A Method for Computing Inverse Parametric PDE Problems with
Random-Weight Neural Networks

Suchuan Dong? Yiran Wang
Center for Computational and Applied Mathematics
Department of Mathematics
Purdue University, USA

(April 16, 2023)

Abstract

We present a method for computing the inverse parameters and the solution field to inverse parametric
partial differential equations (PDE) based on randomized neural networks. This extends the local extreme
learning machine technique originally developed for forward PDEs to inverse problems. We develop three
algorithms for training the neural network to solve the inverse PDE problem. The first algorithm (termed
NLLSQ) determines the inverse parameters and the trainable network parameters all together by the
nonlinear least squares method with perturbations (NLLSQ-perturb). The second algorithm (termed
VarPro-F1) eliminates the inverse parameters from the overall problem by variable projection to attain
a reduced problem about the trainable network parameters only. It solves the reduced problem first
by the NLLSQ-perturb algorithm for the trainable network parameters, and then computes the inverse
parameters by the linear least squares method. The third algorithm (termed VarPro-F2) eliminates the
trainable network parameters from the overall problem by variable projection to attain a reduced problem
about the inverse parameters only. It solves the reduced problem for the inverse parameters first, and
then computes the trainable network parameters afterwards. VarPro-F1 and VarPro-F2 are reciprocal
to each other in some sense. The presented method produces accurate results for inverse PDE problems,
as shown by the numerical examples herein. For noise-free data, the errors of the inverse parameters and
the solution field decrease exponentially as the number of collocation points or the number of trainable
network parameters increases, and can reach a level close to the machine accuracy. For noisy data, the
accuracy degrades compared with the case of noise-free data, but the method remains quite accurate.
The presented method has been compared with the physics-informed neural network method.

Keywords: randomized neural networks, extreme learning machine, nonlinear least squares, variable pro-
jection, inverse problems, inverse PDE

1 Introduction

In this work we focus on the simultaneous determination of the parameters (as constants or field distributions)
and the solution field to parametric PDEs based on artificial neural networks (ANN/NN), given sparse and
noisy measurement data of certain variables. This type of problems is often referred to as the inverse PDE
problems in the literature [31]. Typical examples include the determination of the diffusion coefficient given
certain concentration data or the computation of the wave speed given sparse measurement of the wave
profile. When the parameter values in the PDE are known, approximation of the PDE solution is often
referred to as the forward PDE problem. We will adopt these notations in this paper.

Closely related to the inverse PDE problems is the data-driven “discovery” of PDEs [4, 7], in which,

given certain measurement data, the PDE functional form is to be discerned. Early works in this area

*Author of correspondence. Emails: sdong@purdue.edu (S. Dong), wang2335@purdue.edu (Y. Wang).

include [4, 58] based on symbolic regression and evolutionary algorithms for identifying the hidden physical
laws. An alternative approach based on sparse regression/optimization has been investigated in [7, 53, 55, 52],
in which a library of candidate functions and their derivatives is constructed first and then key terms are
selected from this library to express the dynamics by sparsity promotion techniques (L! regularization). The
work [69] employs dimensional analysis and sparse Bayesian regression to determine the candidate terms and
to approximate their weights in the underlying equations. In [2] the measurement data is first approximated
by a neural network in order to attain the derivative data of the measured variables, and then another neural
network (with L' regularization) is used to approximate the functional form of the underlying equation. A
symbolic neural network has been employed to represent the PDE form in [35], thus replacing the library
of candidate functions, and the derivatives of the measurement data are computed by convolutions. In [64]
the discrete evolution operator, rather than the functional form, for the PDE is learned with deep neural
networks. In another recent development [5] the state variables are represented by a neural network, whose
output is used to construct the set of candidate functions, and sparse regression is encoded into the loss
function of the neural network.

As advocated in [60, 31], data-driven scientific machine learning problems can be viewed in terms of the
amount of data that is available and the amount of physics that is known. They are broadly classified into
three categories in [31]: (i) those with “lots of physics and small data” (e.g. forward PDE problems), (ii)
those with “some physics and some data” (e.g. inverse PDE problems), and (iii) those with “no physics and
big data” (e.g. general PDE discovery). The authors of [31] point out that those in the second category are
typically the more interesting and representative in real applications, where the physics is partially known
and sparse measurements are available. One illustrating example is from multiphase flows, where the conser-
vation laws (mass/momentum conservations) and thermodynamic principles (second law of thermodynamics,
Galilean invariance) lead to a thermodynamically-consistent phase field model, but with an incomplete sys-
tem of governing equations [15, 14]. One has the freedom to choose the form of the free energy, the wall
energy, the form and coefficients of the constitutive relation, and the form and coefficient of the interfacial
mobility [12, 13, 67]. Different choices will lead to different specific models, which are all thermodynami-
cally consistent. The different models cannot be distinguished by the thermodynamic principles, but can be
differentiated with experimental measurements.

The development of machine learning techniques for solving inverse PDE problems has attracted a great
deal of interest recently, with a variety of contributions from different researchers. In [49] a method for
estimating the parameters in nonlinear PDEs is developed based on Gaussian processes. The physics informed
neural network (PINN) method is introduced in the influential work [50] for solving forward and inverse
nonlinear PDEs. The residuals for the PDE, the boundary/initial conditions, and the measurement data are
encoded into the loss function as soft constraints, and the neural network is trained by gradient descent (or
back propagation) type algorithms. The PINN idea has significantly influenced subsequent developments
and stimulated applications in many related areas (see e.g. [37, 39, 56, 36, 65, 47|, among others). A
hybrid method combining finite element and neural networks is developed in [1]. The finite element method
(FEM) is used to solve the underlying PDE, which is augmented by a neural network to represent the
PDE coefficient [1]. A conservative PINN method is proposed in [29] together with domain decomposition
for simulating nonlinear conservation laws, in which the flux continuity is enforced along the sub-domain
interfaces, and interesting results are presented for several forward and inverse problems. This method is
further developed and extended subsequently with domain decompositions in both space and time [28]; see

a recent study of this extended technique for supersonic flows [30]. Interesting applications are described

in [51, 9], where PINN is employed to infer the 3D velocity and pressure fields based on scattered flow
visualization data or Schlieren images from experiments. In [20] a distributed PINN technique based on
domain decomposition is presented, in which for nonlinear PDEs a related linearized equation is solved
with certain variables fixed at their initial values. An auxiliary PINN technique is developed in [68] for
solving nonlinear integro-differential equations, in which auxiliary variables are introduced to represent the
anti-derivatives and thus avoiding the integral computation. We would also like to mention [11, 60, 38, 34]
(among others) for inverse applications of neural networks in other related fields. It is noted that in the
above works the full set of NN parameters (from the hidden layers and the output layer) are trainable.

In the current work we consider the use of randomized neural networks, also known as extreme learning
machines (ELM) [25] (or random vector functional link (RVFL) networks [46]), for solving inverse PDE
problems. ELM was originally developed for linear classification and regression problems. It is characterized
by two ideas: (i) randomly assigned but fixed (non-trainable) hidden-layer coefficients, and (ii) trainable
linear output-layer coefficients determined by linear least squares or by using the Moore-Penrose inverse [25].
This technique has been extended to scientific computing in the past few years, for function approximations
and for solving ordinary and partial differential equations (ODE/PDE); see e.g. [66, 45, 21, 16, 17, 10, 22,
57, 19, 43], among others. The random-weight neural networks are universal function approximators. As
established by the theoretical results of [27, 26, 40], a single-hidden-layer feed-forward neural network (FNN)
having random but fixed (not trained) hidden units can approximate any continuous function to any desired
degree of accuracy, provided that the number of hidden units is sufficiently large.

In this paper we present a method for computing inverse PDE problems based on randomized neural
networks. This extends the local extreme learning machine (locELM) technique originally developed in [16]
for forward PDEs to inverse problems. Because of the coupling between the unknown PDE parameters
(referred to as the inverse parameters hereafter) and the solution field, the inverse PDE problem is fully
nonlinear with respect to the unknowns, even though the associated forward PDE may be linear. We
partition the overall domain into sub-domains, and represent the solution field (and the inverse parameters,
if they are field distributions) by a local FNN on each sub-domain, imposing C¥ (with appropriate k)
continuity conditions across the sub-domain boundaries. The weights/biases in the hidden layers of the
local NNs are assigned to random values and fixed (not trainable), and only the output-layer coefficients are
trainable. The inverse PDE problem is thus reduced to a nonlinear problem about the inverse parameters
and the output-layer coefficients of the solution field, or if the inverse parameters are field distributions,
about the output-layer coefficients for the inverse parameters and the solution field.

We develop three algorithms for training the neural network to solve the inverse PDE problem:

e The first algorithm (termed NLLSQ) computes the inverse parameters and the trainable parameters
of the local NNs all together by the nonlinear least squares method [3]. This extends the nonlinear
least squares method with perturbations (NLLSQ-perturb) from [16] (developed for forward nonlinear
PDEs) to inverse PDE problems.

e The second algorithm (termed VarPro-F1) eliminates the inverse parameters from the overall problem
based on the variable projection (VarPro) strategy [23, 24] to attain a reduced problem about the
trainable network parameters only. It solves the reduced problem first for the trainable parameters
of the local NNs by the NLLSQ-perturb algorithm, and then computes the inverse parameters by the

linear least squares method.

e The third algorithm (termed VarPro-F2) eliminates the trainable network parameters from the overall

inverse problem by variable projection to arrive at a reduced problem about the inverse parameters
only. It solves the reduced problem first for the inverse parameters by the NLLSQ-perturb algorithm,
and then computes the trainable parameters of the local NNs based on the inverse parameters already
obtained. The VarPro-F2 and VarPro-F1 algorithms both employ the variable projection idea and are
reciprocal formulations in a sense. For inverse problems with an associated forward nonlinear PDE,

VarPro-F2 needs to be combined with a Newton iteration.

The presented method produces accurate solutions to inverse PDE problems, as shown by a number of
numerical examples presented herein. For noise-free data, the errors for the inverse parameters and the
solution field decrease exponentially as the number of training collocation points or the number of trainable
parameters in the neural network increases. These errors can reach a level close to the machine accuracy
when the simulation parameters become large. For noisy data, the current method remains quite accurate,
although the accuracy degrades compared with the case of noise-free data. We observe that, by scaling the
measurement-residual vector by a factor, one can markedly improve the accuracy of the current method for
noisy data, while only slightly degrading the accuracy for noise-free data. We have compared the current
method with the PINN method (see Appendix E). The current method exhibits an advantage in terms of
the accuracy and the computational cost (network training time).

Both the second and the third algorithms developed herein are based on the idea of variable projection
(VarPro) [23, 24], as mentioned earlier. VarPro is a classical strategy for solving separable nonlinear least
squares problems [23, 32, 24, 44]. These are problems in which the unknown parameters can be separated
into two sets, the linear parameters and the nonlinear parameters. VarPro treats the linear parameters
as dependent on the nonlinear parameters, and then seeks to eliminate the linear parameters from the
problem to arrive at a reduced problem about the nonlinear parameters only. The nonlinear parameters
are determined first by solving the reduced problem, and the linear parameters are computed afterwards.
The benefits of variable projection include the reduced dimension of parameter space, better conditioning,
and faster convergence with the reduced problem [54, 59, 24]. The VarPro approach for training neural
networks has been investigated in e.g. [61, 63, 62, 59, 48, 33, 42, 41, 18] (among others). The projection
learning method [61, 63, 62] seems to be the earliest work on neural-network training in the spirit of variable
projection. The improved conditioning in the problem and faster convergence with VarPro for neural network
fitting is shown in [59]. In [48, 33] two-layered neural networks are trained by VarPro together with the
Levenberg-Marquardt method. In more recent works [42, 41], VarPro has been extended to handle non-
quadratic objective functions (e.g. the cross-entropy function for classification problems) and a stochastic
optimization method (slimTrain) based on VarPro has been developed. In [18] the VarPro strategy has
been adapted to numerically solving linear and nonlinear (forward) PDEs by a physics informed neural
network-like approach, leading to spectral-like accuracy in the computation results.

The method and algorithms developed herein are implemented in Python based on the Tensorflow!,
Keras?, and the scipy® libraries. The numerical simulations are performed on a MAC computer (3.2GHz
Intel Core i5 CPU, 24GB memory) in the authors’ institution.

The main contribution of this paper lies in the local extreme learning machine based technique together
with the three algorithms for solving inverse PDE problems. The exponential convergence behavior exhib-

ited by the current method for inverse problems is particularly interesting, and can be analogized to the

Thttps://www.tensorflow.org/
2https://keras.io/
Shttps://scipy.org/

observations in [16] for forward PDEs. For inverse problems such fast convergence seems not available in the
existing techniques (e.g. PINN based methods).

The rest of this paper is structured as follows. In Section 2 we first discuss the representation of functions
by local randomized neural networks and domain decomposition, and then present the NLLSQ, VarPro-F1
and VarPro-F2 algorithms for training the neural network to solve the inverse PDE. Section 3 uses a number
of inverse parametric PDEs to demonstrate the exponential convergence and the accuracy of our method, as
well as the effects of the noise and the number of measurement points. Section 4 concludes the discussion with
some closing remarks. Appendix A summarizes the NLLSQ-perturb algorithm from [16] (with modifications),
which forms the basis for the three algorithms in the current paper for solving inverse PDEs. Appendix B
provides the matrices in the NLLSQ and VarPro-F2 algorithms. Appendix C and Appendix D provide
additional numerical tests of the current method with the inverse parametric advection equation and Sine-
Gordon equation, respectively. Appendix E compares the current method with PINN for several inverse
problems from Section 3. Appendix F lists the parameter values in the NLLSQ-perturb algorithm for all the

numerical simulations presented in this paper.

2 Algorithms for Inverse PDEs with Randomized Neural Net-
works

2.1 Inverse Parametric PDEs and Local Randomized Neural Networks

We focus on the inverse problem described by the following parametric PDE, boundary conditions, and
measurement operations on some domain Q C R? (d = 1,2,3):

a1L1(u) + aslo(u) + -+ anlan(u) + F(u) = f(x), x€Q, (1a)
Bu(x) = g(x), x € 09, (1b)
Mu(€) =5(€), £€€Q,CQ. (1c)

In this system, £; (1 < i < n) and F are differential or algebraic operators, which can be linear or nonlinear,
and f and g are prescribed source terms. u(x) is an unknown scalar field, where x denotes the coordinates.
a; (1 <i < n)are n unknown constants. The case with any «; being an unknown field distribution will be
dealt with later in a remark (Remark 2.7). We assume that the highest derivative term in (1a) is linear with
respect to u, while the nonlinear terms with respect to u involve only lower derivatives (if any). B is a linear
differential or algebraic operator, and Bu denotes the boundary condition(s) on the domain boundary 0.
M is a linear algebraic or differential operator representing the measurement operations. Mu(€) denotes
the measurement of Mu at the point &, and S(€) denotes the measurement data. 2, denotes the set of
measurement points. Given S(&), the goal here is to determine the parameters a; (1 < 7 < n) and the
solution field u(x). Hereafter we will refer to the parameters o = (ay,...,a,)T as the inverse parameters.
Suppose the inverse parameters are given. The boundary value problem consisting of the equations (1a)—(1b)
will be referred to as the associated forward PDE problem, with u(x) as the unknown. We assume that the

formulation is such that the forward PDE problem is well-posed.

Remark 2.1. We assume that the operators L; (1 < i < n) or F may contain time derivatives (e.g. %,
86—;, where t denotes time), thus leading to an initial-boundary value problem on a spatial-temporal domain
Q. In this case, we treat t in the same way as the spatial coordinate x, and use the last dimension in
x = (z1,22,...,24) to denote t (i.e. xqg =1t). Accordingly, we assume that the equation (1b) should include
conditions on the appropriate initial boundaries from 9Q. The point here is that the system (1) may refer to

time-dependent problems, and we will not distinguish this case in subsequent discussions.

sub-domain #1

]
R

i IR0 i
Ll o 9ol 5]
ey e d0
domain \ , 0]
-, ’/ﬁ i ;:;3‘;>ou
v L)
sub-domain #N

Figure 1: Cartoon illustrating domain decomposition and local random-weight neural networks.

We devise numerical algorithms to compute a least squares solution to the system (1) based on local
randomized neural networks (or ELM). We decompose the domain € into sub-domains, and represent u(x)
on each sub-domain by a local ELM in a way analogous to in [16]. Let Q@ = Q; UQy U --- U Qy, where Q;

(1 <14 < N) denote N non-overlapping sub-domains (see Figure 1 for an illustration). Let

ul(x), X € Q1,
u(x) = uz(x), x € Qo, (2)

uN(X), X € QN,

where u;(x) (1 < ¢ < N) denotes the solution field restricted to the sub-domain §2;. On the interior sub-
domain boundaries shared by adjacent sub-domains we impose C¥ continuity conditions on u(x), where
k = (k1,...,kq) denotes a set of appropriate non-negative integers related to the order of the PDE (1a). If
the PDE order (highest derivative) is m; along the x; (1 < i < d) direction, we would in general impose
C™i=! (i.e. k; = m; — 1) continuity conditions in this direction on the shared sub-domain boundaries.

On ©; (1 <i < N) we employ a local FNN, whose hidden-layer coefficients are randomly assigned and
fixed, to represent u;(x). More specifically, the local neural network is set as follows. The input layer consists
of d nodes, representing the input coordinate x = (1,2, ...,24) € €;. The output layer consists of a single
node, representing u;(x). The network contains (L — 1) (with integer L > 2) hidden layers in between. Let
o : R — R denote the activation function for all the hidden nodes. Hereafter we use the following vector (or

list) M of (L 4 1) positive integers to represent the architecture of the local NN
M = [mo, m1,...,mr—1,mg], (architectural vector) (3)

where mg = d and mz, = 1 denote the number of nodes in the input/output layers respectively, and m; is
the number of nodes in the i-th hidden layer (1 < i < L —1). We refer to M as an architectural vector.

We make the following assumptions:

e The output layer should contain (i) no bias, and (ii) no activation function (or equivalently, the acti-

vation function be o(z) =).

e The weights/biases in all the hidden layers are pre-set to uniform random values on [—R,,, R;], where

R,, > 0 is a user-provided constant. The hidden-layer coefficients are fixed once they are set.
e The output-layer weights constitute the the trainable parameters of the local neural network.

We employ the same architecture, same activation function, and the same R,, for the local neural networks

on different sub-domains.

ei,g) |ei+1.)

Figure 2: Sub-domains and collocation/measurement points: (a) Sketch of adjacent sub-domains. (b) Sketch of
uniform grid points as collocation points (5 x 5 here) on two adjacent sub-domains. (c¢) Sketch of 20 random
measurement points (shown as “+” symbols) in each sub-domain on two adjacent sub-domains.

In light of these settings, the logic in the output layer of the local NNs leads to the following relation on
the sub-domain ©; (1 <i < N),

M
u;(x) = Zﬂij¢ij (x) = ®i(x)B;, (4)

where M = mp_; denotes the width of the last hidden layer of the local NN, ¢;;(x) (1 < j < M) denote
the set of output fields of the last hidden layer on €;, £;; (1 < j < M) denote the set of output-layer
coefficients (trainable parameters) on Q;, and ®; = (¢i1, b2, ..., ¢inr) and B; = (Bi1, Bizs - - -, Bins)T. Note
that, once the random hidden-layer coefficients are assigned, ®;(x) in (4) denotes a set of random (but fixed
and known) nonlinear basis functions. Therefore, with local ELMs the output field on each sub-domain is

represented by an expansion of a set of random basis functions as given by (4).
With domain decomposition and local ELMs, the system (1) is symbolically transformed into the following
form, which includes the continuity conditions across shared sub-domain boundaries:

a1 Ly (us) + aalo(ui) + -+ anln(us) + Flus) = f(x), x€Q;, 1<i<N; (5a)
Bu;(x) = g(x), x€dNNQ, 1<i<N; (5b)
Mu; (&) =5(&), £€€Q2:,nNQ;, 1<i<N; (5¢)
Cu;i(x) — Cuj(x) =0, x € 0Q; NN, for all adjacent sub-domains (Q;,9;), 1<i,j < N. (5d)

In this system u;(x) is given by (4), and the operator Cu denotes the set of C* continuity conditions imposed

across the shared sub-domain boundaries on w or its derivatives. Define the residual of this system as,

a1 Ly (us) + olo(ui) + -+ 4+ anLln(ui) + Fui) — f(x), x € Qi 1 <IN
. Bui(x) —g(x), x € 9QNQ, 1<i< N
R(a, 8,x,§) = Mui(€) — S(€), €€ QN 1<i< N ’ ©)
Cui(x) — Cu;(x), x € 9Q; N OQ;, for all adjacent (2;,9Q;), 1 <i,j <N

N

where 3 is the vector of all trainable parameters, 3 = (B7,...,8%)T = (B11,B12,- -+, Bins, Bty - -+, B T

The system (5) is what we would solve numerically by least squares for the inverse parameters o and
the trainable network parameters 3. After (a, 3) are determined, the field solution u(x) is computed by (2)
and (4). In what follows we present three algorithms, one based on the nonlinear least squares method with

perturbations and the other two based on the variable projection idea, for determining the a and 3.

2.2 Nonlinear Least Squares (NLLSQ) Method for Network Training

We first outline a basic algorithm for computing (e, 3) by the nonlinear least squares (NLLSQ) method with

perturbations [16]. It forms the basis for the variable projection algorithms presented in the next subsection.

For the simplicity of presentation we focus on rectangular domains, i.e. Q = [a1, b1] X [az, ba] X - - - X [ag, bd],
where a; and b; (1 < i < d) denote the lower/upper bounds of Q in the z; direction, and assume that is
partitioned into N; (N; > 1) sub-domains along z; (1 < i < d).

To make the discussion more concrete, we specifically consider a second-order PDE in two dimensions
(d=2,x = (r1,22) = (x,y)) as an example in this and the next subsections. In the following discussions
we assume that equation (1a) is of second order with respect to both z and y, and we impose C! continuity
conditions across the sub-domain boundaries in both x and y directions.

Let the vectors X = (X, X1,...,XnN,) and Y = (Yo,Y1,...,Yn,) denote the sub-domain boundary
points along the two directions, respectively, where (Xo, Xn,) = (a1,b1) and (Yy, Ya,) = (az,b2). The total
number of sub-domains is N = N1 No. We assume that the sub-domain Q. (1 < e < N) is characterized by

the partition indices (7, j) along the x and y directions (see Figure 2(a)), with the following relation,
QEZQe(i,j):[Xithi] X [Y'j*h}/j]a e:e(lﬁj):(l_l)NQ +.]7 forlg(i7j)<(N17N2)a (7)

where “1 < (i,7) < (N1, N2)” or “(1,1) < (4,5) < (N1, Na)” stands for 1 <4 < Ny and 1 < j < No. We will

use this and similar notations hereafter for conciseness.
With these settings the boundary conditions in (5b) are reduced to,

Bue(l,j)(alvy) = g(a17y)7 Bue(Nl,]')(bby) = g(b17y)7 for
Bueginy(z,a2) = g(z,a2), Bueg,ny)(,b2) = g(z,b2), for

Here u,(; ;) denotes u on €.(; jy, and e(i, j) is given by (7). The C! continuity conditions in (5d) reduce to,

uc(i,j)(Xivy) - ue(i+1,j)(Xivy) =0, for1<(4,7) < (N1 —1,N2); (9a)

Tte(ini) _ Tlelit1.) =0, forl<(i,5) < (N1 —1,Na); (9b)
Oz l(x;) Oz lix;)

ue(i,j)(mfy}) - ue(i,j—&-l)(mv}/j) =0, forlg (7').7) < (N17N2 - 1)? (9C)

s Suri

bl _ Zelitn) =0, for 1< (i,j) < (N1, N2 — 1). (9d)
oY 2y Oy (=,Y;)

The equations (9a) and (9¢) are the C° conditions on the horizontal /vertical sub-domain boundaries, and
the equations (9b) and (9d) are the corresponding C! conditions.

The system to solve now consists of equations (5a), (8), (5¢), and (9). This is a continuous system. We
next enforce this system on a set of collocation points and measurement points to arrive at a discrete system
about the parameters v and 3.

We choose a set of @ (Q > 1) collocation points on each sub-domain Q. (1 < e < N), denoted by
x5 = (z5,y5) (1 <p < Q), among which @y, (1 < Qp < Q) points reside on JQ.. Let X, denote the set of
collocation points on €., and X2 = X, N, denote the set of collocation points residing on the sub-domain
boundaries. The boundary collocation points on adjacent sub-domains are required to be compatible. That
is, for any two adjacent sub-domains (£2,,,{2.,), those boundary collocation points from ., that reside on
the shared boundary 9., N 0., are required to be identical to those boundary collocation points from €2,
that reside on the same boundary.

The collocation points can in principle be chosen based on various distributions (e.g. random, uniform). In
this paper we focus on using uniform grid points as the collocation points; see Figure 2(b) for an illustration
with a 5 x 5 uniform grid points as the collocation points on two neighboring sub-domains. Let @1 and Q2

denote the number of uniform grid points along = and y, with Q = @1@2. The uniform collocation points

on the sub-domain Q¢ = Q) (1 < (m,1) < (N1, No)) are given by

e _ e(ml) _ (e(m,l) e(m,l) e(m,l) _ . _ _
xg = xy () = (i o)) o) = Xmet 4 (6= D (Xm = Xino1)/(@1 — 1),
S =¥+ (= DG = Yie)/(@a = 1), for 1< (m,1,0,) < (N1, N2, Q1, Qa); (10)

vhrs
p=p(i,j) = (i -1)Q2+j, forl<(p,i,j)<(Q,Q1,Q2).

We assume that the measurement data is given on a set of Qs (Qs > 1) random measurement points
(with a uniform distribution) on each Q. (1 < e < N), denoted by & = (§5,7;) (1 < p < Qs). Figure 2(c)
shows an example of @); = 20 random measurement points in each sub-domain on two adjacent sub-domains.
We use Y, to denote the set of measurement points on Q. (1 < e < N).

Once the hidden-layer coefficients of local NNs are randomly assigned and the collocation and measure-

e
P

certain order), and the data for M®.(£5), by forward evaluations of the neural network and by automatic dif-

ment points are chosen, we compute the last hidden-layer field data ®.(x%) and their derivatives (up to a
ferentiations. We then store these data for subsequent use. In light of (4), for any given 8 = (87,...,8%)7,

we have
u5(x;) = lpE(XZ)IB& ’Due(xZ) = DQE(XZ)L;& MUE(ES) = MQE(E;)B& 1 < (67]7, Q) < (N7Q7QS)7 (11)
where D is a linear differential operator and M is the measurement operator.

Remark 2.2. To compute ®.(x;), D®.(x5) and MP. (&), in the implementation we create a Keras sub-

model, referred to as the last-hidden-layer-model, to the local NN for each sub-domain. The input nodes to
this sub-model are identical to those of the original local NN, and the output nodes of this sub-model consist
of those nodes in the last hidden layer of the original local NN. We compute ®.(x5) (1 <p < Q) and ®.(&;)
(1 < p < Qs) by a forward evaluation of the last-hidden-layer-model for Q. on the input data (collocation

e
P

differentiation of the last-hidden-layer-model, implemented by the “ForwardAccumulator” in the Tensorflow

points, or measurement points). We compute the derivatives of ®. on x& or on &, by a forward-mode auto-

library. The forward-mode auto-differentiation is crucial to the performance of the ELM method (see [19]).

To derive the discrete system we enforce (5a) on all the collocation points in X, (1 < e < N), enforce (8)
on all the boundary collocation points in X2 N9Q for 1 < e < N, enforce (5¢) on all the measurement points
in Y. (1 < e < N), and enforce (9) on those collocation points from X2 (1 < e < N) that reside on the
shared boundaries of adjacent sub-domains.

The discrete system corresponding to (5a) enforced on the collocation points is,
o1 L1 (ue(xf))) + oLy, (ue(xf))) + F (ue(x;)) —f (xg) =0, forx, € X¢, 1 < (e,p) < (N,Q). (12)

The discrete system corresponding to (8) on the boundary collocation points is given by,

e(1,0)

Bue (a1, y51 7)) = 9lar, sy 3) = 0, for 1< (1,) < (N2, Qa); (13a)
Buein, 1y (b1, yio) — 9001, y5in) =0, for 1< (1,5) < (N2, Q2); (13b)
Bue(m,l)(x;ET£;)7a2) - g(wZETi)l)JQ) =0, forl<(m,i)<(N,Q1); (13¢)
Butem) (Tor o b2) = g5 o) o) = 0, for 1< (m,4) < (N1, Qu). (13d)

Here the functions e(+,) and p(-,) are defined in (7) and (10), respectively. The discrete system correspond-

ing to (5¢) enforced on the measurement points is given by

Mue(gg) - S(&;) = 07 for 5; € Ye; 1< (eap) < (N,QS) (14)

The discrete system corresponding to (9) enforced on the interior sub-domain boundary points is,

e(m,l e(m1l -
ue(m’l)(Xm’ypEQl,)j)) - “e(mH,l)(Xm,Z/pEl,;gl)) =0, for1<(m,l,j) < (N1—1,N2,Q2); (15a)
QUe(m Dt
- % = 0, for 1 < (m7l7]) < (N1 — 17N27Q2); (15b)

T X)) T)
el (@31 Y1) = Uemrsny (@) ™ Vi) = 0, for 1< (m,14) < (N1, No = 1,Qu); (15¢)
Ju ou
M a M :Oa fOI'].é (maluz) < (N17N2_17Q1)~ (15d)
O lagp O e

In the above equations x¢, ngnji) and y;EZnJ)l) are defined in (10), and u.(x) is given by (4) and (11).

The equations (12)—(15d) form the system we would solve to determine the inverse parameters a =
(ai,...,a,)T and the trainable network parameters B = (311,...,8na). This is a system of nonlinear
algebraic equations about (a, 3). Note that the functions ®.(x) (1 < e < N) and their derivatives evaluated
on the collocation/measurement points, which are involved in the operators such as £;(ue), F(ue), Bue, Mue,
and Cu,, are computed by evaluations of the neural network and auto-differentiations (see Remark 2.2). This

system consists of N, equations and a total of N, unknowns, where
N.=N(Q+Q,+2Q1 +2Qz), No=Np+n=NM+n, (16)

and Ny = NM is the total number of trainable parameters in the neural network.

We seek a least squares solution to this system, and solve this system for (a,3) by the nonlinear least
squares (NLLSQ) method [3, 16]. In our implementation we take advantage of the quality implementations
of the nonlinear least squares method in the scientific libraries, specficially the “least_squares()” routine
from the scipy.optimize package in Python for the current work. This library routine implements the Gauss-
Newton method [3] together with a trust region algorithm [6, 8].

Since the nonlinear least squares method is a local optimization algorithm, it can be trapped to a local-
minimum solution that is unacceptable. It is therefore crucial to combine the nonlinear least squares method
with some perturbation strategy when solving the nonlinear least squares problem, in order to prevent the
method from being trapped to the worst local-minimum solutions. In this paper we adopt the strategy for
the initial guess perturbation and sub-iteration procedure developed in [16], with some modifications, and
combine it with the nonlinear least squares method for solving the current system arising from the inverse
PDE problem. We refer to the combined algorithm as the nonlinear least squares method with perturbations
(NLLSQ-perturb). The NLLSQ-perturb algorithm is listed in the Appendix A of this paper (as Algorithm 7),
which contains explanations of the various input parameters to the algorithm.

The NLLSQ-perturb algorithm (Algorithm 7) requires two routines, one for computing the residual vector
and the other for computing the Jacobian matrix for an arbitrary given approximation to the solution. When

the system (5) is enforced on the collocation points, the residual function in (6) is reduced to the vector,

RP4°(a, B)
_ | R™B
R(a7 16) - Rmea(ﬁ) . (17)
RMB) 1y 1

The vectors RPe, RP¢, R™® and R in this expression are related to the left hand side (LHS) of the

equations (12)—(15d) and their specific forms are provided in the equation (56) of Appendix B.
We therefore compute the residual vector R (e, 3) as follows. Given arbitrary (c, 3), we compute u.(x)
(x5 € X,) for 1 < e < N, and their derivatives by (11). Then we compute the LHSs of the equations (12),

10

Algorithm 1: Computing the residual R(e, 3) for NLLSQ algorithm

input : vector 8 = (a, 3); ®.(r;) and derivatives (1 < (e,p) < (V,Q)); MP.(&;) (1 < (e,p) < (N,Q5)).
output: residual vector R(0)
if 0 = 0, then
| retrieve u.(x5) (1< (e,p) < (N,Q)) and their derivatives, and Muc(&5) (1 < (e,p) < (N, Qs))
else
compute u.(x;) (1 < (e,p) < (N
(1< (e.p) < (N,Qu)) by (11)
set ;s = 0, and save ue(x) (1< (e,p) < (NV,Q)), their derivatives, and Mue(€;) (1 < (e,p) < (IV,Qs))
6 end

7 compute RP(0), R*(9), R™(0), R™(0) by the LHSs of (12)—(15d), as given in (56) of Appendix B
8 form R(0) according to (17)

B~ W N =

@)), their derivatives (up to a necessary order), and Mu.(&;)

Algorithm 2: Computing the Jacobian matrix 3(a ﬁ) for NLLSQ algorithm

input : vector 8 = (a, 8); ®.(r;) and derivatives (1 < (e,p) < (N, Q)); MP.(&;) (1 < (e,p) < (N,Q5)).
output: Jacobian matrix %—1;
if 0 = 0, then
| retrieve u.(x5) (1< (e,p) < (N,Q)) and their derivatives, and Muc(£5) (1 < (e,p) < (N, Qs))
else
compute u.(x;) (1 < (e,p) < (N
(1< (e.p) < (N.Q2) by (11)
set 65 = 6, and save ue(x) (1< (e,p) < (IV,Q)), their derivatives, and Mue(€;) (1 < (e,p) < (IV,Qs))
6 end

N N

@)), their derivatives (up to a necessary order), and Mu.(&;)

de pde be P mea ck
7 compute 8%; , O%IB , DDRﬁ , O%ﬁ , OR by equations (57)—(61) of Appendix B

8 form 28 = by (18)

B a(a B)

(13a)—(13d), (14), and (15a)—(15d), and assemble them to form the vectors RPde, RP¢ R™e® and Rk
according to equation (56) of Appendix B. The residual vector R (e, 3) is finally assembled according to (17).

The procedure for computing R(e, 8) is summarized in Algorithm 1.

Remark 2.3. On line 4 of Algorithm 1, the “necessary order” refers to the order of all the derivative terms

of ue involved in the system consisting of (12)—(15d). For example, if 2 5,5 and %“;

a > 0%,
< and

ox

are involved in this

The Jacobian matrix is given by

8dee 8dee

da o8
R _pm oy | O oh (18)
da,B8) 7 o B '
0 OR®

B N:.XNp,

Appde Appde Aapbc Apmea . .
‘)%a , d%ﬁ , ()gﬁ , ()Raﬁ and (RB involved in the above expression are

specified in the equations (57)-(61) of Appendix B.

The specific forms for the matrices

Therefore the Jacobian matrix can be computed as follows. Given arbitrary (o, 3), we compute ue(x;)
(1< (e,p) < (N,Q)), their derivatives, and Mu.(&;) (1 < (e, p) < (IV,Qs)) based on B and the pre-computed
®.(x;), their derivatives, and the M®.(£5) data. Then we compute the Jacobian and related matrices by

the equations (18) and (57)—(61). Algorithm 2 summarizes the routine for computing the Jacobian matrix.

11

Remark 2.4. In Algorithms 1 and 2 we have stored the data for u, its derivatives, and Mu on the colloca-
tion/measurement points corresponding to the 8 = (o, B8) value last computed (denoted by 0); see lines 1 to 6
in both algorithms. This saves computations, because in the nonlinear least squares iterations Algorithm 1 is
typically invoked first to compute the residual corresponding to some (at, 3), and then Algorithm 2 is invoked
to compute the Jacobian for the same (e, B). Again please note that 05 in these two algorithms is used to
save the last 0 = (a, 3) value for which the data have been computed. 04 should be initialized to “None” at

the beginning of the computation.

Remark 2.5. In this work the hidden-layer coefficients are assigned to uniform random values generated on
the interval [— Ry, R, where Ry, > 0 is a constant. The R, value influences the accuracy of the simulation
results of inverse PDE problems, similar to what has been observed in forward problems (see [16, 19]). In
this paper we compute a near-optimal R,, using the method from [19] based on the differential evolution

algorithm, and employ this value (or a value nearby) in numerical simulations of inverse PDEs.

Remark 2.6. For noisy measurement data S(§), we observe that scaling the residual vector associated with
the measurement (R™) by a constant factor can improve the accuracy of the results (more robust to noise).

Let Amea > 0 denote a prescribed constant. We scale the equation (14) by Amea,

)\meaMUe(ég) - AmeaS(éz) = 07 for 5; S Yea 1 < (e7p) g (N7 Qs) (19)

Then in the presented method we replace equation (14) by the scaled equation (19), with corresponding
changes to the computation of the residual vector and the Jacobian matriz. The scaling factor Apeq will cause
some change to the least squares solution to (a,3). When the data S(€) is noisy, numerical experiments
indicate that employing a constant 0 < Apea < 1 can in general improve the accuracy of the computed o
and u(x) markedly, compared with the case without scaling (i.e. Apmea = 1). Note that employing the scaled
equation (19) is equivalent to using a scaled term A2, [|R™|? in the underlying loss function for the

nonlinear least squares method.

Remark 2.7. The method developed here can be applied to inverse PDEs in which the inverse parameters

may be an unknown field distribution. Consider for example,

YX)L(u) + F(u) = f(x), (20)

where the coefficient y(x) is an unknown field and u(x) is the unknown solution to the forward problem. In
this case we can expand y(X) in terms of a set of basis functions and transform (20) into a form similar
to (la), in which the expansion coefficients of v(x) become the inverse parameters. Therefore the inverse
problem can be computed using the method presented above. In this work we employ the same bases in the
expansion for uw(x) (see (4)) and for v(x). This translates into two nodes in the output layer of the neural
network architecture, one representing u(x) and the other representing v(x). When more inverse coefficient
fields are involved, one can correspondingly increase the number of nodes in the output layer of the neural

network. We will present a numerical example for an inverse PDE similar to (20) in Section 3.

2.3 Variable Projection Algorithms for Network Training

This subsection outlines two algorithms for computing (a, 3), both based on the variable projection (VarPro)
idea [23, 24, 18] but with different formulations. In the first formulation (VarPro-F1), the inverse parameters

() are eliminated from the problem to attain a reduced problem about 8 only. The reduced problem is solved

12

by the nonlinear least squares method first for 3, and then a is computed by the linear least squares method.
In the second formulation (VarPro-F2), the field solution (equivalently, the 3 parameters) is eliminated from
the problem to attain a reduced problem about a only. The reduced problem is solved first by the nonlinear
least squares method for a, and then 3 is computed based on the « already obtained. The problem settings

and notations here follow those of Section 2.2.

2.3.1 Formulation #1 (VarPro-F1): Eliminating the Inverse Parameters

We start with the discrete system consisting of equations (12)—(15d). We re-arrange this system symbolically

into a matrix equation about the parameters o = (ay, .. ., an)T,
H(B)a =b(B), (21)
where
Hrde(B) brde(g) : :
__Rbc . .
HE) =| o BB = | pmenrmy| HEO = | (uel) o Laluel)|
0 7Rck . .
Nexn (8) Nex1 NQxn (22)
bPe(8) = [bhe] = |7 65) = F (uex5)
NQx1
In these expressions, R, R™® and R°* are defined in (56) of Appendix B.
For any given (3, the least squares solution to (21) with the minimum norm is given by
o =H"(8)b(B), (23)

where HT(3) denotes the Moore-Penrose inverse of H(3). Substituting this expression into (21) gives rise

to a reduced system about 3 only. The residual of this reduced system (see also (17)) is given by
r(8) = R(a, 8) = H(B)a — b(8) = H(B)H" (8)b(8) — b(B). (24)

We determine the optimum 3* by minimizing the Euclidean norm of this residual,
% .1 .1
B = arg min S @I = arg min 5 [H(B)H* (3)b(8) - b(8)|? (25)

where || - || denotes the Euclidean norm. With 3 determined by (25), we solve the system (21) for a by the
linear least squares method with the minimum-norm solution (or by directly using (23)).

Equation (25) represents a nonlinear least squares problem about 3. We solve this problem by the
NLLSQ-perturb algorithm (Algorithm 7 in Appendix A). As noted previously, two routines are required
for this algorithm, one for computing the reduced residual r(3) and the other for computing the Jacobian
matrix of the reduced problem, g—g, for any given (3.

We compute the reduced residual as follows. For any given 3, we solve equation (21) for a (with minimum

norm) by the linear least squares method. Let a®® denote this solution. Then the residual is given by

r(8) = H(B)a"® —b(B). (26)

Algorithm 3 summarizes the procedure for computing the reduced residual.

13

Algorithm 3: Computing reduced residual r(83) for VarPro-F1.

input : G; ®.(z;) and derivatives (1 < (e,p) < (N, Q)); M®.(&;) (1 < (e,p) < (N, Qs)).
output: reduced residual r(3)

1 if 8 = 35 then

2 retrieve H(3;), b(8s), al®

s | set H(8) = H(8,) and b(B) = b(8,)

4 else

5 compute u.(x3p) (1 (e,p) < (N, Q)), their derivatives (up to a necessary order), and Mu.(&;)
(1< (e.p) < (V,Qu) by (11)

6 compute H(3) and b(B) by (22) and (56) of Appendix B

7 solve equation (21) for e by the linear least squares method, and let a’ =«

8 set B, = B, and save H(3), b(3), a™*

9 end

10 compute r(8) by equation (26)

To compute the Jacobian of the reduced residual, we note the following formula owing to [23],

0 OH + oHT
56 [H(0)HT (9)] = [I— H(6)H (9)] 6—0H+(0) + [HT(B)] e - H(0)H™ (6)] o)
~ [1-H@E* ()] 2w 0)

where I is the identity matrix and on the second line we have kept only the first term in the formula as an
approximation to the LHS, thanks to the suggestion of [32]. In light of (24) and (27), we have

o _(9 + +(g)] 20 _ 9P
o = (o m@E)]) bio) + [(B)] 27 - o
OH oH ob
~ —HT(8)b(B) - H(B)HT HT(8)b H(3 — -
o3 (B)b(B) —H(B)HT(8)_— 93 (B)b(B) + H(BHT (3) 93 (28)
OH by _ + (‘97}1 + 8b)
— (55mr @me - 52) - HEEt) (G EbE) - 5
=J1(B8) — 32(8),
where
0 0
J1(B) = Jo(B) - £7 J2(8) = H(B)HY (8)J1(8), Jo(B) = £H+(ﬂ)b()- (29)
Therefore, we need a procedure for computing Jo(3), 2 B b and J5(B). Jo(B) can be computed as follows,
8%1261
OH__, _OH ;¢ O[H(B)aMT] 0
Jo(B) = %H (B)b(B) = BY ~ a3 0 . (30)
0 NexXNM
In this equation, a’® = (af%, ... aL®)T is the minimum-norm solution to (21) computed by the linear least
squares method, and
RPNB) = [RES] oy = |47 Lalue(xp)) + - + ol Lo (ue(xy)) , (31a)

NQ@x1

(31b)

adeeI B aRp(leI
B [

9Bi; } NQXNM

14

Algorithm 4: Computing Jacobian matrix % for VarPro-F1.

input : G; ®.(z;) and derivatives (1 < (e,p) < (N, Q)); M®.(&;) (1 < (e,p) < (N, Qs)).
output: Jacobian matrix 2%

B
1 if 8 = 35 then
2 retrieve H(3,), b(8s), a’®
s | set H(@) = H(8,) and b(B) = b(8,)
4 else
5 compute u.(xp) (1 < (e,p) < (N,Q)), their derivatives (up to a necessary order), and Mu.(&;)
(1< (e,p) < (N, Qs)) by (11)
6 compute H(B) and b(8) by (22) and (56) of Appendix B
7 solve equation (21) for a by the linear least squares method, and let a’ =«
8 set B, = B, and save H(3), b(8), a™*
9 end

10 compute Jo(3) by equations (30)—(32)

11 compute g—g by (33), (34), (57), and (59)—(61) of Appendix B
12 compute Ji(3) by (29)

13 compute J2(3) by (35)—(36)

14 compute ng by (28)

. pdel
In the matrix argﬂ the only non-zero terms are,

ORpde!
aﬂ ej

= af ¥ L] (ue(x7))dej (xp) + - + L (ue(x])) b (x5), for 1< (e,p,j) < (N,Q, M). (32)

It is important to note that, when computing 8%7;101, we treat o’

g—g is computed as follows,

as a constant vector independent of (3.

obPde
db _ R dbrde [abggc
B |- oB

0Bij }NQXNM’ (33)

where 8?;, 81});% and aggk are given in (57) and (59)-(61) of Appendix B. The only non-zero terms in
825;9 are,

dbpde
85 ej

With Jo(8) and ?TB determined, we can compute J1(3) by (29).
In light of (29), we compute Jo(3) by the following equations,

= (ue)) 6esx5),for 1< (e0,5) < (N, Q, M), 3

We first solve equation (35) for the n x N M matrix K by the linear least squares method, and then compute
J2(B) by equation (36) with a matrix multiplication.

Therefore, given an arbitrary 3, we compute Jo(83) by (30)—(32), g—g by (33) and (34), and J1(8) by (29).
Then we compute Jo(3) by (35)—(36). The (approximate) Jacobian matrix of the reduced problem is then

given by (28). The procedure for computing the Jacobian matrix is summarized in the Algorithm 4. In

15

Algorithms 3 and 4, it should be noted that B, denotes the last 3 value for which the data H(3), b(3) and
™% have been computed. 3, should be initialized to “None” at the beginning of the computation.

The overall VarPro-F1 algorithm for solving the inverse problem consists of two steps: (i) Invoke the
NLLSQ-perturb algorithm (Algorithm 7 in Appendix A) to compute 3 from the reduced problem (25), with

the routines given in Algorithms 3 and 4 as input. (ii) Solve (21) for a by the linear least squares method.

Remark 2.8. In the VarPro-F1 algorithm, one only needs to solve linear systems by the linear least squares
method. The Moore-Penrose inverse of the coefficient matriz is not explicitly computed. In our implemen-
tation we employ the linear least squares routine scipy.linalg.lstsq() from the scipy package in Python, which

in turn uses the linear least squares implementation in the LAPACK library.

2.3.2 Formulation #2 (VarPro-F2): Eliminating the Field Function

We next present an alternative formulation (VarPro-F2) of variable projection, which is reciprocal to the
VarPro-F1 algorithm of Section 2.3.1. In this formulation, we eliminate the field function u (or the parameters
3) from the problem to attain a reduced problem about a only. We then solve the reduced problem first for
«, and compute the parameters 3 afterwards.

This formulation applies to cases in which the operators £; (1 <4 < n) and F are all linear with respect
to u. We first present the algorithm with regard to this case below. Then we outline an extension in a
remark (Remark 2.9) by combining this algorithm with a Newton iteration to deal with cases in which these
operators are nonlinear with respect to u.

Let us now assume that £; (1 < ¢ < n) and F are all linear operators, and we again start with the

discrete system consisting of the equations (12)—(15d). We re-arrange this system into a matrix equation

about the trainable network parameters 8 = (87,...,8%)T = (Bi1,...,8vm) 7T,
H(a)3 =b, (37)
where
dee(a) bpde Hbcl Hekl pbel
HPbc bbc Hbc2 Heck2 bbe2
H(a) = Hmea ;b= prmea) H" = Hbes |’ H* = Hek3 | b = pbe3 | » (38)
k
H¢ NoxNM 0 Nox1 Hbc4 Hck4 bbc4

and the specific forms for these matrices are provided in the equations (62)—(65) of Appendix B.

For any given a the least squares solution (with minimum norm) to the system (37) is,
B =H"(a)b. (39)
Substitution of this expression into (37) results in a reduced system about a only, with a residual given by
r(a) = H(a)H'(a)b — b. (40)
We determine the optimum «* by minimizing the Euclidean norm of this residual,
o’ = arg{fﬂm%Hr(oz)”2 = arg;nin%HH(a)H'*'(a)b —b|?% (41)

After « is obtained, we compute 3 by solving the system (37) with the linear least squares method.
The problem (41) is a nonlinear least squares problem about ce. We employ the NLLSQ-perturb algorithm

(Algorithm 7) to solve this problem. In light of (27), we can obtain the Jacobian matrix for this problem,
or OH

0~ Jo(a) = Iy (@), Jo(a) = %H+(a)b, Ji(a) = Ha)H" (a)J (). (42)

16

Algorithm 5: Computing reduced residual r(a) for VarPro-F2.

input : a; ®.(xp) and derivatives (1 < (e,p) < (N, Q)); M®.(&;) (1 < (e,p) < (N, Qs)).
output: reduced residual r(o)

if & = a5 then
retrieve H(as), b, %5
set H(ar) = H(aws)

else
compute H(a) and b by (38) and the equations (62)—(65) in Appendix B
solve equation (37) for B by the linear least squares method, and let 3% = g3
set as = a, and save H(a), b, and B-°

end

compute r(a) by r(a) = H(a)B*® — b

W O s W N

©

Jo(a) can be computed as follows. For any given a, let 375 = H¥ (a)b = ((BF%)7, ..., (B%°)T)T denote a

constant vector. Then

dee(a)ﬁLS B{dee(a),ﬂl‘s]
o [H(a)gLS} o HPe3LS dox
Jo(a)zizi Hmea LS = 0 ’
oo Ja B 0
HckﬁLS
Nex1 0 Noxn
0 dee LS| _ 0 L LS (ye :L: LS (e F LS (ye
o [HP(@)85] = = aa LaulS () + -+ anLoulS (c5) + FubS(xp) (43)
NQx1
= [LoulS(xg) o LaulS(xE) ,
NQ@Qxn

where uL9(x) = ®.(x)BL° for 1 < e < N. We compute J; () by the following two equations,

(&

H(a)K = Jy(a) (44a)
Ji(a) = H(a)K. (44b)

We first solve (44a) for the n x n matrix K by the linear least squares method, and then compute J;(cx)
by (44b) with a matrix multiplication.

The procedures for computing the residual r(a) and the Jacobian matrix g—; for the reduced problem (41)
are summarized in the Algorithms 5 and 6. In these two algorithms, it should be noted that a; denotes the
last a value for which the data H(ca), b and 8° have been computed. a, should be initialized to “None”
at the beginning of the computation.

The overall VarPro-F2 algorithm consists of two steps: (i) Invoke the NLLSQ-perturb algorithm (Algo-
rithm 7 in Appendix A) to solve the problem (41) for a, with the routines in Algorithms 5 and 6 as input

arguments. (ii) Solve equation (37) for B by the linear least squares method.

Remark 2.9. Let us now discuss an extension of the above algorithm to deal with the case in which some
(or all) of the operators of L; (1 < i < n) and F are nonlinear with respect to u. In this case, we can
first use a Newton iteration to linearize the nonlinear operators, and then solve the linearized system by the
VarPro-F2 algorithm as discussed above. Upon convergence of the Newton iteration, the solution for (a, 3)

to the original system will be attained. To make the discussion more concrete and without loss of generality,

17

Algorithm 6: Computing Jacobian matrix ng; for VarPro-F2.
input : o; ®.(z;) and derivatives (1 < (e,p) < (N, Q)); MP(&;) (1 < (e,p) < (V,Q5)).

output: Jacobian matrix g—r
o

if o = a5 then
retrieve H(as), b, 855
set H(a) = H(axs)

else
compute H(a) and b by (38) and the equations (62)—(65) in Appendix B
solve equation (37) for 3 by the linear least squares method, and let Bt =p
set as = v, and save H(a), b, and B%%

end

W N O Uk WwN R

©

compute uZ¥(x5) (1 < (e,p) < (N, Q)) and their derivatives by (11) based on B~9
10 compute Jo(ax) by (43

«) by
11 compute Ji(a) by (44a)—(44b)
(

=

12 compute g—r by (42)

{87

let us assume that L1 and F are nonlinear while the other operators are linear. Let uf(x) (1 < e < N)
denote the approzimation of u.(x) at the k-th Newton step. Equation (12) is nonlinear with respect to u,

and its linearized form is given by,

1 £ (uF ()b (x5) + a2 LoulH (x5) -+ o L T () + F (ul (x5))l (x5)
— [F0ep) — anLa(ul () + £ (u () Yk (o) — F(ul () + F (b (x5) b (x5) | =0, (45)
for 1< (e,p) < (N, Q).

k+1

o+l The equations (13)—(15) are linear with respect to ue,

and we enforce them on the (k+1)-th Newton step (i.e. replacing u. by u*** in these equations). The system

Notice that this equation is linear with respect to u

consisting of (45) and the equations (13)—(15) (written in terms of uk*') are linear with respect to the updated
approzimation field uF*1. With the expansion ubT1(x) = ®.(x)B%*L, we can solve this system for (o, B*+1)
by the VarPro-F2 algorithm as discussed above. Upon convergence of the Newton iteration, the solution to
(e, B) is given by the converged result, and the neural network coefficients contains the representation for
the field solution u(x) to the original nonlinear system. For inverse nonlinear PDEs with respect to u, the
combination of the Newton iteration and the VarPro-F2 algorithm in general works quite well. We have also
observed from numerical experiments that for certain problems it appears to be somewhat less robust than

the VarPro-F1 and NLLSGQ methods, leading to less accurate results than VarPro-F1 and NLLSQ.

3 Numerical Examples

In this section we test the presented method and algorithms using several inverse PDE problems in two
dimensions (2D) or in one spatial dimension (1D) plus time. The Gaussian activation function, o (z) = e,
is employed in all the neural networks. We fix the seed value at 25 in the random number generator for all
the test problems, so that the reported results here are exactly reproducible. Note that \,,., denotes the
scaling coefficient for the measurement residual (see Remark 2.6), with A,,., = 1 corresponding to the case of
no scaling. The network training time reported in the following subsections includes the preprocessing time
(generation of the input collocation points, the random measurement points and the measurement data with
noise) and the actual computation time with the nonlinear least squares iterations or the variable-projection

iterations. It does not include the time for evaluating the neural network to generate the solution data, after

18

B 20807

18607
16E07
14E07
[12607
1] 1.0E-07
© soE0s

6.0E-08
i 40508
[2.0E-08

Figure 3: Inverse Poisson problem: distributions of (a) the NLLSQ solution and (b) its point-wise absolute error,
with the random measurement points shown in (a) as “+” symbols. Two uniform sub-domains (along z), local NN
(2,400, 1], Q =25 x 25, Qs = 50, Ry = 2.0, Amea=1, €=0 (no noise in measurement data).

the neural network is trained, for comparison with the exact solution to compute the errors. We refer the
reader to the Appendix C and Appendix D for additional numerical tests of the current algorithms, and

Appendix E for a comparison between the current method and the PINN method.

3.1 Parametric Poisson Equation

Consider the domain (z,y) € Q = [0,1.4] x [0,1.4], and the inverse problem,

o? o?

BTUZ + aa—yZ = f(z,y), (462)
U(O, y) = gl(y)a u(1'47 y) = gQ(y)v u(x, 0) = 93(‘77)5 u(x, 14) = 94(m)7 (46b)
u(&,mi) = S(E,ni), (&m) €Y, 1<i<NQs, (46¢)

where f and g; (1 < @ < 4) denote a source term and the boundary data respectively, Y C 2 denotes
the set of random measurement points, « and u(z,y) are the unknowns to be solved for, N denotes the
number of sub-domains, and @) is the number of measurement points per sub-domain. We use the following

manufactured solution to this problem,
Qex =1, Uex(z,y) = sin(wz?) sin(ry?). (47)

The source term and the boundary data are chosen such that the expressions in (47) satisfy (46a)—(46b).
The measurement data are taken to be

S(&ini) = tea (&, mi) (1 +€G), 1<i<NQ,, (48)

where (; denotes a uniform random number from [—1,1] representing the noise and the constant € > 0
denotes the relative level of the noise.

Henceforth () denotes the number of uniform collocation points per sub-domain, Qs denotes the number
of random measurement points per sub-domain, ¢ denotes the noise level, and M denotes the number of
trainable parameters of each local NN. R,,, denotes a constant, and the hidden-layer coefficients are assigned
to uniform random values generated on [—R,,, Rn]. The R,, values employed in the tests are obtained by
the method from [19], as noted in Remark 2.5. After the NN is trained, it is evaluated on another set of

Qevar = 101 x 101 uniform grid points (evaluation points) on each sub-domain to obtain u, which is compared

19

Q a (NLLSQ) a (VarPro-F1) a (VarPro-F2)

5X5 1.076466245043E4+0 9.982719409724E-1 0.000000000000E+-0
10x10 9.999867935849E-1 9.999965494049E-1 -3.188390321381E-5
15x15 1.000000029498E40 9.999999954822E-1 9.999999998978E-1
2020 9.999999999701E-1 9.999999999592E-1 9.999999999536E-1
25%25 9.999999987249E-1 1.000000000817E+0 1.000000001279E+0
30x30 1.000000002811E+0 1.000000000906E+0 1.000000000002E+0
35%35 1.000000001708E+0 1.000000000670E4-0 1.000000000237E+0
40x40 1.000000001552E+0 1.000000000717E+0 1.000000000183E+0

Table 1: Inverse Poisson problem: computed o by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms versus Q
(number of collocation points). Single sub-domain, NN [2, 600, 1], @s = 100, Amea=1, €=0; R = 3.0 with NLLSQ,
R, = 2.8 with VarPro-F1, and R,, = 2.0 with VarPro-F2.

10 vy v <
4 — o NLLSQ w0 gl — o NUSQ 10 v’ — o NLLsQ
102+ i - VarPro-F1 4 - VarPro-F1 i we-fAoo- VarPro-F1
A ---sg---- VarPro-F2 5 \ ---sg---- VarPro-F2 5 | ---sg---- VarPro-F2
= S0t =10
gm‘ R (3] [
o) > >
[OPre] 3
2105 >"° _gm
2) ke
§ 108 Q| Dio°
[% 2
= - S
10 10"+ 107+
o o L 100 R S 100 L N
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Collocation points per direction (a) Collocation points per direction (b) Collocation points per direction (c)

Figure 4: Inverse Poisson problem: relative errors of o and w versus Q1 (Q = @1 x Q1) computed by the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 600, 1], Qs = 100, Ayeq=1, €=0;
R,, = 3.0 with NLLSQ, R,, = 2.8 with VarPro-F1, and R,, = 2.0 with VarPro-F2.

with (47) to compute the errors. The relative errors of « (e,) and u (I°° and [? norms) are defined as,

1 NQG’UG/
| — Qeg 1 max {|u(x;) — uez(xz)|}f\ff“l 2 \/Nle Doimt M u(xi) = ver (x4)]2
g =— |®u= ,Pu=

- N N
|OZex| \/NQlemL Zi:?eval ugx (Xi) \/NQleml Zi:?eval ugx (Xz)

where N is the number of sub-domains and x; denotes the evaluation points.

» (49)

Figure 3 illustrates u(x,y) and its point-wise absolute error obtained by the NLLSQ algorithm with 2
sub-domains. The caption lists the main simulation parameters. In particular, the random measurement
points (100 total) are shown in Figure 3(a), and there is no noise in the measurement data. The NLLSQ
solution for u is quite accurate, with a maximum error on the order of 107 in the domain. The relative (or
absolute) error of the computed « is 9.03 x 1077,

The convergence of the computation results with respect to @ (number of collocation points) is illustrated
by Table 1 and Figure 4. Table 1 lists the computed « values versus) by the NLLSQ, VarPro-F1 and VarPro-
F2 methods. Figure 4 shows the relative errors of @ and u with respect to Q1 (where @ = Q1 x Q1) from the
three methods. The main parameter values for these tests are provided in the table and figure captions. The
« and the u errors decrease approximately exponentially with increasing @, until @) reaches a certain level.
The errors generally stagnate as @) further increases beyond that point. It is observed that the convergence
behavior of VarPro-F2 is not as regular as those of NLLSQ and VarPro-F1.

The convergence of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms with respect to the number of
trainable parameters M is illustrated by Figure 5. A single sub-domain and a single hidden layer in the

neural network are employed in the simulations, where the number of hidden nodes (M) is varied. The figure

20

3
2

10 A
—o— NLLsQ 10°F —o— NLLsQ 1074 —6— NLLsQ
10tk ; e VarPro-F1 - VarPro-F1 <o VarPro-F1
--<g---- VarPro-F2 510 ---<g---- VarPro-F2 510t ---<g---- VarPro-F2
Rl = =
£ [CRLS D107
[CRTS > 3
(O3S 10¢
o 2 2
B m0* Tk
o e . [
- 107 F 10
[% @
10° =10 gwo’
10° 107k 10°F
P - , , , , , oths , , 0ot , , , , ,
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
Number of training parameters (a) Number of training parameters (b) Number of training parameters (c)

Figure 5: Inverse Poisson problem: « and w relative errors versus M (number of training parameters)
obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, M, 1], Q = 25x 25,

)

Qs =100, \jee=1, e=0; R, = 3.0 with NLLSQ, R,,, = 2.8 with VarPro-F1, and R,,, = 2.0 with VarPro-F2.

&

—o&— NLLsa A
Ao VarPro-F1 A
--—-g--- VarPro-F2 R

N
3

network training time (seconds)
network training time (seconds)

—&— NLULsa@
s VarPro-F1
- VarPro-F2 Ve

&
3>

@

@

) S v
,

o

| L \ s
40 400 50! 600

10 75 .2‘0 |2‘5 30 R 3‘5. 0 200 300 0
Collocation points per direction (a.) Number of training parameters (b)

Figure 6: Inverse Poisson problem: Network training time as a function of (a) the number of collocation
points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters in (a) follow those of Figure 4, and in (b) follow those of
Figure 5.

caption lists the crucial parameter values. It is evident that the errors for o and u decrease exponentially
(or approximately exponentially) with increasing number of training parameters.

Figure 6 illustrates the computational cost of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for
solving the inverse Poisson problem. It shows the network training time as a function of the number of
collocation points per direction (Figure 6(a)) and the number of training parameters in the neural network
(Figure 6(b)) for the three algorithms. The problem settings and the simulation parameters employed in
NLLSQ, VarPro-F1 and VarPro-F2 in Figures 6(a) and (b) follow those of Figure 4 and Figure 5, respectively.
The network training time for all three algorithms appears to grow approximately linearly with respect to
the number of collocation points per direction and to the number of training parameters in the network. The
VarPro-F1 algorithm is more costly than NLLSQ and VarPro-F2 for this problem, while the cost of NLLSQ
seems to be larger than or comparable to that of VarPro-F2. Figure 6(b) indicates that the training time
exhibits some irregularity with respect to the number of training parameters for NLLSQ and VarPro-F1.
This is due to the triggering of sub-iterations in Algorithm 7 and the irregularity in the actual number of
nonlinear least squares iterations to meet the stopping criteria.

Table 2 illustrates the effect of the number of random measurement points (@) on the o and u errors
computed by the NLLSQ, VarPro-F1 and VarProf-F2 algorithms. When @ is very small, the computed «

and u are inaccurate or less accurate. On the other hand, when @, reaches a certain value (Qs = 3 for this

21

NLLSQ VarPro-F1 VarPro-F2

Qs €a [*-u ’-u €a [*®-u ’-u €a [®-u ’-u

1 1.02E+0 1.01E+0 3.27E-1 | 1.63E+0 2.09E+1 7.27TE4+0 | 6.61E-4 1.19E-3 3.59E-4
2 5.01E-7 3.67E-6 3.80E-7 | 1.70E+0 3.10E+1 1.15E+1 | 1.67E-8 5.60E-7 3.49E-8
3 5.06E-8 3.67TE-6 2.64E-7 | 9.64E-8 9.11E-7 9.59E-8 4.17E-9 5.46E-7 3.26E-8
5 3.06E-8 3.67E-6 2.62E-7 | 2.81E-8 8.88E-7 8.26E-8 7.30E-9 5.33E-7 3.25E-8
10 1.39E-8 3.67E-6 2.61E-7 1.34E-8 9.05E-7 8.12E-8 4.72E-8 5.39E-7 4.16E-8
20 5.14E-8 3.67E-6 2.63E-7 1.19E-8 9.04E-7 8.10E-8 2.62E-9 5.47E-7 3.46E-8
50 1.07E-8 3.67TE-6 2.62E-7 | 6.63E-9 8.56E-7 8.02E-8 | 4.81E-10 5.33E-7 3.23E-8
100 3.26E-8 3.72E-6 2.62E-7 3.15E-9 9.29E-7 7.95E-8 1.17E-8 5.48E-7 3.27TE-8

Table 2: Inverse Poisson problem: « and u relative errors versus (s (number of measurement points) for the NLLSQ,
VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, neural network [2,500,1], @ = 30 x 30; R, = 3.0 with

NLLSQ, R,, = 2.8 with VarPro-F1, and R,, = 2.0 with VarPro-F2; A\j,ea=1, ¢=0.

€ computed-o € computed-« € computed-«

0.0 9.99999993208E-1 | 0.01 9.9875752E-1 | 0.1 9.8779390E-1
0.001 9.9987537E-1 0.03 9.9630066E-1 | 0.2 9.7602056E-1
0.002 9.9975066E-1 0.05 9.9383633E-1 | 0.5 9.4329282E-1
0.005 9.9937764E-1 0.07 9.9139103E-1 | 0.7 9.2316247E-1
0.007 9.9912874E-1 0.09 9.8897497E-1 | 1.0 8.9557261E-1

Table 3: Inverse Poisson problem: « obtained by the NLLSQ algorithm corresponding to several noise levels (e).
Single sub-domain, NN [2,500,1], Q = 25 x 25, Qs = 50, R = 3.0, Anea=1.

problem) and beyond, the three algorithms produce highly accurate results. This seems to be a common
characteristic of these algorithms for all the test problems considered in this work.

In the foregoing tests no noise is considered in the measurement data (e = 0). Tables 3 and 4 and Figure 7
demonstrate the effect of noisy measurement data on the computation results. Table 3 shows the computed
a values by the NLLSQ algorithm corresponding to different noise levels, ranging from e = 0 (0%) to e = 1.0
(100%). Table 4 lists the « errors and the wu errors corresponding to several noise levels obtained by the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Figure 7 provides the o and u relative errors as a function of
e for several \,,eq (scaling factor of measurement residual) values with the NLLSQ algorithm. The presence
of noise degrades the simulation accuracy. But the current method and these algorithms appear to be quite
robust. For example, with 10% (e = 0.1) noise in the measurement data the relative error of « is around
1% for the three methods. With 100% (e = 1.0) noise in the data, the computed o exhibits a relative error
around 10% with these algorithms. For noisy data, scaling the measurement residual by \,,., can improve

the accuracy of computation results and make the method more robust (see Figure 7), compared with the

NLLSQ VarPro-F1 VarPro-F2

€ Ca [®-u I”-u €a [*-u ’-u €a [*-u 1’-u

0.0 6.79E-9 1.81E-6 1.93E-7 | 5.93E-8 7.59E-7 1.38E-7 | 4.20E-10 4.50E-7 2.31E-8
0.001 | 1.25E-4 2.79E-4 8.04E-5 | 1.33E-4 2.82E-4 8.50E-5 1.23E-4 2.81E-4 7.85E-5
0.005 | 6.22E-4 1.39E-3 4.01E-4 | 6.73E-4 1.42E-3 4.29E-4 6.10E-4 1.41E-3 3.92E-4
0.01 1.24E-3 2.79E-3 8.02E-4 | 1.35E-3 2.85E-3 8.61E-4 1.22E-3 2.81E-3 7.82E-4
0.05 6.16E-3 1.39E-2 4.00E-3 | 6.63E-3 1.42E-2 4.26E-3 6.49E-3 1.41E-2 4.07E-3
0.1 1.22E-2 2.79E-2 7.98E-3 | 1.33E-2 2.86E-2 8.58E-3 1.19E-2 2.81E-2 7.75E-3
0.5 5.67TE-2 1.42E-1 3.90E-2 | 6.08E-2 1.44E-1 4.17E-2 5.52E-2 1.43E-1 3.78E-2
1.0 1.04E-1 2.88E-1 7.63E-2 | 1.11E-1 2.93E-1 8.14E-2 1.08E-1 2.90E-1 7.62E-2

Table 4: Inverse Poisson problem: « and u relative errors versus € (noise level) computed by the NLLSQ, VarPro-F1
and VarPro-F2 algorithms. Single sub-domain, NN [2, 500, 1], @ = 25 X% 25, Qs = 50, Amea=1; Rm = 3.0 with NLLSQ),

R,, = 2.8 with VarPro-F1, and R,, = 2.0 with VarPro-F2.

22

10°
10'F .
o _F

107 o o
5 = Ei02
£10° Oigef o
) 3 >
310t % ®10°
o 10 €
=10° i ;m‘ £
=
o, -~ lambda-mea = 1.0 = -~ lambda-mea = 1.0 = -~ lambda-mea = 1.0
Q10 <oz lambda-mea = 0.5 w®F wogg- lambda-mea = 0.5 ®. . woogg- lambda-mea = 0.5
1 @ lambda-mea = 0.25 ® 8- lambda-mea = 0.25 3° 8- lambda-mea = 0.25

10’k —o— lambda-mea = 0.1 4 —o— lambda-mea = 0.1 x —o— lambda-mea =0.1

ol 107 F 10°L

of : . . .
10 0 0.2 . 04 0.6 08 10 0.2 . 04 0.6 08 10 0.2 . 04 0.6
Noise level & (a) Noise level & (b) Noise level & (c)

Figure 7: Inverse Poisson problem: « and u (I°°-u and 12—11) relative errors versus e for several A,,c, (scaling
coefficient of measurement residual) values computed by the NLLSQ algorithm. Single sub-domain, NN
[2,500,1], Q@ = 25 x 25, Qs = 50, R,;, = 3.0.

case of no scaling. A smaller \,,., in general leads to a better accuracy.

3.2 Parametric Nonlinear Helmholtz Equation

Consider the 2D domain, (z,y) € Q = [0,1.4] x [0, 1.4], and the inverse problem on €,

0? 0?

a—;g + 8—;; —a1u+ ag cos(2u) = f(z,y), (50a)
w©0,9) = 91(y), u(l4,y) = ga(y), u(x,0) = gs(x), u(z,1.4) = ga(x), (50b)
u(&,mi) = S(Emi), (& mi) €Y CQ 1<i<NQs, (50c)

where f and ¢; (1 < ¢ < 4) are prescribed source term and boundary data, Y denotes the set of random mea-
surement points in 2, and the parameters (a1, as) and the field u(z,y) are the unknowns to be determined.

We consider the following manufactured solution to this problem in the tests,

s =100, Uez(T,y) = cos(7rm2)cos(7ry2). (51)

az” =5,

The measurement data S(&,7;) (1 < i < NQ) are given by (48), in which wu., is given by (51). The u
errors are computed on a set of 101 x 101 uniform grid points in each sub-domain after the neural network
is trained. The notations below follow those of the previous sub-section.

Figure 8 shows distributions of the u(x,y) solution and its point-wise absolute error computed by the
VarPro-F1 algorithm on 4 uniform sub-domains, with the 120 random measurement points in total (Qs = 30
points per sub-domain) displayed in Figure 8(a). The figure caption lists the crucial simulation parameters
for this test. VarPro-F1 exhibits a high accuracy, with the maximum wu error on the order of 1078. The
relative errors of the computed a1 and ay are 3.52 x 1071 and 4.76 x 10719, respectively, in this test.

The convergence of the simulation results with respect to the number of collocation points (@) is illus-
trated by Table 5 and Figure 9. Table 5 lists the computed a; and as by the NLLSQ algorithm corresponding
to a range of Q values. Figure 9 shows the relative o; and aw errors and the 12 norm of the relative u error
corresponding to different) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The crucial
simulation parameter values are provided in the table/figure captions. A general exponential convergence in
the errors with respect to @@ can be observed. One can also observe that the convergence of the VarPro-F2
algorithm appears to be less regular. The VarPro-F2 results are inaccurate with a small @ (Q = 15 x 15 or
less), and its errors abruptly drop to 10~7 ~ 1078 as the collocation points reach @ = 20 x 20 and beyond.

23

9.0E-09
8.5E-09
8.0E-09
7.5E-09
7.0E-09
6.5E-09
6.0E-09
5.5E-09
5.0E-09
45E-09
4.0E-09
3.5E-09
3.0E-09
25E-09
2.0E-09
1.56-09
1.0E-09
5.0E-10

(b)

Figure 8: Inverse nonlinear Helmholtz problem: distributions of (a) the VarPro-F1 solution for u(z,y) and (b) its
point-wise absolute error, with the random measurement points shown in (a) as “+” symbols. Four uniform sub-
domains (2 in each direction), local NN [2,300,1], @ = 20 x 20, Qs = 30, R = 1.5, Amea=1, =0 (no noise in

measurement data).

Y —o— NLLs@ —o— NLLSQ NLLSQ
10k 4 e VarPro-F1) ool VarPro-F1 v A VarPro-F1
---57---- VarPro-F2 10 ---=g---- VarPro-F2 !5 ---=g---- VarPro-F2
I 1] S0’k
0% = o
) S]
- ~ s
Q10° -
B el 8 =
(] (] =
> =00 Ko
= = Dyl
S0 © 2
[4] [} [}
= = e
=

10k

5 1‘01 i5 _zb 2% 30 3.‘5
Collocation points per direction

20

3

1070

)
Collocation points

25 a“o 3.‘5 2
per direction

5 1‘01 75 .2‘0 25 30 3.‘5
Collocation points per direction

(a) (b)

Figure 9: Inverse nonlinear Helmholtz problem: relative errors of ay, ap and [2-u versus Q1 (Q = Q1 X Q1)
obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 500, 1], Qs = 100;
R,, = 2.25 with NLLSQ and VarPro-F1, and R,, = 2.5 with VarPro-F2; \,,.,=1, e=0. e,, and e,, denote

the relative errors of a1 and as.

107 Eow
v, — o nLLSQ P AN — o NLLSQ
N \ werrrBsenees VarPro-F1 N werrvdeeeee VarPro-F1
107 -~ VarPro-F2 10 - - VarPro-F2
= = <]
[<] [e] =
S10% £10° O10°f
(0] [0) >
- o 4L
10
Bl S =
g g Ewos L
=1 = [}
Dol Bqge Sq00
[[»
Ewo’ 3
10+ 10° 3
BV 10°F
A
107 107 10°

100 200 300 400 500 600

Number of training parameters

(a)

100 200 300 400 500 600

Number of training parameters

(b)

1(‘]0 260 3[‘)}) . 460 560
Number of training parameters

600

()

Figure 10: Inverse nonlinear Helmholtz problem: relative errors of ay, ap and [2-u versus M (number of
training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN
(2, M, 1], Qs = 100, Q = 30 x 30; R,, = 2.25 with NLLSQ and VarPro-F1, and R,, = 2.5 with VarPro-F2;

=0, Amea=1.

24

Q

computed oy

computed a2

5x5 9.946591149073E4+1 5.169760481373E+0
10x10 9.999987125506E+1 4.999987933629E4-0
15x15 9.999999986638E41 5.000000027512E4-0
20x20 9.999999982078E+1 4.999999813483E4-0
25x25 1.000000001774E+2 4.999999946859E+0
30x30 1.000000001832E+2 4.999999843159E4-0
35x35 9.999999989070E+1 5.000000059829E4-0
40x40 9.999999957958E+1 5.000001280912E4-0

Table 5: Inverse nonlinear Helmholtz problem: a; and as versus @ (number of collocation points) obtained by the
NLLSQ algorithm. Single sub-domain, NN [2,500, 1], Qs = 100, Ry, = 2.25, € = 0, Amea=1.

@
>
1

—o— NLLSQ
~d-oee- VarPro-F1

—o— NLLSQ
A VarPro-F1
-y VarPro-F2

4 - VarPro-F2

®
T

S

network training time (seconds)
network training time (seconds)

500 600

00
arameters
P (b)

70 1‘_5 20 | 25 50_ §§ 40 800 200 300 4
Collocation points per direction (a) number of training

Figure 11: Inverse nonlinear Helmholtz problem: Network training time as a function of (a) the number of
collocation points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. The test settings and parameters in (a) follow those of Figure 9, and in (b) follow
those of Figure 10.

Figure 10 illustrates the convergence of the ay, as and u errors, obtained by the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms, with respect to the training parameters (M). The figure caption lists values of the
main simulation parameters. The relative errors of a1, as and u decrease exponentially with increasing M.

Figure 11 shows the network training time with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms as a
function of the number of collocation points per direction (plot (a)) and the number of training parameters
(plot (b)) for the inverse nonlinear Helmholtz problem. The problem settings and the simulation parameters
employed in the three algorithms for these two plots correspond to those of Figures 9 and 10, respectively.
We observe a quasi-linear growth in the network training time with the increase of the collocation points or
the training parameters. In general, the cost of NLLSQ appears a little larger than that of VarPro-F1, which
in turn appears a little larger than VarPro-F2 for this problem. We observe an outlier in Figure 11(a) with
VarPro-F2 (corresponding to 15 x 15 collocation points), and in Figure 11(b) with VarPro-F1 (corresponding
to 300 training parameters). This is caused by the larger number of actual Newton iterations in VarPro-F2
for the outlier case in Figure 11(a), and by the triggering of subiterations in Algorithm 7 with VarPro-F1
for the case in Figure 11(b).

Table 6 shows the computed a7 and s relative errors, and the u relative errors (I°° and [? norms)
obtained by the NLLSQ algorithm corresponding to a range of Qs (number of random measurement points).
The effect of Qs on the errors appears to be not significant, unless @Q; is very small. This is similar to what
has been observed with linear forward PDEs (see e.g. Section 3.1).

No noise is considered in the measurement data in the foregoing tests. Figure 12 illustrates the effect of
the noise level (¢) on the accuracy of the computed oy, as and u by the NLLSQ, VarPro-F1 and VarPro-F2

25

Qs €ay €oy [>°-u %-u

5 5.41E-9 1.03E-6 7.79E-8 4.13E-8
10 7.30E-10 1.24E-7 6.03E-8 8.65E-9
20 1.18E-9 5.71E-9 9.67TE-8 8.94E-9
30 6.74E-10 7.83E-8 T7.9TE-8 8.18E-9
50 1.99E-9 1.32E-7 7.56E-8 1.05E-8
100 1.83E-9 3.14E-8 9.37E-8 1.00E-8

Table 6: Inverse nonlinear Helmholtz problem: the relative-errors of ay and as, and the u relative errors, versus the
number of random measurement points (Qs), computed by the NLLSQ algorithm. Single sub-domain, NN [2, 500, 1],
Q =30 x 30, Ry, = 2.25, A\pea=1, e=0.

<
= = 10°
o o =
=10t =10t [0)
"
o o 510
~ o~
(]
2105 2105 E 210
=
> > o
Be —6— NLLsQ Boo —6— NLLsQ Q10° —6— NLLsQ
— 107 —rdees VarPro-F1 —107¢ —rdees VarPro-F1 " —rdeee VarPro-F1
[s VarPro-F2 [s VarPro-F2 107 eexg--—- VarPro-F2
=

3
E]

A

)

L L L |
0.04 0.06 0.08 0.1

Noise level ¢

L , 5 , L
0.08 0.1 0 0.02

(b)

0.68 011 ' 0 0. ‘02 . 0.64 0,66
Noise level ¢
(a)

Figure 12: Inverse nonlinear Helmholtz problem: relative errors of oy, ap and [?-u versus the noise level (¢) in
the measurement data, obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain,
NN [2,500, 1], @ = 30 x 30, Qs = 50, Apea=1; Ry, = 2.25 with NLLSQ and VarPro-F1, and R,, = 2.5 with
VarPro-F2.

o 502 .0.64 506
Noise level ¢

()

algorithms. The main parameters for these simulations are listed in the figure caption. The simulation errors
generally increase with increasing noise level in the measurement data. However, the oo error appears to be
somewhat less regular for a range of noise levels (around € ~ 0.06) for this problem. The accuracy of these
algorithms appears quite robust to the noise. For example, with 1% noise (¢ = 0.01) in the measurement
data the relative errors for a; and as obtained by the three methods are on the order of 0.1%, and with 10%

noise (e = 0.1) in the measurement data the relative errors for oy and ay are on the order of 1 ~ 4%.

3.3 Parametric Viscous Burgers Equation

Consider the spatial-temporal domain, (x,t) € Q = [0,2] x [0, 1.5], and the inverse problem with the para-

metric Burgers’ equation,

0 0 0?
(971: + alua—z = aga—;; + f(z,t), (52a)
u(0,t) = g1(t), w(2,t) =g2(t), ulx,0)=h(x), (52b)

where f is a prescribed source term, g; and g are prescribed Dirichlet boundary data, h is the initial
distribution, the constants a; (i = 1,2) and the field u(z,t) are the unknowns to be solved for, Y denotes the

set of random measurement points, /N is the number of sub-domains, and @Q; is the number of measurement

26

s 5:4-3:21012 3 567 5E-09 1E-08 15E-08 2608 25E-08 3E-08 3.5E-08 4E-08

P

Figure 13: Inverse Burgers’ problem: distributions of (a) the NLLSQ solution and (b) its point-wise absolute error,
with the random measurement points shown by the “+” symbols in (a). Two uniform sub-domains (along t), local
NN [2,300,1], Q = 25 x 25, Qs = 50, Ry, = 1.5, =0 (no noise in measurement data), Amea=1.

Q aq Qa9

5XxH 9.999660775275E-2 9.994514983290E-3
10x10 9.999998874379E-2 9.999992607237E-3
15x15 1.000000000074E-1 1.000000000018E-2
20x20 1.000000000060E-1 1.000000000487E-2
25x%25 9.999999999967E-2 9.999999999698E-3
30x30 1.000000000049E-1 9.999999998052E-3

Table 7: Inverse Burgers’ problem: the computed a; and as versus @ (number of collocation points) obtained with
the NLLSQ algorithm. Single sub-domain, NN [2,400, 1], Qs = 100, R, = 1.9, Apmea=1, €=0.

points per sub-domain. We employ the following manufactured solution in the tests,

ai® =0.1, a3" =0.01,
T t 3 Vs 27 3 3 Vs
ex(®,t) = (1+) (1+ Py Py 2 — — 5
Ueg (T, 1) (20) (20> { cos <7m:+ 20> + 20 cos(= —)} {2 cos <7rt—|— 20) (53)

+§—g cos (271'75 — 3%)} .

The source term f and the boundary/initial data are chosen such that the expressions in (53) satisfy the
equations (52a)—(52b). The measurement data S(&;, ;) is assumed to be given by (48), in which ue, is given
by (53). In the following the u errors are computed on a 101 x 101 uniform grid points in each sub-domain,
and we adopt the same notations (e.g. Q, Qs, M, R,, and €) as in previous sub-sections.

Figure 13 illustrates the u(x,t) solution and its point-wise absolute error computed by the NLLSQ
algorithm with two uniform sub-domains along ¢, and the 100 random measurement points (50 points per
sub-domain) in the domain are shown in Figure 13(a). The figure caption provides the main parameter values
in this simulation. The results signify a high accuracy for the computed u solution, with the maximum error
on the order of 1078, The relative errors of the computed a7 and ap are 1.30 x 1079 and 1.48 x 1078,
respectively, for this simulation.

Table 7 and Figure 14 illustrate the convergence behavior of the NLLSQ, VarPro-F1 and VarPro-F2
algorithms with respect to the number of collocation points (Q)). Table 7 shows the computed «; and as
values by the NLLSQ algorithm for several Q. Figure 14 shows the relative errors of a; and s and the [?
norm of relative u error corresponding to different). We refer the reader to the table/figure captions for
the simulation parameter values. One can observe the familiar exponential convergence with respect to @
(before stagnation when @ reaches a certain level). The VarPro-F2 algorithm appears not as accurate as
NLLSQ/VarPro-F1 with a small number of collocation points (below @ = 20 x 20). But its errors drop to a

27

3
A

v , N
—o— NLLSQ —o— NLLSQ v —o— NLLSQ
1071 . - VarPro-F1 10°F v AN we-e--- VarPro-F1 100k we-e--- VarPro-F1
“‘W —--sg---- VarPro-F2 —--sg---- VarPro-F2 ,6 Y |---g---- VarPro-F2

— \ — o, - 1
o | o 10 4 =
=10 \ = \ 10*
[0} [T 5 =}

- 10% -

o
:106 t g _é 10
> > 100 ©
= = [}
Do © =10
o
o O 10°- g
=
10" 10 10°
12 J 12] 10 iy
10 o 10 o 10 o

5 | 70 _1% 20 K z‘sl 3 5 . 70 .1‘5 20 25 3 5 . 70 .1‘5 20 25 3
Collocation points per direction (a) Collocation points per direction (b) Collocation points per direction (c)

Figure 14: Inverse Burgers’ problem: relative errors of (a) oy, (b) az, and (c) [?-u versus Q1 (Q = Q1 x Q1)
obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Qs = 100;
R,, = 1.9 with NLLSQ and VarPro-F1, and R,, = 2.0 with VarPro-F2; e=0, \,cq=1.

10°
— o Nusa 10 — & NS 10'F —o— NLsQ
et ore-Aceee VarPro-F1 oA VarPro-F1 oA VarPro-F1
--57---- VarPro-F2 ‘, --57---- VarPro-F2 o --57---- VarPro-F2
_ . 107 v O .
o o £10
S0t = [}
(9] 10* - =
5 N D10°
2™ 2w =
= = K
me E o G’
[o 2
E.
10" 107 10
e , , 0" | o , ?
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Number of training parameters (a) Number of training parameters (b) Number of training parameters (C)

Figure 15: Inverse Burgers’ problem: relative errors of (a) i, (b) ag, and (¢) u versus M (number of
training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain,
NN [2, M, 1] (M varied), Qs=150, Q = 30 x 30, €=0, Apea=1; R, = 1.9 with NLLSQ and VarPro-F1, and
R,, = 2.0 with VarPro-F2.

level similar to those of NLLSQ and VarPro-F1 for @ = 20 x 20 and beyond.

The exponential convergence of the simulation results with respect to the number of training parameters
(M) for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms is illustrated by Figure 15. This figure shows the
relative errors of the computed oy, as and u obtained by the three algorithms. One should again refer to
the caption for the main settings and simulation parameters.

Figure 16 shows the network training time of the NLLSQ/VarPro-F1/VarPro-F2 algorithms as a function
of the number of collocation points per direction and the number of training parameters for the inverse
Burgers’ problem. The settings here correspond to those of Figures 14 and 15, respectively. One can
again observe a near-linear growth in the computational cost. The network training time of VarPro-F2 is
significantly larger than those of NLLSQ/VarPro-F1, while the cost of NLLSQ and VarPro-F1 appears to
be comparable. Some irregularity is observed in the training time with VarPro-F2 in Figure 16(a), due to
the irregularity in the actual number of outer Newton iterations with VarPro-F2 for this problem.

Figure 17 illustrates the effect of the noisy measurement data (e) on the simulation accuracy of the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms for the inverse Burgers problem. It shows the relative errors
of a1, ay and [%-u as a function of the noise level € in the measurement data. It is observed that the accuracy
of these algorithms is quite robust to the noise. For example, with 1% noise in the measurement data the

relative errors of these methods are around 0.026% for the computed «; and around 0.2% for the computed

28

IS
S
IS
&
1

—=o&— NLLsSQ@
- VarPro-F1
- VarPro-F2

—o— NLLsQ
~deeeee VarPro-F1
---7---- VarPro-F2

@
&
IS
3
T

w
&
T

«
S

»
>
oW
X 8
T T

n
8
T

@
@
T

s
3

T
\‘<1‘

o
<

@

network training time (seconds)
network training time (seconds)
q

o g
Oy

10 15 .20 25 30 100 200 _360 400 500
Collocation points per direction (a) Number of training parameters (b)

Figure 16: Inverse Burgers’ problem: Network training time as a function of (a) the number of collocation
points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters in (a) follow those of Figure 14, and in (b) follow those of
Figure 15.

10"F
107 F
107+ 107+ B
= = 10°F
g g 5
= = Dl
Dgsi Qg+l S
5 S Dio'k
[[=
2107} 20l B0y
© —o— NLLSa © —o— NLLSQ o —o— NLLSa
- ~deeeee VarPro-F1 - ~deeeee VarPro-F1 ok ~—deoeee VarPro-F1
[--- VarPro-F2 [--ng---- VarPro-F2 g --ng---- VarPro-F2
100l 100l S0k
10°F
[0
1 A 10 10
10 0 0‘2 . 0‘4 O‘E U‘B 1‘ 1 0 0‘2 . 0‘4 0‘6 O‘B 1‘ 10 (lJ 0‘2 . 0‘4 0‘6 O‘B 1‘
Noise level € (a) Noise level € (b) Noise level € (C)

Figure 17: Inverse Burgers’ problem: relative errors of (a) ai, (b) ag, and (c) [?-u versus € (noise level)
obtained with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2,400,1], Q =
30 x 30, Qs=100, \,,ea=1; R,, = 1.9 with NLLSQ and VarPro-F1, and R,, = 2.0 with VarPro-F2.

aa; with 10% noise in the measurement the relative errors are around 0.27% for «; and around 2.7% for as.

Figure 18: Inverse variable-coefficient Helmholtz problem: distributions of (a) the NLLSQ solution for u(z,y) and
(b) its point-wise absolute error, (c¢) the NLLSQ solution for v(z,y) and (d) its point-wise absolute error, with the
@5 = 300 random measurement points shown in (a) as “4+” symbols. Single sub-domain, NN [2,400, 1], @ = 30 x 30,
Ry = 1.5, Anea = 1, e = 0 (no noise), A1 = A2 = 0 (no regularization).

29

3.4 Helmholtz Equation with Inverse Variable Coefficient

In this example, we use our method to study a problem involving an inverse coefficient field. Consider the

domain (z,y) € Q = [0, 1.5] x [0, 1.5] and the inverse problem on €2,

9? 0?

ga2 g~ IE =) (54a)
u(ar,y) = g1(y), u(bi,y) = g2(y), wl(z,a2) =gs(z), u(x,bz)=ga(x), (54b)
u(&,mi) = S(&,mi), (&mi) €Y CQ, 1<i<NQs, (54c)

where f is a prescribed source term, g; (1 < 7 < 4) denote the prescribed boundary data, Y is the set of
measurement points, S(&;,7;) denotes the measurement data at the random point (§;,7;), and v(x,y) and

u(z,y) are two field functions to be determined. We employ the following manufactured solutions,

1 1
Yez(z,y) = 100 {1 + 1 sin(2mx) + 1 sin(27ry)} ,

5 . 27 3 3 5 . 2 3 3
Uex (2,Y) = 5 sin |7z — — +§cos 27rm+ﬁ g sin| Ty —— +§cos 27ry+ﬁ .

fand g; (1 <14 < 4) are chosen accordingly such that the expressions in (55) satisfy the equations (54a)—

(55)

(54b). The measurement data S(&;,7;) are given by equation (48), in which the u, is given in (55). The
relative errors for u(x,y) are defined in (49), and the relative errors for y(x,y) are defined analogously.
The ~(z,y) and u(z,y) errors reported below are computed on a uniform Qeyq; = 101 x 101 grid in each
sub-domain. The notations here follow those of previous subsections.

We employ the algorithm modification as outlined in Remark 2.7 for solving this problem. Compared with
previous subsections, the main change here lies in that the local neural network on each sub-domain contains
two nodes in the output layer, one representing u(x,y) and the other v(z,y). The output-layer coefficients
contributing to vy(z,y) play the role of the inverse parameters. We also find it preferable to regularize the
the output-layer coeflicients that contribute to v(x,y) (or u(x,y)) for this problem. For regularization we
employ the extra terms for the underlying loss function, % | ex]|? +)‘é |82, where o and 3 denote the vectors
of output-layer coefficients for y(z,y) and wu(z,y), respectively, and the prescribed non-negative constants
A1 and Ao are the corresponding regularization coefficients.

Figure 18 shows distributions of the solutions for u(z,y) and v(x, y), and their point-wise absolute errors,
obtained by the NLLSQ algorithm. The random measurement points are also shown in Figure 18(a). The
figure caption lists the main parameter values for this simulation. We observe a fairly high accuracy, with
the maximum wu error on the order of 1078 and the maximum + error on the order of 10~ in the domain.

Table 8 lists the relative errors for v and u (I°° and [? norms) computed by the NLLSQ algorithm in
several sets of tests, with respect to @ (number of collocation points), M (number of training parameters),
Qs (number of random measurement points), and € (noise level). The settings and the simulation parameter
values are provided in the table caption for each set of tests. One can observe an approximately exponential
decrease in the v and u errors with respect to @, M and @, (before saturation). One can also observe the
deterioration in the simulation accuracy with increasing noise level in the measurement data. Note that no
regularization is employed in these simulations. The noise appears to affect the + results more significantly
than u. For example, with 1% noise (¢ = 0.01) in the measurement data, the maximum (I°°) relative error
for y(x,y) is around 43% and the [? relative error is around 5%, while for u(z,y) these errors are around 4%

and 0.6% respectively.

30

1%y %y [*°-u *-u
collocation Q= 5x5 9.84E-2 3.15E-2 7.94E-3 4.38E-4
point test 10x10 | 4.05E-3 2.90E-4 1.63E-4 1.02E-5

15x15 | 1.15E-4 4.94E-6 3.38E-6 2.99E-7
20x20 | 4.99E-6 4.84E-7 2.65E-7 2.70E-8
25%25 | 4.42E-6 3.57TE-7 3.34E-7 2.90E-8
30x30 | 1.56E-6 1.46E-7 1.19E-7 1.08E-8
35x35 | 1.61E-6 1.73E-7 1.26E-7 1.15E-8

training M= 50 6.79E40 1.67E+0 1.63E40 5.67E-1
parameter 100 8.64E-2 1.10E-2 8.44E-3 2.00E-3
test 200 1.98E-4 2.08E-5 6.46E-6 6.42E-7
300 2.07E-6 1.26E-7 3.13E-8 2.46E-9
400 5.08E-7 2.95E-8 5.76E-9 5.29E-10
500 1.61E-7 1.18E-8 1.95E-9 1.91E-10
measurement | Qs = 10 1.36E-3 3.11E-4 2.49E-4 6.60E-5
point test 30 1.93E-4 3.69E-5 2.03E-5 4.24E-6
50 2.69E-5 4.08E-6 2.03E-6 3.83E-7
100 3.18E-6 2.95E-7 2.25E-7 1.78E-8
200 5.30E-6 2.53E-7 8.21E-8 5.48E-9
300 1.45E-6 9.93E-8 2.45E-8 2.00E-9
400 2.65E-6 8.80E-8 1.40E-8 1.79E-9
noise level €= 0.0 1.61E-6 1.73E-7 1.26E-7 1.15E-8
test 0.0005 | 5.15E-2 5.54E-3 3.32E-3 4.54E-4

0.001 7.57E-2 7.31E-3 5.46E-3 6.63E-4
0.005 2.69E-1 2.92E-2 2.28E-2 3.12E-3
0.01 4.26E-1 4.96E-2 3.94E-2 5.98E-3
0.05 1.50E4+0 2.00E-1 1.44E-1 2.71E-2
0.1 1.85E4+0 2.97E-1 2.26E-1 4.97E-2

Table 8: Inverse variable-coefficient Helmholtz problem: relative 1° and 12 errors of v(z,y) and u(x,y) in several
tests with the NLLSQ algorithm. Single sub-domain, NN [2, M, 2]. In collocation point test, M = 400, Qs = 100,
e = 0, Q is varied. In training parameter test, @ = 30 x 30, Qs = 300, ¢ = 0, M is varied. In measurement point
test, @ = 25 x 25, M = 300, ¢ = 0, Q; is varied. In noise level test, Q = 35 x 35, M = 400, Qs = 100, € is varied.
Ry, = 1.5 and Apmeq = 1 in all tests. No regularization (A1 = A2 = 0). [*°~y and 2.y denote the relative errors (1>
and 1% norms) of v(z,y), respectively.

Figure 19 illustrates the effect of noise in the measurement data on the accuracy of the NLLSQ, VarPro-
F1 and VarPro-F2 algorithms. The relative errors for v and u corresponding to different noise levels have
been shown. In these simulations the output-layer coefficients for v(x,y) (and also for u(z,y) with NLLSQ)
have been regularized, with the regularization coefficients and the other simulation parameter values given in
the table caption. The regularization generally improves the accuracy in the presence of noise. For ~(z,v),
the NLLSQ results appear to be generally more accurate than those obtained with VarPro-F1 and VarPro-
F2. On the other hand, the u(x,y) results obtained with the three methods appear to have a comparable
accuracy (with VarPro-F2 slightly better).

Figure 20 shows the network training time of the NLLSQ/VarPro-F1/VarPro-F2 algorithms as a function
of the noise level € in the same group of tests as Figure 19. The increase in the noise level in the measurement
data appears to have little effect on the network training time, or appears to cause the training time to slightly
increase (see e.g. the curves with NLLSQ and VarPro-F2 in Figure 20).

31

= 10 o'
s o
<] <]
= £
] D107
>0k -
[} o
2 =10°
=
R ®
D 10°F ol
— ——6— NLLSQ S0l —6— NLLSQ
X orefce-- VarPro-F1 wn orefcee- VarPro-F1
g --sg--- VarPro-F2 £ —-g--- VarPro-F2
107 =
10°F
104 , , , , . el , , , , ,
0 0.02 _004 0.06 0.08 0.1 0 0.02 _0)4 0.06 0.08 0.1
Noise level ¢ (a.) Noise level € (b)
10"
10"F
2L
. ‘_10
Ol o
= E
] D10°L
> s =1
©10°F o
2 210t
- -~
© ©
.
Qio*p —o&— NLLSQ Qm,s, —6&— NLLSQ
X orefc--- VarPro-F1 » oreAce-- VarPro-F1
g ~--g---- VarPro-F2 e -=- VarPro-F2
s £
107 10°E
P , , , , . 107 , , , , ,
0 0.02 _004 0.06 0.08 0.1 0 0.02 _004 0.06 0.08 0.1
Noise level € (c) Noise level € (d)

Figure 19: Inverse variable-coefficient Helmholtz problem: relative {°° and % errors of v(z,y) and u(z,y)
versus € (noise level) by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2,400,2],
Q = 30 x 30, Qs = 300, M\ew = 1; R,, = 1.5 with NLLSQ, R,, = 2.5 with VarPro-F1, R,, = 3.0 with
VarPro-F2; Regularization coefficients: (A1, \2) = (1E —8,1F — 8) with NLLSQ, (A1, A2) = (1E —7,0) with
VarPro-F1, and (A1, \2) = (1E — 6,0) with VarPro-F2.

——o— NLLsQ
VarPro-F1
s0b ---sg---- VarPro-F2

network training time (seconds)

07 70
Noise level €

Figure 20: Inverse variable-coefficient Helmholtz problem: Network training time as a function of the noise
level e for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters follow those
of Figure 19.

32

4 Concluding Remarks

In this paper we have presented a method for solving inverse parametric PDE problems based on randomized
neural networks. This method extends the local extreme learning machine (locELM) technique to inverse
PDEs. The field solution is represented by a set of local random-weight neural networks (randomly assigned
but fixed hidden-layer coefficients, trainable output-layer coefficients), one for each sub-domain. The local
neural networks are coupled through the C* (with k related to the PDE order) continuity conditions on
the shared sub-domain boundaries. The inverse parameters of the PDE and the trainable parameters of the
local neural networks are the unknowns to be determined in the system.

Three algorithms are developed for training the neural network to solve the inverse problem. The first
algorithm (NLLSQ) computes the inverse parameters and the trainable network parameters all together
by the nonlinear least squares method and is an extension of the nonlinear least squares method with
perturbations (NLLSQ-perturb) of [16] (developed for forward PDESs) to inverse PDE problems. The second
and the third algorithms are based on the variable projection idea. The second algorithm (VarPro-F1)
employs variable projection to eliminate the inverse parameters from the problem and attain a reduced
problem about the trainable network parameters only. Then the reduced problem is solved first by the
NLLSQ-perturb algorithm for the trainable network parameters, and the inverse parameters are computed
afterwards by the linear least squares method. The third algorithm (VarPro-F2) provides a reciprocal
formulation with variable projection. It eliminates the trainable network parameters (or equivalently the
field solution) from the problem first to arrive at a reduced problem about the inverse parameters only.
Then the inverse parameters are computed first by solving the reduced problem with the NLLSQ-perturb
algorithm, and afterwards the trainable network parameters are computed based on the inverse parameters
already obtained. The VarPro-F2 algorithm is suitable for parametric PDEs that are linear with respect to
the field solution. For PDEs that are nonlinear with respect to the field solution, this algorithm needs to be
combined with a Newton iteration.

The presented method is numerically tested using several inverse parametric PDE problems (We refer the
reader to the Appendices C and D for additional test problems). It is also compared with the PINN method
(see Appendix E). For smooth solutions and noise-free data, the errors for the inverse parameters and the field
solution computed by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms decrease exponentially with respect
to the number of collocation points and the number of training parameters. When these parameters become
large, the errors can reach a level close to the machine accuracy. These characteristics are in some sense
analogous to those observed for the forward PDE problems in [16, 19]. For noisy measurement data, these
algorithms can produce computation results with good accuracy, indicating robustness of the method. We
observe that, in the presence of noise, by scaling the measurement residual by a factor A\jeq (0 < Apea < 1)
one can in general improve the simulation accuracy of the current method markedly, while this scaling only
slightly degrades the accuracy for the noise-free data. The comparison with PINN shows that the current
method has an advantage in terms of both accuracy and the network training time. In particular, for the
noise-free data the current method exhibits an accuracy significantly higher than PINN.

In terms of the computational cost, the predominant operations of all three algorithms lie in the nonlinear
least squares computation (Algorithm 7) of either the overall inverse problem (with NLLSQ) or the reduced
problem (with VarPro-F1 and VarPro-F2). The nonlinear least squares computation (as implemented in
the Scipy library and adopted in the current method) consists of the Gauss-Newton iterations, and each
iteration generally involves the computation of the residual vector and the Jacobian matrix, the solution of

a linear least squares problem and the approximate solution of a trust-region problem. In addition, if the

33

perturbation/sub-iteration is triggered in Algorithm 7, which occurs when the returned cost of the Gauss-
Newton iteration fails to meet a tolerance, this will increase the computational cost. We have looked into the
network training time, which includes the cost for the nonlinear least squares and associated computations,
with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for different test problems. In general, the network
training time grows approximately linearly as the number of collocation points or the number of training
parameters increases for all three algorithms. In terms of the relative cost of these three algorithms, the
picture seems to be mixed. Among the three, no single algorithm is consistently faster than the others for
all the test problems considered here. For the test problems with an associated forward PDE that is linear,
the VarPro-F2 algorithm seems to be generally faster than NLLSQ and VarPro-F1. We note that for the
test problems and the problem sizes considered in the current paper, the network training time ranges from
a few seconds to dozens of seconds with the three algorithms.

These test results suggest that the method developed herein is an effective and promising technique for
computing inverse PDEs. The exponential convergence exhibited by the method is especially interesting,
suggesting a high accuracy of this technique. We anticipate that this technique will be a useful and meaningful
addition to the arsenal for tackling this class of problems and be instrumental in computational science and

engineering applications.

Acknowledgment

This work was partially supported by NSF (DMS-2012415).

Appendix A. Nonlinear Least Squares Algorithm with Perturba-
tions (NLLSQ-perturb)

We summarize the nonlinear least squares algorithm with perturbations (NLLSQ-perturb) below in Algo-
rithm 7, which is adapted from the one developed in [16] with certain modifications.

In this algorithm, § controls the maximum magnitude of each component of the random perturbation
vector Af. The vector 8y provides the initial guess to the solution of the nonlinear least squares problem.
If the returned solution from the scipy least_squares() routine corresponding to 8 is not acceptable (i.e. the
returned cost exceeding the tolerance), then a sub-iteration procedure is triggered in which new initial
guesses () are generated by perturbing either the origin or the best approximation to the solution obtained
so far with a random vector. The scipy least_squares() routine is invoked with the new initial guesses until an
acceptable solution is obtained or until the maximum number of sub-iterations is reached. The integer flag
71 controls around which point the perturbation is performed. If 7 = 0 the new initial guess is generated by
perturbing the origin. Otherwise, the current best approximation to the solution is perturbed to generate a
new initial guess. The parameter “max-nllsg-iterations” controls the maximum number of iterations (e.g. the
maximum number of residual function evaluations) in the scipy least_squares() routine. The parameter “max-
sub-iterations” controls the maximum number of sub-iterations for the initial guess perturbation. One can
turn off the perturbation in the NLLSQ-perturb algorithm by setting max-sub-iterations to zero. Note that
the scipy least_squares() function requires two routines in the input, one for computing the residual and the

other for computing the Jacobian matrix for an arbitrary given approximation to the solution.

34

Algorithm 7: NLLSQ-perturb (nonlinear least squares with perturbations) algorithm

input

: max perturbation magnitude § > 0; initial guess vector 6y; routine for computing residual; routine

for computing Jacobian matrix; perturbation flag n (integer, 0 or 1); tolerance £ > 0;
max-nllsg-iterations (positive integer); max-sub-iterations (non-negative integer).

output: solution vector 6, associated cost ¢

1 invoke the scipy.optimize.least_squares routine, with the inputs (initial guess 6o, routines for

residual/jacobian-matrix calculations, and max-nllsq-iterations)
set @ < returned solution, and set ¢ <— returned cost

if ¢ is below € then
‘ return @ and ¢
end

for i + 1 to maz-sub-iterations do

set 61 « &0

© 00 N O N wWN

10 if is 0 then

generate a uniform random number £ on the interval [0, 1]

generate a uniform random vector A@ of the same shape as 0 on the interval [—d1, d1]

11 ‘ I +— AO

12 else

13 | Y0+« 0+ A0

14 end

15 invoke the scipy.optimize.least_squares routine, with the inputs (initial guess 9o, routines for
residual/jacobian-matrix calculations, and max-nllsq-iterations)

16 if the returned cost is less than c then

17 set @ < the returned solution, and set ¢ « the returned cost

18 if ¢ is below € then

19 ‘ break

20 end

21 end

22 end

23 return 0 and c

Appendix B. Matrices in the NLLSQ and VarPro-F2 Algorithms

NLLSQ Algorithm:

The vectors in the expression (17) are given by

NQsx1

N1Qix1

pde __ pde . mea __ mea
R - Rep ; R - RE?])
- NQ@x1
be2 __ bc2 be3 _ bcj
R - le ’ R - Rm,i,
- NoQox1
ck2 __ ck2 ck3 __ (;kS
R - lej ’ R - R’mli
- (N=N2)Q2x1

, Rbcll —

. le _

R\)Cl
Rch
Rch
Rbc4

bcd

mi

Rck4 —

(N=N1)Q1x1

Rckl
RckQ o
; Rck _ RckS : Rbcl _ R;)J(l
Rck4
NoQ2ox1
. ckl __ ckl
3 R - R’mlg ’ (56)
N1Q1x1 (N—=N2)Q2x1
H(:k:4

mli

(N—=N71)Qq1x1

In the above expressions, R?l‘)lc is the left hand side (LHS) of (12), and R is the LHS of (14). Ré’;"l,

R;’j‘-ﬂ, RP and RP} are the LHSs of (13a)-(13d), respectively.

mi mi

of (15a)—(15d), respectively.

35

ckl
mlj’

Rek2 - Rek3 and RY*4 are the LHSs

mlj? mli mli

The matrices in the expression (18) are given by,

HRpde de ORpde de
- [BRSP] = [L1(ue(x5)) o La(e=E)] vown s = [8R’5v } ,
O oa; INQxn Qxn B Bii I ngxnNM
aRbcl BR"kl
E) o8
c2 ck2
ORmea _ |:8R$fa:| aRbc _ 31; ; 8RCk _ 3%@1(3 8Rbc1 _ |:6R}’j("1:|
o8 9Bij IngsxNM' OB B%E op 61;‘3 B ik | NyQux NM
R cd BR°k4
0B 9B (57)

Rbc2 RbC2

mi

3Bk]NlleNM’

:| ORPe3 B [BR,I’C.?’]
B NoGQoxNM OB Bie INyQixNm’ OB

[ORbet [aRbc4
8RCk1 |:8R°kll
j

mij
9Biq

)

ck2 k2 ck3 .
OR _ |:8RL R _ |:3R:71:l3i

i|(N7N2)Q2><NM’ oB i|(N NDQLXNM

OPiq](N*]Vz)QzXNM7 B

Rck4 HRek4

“Ymili

9Bjq

} (N=N1)Q1xNM '

In the matrix a%;de the only non-zero terms are
8Rgl(je I e e !/ e e ! e e
8ﬂ = alﬂl(ue(xp))(bej (Xp) et anﬁn(ue(xp))¢€j (Xp) +F (ue(xp))¢€j (Xp)7
ej

for 1 < (e,p,j) < (NuQ7M)7 (58)

where £;(u) (1 <4 < n) denote the derivatives of £;(u) with respect to u, and F’(u) denotes the derivative

of F(u) with respect to u. In the matrix 8}36 the only non-zero terms are

ORg? .
= Mde;(&y), for 1< (e,p,j) < (N,Qs, M). (59)
aﬁej
In the matrices 3%;1, 8%;2, ‘9%;3 d 8%;4 the only non-zero terms are,
ORPeL
85] :Bd)eq(al,y;), Wheree:e(lvl)v p:p(lvj)v for 1 < (l7j7Q) < (N27Q27M);
lq
ORpc? }
:B¢€q(b17y;)7 wheree:e(Nl,l), p:p(lej)v fOI‘l (l J7) (N27Q27M);
" (60)
ORDbS3
a/gmz :B¢6q(x;7a2)7 Wheree:e(m71)7 p:p(izl)z for 1< (m i q) (Nl’le)7
mq
ORPS}
Wm =B¢eq(9ﬁ;yb2)7 where e = 6(m7N2)7 p:p(i7Q2)7 for 1< (m717Q) (vale)
mq

aRckl aRck2 6Rck3 d 6Rck4

In the matrices o 08 0B the only non-zero terms are,

aRckl ckl

8ﬁmlj = ¢e1q(Xm, Ypi)s B/Bmlj = —¢erq(Xm,yp2), where e1 = e(m,1), ez = e(m + 1,1),
e1q €e2q
plzp(Q17) p2:p(17j)7 forl (m717] q) (Nlil N27Q27M)
aRckQ 8Rck2
3 mij % .’ B mli % L where e1 = e(m, 1), e2 = e(m+ 1,1),
Be1a T (Xmpl) OBeaq T (X v52)
p1 :p(Qlﬂj)7 p2 :p(17j)7 for 1 < (m7l7j7Q) < (Nl - 17N27Q21M); (61)
8Rck3 8RCk3-
Bﬁm“ = ¢e,q(x pl,Yl) Wmh = —(eqq(x p2$Yl) where e1 = e(m,l), e2 = e(m,l+ 1),
e1q e2q
p1 = p(i,Q2), p2 = p(i, 1), for 1 < (m,l,i,q) < (N1,Na —1,Q1, M);
ORKL ORSKL 0
mii _ O%era , mii _ _ OPesq , where e; = e(m,1l), e2 =e(m,l + 1),
0Beiq 9y l@gly) OBexq 9 @z,
p1 = p(i,Q2), p2 = p(i,1), for 1 < (m,l,4,q) < (N1, N2 —1,Q1, M).

36

Var-F2 Algorithm:

The matrices in the expression (38) are given by,

Hck2 _

: : . ,
bPde = | f(xg) , bt = | S(g5) , b2 = fg(ar, oY) ,
L ° lnoxa - dNooxa : NoQax1
b2 _ e(N1.0) bes _ | o e(m.D) bed _ | o e(m.Na)
b7 = 1901 ypq,) » BT = (@) a2) P BT = 19(@ .0, 22)) (62)
- NoQ2x1 : N1Q1x1 : N1Qq1x1
dee _ |:hpfle:| , Hmea _ [pmea , Hbcl _ |:hb_cl] , Hb02 _ [hbg2]
YU OINQxNM [Y]NQSXNM Y NaQaxNM W INyQaxNM '’
Hbc3 — [h?jc3j| , Hbc4 — [hE;A] , Hckl — [hf‘?l] ;
N1Q1xNM N1Q1xNM (N=N2)QaxNM
k2
hi;

ck3 _ |:h(_:1_(3

] ckd _ |:h<_:1_(4
Y (N-N1)QixNM’

i :|(N7N2)Q2><NIM7 9](N—Nl)Ql xNM

In the matrices HP9® and H™®* the only non-zero terms are,

h%‘dc =a1Lideq(Xy) + -+ anLndeq(xy) + Feq(xp),
i=(—1Q+p, j=(e—1)M+gq, forl<(e,p,q)<(NQ M) (63)
hi%® =Meq(&p), i=(e—1)Qs+p, j=(e—1)M +q, for 1< (e,p,q) < (N,Qs, M).

In the matrices HP°!, HP°2, HP3 and HP** the only non-zero terms are,

hist =Boeq(ar, ug), e =e(1,1), p=p(1,k), i=(1—-1)Q2+k, j=(e—1)M+gq, for 1 < (I,k) < (N2,Q2);
his? =Boeq(b1,yp), € = e(N1,1), p=p(Q1,k), i=(1—-1)Q2+k, j=(e—1)M +gq, for L < (I,k) < (N2,Q2);
hof® =Boeq(g,a2), € = e(m,1), p=p(k,1), i = (m—1)Q1 +k, j=(e—1)M+gq, for 1 < (m,k) < (N1,Q1);
hft =Boeq (s, b2), € = e(m, N2), p=p(k,Q2), i = (m —1)Q1 +k, j = (e —1)M +gq, for 1 < (m, k) < (N1,Q1),

(64)

where the functions e(-,-) and p(,-) are given by (7) and (10). In the matrices H*! H2 H% and H4

the only non-zero terms are,

h(z:;(ll :¢61q(X’mvy;})7 hf;(; = 7¢€2q(vay§§)7 €1 = €(m7 l)v pP1 :p(Qlyk)v €2 = e(er 1»l)7
p2 =p(L,k), i=(m—1)NoQ2+ (1= 1)Q2+k, j1=(e1 —1)M +¢q, jo = (e2 —1)M +gq,
for 1 < (m,l,k,q) < (N1 —1,N2,Q2, M);

az _ Oderq , hekz — _ Ofexa ex = e(m,l), p1 = p(Q1, k), e =e(m+1,),
w1 Oz ey w2 oz eo
(Xm,ypy) (Xm ¥p3)
p2 =p(L,k), i=(m—1)N2Q2+ (1 —1)Q2+k, j1 =(e1 —1)M +q, jo = (e2 — 1)M + g,
for 1 < (m,1,k,q) < (N1 —1,N2,Q2, M);
hSES =gy (T8, Y1), BEES = —enq(252,Y7), €1 = e(m,1), p1 = p(k, Q2), e2 = e(m,1 + 1),
p2=p(k,1), i=(1=1)N1Q1+(m—-1)Q1 +k, j1=(e1 —1)M +q, jo=(e2—1)M +g,
for 1 < (m,1,k,q) < (N1, N2 —1,Q1, M);

0 0

okt = e | hghd = Ofeas ex=e(m,D), pr = p(k, Q) €3 = e(m,1+1),
Y l@pt) Y (@2 v)

p2 =p(k,1), i=(1—1)N1Q1+ (m—1)Q1+k, j1 =(e1 —1)M +¢q, jo = (e2 — 1)M + g,

for 1 < (m,l,k,q) < (N1,N2 — 1,Q1, M).

37

[1 T 1

0.9-08-0.7-06-05-0.4-03-02-0.1 0 0.1 02 03 04 05 06 0.7 0.8 0.9

SE00 1E-08 15E-08 2E08 25608 3E-08 35E-08 4E-08 45E08 SE-0B 55608 6E-08 G5E-08 7E-0B

0 0.5 1 15 X 2 25 3 (b)

Figure 21: Inverse advection problem: distributions of (a) the NLLSQ solution for u(z,t) and (b) its point-wise
absolute error, with the random measurement points shown in (a) as “+” symbols. Single sub-domain, NN [2, 400, 1],
Q@ = 25 x 25 (collocation points), @s = 100 (measurement points), Rm = 2.5, Amea=1, € = 0 (no noise in measure-

ment).

Q ¢ (NLLSQ) ¢ (VarPro-F1) ¢ (VarPro-F2)

5%x5 3.000074167561E4+-0 2.999935510214E4+0 6.785575335360E-1
10x10 2.999998340831E4-0 3.000000635012E+0 6.785578125741E-1
15x15 2.999999999982E4-0 2.999999999967E+0 -7.284017530389E-2
20x20 3.000000000029E+0 3.000000000041E+0 3.000000000378E+0
25x25 3.000000000845E40 3.000000000869E+0 3.000000000025E4-0
30x30 3.000000000534E+0 3.000000000542E4-0 3.000000001047E+0
35x35 3.000000000596E-+0 3.000000000596E-+0 3.000000001295E+0
40x40 3.000000000771E+0 3.000000000770E4-0 3.000000001534E+0

Table 9: Inverse advection problem: the computed ¢ versus @ obtained by the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, 400, 1], Qs = 100; R, = 2.5 with NLLSQ and VarPro-F1, and R,, = 2.0 with
VarPro-F2; Apea=1, € = 0.

Appendix C. Parametric Advection Equation

This appendix provides a further test of the algorithms developed herein with the inverse parametric advec-

tion equation. Consider the spatial-temporal domain, (x,t) € Q = [0,3] x [0, 1], and the following inverse

problem,
ou Ju
E — C% = O, (66&)
(0,4) = u(3,8), u(x,0) = 10sinh | — sin =~ (7 — 2 (66b)
u(0,) = u(3,t), u(z,0)=10sinh | 7osin—=={z—2 ||,

where Y denotes the set of measurement points in 2. The wave speed ¢ and the field u(x, t) are the unknowns
to be determined in this problem. We employ the following exact solution to this problem in the tests,

(67)

. 1 . 27 5
Cez = 3, Uegx(x,t) = 10sinh {ﬁ sin Y <ac + 3t — 5)} .

We employ random measurement points in €2, and the measurement data are given by (48), in which w., is
given by (67). The notations adopted below (e.g. @, M, N, Qs, Ry, €) are the same as in Section 3.1. The
1°° and % norms of the u relative error reported below are computed on a set of Qeyq; = 101 x 101 uniform
grid points in each sub-domain after the network is trained.

Figure 21 illustrates the distributions of the NLLSQ solution for u(z,t) and its point-wise absolute error
in €. The crucial simulation parameters are listed in the figure caption. The solution is highly accurate,
with a maximum error on the level 1072 in the domain. The computed wave speed ¢ has a relative error
2.82 x 10719 for this case.

38

3
d

0 VoY 10 ¥ v
3 o Musa Y o Musa 7 o Musa
102} | - VarPro-F1 , v 4 - VarPro-F1 10 v | - VarPro-F1
o) v VarPro-F2 5 0% i v VarPro-F2 5 v VarPro-F2
‘C | =
St Dl S0’
S > >
= [} [}
Bio Z10° Z10°
o © ©
= s g Ewo
L0 10¢ s
o g g
= £
100 10°F 107
e T T R L e S T N R R e S T .
Collocation points per direction (a) Collocation points per direction (b) Collocation points per direction (c)

Figure 22: Inverse Advection problem: ¢ and u (I°°-u, [2-u) relative errors versus @ (Q = Q1 x Q1) obtained
by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Qs = 100, Ayea=1,
e=0; R,, = 2.5 with NLLSQ and VarPro-F1, and R,,, = 2.0 with VarPro-F2.

2
d

0 oy
+ NLLSQ . + NLLSQ 107 L N + NLLSQ
s | - VarPro-F1 0 ¥ - - VarPro-F1 - - VarPro-F1
10°+ N ,,,,v,,,, VarPro-F2 = A ,,,,v,,,, VarPro-F2 [™ ,,,,v,,,, VarPro-F2
A [] O10? V.
c Swo'p £ R
= o
S10° > S0tk
g10 (‘D“): L °
) = 210
[} Do &
>107 s -
%1 [10
—_ Xio5L 2]
[c 0 0
S = g
10°F 10°F
10 5‘0 160 1JST) 260 Z%T) 360 3%0 460 107 5‘0 1 l‘)O 1 ‘50 260 féT) 360 350 400 10° 50 1 00 1 50 200 250 300 350 400
Number of training parameters (a) Number of training parameters (b) Number of training parameters (C)

Figure 23: Inverse advection problem: ¢ and u ([°°-u, [?-u) relative errors versus M (number of training
parameters) obtained with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN
[2, M, 1], Q = 25 x 25, Qs = 50, Apea=1, €e=0; R, = 2.5 with NLLSQ and VarPro-F1, and R,,, = 2.0 with
VarPro-F2.

The convergence behaviors of the computed ¢ and u with respect to the collocation points (@) and to
the training parameters (M) are illustrated in Table 9 and Figures 22 and 23 (without noise). Table 9
and Figure 22 show the computed ¢ values, and the relative errors of ¢ and u, for several sets of uniform
collocation points obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Figure 23 shows the ¢
errors and the u errors for several sets of training parameters with the three algorithms. One can observe the
general exponential convergence of the ¢ and u errors with respect to (and to M. Table 9 and Figure 22
indicate that the convergence of VarPro-F2 with respect to @ is not quite regular. If the set of collocation
points is too small (@ = 15 x 15 and below), the computed VarPro-F2 results are not accurate.

Figure 24 illustrates the computational cost of the NLLSQ/VarPro-F1/VarPro-F2 algorithms for solving
the inverse advection problem by showing the network training time versus the number of collocation points
and the number of training parameters. The test configurations and the simulation parameters in the two
plots correspond to those of Figures 22 and 23, respectively. A near-linear growth in the network training
time can be observed as the number of training parameters or the number of collocation points increases.
The cost of NLLSQ is significantly larger than those of VarPro-F1/VarPro-F2 for this problem, while the
cost of VarPro-F1 appears generally larger than that of VarPro-F2.

The effects of noisy measurement data on the computation accuracy are illustrated by Tables 10 and 11
and Figure 25. Table 10 lists the computed ¢ by the NLLSQ algorithm corresponding to several noise levels

39

—o— NLLsQ
~deoeee VarPro-F1
- VarPro-F2

—o— NLLSQ
weeeebienes VarPro-F1
-~ VarPro-F2

network training time (seconds)
network training time (seconds)

RN Ao A o RN

G A et G G - AN, G

10 |:5 20 . 25 30_ 35_ 40 50 100 150 200_ . 250 300 350 400
Collocation points per direction (a) Number of training parameters (b)

Figure 24: Inverse advection problem: Network training time as a function of (a) the number of collocation
points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters in (a) follow those of Figure 22, and in (b) follow those of
Figure 23.

€ computed ¢ € computed ¢ € computed c

0.0 3.000000000534E+0 | 0.01 2.9997368E+0 | 0.1 2.9971795E+0
0.001 2.9999739E+0 0.03 2.9991975E40 | 0.2 2.9937846E+0
0.002 2.9999477E+0 0.05 2.9986396E40 | 0.5 2.9779459E+0
0.005 2.9998688E+0 0.07 2.9980677E+40 | 0.7 2.9570522E+0
0.007 2.9998158E+0 0.09 2.9974839E40 | 1.0 2.8441808E+0

Table 10: Inverse advection problem: ¢ computed by the NLLSQ algorithm corresponding to several noise levels .
Single sub-domain, NN [2,400, 1], @ = 30 x 30, Qs = 100, Ry, = 2.5, Apmea=1.

€ in the measurement data. Table 11 shows the ¢ and u relative errors corresponding to different noise
levels, computed by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Figure 25 shows the relative errors
for ¢ and u as a function of the noise level e for several A, values, illustrating the effect of scaling the
measurement residual (see Remark 2.6). The computation results are observed to be quite robust to the
noise in the measurement. For example, with 10% noise (¢ = 0.1) in the measurement, the relative errors
of ¢ computed by these methods are generally on the level of 0.1% (see Table 11). Scaling the measurement
residual by A\,eq < 1 markedly improves the simulation accuracy in the presence of noise, while only slightly

degrading the accuracy for the noise-free data; see Figure 25.

NLLSQ VarPro-F1 VarPro-F2

€ €c [*®-u 1%-u e [*®-u I#-u €c [*-u 1*-u
0.0 1.78E-10 8.29E-8 3.23E-9 | 1.81E-10 8.29E-8 3.24E-9 | 3.49E-10 9.89E-8 5.13E-9
0.001 8.72E-6 4.91E-4 1.77E-4 8.73E-6 4.91E-4 1.77E-4 4.67E-6 6.91E-4 1.76E-4
0.005 4.37E-5 2.46E-3 8.85E-4 4.41E-5 2.46E-3 8.84E-4 2.26E-5 3.49E-3 8.80E-4
0.01 8.77E-5 4.91E-3 1.77E-3 8.81E-5 4.91E-3 1.77E-3 4.61E-5 7.00E-3 1.76 E-3
0.05 4.53E-4 2.46E-2 8.84E-3 4.55E-4 2.45E-2 8.84E-3 2.49E-4 3.50E-2 8.79E-3
0.1 9.40E-4 4.92E-2 1.77E-2 9.54E-4 4.92E-2 1.77E-2 5.53E-4 6.95E-2 1.76E-2
0.5 7.35E-3 2.47E-1 8.90E-2 7.40E-3 2.47E-1 8.90E-2 5.42E-3 3.59E-1 8.86E-2
1.0 5.19E-2 5.04E-1 2.06E-1 5.19E-2 5.04E-1 2.06E-1 3.78E-2 8.03E-1 1.95E-1

Table 11: Inverse advection problem: ¢ and w relative errors versus e obtained with the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Single sub-domain, NN [2,400,1], @ = 30 x 30, Qs = 100, Amea=1; Rm = 2.5 with NLLSQ
and VarPro-F1, and R,, = 2.0 with VarPro-F2.

40

[10°

107 10k 10'F
3 = S 02
10 S1pt 5"
c > =
=10* o D10°
5 S10°F S
£10° [©10°
[} 20k =
g 10° © o
= 5[oy
®107 Bro 2 100k
- —©— lambda-mea=1.0 P —©&— lambda-mea=1.0 » —©&— lambda-mea=1.0
o oo lambda-mea = 0.25 Bioe oo lambda-mea = 0.25 £ oo lambda-mea = 0.25
107 ---<g---- lambda-mea = 0.1 = ---57---- lambda-mea = 0.1 =10 ---<7---- lambda-mea = 0.1
10 107 10°
107 ¥ . . L , 10° . . L . , 10° . . L . ,
0 02 04 0.6 08 1 0 02 .04 06 08 1 0 02 .04 06 08 1
Noise level & (a) Noise level € (b) Noise level & (c)

Figure 25: Inverse advection problem: ¢ and u (I*°-u, l2—u) relative errors versus € and A, (scaling
coefficient of measurement residual) obtained with the NLLSQ algorithm. Single sub-domain, NN [2,400, 1],
Q =30 x 30, Qs = 100, R,, = 2.5. These can be compared with the NLLSQ data in Table 11 for \,,.,=1.

Appendix D. Parametric Sine-Gordon Equation

This appendix provides a further test of the proposed method with the parametric Sine-Gordon equation.

Consider the inverse parametric Sine-Gordon equation on the domain (z,t) € Q = [0,1] x [0, 1],

0%u 0%u

ol + axu + agsin(u) = f(z,t), (68a)
U(Oat) = gl(t)v U(l,t) = g?(t)a U(I7O) = hl(x)v % = hQ(I)v (68b)
(x,0)

where f is a prescribed source term, g; (i = 1,2) and h; (i = 1,2) are prescribed boundary and initial
conditions, Y is the set of random measurement points, and the constants «; (¢ = 1,2, 3) and the field u(x, t)
are the unknowns to be determined. We employ the following manufactured analytic solution in the tests,

ex ex ex
Q1] = Oy = Q3 — 1,

69
Ueg (X,t) = {g cos (’TFZE - 2%) + %cos <27rm + ?1’%)} [g cos (Trt — 2%) + %cos <27rt + %)} . (69)

Accordingly, f, g; (i = 1,2), and h; (i = 1,2) are chosen such that the expressions in (69) satisfy (68a)—(68b).
The measurement data are given by equation (48), in which u., is given in (69). The u errors are computed
on a uniform 101 x 101 grid in each sub-domain. The notations here follow those of previous numerical
examples.

Figure 26 shows distributions of the w(z,t) solution and its point-wise absolute error in Q obtained by
the VarPro-F2 algorithm, with 50 random measurement points (no noise). The other parameter values are
provided in the figure caption. We can observe a high accuracy in the solution, with the maximum error on
the order of 10~ in the domain. In this simulation the relative errors for the computed o, s and a3 are
2.07 x 10719, 7.54 x 10~ and 2.39 x 1078, respectively.

The convergence of the simulation results obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms
is demonstrated by the data in Table 12 and Figure 27. In these tests the number of training parameters
(M) is varied systematically (no noise in measurement), while the other simulation parameters are fixed and
their values are provided in the table/figure captions. Table 12 lists the computed «a; (i = 1,2, 3) values by
the NLLSQ algorithm corresponding to a set of M. Figure 27 lists the relative errors of a1, as and ag, as
well as the > and [? norms of the relative error for u(z,t), computed by NLLSQ, VarPro-F1 and VarPro-F2

41

B soe0
Zselo0

35E400
306400
256100
2.0E400
15E400
1.0E400
50E01

o IS

. 05’" \
- (b)

Figure 26: Inverse Sine-Gordon problem: distributions of (a) the VarPro-F2 solution for u(z,¢) and (b) its point-
wise absolute error, with the measurement points shown as “+” symbols in (a). Single sub-domain, NN [2, 300, 1],
Q =25x%x25 Qs =50, Ry, = 1.3, Anea=1, € = 0 (no noise in measurement data).

M a1 o) a3

50 -3.525085809204E+1 -6.376776028198E+0 6.877670126056E+1
100 1.006414746681E+0 9.536423027578E-1 1.058573631607E+0
200 1.000000694463E+0 9.999830213887E-1 1.000056517879E+0
300 9.999999995066 E-1 1.000000013620E+0 9.999999510014E-1
400 1.000000000001E+0 9.999999999962E-1 1.000000000096 E+0

Table 12: Inverse Sine-Gordon problem: «; (i = 1,2,3) versus M (number of training parameters) obtained by the
NLLSQ algorithm. Single sub-domain, NN [2, M, 1], Q = 25 X 25, Qs = 100, R» = 1.5, Amea=1, €=0.

corresponding to different M. It is evident that the errors decrease exponentially with increasing number of
training parameters with these algorithms.

Figure 28 illustrates the computational cost of the three algorithms for solving the inverse Sine-Gordon
problem by showing the network training time as a function of the number of training parameters in the
same set of tests as Figure 27. The data suggest a general quasi-linear growth in the training time with
increasing number of training parameters. The VarPro-F2 algorithm is more costly than VarPro-F1, which
in turn is more costly than NLLSQ for this problem. The training time with VarPro-F1 and VarPro-F2,
especially VarPro-F2, is not quite regular. One can observe a fluctuation in the timing curves corresponding
to these methods.

The effect of noise in the measurement data on the simulation accuracy is illustrated by Tables 13
and 14 for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The relative errors of a1, as, as, and u(x,t)

corresponding to a range of noise levels are provided in these two tables. The other crucial simulation

NLLSQ VarPro-F1 VarPro-F2

€ €ay €as €as €a, €as €as €a; €as Cas
0.0 1.93E-12 4.90E-11 1.35E-10 | 1.50E-12 4.42E-12 2.23E-11 | 3.61E-11 9.72E-10 3.02E-9
0.001 | 6.90E-4 2.66E-3 3.00E-3 6.88E-4 2.64E-3 3.09E-3 6.86E-4 2.63E-3 3.08E-3
0.005 | 3.44E-3 1.31E-2 1.45E-2 3.44E-3 1.32E-2 1.54E-2 3.43E-3 1.32E-2 1.54E-2
0.01 6.88E-3 2.63E-2 2.93E-2 6.86E-3 2.63E-2 3.08E-2 6.84E-3 2.62E-2 3.04E-2
0.05 3.38E-2 1.27E-1 1.39E-1 3.38E-2 1.30E-1 1.53E-1 3.39E-2 1.32E-1 1.60E-1
0.1 6.65E-2 2.49E-1 2.76E-1 6.65E-2 2.55E-1 3.05E-1 6.65E-2 2.57E-1 3.12E-1
0.5 2.67E-1 8.07E-1 5.90E-1 2.65E-1 7.69E-1 4.39E-1 2.66E-1 7.95E-1 5.41E-1
1.0 4.09E-1 1.01E4+0 2.18E-1 4.12E-1 1.07TE+0 5.43E-1 4.15E-1 1.10E40 6.27E-1

Table 13: Inverse Sine-Gordon problem: a1, as and a3 relative errors versus the noise level (€) obtained by the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN: [2,400,1], @ = 30 x 30, Qs = 50, Apmea=1;
R, = 1.5 with NLLSQ, R,, = 1.3 with VarPro-F1 and VarPro-F2;

42

107

10 X ¥
ook —o— NLLsQ 34 —o— NLLsQ R —o— NLLsQ
h\ weeedeeeee VarPro-F1 1000 \ —eeedeeees VarPro-F1 AN oeedeeees VarPro-F1
3 VarPro-F2 ---57--— VarPro-F2 10°F A ---57--— VarPro-F2
o 107 — 3 . ,
o O 10?F o
= £ £ 10'p
© 10°- (9] (9]
T N10* - LI
B el 3 B0tk
(] (] (]
= = 10°F =raln
E=RTN = =
© K o
Qmm Q 107 Q ool
107 107+ 107
10t , , , . , 107 107 , , ,
100 200 L. 300 400 500 100 200 L. 300 400 500 100 200 L. 300 400 500
Number of training parameters (a) Number of training parameters (b) Number of training parameters (C)
10
—&— NLLSQ 107 3 —&— NLLSQ
10 \ oot VarPro-F1 N - VarPro-F1
o N -5 VarPro-F2 o ---<7---- VarPro-F2
o o10° - \
= =
(ORI []
p} S510°-
[}
Z10° _g
kS o
Em’ F 2
x n10°-
8 £
= IS
10°F 10"
N
S——g
0" | , , L, ? s , , n ,
100 200 300 400 500 100 200 300 400 500
Number of training parameters (d) Number of training parameters (e)

Figure 27: Inverse Sine-Gordon problem: relative errors of ay, e, az and u (I°°-u, [>-u) versus M (number
of training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain,
NN [2, M, 1], Qs = 100, Q = 25 x 25, A\pea=1, €=0; R,, = 1.5 with NLLSQ, R,, = 1.3 with VarPro-F1 and
VarPro-F2.

IS
&

NLLSQ
VarPro-F1
VarPro-F2

w
&

w
8

»
&

@

5

o

network training time (seconds)
<

I L ,
100 400 500

200 300
umber of training parameters

o

Figure 28: Inverse Sine-Gordon problem: Network training time as a function of the number of training
parameters for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters follow
those of Figure 27.

43

NLLSQ VarPro-F1 VarPro-F2

€ u I?-u u "-u [*°-u I*-u

0.0 3.44E-11 4.16E-12 | 7.03E-11 5.01E-12 | 7.73E-10 1.57E-10
0.001 | 8.76E-4 3.71E-4 8.49E-4 3.70E-4 8.51E-4 3.69E-4

1°°- 1°°-

0.005 | 4.39E-3 1.86E-3 4.26E-3 1.85E-3 4.25E-3 1.85E-3
0.01 8.77E-3 3.71E-3 8.50E-3 3.70E-3 8.51E-3 3.70E-3
0.05 4.35E-2 1.87E-2 4.25E-2 1.87E-2 4.24E-2 1.86E-2
0.1 8.65E-2 3.78E-2 8.46E-2 3.T7E-2 8.43E-2 3.76E-2
0.5 4.10E-1 1.95E-1 4.08E-1 1.95E-1 4.07E-1 1.95E-1
1.0 8.90E-1 3.83E-1 8.97E-1 3.84E-1 9.07E-1 3.86E-1

Table 14: Inverse Sine-Gordon problem: u relative errors versus e obtained by the NLLSQ, VarPro-F1 and VarPro-
F2 algorithms. Simulation settings and parameters follow those of Table 13.

e=0 €=0.01
method €a [*°-u I*-u time(sec) €a [*°-u I*-u time(sec)
PINN (Adam) 6.31E-3 1.08E-2 3.56E-3 134.5 5.53E-3 1.03E-2 3.30E-3 130.9
current (NLLSQ) | 1.66E-8 3.66E-6 2.62E-7 11.5 9.72E-4 1.76E-3 5.26E-4 10.4

Table 15: Inverse Poisson problem: relative errors of @ and u and the network training time (seconds) obtained
by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30x30, Qs=100, Gaussian
activation function. In PINN, neural network [2,30,30,30,1]; 20,000 training epochs; v = 0.99; learning rate
decreasing linearly from 0.01 to 1.0E-4 in first 10,000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single
sub-domain, neural network [2,500, 1], R»=3.0, Amea=0.1.

parameters are provided in the caption of Table 13. The accuracy in the computation results deteriorates
as the measurement data becomes more noisy. With 1% measurement noise (¢ = 0.01) the relative errors
of the computed «; (i = 1,2,3) are around 0.7 ~ 3%, and the relative error of u (1> norm) is around 0.4%
with the three algorithms. With 5% measurement noise (¢ = 0.05) the relative errors of the computed «;

are around 3 ~ 15% and the relative error of u (I2 norm) is less than 2%.

Appendix E. Comparison with PINN

This appendix provides a comparison of the simulation results obtained by the current method (NLLSQ
algorithm) and the physics-informed neural network (PINN) method [50] for several test problems. The
PINN method is also implemented in Python based on the Tensorflow and Keras libraries. The PINN loss
function consists of those contributions from the parametric PDE, the measurement, and the boundary/initial
conditions (BC/IC). Let v € (0,1) denote the penalty coefficient in front of the BC/IC loss term, and we
employ (1 —~p.) as the penalty coefficient for the PDE and measurement loss terms. We have varied 7., the
learning rate schedule, and the random initialization for the weights/biases of PINN systematically. PINN
is trained by the Adam optimizer. The PINN/Adam results reported below are the best we have obtained
for these problems using PINN. We have also tried the L-BFGS optimizer with PINN, and its results for
these inverse problems are quite poor and worse than the Adam results.

Tables 15 through 19 summarize the errors of the inverse parameters and the solution field, as well as the
network training time, obtained by the current and the PINN methods for the inverse Poisson, advection,
nonlinear Helmholtz, Burgers’, and the Sine-Gordon problems. The table captions provide the respective
parameter values in these simulations for the two methods. We observe that the current method produces
more accurate results than PINN for both the inverse parameters and the solution field, and that the network

training time of the current method is markedly smaller than that of PINN. For the noise-free data, the

44

e=0 e=0.01

method ec [*-u *-u time(sec) €c [*°-u I*-u time(sec)
PINN (Adam) 1.18E-5 7.18E-3 7.63E-4 133.5 1.47E-4 9.15E-3 1.67E-3 134.9
current (NLLSQ) | 2.32E-10 8.51E-8 4.66E-9 29.6 2.61E-5 2.85E-4 1.10E-4 39.3

Table 16: Inverse advection problem: relative errors of ¢ and u and the network training time (seconds) obtained
by the PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30x30, @s=100, Gaussian
activation function. In PINN, neural network [2,30, 30,30, 30,1]; 20,000 training epochs; v, = 0.2; learning rate
decreasing linearly from 0.01 to 1.0E-4 in first 10,000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single
sub-domain, neural network [2,400, 1], Rn=2.5, Amea=0.1.

noise level | method €ay €as [*°-u I*-u training-time(sec)

e=0 PINN (Adam) 7.08E-1 2.68E-1 148E+0 5.65E-1 3049.2
current (NLLSQ) | 5.71E-9 3.05E-7 5.98E-8 1.49E-8 10.3

e=0.01 PINN (Adam) 6.74E-1 7.76E-1 1.56E+0 6.79E-1 2742.9
current (NLLSQ) | 4.34E-3 7.13E-4 5.25E-3 2.38E-3 10.0

Table 17: Inverse nonlinear Helmholtz problem: relative errors of aj, as and u and the network training time
(seconds) obtained by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30x30,
Qs=100, Gaussian activation function. In PINN, neural network [2, 30, 30, 30, 30, 30, 30, 1]; 200, 000 training epochs;
Yoe = 0.99; learning rate decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards.
In NLLSQ, single sub-domain, neural network [2, 500, 1], Rp=2.25, Amea=0.25.

current method is significantly more accurate (typically by several orders of magnitude) than PINN.

Appendix F. Parameter Values in Algorithm 7 for Numerical Tests

Section 3.1 (Parametric Poisson Equation):

For NLLSQ:

In Figure 3, Table 1, Figures 4 and 5, Tables 3 and 4: (max-nllsq-iterations,max-sub-iterations,e,d,n,0)=(80,2,1E-
8,1.0,1,0).

In Table 2: (max-nllsg-iterations,max-sub-iterations,e,d,n,89)=(80,5,1E-8,1.0,1,0).

For VarPro-F1.

In Figure 4 and Table 4: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(80,2,1E-8,1.0,1,0).

In Figure 5: (max-nllsq-iterations,max-sub-iterations,e,d,7,60)=(80,5,1E-8,1.0,1,0).

In Table 2: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(100,2,1E-8,4.0,1,0).

For VarPro-F2:

In Figures 4 and 5, and Table 4: (max-nllsg-iterations,max-sub-iterations,e,d,n,0p)=(80,2,1E-8,1.0,1,0).
In Table 2: (max-nllsg-iterations,max-sub-iterations,e,d,n7,0,)=(80,5,1E-8,1.0,1,0).

noise level | method €a €asy [*°-u %-u training-time(sec)

e=0 PINN (Adam) 2.40E-4 7.26E-4 1.59E-3 2.06E-4 529.0
current (NLLSQ) | 4.31E-10 2.33E-9 3.31E-9 5.86E-10 4.2

e=0.01 PINN (Adam) 1.80E-3 2.66E-3 5.65E-3 7.83E-4 540.1
current (NLLSQ) | 1.12E-5 1.23E-4 9.87E-5 3.75E-5 6.4

Table 18: Inverse Burgers’ problem: relative errors of a1, a2 and uw and the network training time (seconds) obtained
by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30x30, Qs=100, Gaussian
activation function. In PINN, neural network [2,30, 30,30, 30, 1]; 50,000 training epochs; vs. = 0.9; learning rate
decreasing linearly from 0.01 to 1.0E-4 in first 10,000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ), single
sub-domain, neural network [2,400, 1], Rn=1.9, Amea=0.1.

45

noise level | method €ay €ay €as [*°-u ’-u training-time(sec)

e=0 PINN (Adam) 9.21E-3 2.30E-1 7.33E-1 1.86E-2 3.32E-3 1853.3
current (NLLSQ) | 7.65E-10 4.49E-9 6.60E-9 7.97E-10 3.50E-10 23.6

e =0.01 PINN (Adam) 1.16E-2 1.35E-1 3.51E-1 1.18E-2 2.97E-3 1833.2
current (NLLSQ) | 5.45E-3 2.59E-2 5.09E-3 5.76E-3 2.63E-3 30.1

Table 19: Inverse Sine-Gordon problem: relative errors of «; (i = 1,2,3) and u and the network training time
(seconds) obtained by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30x%30,
Qs=100, Gaussian activation function. In PINN, neural network [2, 30, 30, 30, 30, 1]; 200, 000 training epochs; ys. =
0.99, learning rate decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In
NLLSQ, single sub-domain, neural network [2,400, 1], Rn=1.5, Amea=0.01.

Section 3.2 (Parametric Nonlinear Helmholtz Equation):

For NLLSQ:

In Table 5, Figures 9 and 10, Table 6, Figure 12: (max-nllsg-iterations,max-sub-iterations,e,d,1,60¢)=(80,2,1E-
8,0.5,1,0).

For VarPro-F1:

In Figures 8, 9, 10 and 12: (max-nllsg-iterations,max-sub-iterations,e,d,n,09)=(80,2,1E-8,0.5,1,0).

For VarPro-F2:

In Figuress 9, 10 and 12: (max-nllsg-iterations,max-sub-iterations,e,d,n,6,)=(80,0,1E-8,0.5,1,0); max-newton-

iterations=15.

Section 3.3 (Parametric Viscous Burgers’ Equation):

For NLLSQ:

In Figure 13, Table 7, Figures 14, 15 and 17: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(80,2,1E-
8,0.5,1,0).

For VarPro-F1:

In Figures 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations,e,d,n7,00)=(80,2,1E-8,1.0,1,0).

For VarPro-F2:

In Figures 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations,e,d,n,0¢)=(80,2,1E-12,1.0,0,£(); max-

newton-iterations=15. Here & is a uniform random vector from [-1,1].

Section 3.4 (Helmholtz Equation with Inverse Variable Coefficient):

For NLLSQ:

In Figure 18, Table 8 and Figure 19: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(80,2,1E-8,1.0,1,0).
For VarPro-F1:

In Figure 19: (max-nllsg-iterations,max-sub-iterations,e,d,n,0,)=(80,2,1E-8,0.01,1,0).

For VarPro-F2:

In Figure 19: (max-nllsg-iterations,max-sub-iterations,e,d,7,00)=(50,2,1E-8,0.5,1,0).

Appendix C (Parametric Advection Equation):

For NLLSQ:

In Figures 21, 22, 23 and 25, Tables 9, 10, and 11: (max-nllsq-iterations,max-sub-iterations,e,d,n,80)=(80,10,1E-
8,10.0,0,9).

For VarPro-F1:

In Figure 22: (max-nllsg-iterations,max-sub-iterations,e,d,1,00)=(80,2,1E-8,5.0,0,9).

In Figure 23 and Table 11: (max-nllsq-iterations,max-sub-iterations,e,d,n,0)=(100,5,1E-8,5.0,0,9¢).

For VarPro-F2:

46

In Figure 22: (max-nllsq-iterations,max-sub-iterations,e,d,n,00)=(80,2,1E-8,5.0,0,&).

In Figure 23: (max-nllsg-iterations,max-sub-iterations,e,d,n,0¢)=(80,2,1E-8,1.0,1,&y).

In Table 11: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(80,5,1E-8,1.0,1,&).

In the above, & is a uniform random vector from [-1,1]. ¥y is a uniform random vector generated by the
lines 7 through 14 of Algorithm 7 with the ¢ as specified above and n = 0.

Appendix D (Parametric Sine-Gordon Equation):

For NLLSQ:

In Tables 12, 13 and 14, and Figure 27: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(80,5,1E-8,5.0,0,0).
For VarPro-F1:

In Figure 27, and Tables 13 and 14: (max-nllsg-iterations,max-sub-iterations,e,d,n,80)=(80,5,1E-8,5.0,0,0).
For VarPro-F2:

In Figures 26 and 27, and Tables 13 and 14: (max-nllsg-iterations,max-sub-iterations,e,d,n,0)=(80,5,1E-
8,1.0,0,0); max-newton-iterations=15.

Appendix E (Comparison with PINN):

For NLLSQ:

In Table 15: (max-nllsq-iterations,max-sub-iterations,e,d,7,60)=(80,5,1E-8,1.0,1,0).

In Table 16: (max-nllsg-iterations,max-sub-iterations,e,d,n,00)=(80,10,1E-8,10.0,0,89¢). Here 9 is a uniform
random vector generated by the lines 7 through 14 of Algorithm 7 with the § as specified here and n = 0.
In Table 17: (max-nllsq-iterations,max-sub-iterations,e,d,n,00)=(80,2,1E-8,0.5,1,0).

In Table 18: (max-nllsq-iterations,max-sub-iterations,e,d,7,60)=(80,2,1E-8,0.5,1,0).

In Table 19: (max-nllsq-iterations,max-sub-iterations,e,d,7,60)=(80,5,1E-8,5.0,0,0).

References

[1] J. Berg and K. Nystrom. Neural network augmented inverse problems for PDEs. arXiv:1712.09685,
2018.

[2] J. Berg and K. Nystrom. Data-driven discovery of PDEs in complex datasets. Journal of Computational
Physics, 384:239-252, 2019.

[3] A. Bjorck. Numerical Methods for Least Squares Problems. STAM, 1996.

[4] J. Bongard and H. Lipton. Automated reverse engineering of nonlinear dynamical systems. Proceedings
of National Academy of Sciences USA, 104:9943-9948, 2007.

[5] G.-J. Both, S. Choudhury, P. Sens, and R. Kusters. DeepMoD: deep learning for model discovery in
noisy data. Journal of Computational Physics, 428:109985, 2021.

[6] M.A. Branch, T.F. Coleman, and Y. Li. A subspace, interior, and conjugate gradient method for
large-scale bound-constrained minimization problems. SIAM Journal on Scientific Computing, 21:1-23,
1999.

[7] S.L. Brunton, J.L. Proctor, and J.N. Kutz. Discovering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings of National Academy of Sciences USA, 113:3932—
3937, 2016.

[8] R.H. Byrd, R.B. Schnabel, and G.A. Shultz. Approximate solution of the trust region problem by
minimization over two-dimensional subspaces. Math. Programming, 40:247-263, 1988.

[9] S. Cai, Z. Wang, F. Fuest, Y.J. Jeon, C. Gray, and G.E. Karniadakis. Flow over an espresso cup:

47

inferring 3-d velocity and pressure fields from tomographic background oriented schileren via physics-
informed neural networks. Journal of Fluid Mechanics, 915:A102, 2021.

F. Calabro, G. Fabiani, and C. Siettos. Extreme learning machine collocation for the numerical solution
of elliptic PDEs with sharp gradients. Computer Methods in Applied Mechanics and Engineering,
387:114188, 2021.

Y. Chen, L. Lu, G.E. Karniadakis, and L.D. Negro. Physics-informed neural networks for inverse
problems in nano-optics and metamaterials. Optics Express, 28:11618-11633, 2020.

S. Dong. An efficient algorithm for incompressible N-phase flows. Journal of Computational Physics,
276:691-728, 2014.

S. Dong. Physical formulation and numerical algorithm for simulating N immiscible incompressible
fluids involving general order parameters. Journal of Computational Physics, 283:98-128, 2015.

S. Dong. Wall-bounded multiphase flows of N immiscible incompressible fluids: consistency and contact-
angle boundary condition. Journal of Computational Physics, 338:21-67, 2017.

S. Dong. Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and
thermodynamically-consistent formulation and associated algorithm. Journal of Computational Physics,
361:1-49, 2018.

S. Dong and Z. Li. Local extreme learning machines and domain decomposition for solving linear
and nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering,
387:114129, 2021. (also arXiv:2012.02895).

S. Dong and Z. Li. A modified batch intrinsic plascity method for pre-training the random coef-
ficients of extreme learning machines. Journal of Computational Physics, 445:110585, 2021. (also
arXiv:2103.08042).

S. Dong and J. Yang. Numerical approximation of partial differential equations by a variable projection
method with artificial neural networks. Computer Methods in Applied Mechanics and FEngineering,
398:115284, 2022. (also arXiv:2201.09989).

S. Dong and J. Yang. On computing the hyperparameter of extreme learning machines: algorithms
and applications to computational PDEs, and comparison with classical and high-order finite elements.
Journal of Computational Physics, 463:111290, 2022. (also arXiv:2110.14121).

V. Dwivedi, N. Parashar, and B. Srinivasan. Distributed learning machines for solving forward and
inverse problems in partial differential equations. Neurocomputing, 420:299-316, 2021.

V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (pielm) — a rapid method
for the numerical solution of partial differential equations. Neurocomputing, 391:96-118, 2020.

G. Fabiani, F. Calabro, L. Russo, and C. Siettos. Numerical solution and bifurcation analysis of nonlinear
partial differential equations with extreme learning machines. Journal of Scientific Computing, 89:44,
2021.

G.H. Golub and V. Pereyra. The differentiation of pseudo-inverse and nonlinear least squares problems
whose variables separate. SIAM J. Numer. Anal., 10:413-432, 1973.

G.H. Golub and V. Pereyra. Separable nonlinear least squares: the variable projection method and its
applications. Inverse Problems, 19:R1-R26, 2003.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and applications. Neuro-
computing, 70:489-501, 2006.

G.B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental constructive feed-
forward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17:879-892,

48

[27]

[28]

[29]

[40]
ja1]
[42)
[43]
[44]
5]

[46]

2006.

B. Igelnik and Y.H. Pao. Stochastic choice of basis functions in adaptive function approximation and
the functional-link net. ITEEE Transactions on Neural Networks, 6:1320-1329, 1995.

A.D. Jagtap and G.E. Karniadakis. Extended physics-informed neural network (XPINNs): A general-
ized space-time domain decomposition based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics, 28:2002-2041, 2020.

A.D. Jagtap, E. Kharazmi, and G.E. Karniadakis. Conservative physics-informed neural networks on
discrete domains for conservation laws: applications to forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 365:113028, 2020.

A.D. Jagtap, Z. Mao, N. Adams, and G.E. Karniadakis. Physics-informed neural networks for inverse
problems in supersonic flows. Journal of Computational Physics, 466:111402, 2022.

G.E. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed machine
learning. Nature Reviews Physics, 3:422—-440, 2021.

L. Kaufman. A variable projection method for solving separable nonlinear least squares problems. BIT,
15:49-57, 1975.

C.-T. Kim and J.-J. Lee. Training two-layered feedforward networks with variable projection method.
IEEFE Transactions on Neural Networks, 19:371-375, 2008.

D. Li, K. Xu, J.M. Harris, and E. Darve. Coupled time-lapse full-waveform inversion for subsurface flow
problems using intrusive automatic differentiation. Water Resour. Res., 56:e2019WR027032, 2020.

Z. Long, Y. Lu, and B. Dong. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid
deep network. Journal of Computational Physics, 399:108925, 2019.

L. Lu, X. Meng, Z. Mao, and G.E. Karniadakis. DeepXDE: a deep learning library for solving differential
equations. SIAM Review, 63:208-228, 2021.

Z. Mao, A.D. Jagtap, and G.E. Karniadakis. Physics-informed neural networks for high-speed flows.
Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

A. Mathews, M. Francisquez, J. Hghes, and D. Hatch. Uncovering edge plasma dynamics via deep
learning from partial observations. arXiv:2009.05005, 2020.

X. Meng and G.E. Karniadakis. A composite neural network that learns form multi-fidelity data:
application to function approximation and inverse pde problems. Journal of Computational Physics,
401:109020, 2020.

D. Needell, A.A. Nelson, R. Saab, and P. Salanevich. Random vector functional link networks for
function approximation on manifolds. arXiv:2007.15776, 2020.

E. Newman, J. Chung, M. Chung, and L. Ruthotto. SlimTrain — a stochastic approximation method
for training separable deep neural networks. SIAM J. Sci. Comput., 44:A2322-A2348, 2022.

E. Newman, L. Ruthotto, J. Hart, and B. van Bloemen Waanders. Train like a (Var)Pro: Efficient
training of neural networks with variable projection. SIAM J. Math. Data Sci., 3:1041-1066, 2021.

N. Ni and S. Dong. Numerical computation of partial differential equations by hidden-layer concatenated
extreme learning machine. Journal of Scientific Computing, 95:35, 2023.

D.P. O’Leary and B.W. Rust. Variable projection for nonlinear least squares problems. Comput. Optim.
Appl., 54:579-593, 2013.

S. Panghal and M. Kumar. Optimization free neural network approach for solving ordinary and partial
differential equations. Engineering with Computers, 37:2989-3002, 2021.

Y.H. Pao, G.H. Park, and D.J. Sobajic. Learning and generalization characteristics of the random vector

49

[47]

[48]
[49]

[50]

[64]

functional-link net. Neurocomputing, 6:163-180, 1994.

R.G. Patel, I. Manickam, N.A. Trask, M.A. Wood, M. Lee, I. Tomas, and E.C. Cyr. Thermodynamically
consistent physics-informed neural networks for hyperbolic systems. Journal of Computational Physics,
449:110754, 2022.

V. Pereyra, G. Scherer, and F. Wong. Variable projections neural network training. Mathematics and
Computers in Simulation, 73:231-243, 2006.

M. Raissi and G.E. Karniadakis. Hidden physics models: machine learning of nonlinear partial differ-
ential equations. Journal of Computational Physics, 357:125-141, 2018.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686-707, 2019.

M. Raissi, A. Yazdani, and G.E. Karniadakis. Hidden fluid mechanics: learning velocity and pressure
fields from flow visualizations. Science, 367:1026-1030, 2020.

S. Rudy, A. Alla, S.L. Brunton, and J.N. Kutz. Data-driven identification of parametric partial differ-
ential equations. STAM J. Applied Dynamical Systems, 18:643-660, 2019.

S.H. Rudy, S.L. Brunton, J.L. Proctor, and J.N. Kutz. Data-driven discovery of partial differential
equations. Science Advances, 3:¢1602614, 2017.

A. Ruhe and P.A. Wedin. Algorithms for separable nonlinear least squares problems. SIAM Review,
22:318-337, 1980.

H. Schaeffer. Learning partial differential equations via data discovery and sparse optimization. Proc.
R. Soc. A, 473:20160446, 2017.

E. Schiassi, A. D’Ambrosio, M. De Florio, R. Furfaro, and F. Curti. Physics-informed extreme theory of
functional connections applied to data-driven parameters discovery of epidemiological compartmental
models. arXiv:2008.05554, 2020.

E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnson, and D. Mortari. Extreme theory of
functional connections: a fast physics-informed neural network method for solving ordinary and partial
differential equations. Neurocomputing, 457:334-356, 2021.

M. Schmidt and H. Lipton. Distilling free-form natural laws from experimental data. Science, 324:81-85,
2009.

J. Sjoberg and M. Viberg. Separable nonlinear least squares minimization - possible improvements for
neural net fitting. Neural Networks for Signal Processing VII. Proceedings of IEEE Signal Processing
Workshop, 1997.

A .M. Tartakovsky, C.O. Marrero, P. Perdikaris, G.D. Tartakovsky, and D. Barajas-Solano. Physics-
informed deep neural networks for learning parameters and constitutive relationships in subsurface flow
problems. Water Resource Research, 56:e2019WR026731, 2020.

K. Weigl and M. Berthod. Neural networks as dynamical bases in function space. Report No 2124,
INRIA, Sophis-Antipolis, France, 1993. URL: https://hal.inria.fr/inria-00074548 /document.

K. Weigl and M. Berthod. Projection learning: alternative approach to the computation of the projec-
tion. Proc. European Symp. on Artificial Neural Networks, Brussels, Belgium, pages 19-24, 1994.

K. Weigl, G. Giraudon, and M. Berthod. Application of projection learning to the detection of ur-
ban areas in SPOT satellite images. Report No 2143, INRIA, Sophia-Antipolis, France, 1993. URL:
https://hal.inria.fr/inria-00074529.

K. Wu and D. Xiu. Data-driven deep learning of partial differential equations in modal space. Journal

50

of Computational Physics, 408:109307, 2020.

L. Yang, X. Meng, and G.E. Karniadakis. B-PINNs: Bayesian physics-informed neural netwotks for
forward and inverse pde problems with noisy data. Journal of Computational Physics, 425:109913, 2021.
Y. Yang, M. Hou, and J. Luo. A novel improved extreme learning machine algorithm in solving ordinary
differential equations by legendre neural network methods. Advances in Differential Equations, 469:1-24,
2018.

Z. Yang and S. Dong. Multiphase flows of N immiscible incompressible fluids: an outflow/open boundary
condition and algorithm. Journal of Computational Physics, 366:33-70, 2018.

L. Yuan, Y.-Q. Ni, X.-Y. Deng, and S. Hao. A-PINN: auxiliary physics informed neural networks
for forward and inverse problems of nonlinear integro-differential equations. Journal of Computational
Physics, 462:111260, 2022.

S. Zhang and G. Lin. Robust data-driven discovery of governing physical laws with error bars. Prov.
R. Soc. A, 474:20180305, 2018.

o1

	Introduction
	Algorithms for Inverse PDEs with Randomized Neural Networks
	Inverse Parametric PDEs and Local Randomized Neural Networks
	Nonlinear Least Squares (NLLSQ) Method for Network Training
	Variable Projection Algorithms for Network Training
	Formulation #1 (VarPro-F1): Eliminating the Inverse Parameters
	Formulation #2 (VarPro-F2): Eliminating the Field Function

	Numerical Examples
	Parametric Poisson Equation
	Parametric Nonlinear Helmholtz Equation
	Parametric Viscous Burgers Equation
	Helmholtz Equation with Inverse Variable Coefficient

	Concluding Remarks

