 
the influence of pipe geometric parameters is small based on 
their Spearman correlation coefficients (Fig. S5). This may 
suggest that the contribution of parameters to improve NSE 
includes correlated information among subcatchments and 
pipes that has not been captured by the Spearman correlation 
coefficient, because they are calculated independently within 
each specific subcatchment or pipe line, but the parameter 
contributions to higher NSE values reflect the influence of 
parameters from all the subcatchments and pipes together.

We evaluated the contribution of each model element 
(subcatchment or pipe) to model performance, to explore 
cases where the parameters varied widely when compar-
ing best-performing model runs with worst-performing 
ones. Subcatchments in the center of our study area did 

Fig. 3   Parameter contributions 
for subcatchments and pipes to 
achieve better model perfor-
mance (higher NSE values)
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not contribute much to model improvement (Fig. 4). These 
subcatchments are in Schenley Park, a relatively undevel-
oped area (parkland) with low imperviousness. The higher 
impervious areas in subcatchments surrounding the park 
contribute relatively more, requiring greater changes from 
worst-performing parameter sets before model performance 
improvements were observed.

We assumed the mean of pipe diameters was 2.4 m. Under 
Monte Carlo simulations, the smallest diameter observed in 
the parameters from the best simulation is 0.65 m. The actual 
upstream pipe diameters are also less than 0.91 m based 
on available data from ALCOSAN. After simplification 
during model construction, some of those pipes effectively 
had larger diameters when multiple pipes were combined 
into a simplified network. However, based on this analysis 
2.4 m may still be too large a value for upstream pipes and 
may cause pipe segments at the top of the sewer system to 
have inordinately large contributions to model performance 
(darker orange lines, Fig. 4). The pipe segments close to the 
end-node reach a diameter as large as 4.2 m based on the 
sewer data from ALCOSAN, but in our system, the diam-
eter could also be much larger (> 8.4 m) due to the effect 
of merged pipe segments. Therefore, in Monte Carlo runs 
with good model performance (high NSE values), down-
stream pipe diameters were sampled from the higher end 
of the assumed parameter distribution and functioned to 
allow more water to flow through these lower portions of 
the sewershed.

Uncertainties associated with model discretization

The subcatchments delineated by using two approaches are 
shown in Fig. 5. The area of merged polygons within Panther 
Hollow watershed is 221 acres, which is larger than the area 
of Panther Hollow watershed of 185 acres.

A comparison between the two small-scale Pan-
ther Hollow models shows similar results for pipe flow 
simulations (Fig.  S6). For simulated peak errors, the 
terrain-based model has a peak flow error with a median 
of − 1.05% (mean − 0.019%, range − 39 to 40%), while the 

Fig. 4   Contribution of model 
elements (subcatchments or 
pipes) to NSE improvements

Fig. 5   Comparison of model subcatchments, overlaying Thiessen 
polygons and terrain-based subcatchments delineated by PWSA in the 
Panther Hollow watershed
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polygon-based model has a median error of 1.27% (mean 
7.67%, range − 31 to 61%). Compared to the delineation 
that considers topography, the Thiessen polygon–based 
model can simulate peaks with similar fidelity to observed 
flows, although it tends to generate higher peaks and leads 
to more positive peak errors than those simulated by the 
topography-based model.

When comparing the subcatchment average elevations 
with the node elevations, there are 230 subcatchments 
(35% of the total subcatchments) that violate the surface 
routing assumption (from surface to node), with elevation 
differences between 0.004 and 15% (Fig. S7). However, 
some small elevation differences can be caused by the 
intrinsic errors in DEM. Thus, we only considered routing 
errors for subcatchments with mean elevations more than 
1% lower than the node elevation (Fig. 6). This resulted in 
44 subcatchments (6.8%) that violated the routing assump-
tion, many of which are located in rugged portions of the 
sewershed. This finding suggests even though the naïve 
assumptions that the nodes receive surface flow can be 
violated, in the majority of cases the routing assumption 
is satisfied. Based on these results, the fast and efficient 
Thiessen polygon approach is appropriate to use for rela-
tively flat areas, but care must be taken for rugged areas in 
which polygons may need to be further manually adjusted.

The results of tests on the influence of level of sewer 
network information on model performance show there 
are no statistical differences among these simulations. 
We simulated increasing uncertainty regarding the sewer 

network by conducting simulations with 10–40% of nodes 
randomly removed. In the first case, we kept the infor-
mation about the pipe network the same as the original 
model, so that the lack of knowledge simulated was only 
about the location of the nodes (stormwater inlets). In the 
second case, we removed the nodes and reconnected the 
pipe sewers only around the “known” nodes. Even though 
the variance of the NSE values for predicted flow at the 
two flow monitoring locations increased as more nodes 
were removed (Fig. 7), the values remained larger than 
0.7 for all 800 simulations (slightly higher at location 2). 
According to these simulations, no obvious influence of 
the pipe nodes used to draw polygons on overall model 
performance (NSE) could be observed, for both fixed 
sewer segments (Fig. 7A, B) and rebuilt sewer segments 
(Fig. 7C, D). This suggests that the polygon approach can 
robustly estimate urban sewershed surface-pipe linkages 
even when using limited data, provided the major trunk 
lines are known.

Model calibration

Based on the results of sensitivity analyses, eight parameters 
were chosen to calibrate the model, including six subcatchment 
parameters: slope, width, imperviousness, Manning’s rough-
ness in impervious area, depression storage in pervious area 
and decay coefficient of infiltration. Two pipe parameters were 
also chosen: pipe diameter and Manning’s roughness. Three 
iterations (3000 simulations) of the calibration procedure 

Fig. 6   Comparison between 
subcatchment average elevation 
and node elevation with 1% dif-
ference threshold
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Fig. 7   Model performance 
(NSE) as a function of number 
of nodes used to build the 
model: A location 1 with fixed 
sewer network; B location 2 
with fixed sewer network; C 
location 1 with rebuilt sewer 
network; D location 2 with 
rebuilt sewer network

Fig. 8   Model performance after calibration compared to observed 
pipe flow: A Simulation results compared with observed pipe flow 
(black line) for the month of April 2008. B Detail of simulation, April 

4 to April 6. C Detail of simulation, April 19 to April 21. D Detail of 
simulation, April 27 to April 29
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were conducted and achieved a median NSE larger than 0.8. 
Changes of the variance of parameters are shown in Fig. S8, in 
which the variance of parameters within most of the subcatch-
ments or pipes decreased after calibration, leading to smaller 
95% confidence intervals (CI) for simulated pipe flows (shown 
in Fig. S9). This suggests it is feasible to use high-performance 
model runs to update parameters. After calibration, the model 
has an NSE of 0.82 and RMSE of 1.46. The shapes and magni-
tudes of flows are well predicted and the time to peak also cor-
responds well with most observed data, particularly for large 
rain events in late April (Fig. 8C–D).

Conclusion

In this study, we demonstrated an efficient means to build 
an urban sewershed stormwater model by drawing Thiessen 
polygons around sewer nodes. We assumed that the surface 
flow within subcatchments drained to their corresponding 
nodes and did not re-route any flow between subcatchments. 
After calibration, predicted flow patterns near the outlet of 
the sewershed during the month of April 2008 showed good 
agreement with monitored pipe flow data (NSE of 0.82). The 
number of nodes used to build the sewershed model did not 
dramatically influence model performance (NSE), provided 
the location of key trunk sewers was known. The proposed 
calibration algorithm was easy to apply even with a model 
with a large number of parameters. Therefore, this simple and 
efficient partitioning approach can be successfully used to 
build a reasonable sewershed model for predicting pipe flow.

We characterized the influence of SWMM parameters on 
total surface runoff volume, surface runoff peak flow, maxi-
mum pipe flow and NSE values. The four most important 
parameters influencing peak flow were imperviousness > Man-
ning’s roughness for impervious area > width > slope. Maxi-
mum pipe flow was not sensitive to the pipe geometry when 
evaluated based on the Spearman correlation coefficients, but 
its influence was clear when parameter contributions were 
analyzed based on comparison of low and high NSE Monte 
Carlo runs. This suggests, for model calibration, that the focus 
on improving parameter estimates can be different with dif-
ferent model output objectives.

One limitation of our approach is that it cannot fully 
analyze the correlated influence among parameters on the 
model outputs. We used the Spearman correlation coeffi-
cients to evaluate the relationship between parameters and 
their related individual elements (subcatchments or pipes) 
separately. However, the influences of surface parameters 
on pipe peak flow were not captured by the Spearman cor-
relation coefficients. In model calibration, we only con-
sidered a single objective function (NSE). Although it is 
believed parameter space can be generated by combining 
behavior model runs with multiple criteria, we did not test 

the capability of algorithm to calibrate multiple objectives. 
Our model assumption that subcatchments route surface 
water to nodes should be tested in other urban areas to 
validate its feasibility and limits of such an approach. As 
evidenced by the violation of routing for particularly rug-
ged areas of our sewershed, when the subcatchment strad-
dles a topographic feature like a sheer wall, the averaged 
elevation does not reflect the flow dynamics throughout 
the subcatchment.

In all, the proposed Thiessen polygon approach could 
generate good pipe flow simulations even when minimal 
detail is provided on topography and surface cover. There-
fore, it is possible to build urban stormwater models using 
the Thiessen polygon approach in areas that lack sewer 
data, particularly if the focus is to simulate pipe flow near 
the outlet of an urban sewershed.
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