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Abstract

We present a method for computing the inverse parameters and the solution field to inverse parametric
partial differential equations (PDE) based on randomized neural networks. This extends the local extreme
learning machine technique originally developed for forward PDEs to inverse problems. We develop three
algorithms for training the neural network to solve the inverse PDE problem. The first algorithm (termed
NLLSQ) determines the inverse parameters and the trainable network parameters all together by the
nonlinear least squares method with perturbations (NLLSQ-perturb). The second algorithm (termed
VarPro-F1) eliminates the inverse parameters from the overall problem by variable projection to attain
a reduced problem about the trainable network parameters only. It solves the reduced problem first
by the NLLSQ-perturb algorithm for the trainable network parameters, and then computes the inverse
parameters by the linear least squares method. The third algorithm (termed VarPro-F2) eliminates the
trainable network parameters from the overall problem by variable projection to attain a reduced problem
about the inverse parameters only. It solves the reduced problem for the inverse parameters first, and
then computes the trainable network parameters afterwards. VarPro-F1 and VarPro-F2 are reciprocal
to each other in some sense. The presented method produces accurate results for inverse PDE problems,
as shown by the numerical examples herein. For noise-free data, the errors of the inverse parameters and
the solution field decrease exponentially as the number of collocation points or the number of trainable
network parameters increases, and can reach a level close to the machine accuracy. For noisy data, the
accuracy degrades compared with the case of noise-free data, but the method remains quite accurate.
The presented method has been compared with the physics-informed neural network method.

Keywords: randomized neural networks, extreme learning machine, nonlinear least squares, variable pro-
jection, inverse problems, inverse PDE

1 Introduction

In this work we focus on the simultaneous determination of the parameters (as constants or field distributions)

and the solution field to parametric PDEs based on artificial neural networks (ANN/NN), given sparse and

noisy measurement data of certain variables. This type of problems is often referred to as the inverse PDE

problems in the literature [31]. Typical examples include the determination of the diffusion coefficient given

certain concentration data or the computation of the wave speed given sparse measurement of the wave

profile. When the parameter values in the PDE are known, approximation of the PDE solution is often

referred to as the forward PDE problem. We will adopt these notations in this paper.

Closely related to the inverse PDE problems is the data-driven “discovery” of PDEs [4, 7], in which,

given certain measurement data, the PDE functional form is to be discerned. Early works in this area
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include [4, 58] based on symbolic regression and evolutionary algorithms for identifying the hidden physical

laws. An alternative approach based on sparse regression/optimization has been investigated in [7, 53, 55, 52],

in which a library of candidate functions and their derivatives is constructed first and then key terms are

selected from this library to express the dynamics by sparsity promotion techniques (L1 regularization). The

work [69] employs dimensional analysis and sparse Bayesian regression to determine the candidate terms and

to approximate their weights in the underlying equations. In [2] the measurement data is first approximated

by a neural network in order to attain the derivative data of the measured variables, and then another neural

network (with L1 regularization) is used to approximate the functional form of the underlying equation. A

symbolic neural network has been employed to represent the PDE form in [35], thus replacing the library

of candidate functions, and the derivatives of the measurement data are computed by convolutions. In [64]

the discrete evolution operator, rather than the functional form, for the PDE is learned with deep neural

networks. In another recent development [5] the state variables are represented by a neural network, whose

output is used to construct the set of candidate functions, and sparse regression is encoded into the loss

function of the neural network.

As advocated in [60, 31], data-driven scientific machine learning problems can be viewed in terms of the

amount of data that is available and the amount of physics that is known. They are broadly classified into

three categories in [31]: (i) those with “lots of physics and small data” (e.g. forward PDE problems), (ii)

those with “some physics and some data” (e.g. inverse PDE problems), and (iii) those with “no physics and

big data” (e.g. general PDE discovery). The authors of [31] point out that those in the second category are

typically the more interesting and representative in real applications, where the physics is partially known

and sparse measurements are available. One illustrating example is from multiphase flows, where the conser-

vation laws (mass/momentum conservations) and thermodynamic principles (second law of thermodynamics,

Galilean invariance) lead to a thermodynamically-consistent phase field model, but with an incomplete sys-

tem of governing equations [15, 14]. One has the freedom to choose the form of the free energy, the wall

energy, the form and coefficients of the constitutive relation, and the form and coefficient of the interfacial

mobility [12, 13, 67]. Different choices will lead to different specific models, which are all thermodynami-

cally consistent. The different models cannot be distinguished by the thermodynamic principles, but can be

differentiated with experimental measurements.

The development of machine learning techniques for solving inverse PDE problems has attracted a great

deal of interest recently, with a variety of contributions from different researchers. In [49] a method for

estimating the parameters in nonlinear PDEs is developed based on Gaussian processes. The physics informed

neural network (PINN) method is introduced in the influential work [50] for solving forward and inverse

nonlinear PDEs. The residuals for the PDE, the boundary/initial conditions, and the measurement data are

encoded into the loss function as soft constraints, and the neural network is trained by gradient descent (or

back propagation) type algorithms. The PINN idea has significantly influenced subsequent developments

and stimulated applications in many related areas (see e.g. [37, 39, 56, 36, 65, 47], among others). A

hybrid method combining finite element and neural networks is developed in [1]. The finite element method

(FEM) is used to solve the underlying PDE, which is augmented by a neural network to represent the

PDE coefficient [1]. A conservative PINN method is proposed in [29] together with domain decomposition

for simulating nonlinear conservation laws, in which the flux continuity is enforced along the sub-domain

interfaces, and interesting results are presented for several forward and inverse problems. This method is

further developed and extended subsequently with domain decompositions in both space and time [28]; see

a recent study of this extended technique for supersonic flows [30]. Interesting applications are described
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in [51, 9], where PINN is employed to infer the 3D velocity and pressure fields based on scattered flow

visualization data or Schlieren images from experiments. In [20] a distributed PINN technique based on

domain decomposition is presented, in which for nonlinear PDEs a related linearized equation is solved

with certain variables fixed at their initial values. An auxiliary PINN technique is developed in [68] for

solving nonlinear integro-differential equations, in which auxiliary variables are introduced to represent the

anti-derivatives and thus avoiding the integral computation. We would also like to mention [11, 60, 38, 34]

(among others) for inverse applications of neural networks in other related fields. It is noted that in the

above works the full set of NN parameters (from the hidden layers and the output layer) are trainable.

In the current work we consider the use of randomized neural networks, also known as extreme learning

machines (ELM) [25] (or random vector functional link (RVFL) networks [46]), for solving inverse PDE

problems. ELM was originally developed for linear classification and regression problems. It is characterized

by two ideas: (i) randomly assigned but fixed (non-trainable) hidden-layer coefficients, and (ii) trainable

linear output-layer coefficients determined by linear least squares or by using the Moore-Penrose inverse [25].

This technique has been extended to scientific computing in the past few years, for function approximations

and for solving ordinary and partial differential equations (ODE/PDE); see e.g. [66, 45, 21, 16, 17, 10, 22,

57, 19, 43], among others. The random-weight neural networks are universal function approximators. As

established by the theoretical results of [27, 26, 40], a single-hidden-layer feed-forward neural network (FNN)

having random but fixed (not trained) hidden units can approximate any continuous function to any desired

degree of accuracy, provided that the number of hidden units is sufficiently large.

In this paper we present a method for computing inverse PDE problems based on randomized neural

networks. This extends the local extreme learning machine (locELM) technique originally developed in [16]

for forward PDEs to inverse problems. Because of the coupling between the unknown PDE parameters

(referred to as the inverse parameters hereafter) and the solution field, the inverse PDE problem is fully

nonlinear with respect to the unknowns, even though the associated forward PDE may be linear. We

partition the overall domain into sub-domains, and represent the solution field (and the inverse parameters,

if they are field distributions) by a local FNN on each sub-domain, imposing Ck (with appropriate k)

continuity conditions across the sub-domain boundaries. The weights/biases in the hidden layers of the

local NNs are assigned to random values and fixed (not trainable), and only the output-layer coefficients are

trainable. The inverse PDE problem is thus reduced to a nonlinear problem about the inverse parameters

and the output-layer coefficients of the solution field, or if the inverse parameters are field distributions,

about the output-layer coefficients for the inverse parameters and the solution field.

We develop three algorithms for training the neural network to solve the inverse PDE problem:

• The first algorithm (termed NLLSQ) computes the inverse parameters and the trainable parameters

of the local NNs all together by the nonlinear least squares method [3]. This extends the nonlinear

least squares method with perturbations (NLLSQ-perturb) from [16] (developed for forward nonlinear

PDEs) to inverse PDE problems.

• The second algorithm (termed VarPro-F1) eliminates the inverse parameters from the overall problem

based on the variable projection (VarPro) strategy [23, 24] to attain a reduced problem about the

trainable network parameters only. It solves the reduced problem first for the trainable parameters

of the local NNs by the NLLSQ-perturb algorithm, and then computes the inverse parameters by the

linear least squares method.

• The third algorithm (termed VarPro-F2) eliminates the trainable network parameters from the overall
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inverse problem by variable projection to arrive at a reduced problem about the inverse parameters

only. It solves the reduced problem first for the inverse parameters by the NLLSQ-perturb algorithm,

and then computes the trainable parameters of the local NNs based on the inverse parameters already

obtained. The VarPro-F2 and VarPro-F1 algorithms both employ the variable projection idea and are

reciprocal formulations in a sense. For inverse problems with an associated forward nonlinear PDE,

VarPro-F2 needs to be combined with a Newton iteration.

The presented method produces accurate solutions to inverse PDE problems, as shown by a number of

numerical examples presented herein. For noise-free data, the errors for the inverse parameters and the

solution field decrease exponentially as the number of training collocation points or the number of trainable

parameters in the neural network increases. These errors can reach a level close to the machine accuracy

when the simulation parameters become large. For noisy data, the current method remains quite accurate,

although the accuracy degrades compared with the case of noise-free data. We observe that, by scaling the

measurement-residual vector by a factor, one can markedly improve the accuracy of the current method for

noisy data, while only slightly degrading the accuracy for noise-free data. We have compared the current

method with the PINN method (see Appendix E). The current method exhibits an advantage in terms of

the accuracy and the computational cost (network training time).

Both the second and the third algorithms developed herein are based on the idea of variable projection

(VarPro) [23, 24], as mentioned earlier. VarPro is a classical strategy for solving separable nonlinear least

squares problems [23, 32, 24, 44]. These are problems in which the unknown parameters can be separated

into two sets, the linear parameters and the nonlinear parameters. VarPro treats the linear parameters

as dependent on the nonlinear parameters, and then seeks to eliminate the linear parameters from the

problem to arrive at a reduced problem about the nonlinear parameters only. The nonlinear parameters

are determined first by solving the reduced problem, and the linear parameters are computed afterwards.

The benefits of variable projection include the reduced dimension of parameter space, better conditioning,

and faster convergence with the reduced problem [54, 59, 24]. The VarPro approach for training neural

networks has been investigated in e.g. [61, 63, 62, 59, 48, 33, 42, 41, 18] (among others). The projection

learning method [61, 63, 62] seems to be the earliest work on neural-network training in the spirit of variable

projection. The improved conditioning in the problem and faster convergence with VarPro for neural network

fitting is shown in [59]. In [48, 33] two-layered neural networks are trained by VarPro together with the

Levenberg-Marquardt method. In more recent works [42, 41], VarPro has been extended to handle non-

quadratic objective functions (e.g. the cross-entropy function for classification problems) and a stochastic

optimization method (slimTrain) based on VarPro has been developed. In [18] the VarPro strategy has

been adapted to numerically solving linear and nonlinear (forward) PDEs by a physics informed neural

network-like approach, leading to spectral-like accuracy in the computation results.

The method and algorithms developed herein are implemented in Python based on the Tensorflow1,

Keras2, and the scipy3 libraries. The numerical simulations are performed on a MAC computer (3.2GHz

Intel Core i5 CPU, 24GB memory) in the authors’ institution.

The main contribution of this paper lies in the local extreme learning machine based technique together

with the three algorithms for solving inverse PDE problems. The exponential convergence behavior exhib-

ited by the current method for inverse problems is particularly interesting, and can be analogized to the

1https://www.tensorflow.org/
2https://keras.io/
3https://scipy.org/
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observations in [16] for forward PDEs. For inverse problems such fast convergence seems not available in the

existing techniques (e.g. PINN based methods).

The rest of this paper is structured as follows. In Section 2 we first discuss the representation of functions

by local randomized neural networks and domain decomposition, and then present the NLLSQ, VarPro-F1

and VarPro-F2 algorithms for training the neural network to solve the inverse PDE. Section 3 uses a number

of inverse parametric PDEs to demonstrate the exponential convergence and the accuracy of our method, as

well as the effects of the noise and the number of measurement points. Section 4 concludes the discussion with

some closing remarks. Appendix A summarizes the NLLSQ-perturb algorithm from [16] (with modifications),

which forms the basis for the three algorithms in the current paper for solving inverse PDEs. Appendix B

provides the matrices in the NLLSQ and VarPro-F2 algorithms. Appendix C and Appendix D provide

additional numerical tests of the current method with the inverse parametric advection equation and Sine-

Gordon equation, respectively. Appendix E compares the current method with PINN for several inverse

problems from Section 3. Appendix F lists the parameter values in the NLLSQ-perturb algorithm for all the

numerical simulations presented in this paper.

2 Algorithms for Inverse PDEs with Randomized Neural Net-
works

2.1 Inverse Parametric PDEs and Local Randomized Neural Networks

We focus on the inverse problem described by the following parametric PDE, boundary conditions, and
measurement operations on some domain Ω ⊂ Rd (d = 1, 2, 3):

α1L1(u) + α2L2(u) + · · ·+ αnLn(u) + F(u) = f(x), x ∈ Ω, (1a)

Bu(x) = g(x), x ∈ ∂Ω, (1b)

Mu(ξ) = S(ξ), ξ ∈ Ωs ⊂ Ω. (1c)

In this system, Li (1 ⩽ i ⩽ n) and F are differential or algebraic operators, which can be linear or nonlinear,

and f and g are prescribed source terms. u(x) is an unknown scalar field, where x denotes the coordinates.

αi (1 ⩽ i ⩽ n) are n unknown constants. The case with any αi being an unknown field distribution will be

dealt with later in a remark (Remark 2.7). We assume that the highest derivative term in (1a) is linear with

respect to u, while the nonlinear terms with respect to u involve only lower derivatives (if any). B is a linear

differential or algebraic operator, and Bu denotes the boundary condition(s) on the domain boundary ∂Ω.

M is a linear algebraic or differential operator representing the measurement operations. Mu(ξ) denotes

the measurement of Mu at the point ξ, and S(ξ) denotes the measurement data. Ωs denotes the set of

measurement points. Given S(ξ), the goal here is to determine the parameters αi (1 ⩽ i ⩽ n) and the

solution field u(x). Hereafter we will refer to the parameters α = (α1, . . . , αn)
T as the inverse parameters.

Suppose the inverse parameters are given. The boundary value problem consisting of the equations (1a)–(1b)

will be referred to as the associated forward PDE problem, with u(x) as the unknown. We assume that the

formulation is such that the forward PDE problem is well-posed.

Remark 2.1. We assume that the operators Li (1 ⩽ i ⩽ n) or F may contain time derivatives (e.g. ∂
∂t ,

∂2

∂t2 , where t denotes time), thus leading to an initial-boundary value problem on a spatial-temporal domain

Ω. In this case, we treat t in the same way as the spatial coordinate x, and use the last dimension in

x = (x1, x2, . . . , xd) to denote t (i.e. xd ≡ t). Accordingly, we assume that the equation (1b) should include

conditions on the appropriate initial boundaries from ∂Ω. The point here is that the system (1) may refer to

time-dependent problems, and we will not distinguish this case in subsequent discussions.
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sub-domain #N

Figure 1: Cartoon illustrating domain decomposition and local random-weight neural networks.

We devise numerical algorithms to compute a least squares solution to the system (1) based on local

randomized neural networks (or ELM). We decompose the domain Ω into sub-domains, and represent u(x)

on each sub-domain by a local ELM in a way analogous to in [16]. Let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN , where Ωi

(1 ⩽ i ⩽ N) denote N non-overlapping sub-domains (see Figure 1 for an illustration). Let

u(x) =


u1(x), x ∈ Ω1,
u2(x), x ∈ Ω2,
. . .
uN (x), x ∈ ΩN ,

(2)

where ui(x) (1 ⩽ i ⩽ N) denotes the solution field restricted to the sub-domain Ωi. On the interior sub-

domain boundaries shared by adjacent sub-domains we impose Ck continuity conditions on u(x), where

k = (k1, . . . , kd) denotes a set of appropriate non-negative integers related to the order of the PDE (1a). If

the PDE order (highest derivative) is mi along the xi (1 ⩽ i ⩽ d) direction, we would in general impose

Cmi−1 (i.e. ki = mi − 1) continuity conditions in this direction on the shared sub-domain boundaries.

On Ωi (1 ⩽ i ⩽ N) we employ a local FNN, whose hidden-layer coefficients are randomly assigned and

fixed, to represent ui(x). More specifically, the local neural network is set as follows. The input layer consists

of d nodes, representing the input coordinate x = (x1, x2, . . . , xd) ∈ Ωi. The output layer consists of a single

node, representing ui(x). The network contains (L− 1) (with integer L ⩾ 2) hidden layers in between. Let

σ : R → R denote the activation function for all the hidden nodes. Hereafter we use the following vector (or

list) M of (L+ 1) positive integers to represent the architecture of the local NN,

M = [m0,m1, . . . ,mL−1,mL] , (architectural vector) (3)

where m0 = d and mL = 1 denote the number of nodes in the input/output layers respectively, and mi is

the number of nodes in the i-th hidden layer (1 ⩽ i ⩽ L− 1). We refer to M as an architectural vector.

We make the following assumptions:

• The output layer should contain (i) no bias, and (ii) no activation function (or equivalently, the acti-

vation function be σ(x) = x).

• The weights/biases in all the hidden layers are pre-set to uniform random values on [−Rm, Rm], where

Rm > 0 is a user-provided constant. The hidden-layer coefficients are fixed once they are set.

• The output-layer weights constitute the the trainable parameters of the local neural network.

We employ the same architecture, same activation function, and the same Rm for the local neural networks

on different sub-domains.
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Figure 2: Sub-domains and collocation/measurement points: (a) Sketch of adjacent sub-domains. (b) Sketch of
uniform grid points as collocation points (5 × 5 here) on two adjacent sub-domains. (c) Sketch of 20 random
measurement points (shown as “+” symbols) in each sub-domain on two adjacent sub-domains.

In light of these settings, the logic in the output layer of the local NNs leads to the following relation on

the sub-domain Ωi (1 ⩽ i ⩽ N),

ui(x) =

M∑
j=1

βijϕij(x) = Φi(x)βi, (4)

where M = mL−1 denotes the width of the last hidden layer of the local NN, ϕij(x) (1 ⩽ j ⩽ M) denote

the set of output fields of the last hidden layer on Ωi, βij (1 ⩽ j ⩽ M) denote the set of output-layer

coefficients (trainable parameters) on Ωi, and Φi = (ϕi1, ϕi2, . . . , ϕiM ) and βi = (βi1, βi2, . . . , βiM )T . Note

that, once the random hidden-layer coefficients are assigned, Φi(x) in (4) denotes a set of random (but fixed

and known) nonlinear basis functions. Therefore, with local ELMs the output field on each sub-domain is

represented by an expansion of a set of random basis functions as given by (4).
With domain decomposition and local ELMs, the system (1) is symbolically transformed into the following

form, which includes the continuity conditions across shared sub-domain boundaries:

α1L1(ui) + α2L2(ui) + · · ·+ αnLn(ui) + F(ui) = f(x), x ∈ Ωi, 1 ⩽ i ⩽ N ; (5a)

Bui(x) = g(x), x ∈ ∂Ω ∩ Ωi, 1 ⩽ i ⩽ N ; (5b)

Mui(ξ) = S(ξ), ξ ∈ Ωs ∩ Ωi, 1 ⩽ i ⩽ N ; (5c)

Cui(x)− Cuj(x) = 0, x ∈ ∂Ωi ∩ ∂Ωj , for all adjacent sub-domains (Ωi,Ωj), 1 ⩽ i, j ⩽ N. (5d)

In this system ui(x) is given by (4), and the operator Cu denotes the set of Ck continuity conditions imposed

across the shared sub-domain boundaries on u or its derivatives. Define the residual of this system as,

R(α,β,x, ξ) =

α1L1(ui) + α2L2(ui) + · · ·+ αnLn(ui) + F(ui)− f(x), x ∈ Ωi, 1 ⩽ i ⩽ N
Bui(x)− g(x), x ∈ ∂Ω ∩ Ωi, 1 ⩽ i ⩽ N
Mui(ξ)− S(ξ), ξ ∈ Ωs ∩ Ωi, 1 ⩽ i ⩽ N

Cui(x)− Cuj(x), x ∈ ∂Ωi ∩ ∂Ωj , for all adjacent (Ωi,Ωj), 1 ⩽ i, j ⩽ N

 , (6)

where β is the vector of all trainable parameters, β = (βT
1 , . . . ,β

T
N )T = (β11, β12, . . . , β1M , β21, . . . , βNM )T .

The system (5) is what we would solve numerically by least squares for the inverse parameters α and

the trainable network parameters β. After (α,β) are determined, the field solution u(x) is computed by (2)

and (4). In what follows we present three algorithms, one based on the nonlinear least squares method with

perturbations and the other two based on the variable projection idea, for determining the α and β.

2.2 Nonlinear Least Squares (NLLSQ) Method for Network Training

We first outline a basic algorithm for computing (α,β) by the nonlinear least squares (NLLSQ) method with

perturbations [16]. It forms the basis for the variable projection algorithms presented in the next subsection.
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For the simplicity of presentation we focus on rectangular domains, i.e. Ω = [a1, b1]×[a2, b2]×· · ·×[ad, bd],

where ai and bi (1 ⩽ i ⩽ d) denote the lower/upper bounds of Ω in the xi direction, and assume that Ω is

partitioned into Ni (Ni ⩾ 1) sub-domains along xi (1 ⩽ i ⩽ d).

To make the discussion more concrete, we specifically consider a second-order PDE in two dimensions

(d = 2, x = (x1, x2) = (x, y)) as an example in this and the next subsections. In the following discussions

we assume that equation (1a) is of second order with respect to both x and y, and we impose C1 continuity

conditions across the sub-domain boundaries in both x and y directions.

Let the vectors X = (X0, X1, . . . , XN1
) and Y = (Y0, Y1, . . . , YN2

) denote the sub-domain boundary

points along the two directions, respectively, where (X0, XN1
) = (a1, b1) and (Y0, YN2

) = (a2, b2). The total

number of sub-domains is N = N1N2. We assume that the sub-domain Ωe (1 ⩽ e ⩽ N) is characterized by

the partition indices (i, j) along the x and y directions (see Figure 2(a)), with the following relation,

Ωe = Ωe(i,j) = [Xi−1, Xi]× [Yj−1, Yj ], e = e(i, j) = (i− 1)N2 + j, for 1 ⩽ (i, j) ⩽ (N1, N2), (7)

where “1 ⩽ (i, j) ⩽ (N1, N2)” or “(1, 1) ⩽ (i, j) ⩽ (N1, N2)” stands for 1 ⩽ i ⩽ N1 and 1 ⩽ j ⩽ N2. We will

use this and similar notations hereafter for conciseness.
With these settings the boundary conditions in (5b) are reduced to,

Bue(1,j)(a1, y) = g(a1, y), Bue(N1,j)(b1, y) = g(b1, y), for 1 ⩽ j ⩽ N2; (8a)

Bue(i,1)(x, a2) = g(x, a2), Bue(i,N2)(x, b2) = g(x, b2), for 1 ⩽ i ⩽ N1. (8b)

Here ue(i,j) denotes u on Ωe(i,j), and e(i, j) is given by (7). The C1 continuity conditions in (5d) reduce to,

ue(i,j)(Xi, y)− ue(i+1,j)(Xi, y) = 0, for 1 ⩽ (i, j) ⩽ (N1 − 1, N2); (9a)

∂ue(i,j)

∂x

∣∣∣∣
(Xi,y)

−
∂ue(i+1,j)

∂x

∣∣∣∣
(Xi,y)

= 0, for 1 ⩽ (i, j) ⩽ (N1 − 1, N2); (9b)

ue(i,j)(x, Yj)− ue(i,j+1)(x, Yj) = 0, for 1 ⩽ (i, j) ⩽ (N1, N2 − 1); (9c)

∂ue(i,j)

∂y

∣∣∣∣
(x,Yj)

−
∂ue(i,j+1)

∂y

∣∣∣∣
(x,Yj)

= 0, for 1 ⩽ (i, j) ⩽ (N1, N2 − 1). (9d)

The equations (9a) and (9c) are the C0 conditions on the horizontal/vertical sub-domain boundaries, and

the equations (9b) and (9d) are the corresponding C1 conditions.

The system to solve now consists of equations (5a), (8), (5c), and (9). This is a continuous system. We

next enforce this system on a set of collocation points and measurement points to arrive at a discrete system

about the parameters α and β.

We choose a set of Q (Q ⩾ 1) collocation points on each sub-domain Ωe (1 ⩽ e ⩽ N), denoted by

xe
p = (xe

p, y
e
p) (1 ⩽ p ⩽ Q), among which Qb (1 ⩽ Qb < Q) points reside on ∂Ωe. Let Xe denote the set of

collocation points on Ωe, and Xb
e = Xe ∩ ∂Ωe denote the set of collocation points residing on the sub-domain

boundaries. The boundary collocation points on adjacent sub-domains are required to be compatible. That

is, for any two adjacent sub-domains (Ωe1 ,Ωe2), those boundary collocation points from Ωe1 that reside on

the shared boundary ∂Ωe1 ∩∂Ωe2 are required to be identical to those boundary collocation points from Ωe2

that reside on the same boundary.

The collocation points can in principle be chosen based on various distributions (e.g. random, uniform). In

this paper we focus on using uniform grid points as the collocation points; see Figure 2(b) for an illustration

with a 5× 5 uniform grid points as the collocation points on two neighboring sub-domains. Let Q1 and Q2

denote the number of uniform grid points along x and y, with Q = Q1Q2. The uniform collocation points
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on the sub-domain Ωe = Ωe(m,l) (1 ⩽ (m, l) ⩽ (N1, N2)) are given by
xe
p = x

e(m,l)
p(i,j)

=
(
x
e(m,l)
p(i,j)

, y
e(m,l)
p(i,j)

)
, x

e(m,l)
p(i,j)

= Xm−1 + (i− 1)(Xm −Xm−1)/(Q1 − 1),

y
e(m,l)
p(i,j)

= Yl−1 + (j − 1)(Yl − Yl−1)/(Q2 − 1), for 1 ⩽ (m, l, i, j) ⩽ (N1, N2, Q1, Q2);

p = p(i, j) = (i− 1)Q2 + j, for 1 ⩽ (p, i, j) ⩽ (Q,Q1, Q2).

(10)

We assume that the measurement data is given on a set of Qs (Qs ⩾ 1) random measurement points

(with a uniform distribution) on each Ωe (1 ⩽ e ⩽ N), denoted by ξep = (ξep, η
e
p) (1 ⩽ p ⩽ Qs). Figure 2(c)

shows an example of Qs = 20 random measurement points in each sub-domain on two adjacent sub-domains.

We use Ye to denote the set of measurement points on Ωe (1 ⩽ e ⩽ N).

Once the hidden-layer coefficients of local NNs are randomly assigned and the collocation and measure-

ment points are chosen, we compute the last hidden-layer field data Φe(x
e
p) and their derivatives (up to a

certain order), and the data for MΦe(ξ
e
p), by forward evaluations of the neural network and by automatic dif-

ferentiations. We then store these data for subsequent use. In light of (4), for any given β = (βT
1 , . . . ,β

T
N )T ,

we have

ue(x
e
p) = Φe(x

e
p)βe, Due(x

e
p) = DΦe(x

e
p)βe, Mue(ξ

e
q) =MΦe(ξ

e
q)βe, 1 ⩽ (e, p, q) ⩽ (N,Q,Qs), (11)

where D is a linear differential operator and M is the measurement operator.

Remark 2.2. To compute Φe(x
e
p), DΦe(x

e
p) and MΦe(ξ

e
p), in the implementation we create a Keras sub-

model, referred to as the last-hidden-layer-model, to the local NN for each sub-domain. The input nodes to

this sub-model are identical to those of the original local NN, and the output nodes of this sub-model consist

of those nodes in the last hidden layer of the original local NN. We compute Φe(x
e
p) (1 ⩽ p ⩽ Q) and Φe(ξ

e
p)

(1 ⩽ p ⩽ Qs) by a forward evaluation of the last-hidden-layer-model for Ωe on the input data (collocation

points, or measurement points). We compute the derivatives of Φe on xe
p or on ξep by a forward-mode auto-

differentiation of the last-hidden-layer-model, implemented by the “ForwardAccumulator” in the Tensorflow

library. The forward-mode auto-differentiation is crucial to the performance of the ELM method (see [19]).

To derive the discrete system we enforce (5a) on all the collocation points in Xe (1 ⩽ e ⩽ N), enforce (8)

on all the boundary collocation points in Xb
e ∩ ∂Ω for 1 ⩽ e ⩽ N , enforce (5c) on all the measurement points

in Ye (1 ⩽ e ⩽ N), and enforce (9) on those collocation points from Xb
e (1 ⩽ e ⩽ N) that reside on the

shared boundaries of adjacent sub-domains.

The discrete system corresponding to (5a) enforced on the collocation points is,

α1L1

(
ue(x

e
p)
)
+ · · ·+ αnLn

(
ue(x

e
p)
)
+F

(
ue(x

e
p)
)
− f

(
xe
p

)
= 0, for xe

p ∈ Xe, 1 ⩽ (e, p) ⩽ (N,Q). (12)

The discrete system corresponding to (8) on the boundary collocation points is given by,

Bue(1,l)(a1, y
e(1,l)
p(1,j))− g(a1, y

e(1,l)
p(1,j)) = 0, for 1 ⩽ (l, j) ⩽ (N2, Q2); (13a)

Bue(N1,l)(b1, y
e(N1,l)
p(Q1,j)

)− g(b1, y
e(N1,l)
p(Q1,j)

) = 0, for 1 ⩽ (l, j) ⩽ (N2, Q2); (13b)

Bue(m,1)(x
e(m,1)
p(i,1) , a2)− g(x

e(m,1)
p(i,1) , a2) = 0, for 1 ⩽ (m, i) ⩽ (N1, Q1); (13c)

Bue(m,N2)(x
e(m,N2)
p(i,Q2)

, b2)− g(x
e(m,N2)
p(i,Q2)

, b2) = 0, for 1 ⩽ (m, i) ⩽ (N1, Q1). (13d)

Here the functions e(·, ·) and p(·, ·) are defined in (7) and (10), respectively. The discrete system correspond-

ing to (5c) enforced on the measurement points is given by

Mue(ξ
e
p)− S(ξep) = 0, for ξep ∈ Ye, 1 ⩽ (e, p) ⩽ (N,Qs). (14)
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The discrete system corresponding to (9) enforced on the interior sub-domain boundary points is,

ue(m,l)(Xm, y
e(m,l)
p(Q1,j)

)− ue(m+1,l)(Xm, y
e(m+1,l)
p(1,j) ) = 0, for 1 ⩽ (m, l, j) ⩽ (N1 − 1, N2, Q2); (15a)

∂ue(m,l)

∂x

∣∣∣∣
(Xm,y

e(m,l)

p(Q1,j)
)

−
∂ue(m+1,l)

∂x

∣∣∣∣
(Xm,y

e(m+1,l)

p(1,j)
)

= 0, for 1 ⩽ (m, l, j) ⩽ (N1 − 1, N2, Q2); (15b)

ue(m,l)(x
e(m,l)
p(i,Q2)

, Yl)− ue(m,l+1)(x
e(m,l+1)
p(i,1) , Yl) = 0, for 1 ⩽ (m, l, i) ⩽ (N1, N2 − 1, Q1); (15c)

∂ue(m,l)

∂y

∣∣∣∣
(x

e(m,l)

p(i,Q2)
,Yl)

−
∂ue(m,l+1)

∂y

∣∣∣∣
(x

e(m,l+1)

p(i,1)
,Yl)

= 0, for 1 ⩽ (m, l, i) ⩽ (N1, N2 − 1, Q1). (15d)

In the above equations xe
p, x

e(m,l)
p(i,j) and y

e(m,l)
p(i,j) are defined in (10), and ue(x) is given by (4) and (11).

The equations (12)–(15d) form the system we would solve to determine the inverse parameters α =

(α1, . . . , αn)
T and the trainable network parameters β = (β11, . . . , βNM )T . This is a system of nonlinear

algebraic equations about (α, β). Note that the functions Φe(x) (1 ⩽ e ⩽ N) and their derivatives evaluated

on the collocation/measurement points, which are involved in the operators such as Li(ue), F(ue), Bue, Mue,

and Cue, are computed by evaluations of the neural network and auto-differentiations (see Remark 2.2). This

system consists of Nc equations and a total of Na unknowns, where

Nc = N(Q+Qs + 2Q1 + 2Q2), Na = NL + n = NM + n, (16)

and NL = NM is the total number of trainable parameters in the neural network.

We seek a least squares solution to this system, and solve this system for (α,β) by the nonlinear least

squares (NLLSQ) method [3, 16]. In our implementation we take advantage of the quality implementations

of the nonlinear least squares method in the scientific libraries, specficially the “least squares()” routine

from the scipy.optimize package in Python for the current work. This library routine implements the Gauss-

Newton method [3] together with a trust region algorithm [6, 8].

Since the nonlinear least squares method is a local optimization algorithm, it can be trapped to a local-

minimum solution that is unacceptable. It is therefore crucial to combine the nonlinear least squares method

with some perturbation strategy when solving the nonlinear least squares problem, in order to prevent the

method from being trapped to the worst local-minimum solutions. In this paper we adopt the strategy for

the initial guess perturbation and sub-iteration procedure developed in [16], with some modifications, and

combine it with the nonlinear least squares method for solving the current system arising from the inverse

PDE problem. We refer to the combined algorithm as the nonlinear least squares method with perturbations

(NLLSQ-perturb). The NLLSQ-perturb algorithm is listed in the Appendix A of this paper (as Algorithm 7),

which contains explanations of the various input parameters to the algorithm.

The NLLSQ-perturb algorithm (Algorithm 7) requires two routines, one for computing the residual vector

and the other for computing the Jacobian matrix for an arbitrary given approximation to the solution. When

the system (5) is enforced on the collocation points, the residual function in (6) is reduced to the vector,

R(α,β) =

Rpde(α,β)
Rbc(β)
Rmea(β)
Rck(β)


Nc×1

. (17)

The vectors Rpde, Rbc, Rmea and Rck in this expression are related to the left hand side (LHS) of the

equations (12)–(15d) and their specific forms are provided in the equation (56) of Appendix B.

We therefore compute the residual vector R(α,β) as follows. Given arbitrary (α,β), we compute ue(x
e
p)

(xe
p ∈ Xe) for 1 ⩽ e ⩽ N , and their derivatives by (11). Then we compute the LHSs of the equations (12),
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Algorithm 1: Computing the residual R(α,β) for NLLSQ algorithm

input : vector θ = (α,β); Φe(x
e
p) and derivatives (1 ⩽ (e, p) ⩽ (N,Q));MΦe(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs)).

output: residual vector R(θ)

1 if θ = θs then
2 retrieve ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)) and their derivatives, andMue(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs))

3 else
4 compute ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)), their derivatives (up to a necessary order), andMue(ξ

e
p)

(1 ⩽ (e, p) ⩽ (N,Qs)) by (11)
5 set θs = θ, and save ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)), their derivatives, andMue(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs))

6 end

7 compute Rpde(θ), Rbc(θ), Rmea(θ), Rck(θ) by the LHSs of (12)–(15d), as given in (56) of Appendix B
8 form R(θ) according to (17)

Algorithm 2: Computing the Jacobian matrix ∂R
∂(α,β) for NLLSQ algorithm

input : vector θ = (α,β); Φe(x
e
p) and derivatives (1 ⩽ (e, p) ⩽ (N,Q));MΦe(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs)).

output: Jacobian matrix ∂R
∂θ

1 if θ = θs then
2 retrieve ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)) and their derivatives, andMue(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs))

3 else
4 compute ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)), their derivatives (up to a necessary order), andMue(ξ

e
p)

(1 ⩽ (e, p) ⩽ (N,Qs)) by (11)
5 set θs = θ, and save ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)), their derivatives, andMue(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs))

6 end

7 compute ∂Rpde

∂α
, ∂Rpde

∂β
, ∂Rbc

∂β
, ∂Rmea

∂β
, ∂Rck

∂β
by equations (57)–(61) of Appendix B

8 form ∂R
∂θ

= ∂R
∂(α,β)

by (18)

(13a)–(13d), (14), and (15a)–(15d), and assemble them to form the vectors Rpde, Rbc, Rmea and Rck

according to equation (56) of Appendix B. The residual vector R(α,β) is finally assembled according to (17).

The procedure for computing R(α,β) is summarized in Algorithm 1.

Remark 2.3. On line 4 of Algorithm 1, the “necessary order” refers to the order of all the derivative terms

of ue involved in the system consisting of (12)–(15d). For example, if ∂2ue

∂y2 and ∂ue

∂x are involved in this

system, one would need to compute these derivatives based on ∂2Φe

∂y2 and ∂Φe

∂x on line 4 of this algorithm.

The Jacobian matrix is given by

∂R

∂(α,β)
=

[
∂R
∂α

∂R
∂β

]
=


∂Rpde

∂α
∂Rpde

∂β

0 ∂Rbc

∂β

0 ∂Rmea

∂β

0 ∂Rck

∂β


Nc×NL

. (18)

The specific forms for the matrices ∂Rpde

∂α , ∂Rpde

∂β , ∂Rbc

∂β , ∂Rmea

∂β and ∂Rck

∂β involved in the above expression are

specified in the equations (57)–(61) of Appendix B.

Therefore the Jacobian matrix can be computed as follows. Given arbitrary (α,β), we compute ue(x
e
p)

(1 ⩽ (e, p) ⩽ (N,Q)), their derivatives, andMue(ξ
e
p) (1 ⩽ (e, p) ⩽ (N,Qs)) based on β and the pre-computed

Φe(x
e
p), their derivatives, and the MΦe(ξ

e
p) data. Then we compute the Jacobian and related matrices by

the equations (18) and (57)–(61). Algorithm 2 summarizes the routine for computing the Jacobian matrix.
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Remark 2.4. In Algorithms 1 and 2 we have stored the data for u, its derivatives, and Mu on the colloca-

tion/measurement points corresponding to the θ = (α,β) value last computed (denoted by θs); see lines 1 to 6

in both algorithms. This saves computations, because in the nonlinear least squares iterations Algorithm 1 is

typically invoked first to compute the residual corresponding to some (α,β), and then Algorithm 2 is invoked

to compute the Jacobian for the same (α,β). Again please note that θs in these two algorithms is used to

save the last θ = (α,β) value for which the data have been computed. θs should be initialized to “None” at

the beginning of the computation.

Remark 2.5. In this work the hidden-layer coefficients are assigned to uniform random values generated on

the interval [−Rm, Rm], where Rm > 0 is a constant. The Rm value influences the accuracy of the simulation

results of inverse PDE problems, similar to what has been observed in forward problems (see [16, 19]). In

this paper we compute a near-optimal Rm using the method from [19] based on the differential evolution

algorithm, and employ this value (or a value nearby) in numerical simulations of inverse PDEs.

Remark 2.6. For noisy measurement data S(ξ), we observe that scaling the residual vector associated with

the measurement (Rmea) by a constant factor can improve the accuracy of the results (more robust to noise).

Let λmea > 0 denote a prescribed constant. We scale the equation (14) by λmea,

λmeaMue(ξ
e
p)− λmeaS(ξ

e
p) = 0, for ξep ∈ Ye, 1 ⩽ (e, p) ⩽ (N,Qs). (19)

Then in the presented method we replace equation (14) by the scaled equation (19), with corresponding

changes to the computation of the residual vector and the Jacobian matrix. The scaling factor λmea will cause

some change to the least squares solution to (α,β). When the data S(ξ) is noisy, numerical experiments

indicate that employing a constant 0 < λmea < 1 can in general improve the accuracy of the computed α

and u(x) markedly, compared with the case without scaling (i.e. λmea = 1). Note that employing the scaled

equation (19) is equivalent to using a scaled term 1
2λ

2
mea∥Rmea∥2 in the underlying loss function for the

nonlinear least squares method.

Remark 2.7. The method developed here can be applied to inverse PDEs in which the inverse parameters

may be an unknown field distribution. Consider for example,

γ(x)L(u) + F(u) = f(x), (20)

where the coefficient γ(x) is an unknown field and u(x) is the unknown solution to the forward problem. In

this case we can expand γ(x) in terms of a set of basis functions and transform (20) into a form similar

to (1a), in which the expansion coefficients of γ(x) become the inverse parameters. Therefore the inverse

problem can be computed using the method presented above. In this work we employ the same bases in the

expansion for u(x) (see (4)) and for γ(x). This translates into two nodes in the output layer of the neural

network architecture, one representing u(x) and the other representing γ(x). When more inverse coefficient

fields are involved, one can correspondingly increase the number of nodes in the output layer of the neural

network. We will present a numerical example for an inverse PDE similar to (20) in Section 3.

2.3 Variable Projection Algorithms for Network Training

This subsection outlines two algorithms for computing (α,β), both based on the variable projection (VarPro)

idea [23, 24, 18] but with different formulations. In the first formulation (VarPro-F1), the inverse parameters

(α) are eliminated from the problem to attain a reduced problem about β only. The reduced problem is solved
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by the nonlinear least squares method first for β, and then α is computed by the linear least squares method.

In the second formulation (VarPro-F2), the field solution (equivalently, the β parameters) is eliminated from

the problem to attain a reduced problem about α only. The reduced problem is solved first by the nonlinear

least squares method for α, and then β is computed based on the α already obtained. The problem settings

and notations here follow those of Section 2.2.

2.3.1 Formulation #1 (VarPro-F1): Eliminating the Inverse Parameters

We start with the discrete system consisting of equations (12)–(15d). We re-arrange this system symbolically

into a matrix equation about the parameters α = (α1, . . . , αn)
T ,

H(β)α = b(β), (21)

where

H(β) =


Hpde(β)

0
0
0


Nc×n

,b(β) =


bpde(β)
−Rbc(β)
−Rmea(β)
−Rck(β)


Nc×1

,Hpde(β) =


...

...
L1

(
ue(xe

p)
)

· · · Ln
(
ue(xe

p)
)

...
...


NQ×n

,

bpde(β) =
[
bpdeep

]
NQ×1

=


...

f
(
xe
p

)
−F

(
ue(xe

p)
)

...


NQ×1

.

(22)

In these expressions, Rbc, Rmea and Rck are defined in (56) of Appendix B.

For any given β, the least squares solution to (21) with the minimum norm is given by

α = H+(β)b(β), (23)

where H+(β) denotes the Moore-Penrose inverse of H(β). Substituting this expression into (21) gives rise

to a reduced system about β only. The residual of this reduced system (see also (17)) is given by

r(β) = R(α,β) = H(β)α− b(β) = H(β)H+(β)b(β)− b(β). (24)

We determine the optimum β∗ by minimizing the Euclidean norm of this residual,

β∗ = argmin
β

1

2
∥r(β)∥2 = argmin

β

1

2
∥H(β)H+(β)b(β)− b(β)∥2 (25)

where ∥ · ∥ denotes the Euclidean norm. With β determined by (25), we solve the system (21) for α by the

linear least squares method with the minimum-norm solution (or by directly using (23)).

Equation (25) represents a nonlinear least squares problem about β. We solve this problem by the

NLLSQ-perturb algorithm (Algorithm 7 in Appendix A). As noted previously, two routines are required

for this algorithm, one for computing the reduced residual r(β) and the other for computing the Jacobian

matrix of the reduced problem, ∂r
∂β , for any given β.

We compute the reduced residual as follows. For any given β, we solve equation (21) for α (with minimum

norm) by the linear least squares method. Let αLS denote this solution. Then the residual is given by

r(β) = H(β)αLS − b(β). (26)

Algorithm 3 summarizes the procedure for computing the reduced residual.
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Algorithm 3: Computing reduced residual r(β) for VarPro-F1.

input : β; Φe(x
e
p) and derivatives (1 ⩽ (e, p) ⩽ (N,Q));MΦe(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs)).

output: reduced residual r(β)

1 if β = βs then
2 retrieve H(βs), b(βs), α

LS

3 set H(β) = H(βs) and b(β) = b(βs)

4 else
5 compute ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)), their derivatives (up to a necessary order), andMue(ξ

e
p)

(1 ⩽ (e, p) ⩽ (N,Qs)) by (11)
6 compute H(β) and b(β) by (22) and (56) of Appendix B

7 solve equation (21) for α by the linear least squares method, and let αLS = α

8 set βs = β, and save H(β), b(β), αLS

9 end

10 compute r(β) by equation (26)

To compute the Jacobian of the reduced residual, we note the following formula owing to [23],

∂

∂θ

[
H(θ)H+(θ)

]
=

[
I−H(θ)H+(θ)

] ∂H

∂θ
H+(θ) +

[
HT (θ)

]+ ∂HT

∂θ

[
I−H(θ)H+(θ)

]
≈

[
I−H(θ)H+(θ)

] ∂H

∂θ
H+(θ),

(27)

where I is the identity matrix and on the second line we have kept only the first term in the formula as an

approximation to the LHS, thanks to the suggestion of [32]. In light of (24) and (27), we have

∂r

∂β
=

(
∂

∂β

[
H(β)H+(β)

])
b(β) +

[
H(β)H+(β)

] ∂b

∂β
−

∂b

∂β

≈
∂H

∂β
H+(β)b(β)−H(β)H+(β)

∂H

∂β
H+(β)b(β) +H(β)H+(β)

∂b

∂β
−

∂b

∂β

=

(
∂H

∂β
H+(β)b(β)−

∂b

∂β

)
−H(β)H+(β)

(
∂H

∂β
H+(β)b(β)−

∂b

∂β

)
= J1(β)− J2(β),

(28)

where

J1(β) = J0(β)−
∂b

∂β
, J2(β) = H(β)H+(β)J1(β), J0(β) =

∂H

∂β
H+(β)b(β). (29)

Therefore, we need a procedure for computing J0(β),
∂b
∂β and J2(β). J0(β) can be computed as follows,

J0(β) =
∂H

∂β
H+(β)b(β) =

∂H

∂β
αLS =

∂
[
H(β)αLS

]
∂β

=


∂RpdeI

∂β

0
0
0


Nc×NM

. (30)

In this equation, αLS = (αLS
1 , . . . , αLS

n )T is the minimum-norm solution to (21) computed by the linear least

squares method, and

RpdeI(β) =
[
RpdeI

ep

]
NQ×1

=


...

αLS
1 L1(ue(x

e
p)) + · · ·+ αLS

n Ln(ue(x
e
p))

...


NQ×1

, (31a)

∂RpdeI

∂β
=

[
∂RpdeI

ep

∂βij

]
NQ×NM

. (31b)
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Algorithm 4: Computing Jacobian matrix ∂r
∂β for VarPro-F1.

input : β; Φe(x
e
p) and derivatives (1 ⩽ (e, p) ⩽ (N,Q));MΦe(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs)).

output: Jacobian matrix ∂r
∂β

1 if β = βs then
2 retrieve H(βs), b(βs), α

LS

3 set H(β) = H(βs) and b(β) = b(βs)

4 else
5 compute ue(x

e
p) (1 ⩽ (e, p) ⩽ (N,Q)), their derivatives (up to a necessary order), andMue(ξ

e
p)

(1 ⩽ (e, p) ⩽ (N,Qs)) by (11)
6 compute H(β) and b(β) by (22) and (56) of Appendix B

7 solve equation (21) for α by the linear least squares method, and let αLS = α

8 set βs = β, and save H(β), b(β), αLS

9 end

10 compute J0(β) by equations (30)–(32)

11 compute ∂b
∂β

by (33), (34), (57), and (59)–(61) of Appendix B

12 compute J1(β) by (29)
13 compute J2(β) by (35)–(36)

14 compute ∂r
∂β

by (28)

In the matrix ∂RpdeI

∂β the only non-zero terms are,

∂RpdeI
ep

∂βej
= αLS

1 L′
1(ue(x

e
p))ϕej(x

e
p) + · · ·+ αLS

n L′
n(ue(x

e
p))ϕej(x

e
p), for 1 ⩽ (e, p, j) ⩽ (N,Q,M). (32)

It is important to note that, when computing ∂RpdeI

∂β , we treat αLS as a constant vector independent of β.
∂b
∂β is computed as follows,

∂b

∂β
=


∂bpde

∂β

− ∂Rbc

∂β

− ∂Rmea

∂β

− ∂Rck

∂β

 ,
∂bpde

∂β
=

[
∂bpde

ep

∂βij

]
NQ×NM

, (33)

where ∂Rbc

∂β , ∂Rmea

∂β and ∂Rck

∂β are given in (57) and (59)–(61) of Appendix B. The only non-zero terms in
∂bpde

∂β are,

∂bpdeep

∂βej
= −F ′ (ue(x

e
p)
)
ϕej(x

e
p), for 1 ⩽ (e, p, j) ⩽ (N,Q,M). (34)

With J0(β) and
∂b
∂β determined, we can compute J1(β) by (29).

In light of (29), we compute J2(β) by the following equations,

H(β)K = J1(β), (35)

J2(β) = H(β)K. (36)

We first solve equation (35) for the n×NM matrix K by the linear least squares method, and then compute

J2(β) by equation (36) with a matrix multiplication.

Therefore, given an arbitrary β, we compute J0(β) by (30)–(32), ∂b
∂β by (33) and (34), and J1(β) by (29).

Then we compute J2(β) by (35)–(36). The (approximate) Jacobian matrix of the reduced problem is then

given by (28). The procedure for computing the Jacobian matrix is summarized in the Algorithm 4. In
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Algorithms 3 and 4, it should be noted that βs denotes the last β value for which the data H(β), b(β) and

αLS have been computed. βs should be initialized to “None” at the beginning of the computation.

The overall VarPro-F1 algorithm for solving the inverse problem consists of two steps: (i) Invoke the

NLLSQ-perturb algorithm (Algorithm 7 in Appendix A) to compute β from the reduced problem (25), with

the routines given in Algorithms 3 and 4 as input. (ii) Solve (21) for α by the linear least squares method.

Remark 2.8. In the VarPro-F1 algorithm, one only needs to solve linear systems by the linear least squares

method. The Moore-Penrose inverse of the coefficient matrix is not explicitly computed. In our implemen-

tation we employ the linear least squares routine scipy.linalg.lstsq() from the scipy package in Python, which

in turn uses the linear least squares implementation in the LAPACK library.

2.3.2 Formulation #2 (VarPro-F2): Eliminating the Field Function

We next present an alternative formulation (VarPro-F2) of variable projection, which is reciprocal to the

VarPro-F1 algorithm of Section 2.3.1. In this formulation, we eliminate the field function u (or the parameters

β) from the problem to attain a reduced problem about α only. We then solve the reduced problem first for

α, and compute the parameters β afterwards.

This formulation applies to cases in which the operators Li (1 ⩽ i ⩽ n) and F are all linear with respect

to u. We first present the algorithm with regard to this case below. Then we outline an extension in a

remark (Remark 2.9) by combining this algorithm with a Newton iteration to deal with cases in which these

operators are nonlinear with respect to u.

Let us now assume that Li (1 ⩽ i ⩽ n) and F are all linear operators, and we again start with the

discrete system consisting of the equations (12)–(15d). We re-arrange this system into a matrix equation

about the trainable network parameters β = (βT
1 , . . . ,β

T
N )T = (β11, . . . , βNM )T ,

H(α)β = b, (37)

where

H(α) =


Hpde(α)

Hbc

Hmea

Hck


Nc×NM

, b =


bpde

bbc

bmea

0


Nc×1

, Hbc =


Hbc1

Hbc2

Hbc3

Hbc4

 , Hck =


Hck1

Hck2

Hck3

Hck4

 , bbc =


bbc1

bbc2

bbc3

bbc4

 , (38)

and the specific forms for these matrices are provided in the equations (62)–(65) of Appendix B.

For any given α the least squares solution (with minimum norm) to the system (37) is,

β = H+(α)b. (39)

Substitution of this expression into (37) results in a reduced system about α only, with a residual given by

r(α) = H(α)H+(α)b− b. (40)

We determine the optimum α∗ by minimizing the Euclidean norm of this residual,

α∗ = argmin
α

1

2
∥r(α)∥2 = argmin

α

1

2
∥H(α)H+(α)b− b∥2. (41)

After α is obtained, we compute β by solving the system (37) with the linear least squares method.

The problem (41) is a nonlinear least squares problem about α. We employ the NLLSQ-perturb algorithm

(Algorithm 7) to solve this problem. In light of (27), we can obtain the Jacobian matrix for this problem,

∂r

∂α
≈ J0(α)− J1(α), J0(α) =

∂H

∂α
H+(α)b, J1(α) = H(α)H+(α)J0(α). (42)
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Algorithm 5: Computing reduced residual r(α) for VarPro-F2.

input : α; Φe(x
e
p) and derivatives (1 ⩽ (e, p) ⩽ (N,Q));MΦe(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs)).

output: reduced residual r(α)

1 if α = αs then
2 retrieve H(αs), b, β

LS

3 set H(α) = H(αs)

4 else
5 compute H(α) and b by (38) and the equations (62)–(65) in Appendix B

6 solve equation (37) for β by the linear least squares method, and let βLS = β

7 set αs = α, and save H(α), b, and βLS

8 end

9 compute r(α) by r(α) = H(α)βLS − b

J0(α) can be computed as follows. For any given α, let βLS = H+(α)b = ((βLS
1 )T , . . . , (βLS

N )T )T denote a

constant vector. Then

J0(α) =
∂
[
H(α)βLS

]
∂α

=
∂

∂α


Hpde(α)βLS

HbcβLS

HmeaβLS

HckβLS


Nc×1

=


∂
[
Hpde(α)βLS

]
∂α
0
0
0


Nc×n

,

∂

∂α

[
Hpde(α)βLS

]
=

∂

∂α


...

α1L1uLS
e (xe

p) + · · ·+ αnLnuLS
e (xe

p) + FuLS
e (xe

p)

...


NQ×1

=


...

...
L1uLS

e (xe
p) · · · LnuLS

e (xe
p)

...
...


NQ×n

,

(43)

where uLS
e (x) = Φe(x)β

LS
e for 1 ⩽ e ⩽ N . We compute J1(α) by the following two equations,

H(α)K = J0(α) (44a)

J1(α) = H(α)K. (44b)

We first solve (44a) for the n × n matrix K by the linear least squares method, and then compute J1(α)

by (44b) with a matrix multiplication.

The procedures for computing the residual r(α) and the Jacobian matrix ∂r
∂α for the reduced problem (41)

are summarized in the Algorithms 5 and 6. In these two algorithms, it should be noted that αs denotes the

last α value for which the data H(α), b and βLS have been computed. αs should be initialized to “None”

at the beginning of the computation.

The overall VarPro-F2 algorithm consists of two steps: (i) Invoke the NLLSQ-perturb algorithm (Algo-

rithm 7 in Appendix A) to solve the problem (41) for α, with the routines in Algorithms 5 and 6 as input

arguments. (ii) Solve equation (37) for β by the linear least squares method.

Remark 2.9. Let us now discuss an extension of the above algorithm to deal with the case in which some

(or all) of the operators of Li (1 ⩽ i ⩽ n) and F are nonlinear with respect to u. In this case, we can

first use a Newton iteration to linearize the nonlinear operators, and then solve the linearized system by the

VarPro-F2 algorithm as discussed above. Upon convergence of the Newton iteration, the solution for (α,β)

to the original system will be attained. To make the discussion more concrete and without loss of generality,
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Algorithm 6: Computing Jacobian matrix ∂r
∂α for VarPro-F2.

input : α; Φe(x
e
p) and derivatives (1 ⩽ (e, p) ⩽ (N,Q));MΦe(ξ

e
p) (1 ⩽ (e, p) ⩽ (N,Qs)).

output: Jacobian matrix ∂r
∂α

1 if α = αs then
2 retrieve H(αs), b, β

LS

3 set H(α) = H(αs)

4 else
5 compute H(α) and b by (38) and the equations (62)–(65) in Appendix B

6 solve equation (37) for β by the linear least squares method, and let βLS = β

7 set αs = α, and save H(α), b, and βLS

8 end

9 compute uLS
e (xe

p) (1 ⩽ (e, p) ⩽ (N,Q)) and their derivatives by (11) based on βLS

10 compute J0(α) by (43)
11 compute J1(α) by (44a)–(44b)

12 compute ∂r
∂α

by (42)

let us assume that L1 and F are nonlinear while the other operators are linear. Let uk
e(x) (1 ⩽ e ⩽ N)

denote the approximation of ue(x) at the k-th Newton step. Equation (12) is nonlinear with respect to u,

and its linearized form is given by,

α1L′
1(u

k
e (x

e
p))u

k+1
e (xe

p) + α2L2u
k+1
e (xe

p) + · · ·+ αnLnu
k+1
e (xe

p) + F ′(uk
e (x

e
p))u

k+1
e (xe

p)

−
[
f(xe

p)− α1L1(u
k
e (x

e
p)) + α1L′

1(u
k
e (x

e
p))u

k
e (x

e
p)−F(uk

e (x
e
p)) + F ′(uk

e (x
e
p))u

k
e (x

e
p)
]
= 0,

for 1 ⩽ (e, p) ⩽ (N,Q).

(45)

Notice that this equation is linear with respect to uk+1
e . The equations (13)–(15) are linear with respect to ue,

and we enforce them on the (k+1)-th Newton step (i.e. replacing ue by uk+1
e in these equations). The system

consisting of (45) and the equations (13)–(15) (written in terms of uk+1
e ) are linear with respect to the updated

approximation field uk+1
e . With the expansion uk+1

e (x) = Φe(x)β
k+1
e , we can solve this system for (α,βk+1)

by the VarPro-F2 algorithm as discussed above. Upon convergence of the Newton iteration, the solution to

(α,β) is given by the converged result, and the neural network coefficients contains the representation for

the field solution u(x) to the original nonlinear system. For inverse nonlinear PDEs with respect to u, the

combination of the Newton iteration and the VarPro-F2 algorithm in general works quite well. We have also

observed from numerical experiments that for certain problems it appears to be somewhat less robust than

the VarPro-F1 and NLLSQ methods, leading to less accurate results than VarPro-F1 and NLLSQ.

3 Numerical Examples

In this section we test the presented method and algorithms using several inverse PDE problems in two

dimensions (2D) or in one spatial dimension (1D) plus time. The Gaussian activation function, σ(x) = e−x2

,

is employed in all the neural networks. We fix the seed value at 25 in the random number generator for all

the test problems, so that the reported results here are exactly reproducible. Note that λmea denotes the

scaling coefficient for the measurement residual (see Remark 2.6), with λmea = 1 corresponding to the case of

no scaling. The network training time reported in the following subsections includes the preprocessing time

(generation of the input collocation points, the random measurement points and the measurement data with

noise) and the actual computation time with the nonlinear least squares iterations or the variable-projection

iterations. It does not include the time for evaluating the neural network to generate the solution data, after
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(a) (b)

Figure 3: Inverse Poisson problem: distributions of (a) the NLLSQ solution and (b) its point-wise absolute error,
with the random measurement points shown in (a) as “+” symbols. Two uniform sub-domains (along x), local NN
[2, 400, 1], Q = 25× 25, Qs = 50, Rm = 2.0, λmea=1, ϵ=0 (no noise in measurement data).

the neural network is trained, for comparison with the exact solution to compute the errors. We refer the

reader to the Appendix C and Appendix D for additional numerical tests of the current algorithms, and

Appendix E for a comparison between the current method and the PINN method.

3.1 Parametric Poisson Equation

Consider the domain (x, y) ∈ Ω = [0, 1.4]× [0, 1.4], and the inverse problem,

∂2u

∂x2
+ α

∂2u

∂y2
= f(x, y), (46a)

u(0, y) = g1(y), u(1.4, y) = g2(y), u(x, 0) = g3(x), u(x, 1.4) = g4(x), (46b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y, 1 ⩽ i ⩽ NQs, (46c)

where f and gi (1 ⩽ i ⩽ 4) denote a source term and the boundary data respectively, Y ⊂ Ω denotes

the set of random measurement points, α and u(x, y) are the unknowns to be solved for, N denotes the

number of sub-domains, and Qs is the number of measurement points per sub-domain. We use the following

manufactured solution to this problem,

αex = 1, uex(x, y) = sin(πx2) sin(πy2). (47)

The source term and the boundary data are chosen such that the expressions in (47) satisfy (46a)–(46b).

The measurement data are taken to be

S(ξi, ηi) = uex(ξi, ηi)(1 + ϵζi), 1 ⩽ i ⩽ NQs, (48)

where ζi denotes a uniform random number from [−1, 1] representing the noise and the constant ϵ ⩾ 0

denotes the relative level of the noise.

Henceforth Q denotes the number of uniform collocation points per sub-domain, Qs denotes the number

of random measurement points per sub-domain, ϵ denotes the noise level, and M denotes the number of

trainable parameters of each local NN. Rm denotes a constant, and the hidden-layer coefficients are assigned

to uniform random values generated on [−Rm, Rm]. The Rm values employed in the tests are obtained by

the method from [19], as noted in Remark 2.5. After the NN is trained, it is evaluated on another set of

Qeval = 101×101 uniform grid points (evaluation points) on each sub-domain to obtain u, which is compared
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Q α (NLLSQ) α (VarPro-F1) α (VarPro-F2)

5×5 1.076466245043E+0 9.982719409724E-1 0.000000000000E+0
10×10 9.999867935849E-1 9.999965494049E-1 -3.188390321381E-5
15×15 1.000000029498E+0 9.999999954822E-1 9.999999998978E-1
20×20 9.999999999701E-1 9.999999999592E-1 9.999999999536E-1
25×25 9.999999987249E-1 1.000000000817E+0 1.000000001279E+0
30×30 1.000000002811E+0 1.000000000906E+0 1.000000000002E+0
35×35 1.000000001708E+0 1.000000000670E+0 1.000000000237E+0
40×40 1.000000001552E+0 1.000000000717E+0 1.000000000183E+0

Table 1: Inverse Poisson problem: computed α by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms versus Q
(number of collocation points). Single sub-domain, NN [2, 600, 1], Qs = 100, λmea=1, ϵ=0; Rm = 3.0 with NLLSQ,
Rm = 2.8 with VarPro-F1, and Rm = 2.0 with VarPro-F2.
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Figure 4: Inverse Poisson problem: relative errors of α and u versus Q1 (Q = Q1 × Q1) computed by the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 600, 1], Qs = 100, λmea=1, ϵ=0;
Rm = 3.0 with NLLSQ, Rm = 2.8 with VarPro-F1, and Rm = 2.0 with VarPro-F2.

with (47) to compute the errors. The relative errors of α (eα) and u (l∞ and l2 norms) are defined as,

eα =
|α− αex|
|αex|

, l∞-u =
max {|u(xi)− uex(xi)|}NQeval

i=1√
1

NQeval

∑NQeval

i=1 u2
ex(xi)

, l2-u =

√
1

NQeval

∑NQeval

i=1 [u(xi)− uex(xi)]2√
1

NQeval

∑NQeval

i=1 u2
ex(xi)

, (49)

where N is the number of sub-domains and xi denotes the evaluation points.

Figure 3 illustrates u(x, y) and its point-wise absolute error obtained by the NLLSQ algorithm with 2

sub-domains. The caption lists the main simulation parameters. In particular, the random measurement

points (100 total) are shown in Figure 3(a), and there is no noise in the measurement data. The NLLSQ

solution for u is quite accurate, with a maximum error on the order of 10−7 in the domain. The relative (or

absolute) error of the computed α is 9.03× 10−9.

The convergence of the computation results with respect to Q (number of collocation points) is illustrated

by Table 1 and Figure 4. Table 1 lists the computed α values versus Q by the NLLSQ, VarPro-F1 and VarPro-

F2 methods. Figure 4 shows the relative errors of α and u with respect to Q1 (where Q = Q1×Q1) from the

three methods. The main parameter values for these tests are provided in the table and figure captions. The

α and the u errors decrease approximately exponentially with increasing Q, until Q reaches a certain level.

The errors generally stagnate as Q further increases beyond that point. It is observed that the convergence

behavior of VarPro-F2 is not as regular as those of NLLSQ and VarPro-F1.

The convergence of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms with respect to the number of

trainable parameters M is illustrated by Figure 5. A single sub-domain and a single hidden layer in the

neural network are employed in the simulations, where the number of hidden nodes (M) is varied. The figure
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Figure 5: Inverse Poisson problem: α and u relative errors versus M (number of training parameters)
obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2,M, 1], Q = 25×25,
Qs = 100, λmea=1, ϵ=0; Rm = 3.0 with NLLSQ, Rm = 2.8 with VarPro-F1, and Rm = 2.0 with VarPro-F2.

Collocation points per direction

ne
tw

or
k 

tra
in

in
g 

tim
e 

(s
ec

on
ds

)

10 15 20 25 30 35 40
0

5

10

15

20
NLLSQ

VarPro­F1

VarPro­F2

(a) Number of training parameters

ne
tw

or
k 

tra
in

in
g 

tim
e 

(s
ec

on
ds

)

100 200 300 400 500 600
0

5

10

15 NLLSQ

VarPro­F1

VarPro­F2

(b)

Figure 6: Inverse Poisson problem: Network training time as a function of (a) the number of collocation
points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters in (a) follow those of Figure 4, and in (b) follow those of
Figure 5.

caption lists the crucial parameter values. It is evident that the errors for α and u decrease exponentially

(or approximately exponentially) with increasing number of training parameters.

Figure 6 illustrates the computational cost of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for

solving the inverse Poisson problem. It shows the network training time as a function of the number of

collocation points per direction (Figure 6(a)) and the number of training parameters in the neural network

(Figure 6(b)) for the three algorithms. The problem settings and the simulation parameters employed in

NLLSQ, VarPro-F1 and VarPro-F2 in Figures 6(a) and (b) follow those of Figure 4 and Figure 5, respectively.

The network training time for all three algorithms appears to grow approximately linearly with respect to

the number of collocation points per direction and to the number of training parameters in the network. The

VarPro-F1 algorithm is more costly than NLLSQ and VarPro-F2 for this problem, while the cost of NLLSQ

seems to be larger than or comparable to that of VarPro-F2. Figure 6(b) indicates that the training time

exhibits some irregularity with respect to the number of training parameters for NLLSQ and VarPro-F1.

This is due to the triggering of sub-iterations in Algorithm 7 and the irregularity in the actual number of

nonlinear least squares iterations to meet the stopping criteria.

Table 2 illustrates the effect of the number of random measurement points (Qs) on the α and u errors

computed by the NLLSQ, VarPro-F1 and VarProf-F2 algorithms. When Qs is very small, the computed α

and u are inaccurate or less accurate. On the other hand, when Qs reaches a certain value (Qs = 3 for this
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NLLSQ VarPro-F1 VarPro-F2
Qs eα l∞-u l2-u eα l∞-u l2-u eα l∞-u l2-u

1 1.02E+0 1.01E+0 3.27E-1 1.63E+0 2.09E+1 7.27E+0 6.61E-4 1.19E-3 3.59E-4
2 5.01E-7 3.67E-6 3.80E-7 1.70E+0 3.10E+1 1.15E+1 1.67E-8 5.60E-7 3.49E-8
3 5.06E-8 3.67E-6 2.64E-7 9.64E-8 9.11E-7 9.59E-8 4.17E-9 5.46E-7 3.26E-8
5 3.06E-8 3.67E-6 2.62E-7 2.81E-8 8.88E-7 8.26E-8 7.30E-9 5.33E-7 3.25E-8
10 1.39E-8 3.67E-6 2.61E-7 1.34E-8 9.05E-7 8.12E-8 4.72E-8 5.39E-7 4.16E-8
20 5.14E-8 3.67E-6 2.63E-7 1.19E-8 9.04E-7 8.10E-8 2.62E-9 5.47E-7 3.46E-8
50 1.07E-8 3.67E-6 2.62E-7 6.63E-9 8.56E-7 8.02E-8 4.81E-10 5.33E-7 3.23E-8
100 3.26E-8 3.72E-6 2.62E-7 3.15E-9 9.29E-7 7.95E-8 1.17E-8 5.48E-7 3.27E-8

Table 2: Inverse Poisson problem: α and u relative errors versus Qs (number of measurement points) for the NLLSQ,
VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, neural network [2, 500, 1], Q = 30 × 30; Rm = 3.0 with
NLLSQ, Rm = 2.8 with VarPro-F1, and Rm = 2.0 with VarPro-F2; λmea=1, ϵ=0.

ϵ computed-α ϵ computed-α ϵ computed-α

0.0 9.99999993208E-1 0.01 9.9875752E-1 0.1 9.8779390E-1
0.001 9.9987537E-1 0.03 9.9630066E-1 0.2 9.7602056E-1
0.002 9.9975066E-1 0.05 9.9383633E-1 0.5 9.4329282E-1
0.005 9.9937764E-1 0.07 9.9139103E-1 0.7 9.2316247E-1
0.007 9.9912874E-1 0.09 9.8897497E-1 1.0 8.9557261E-1

Table 3: Inverse Poisson problem: α obtained by the NLLSQ algorithm corresponding to several noise levels (ϵ).
Single sub-domain, NN [2, 500, 1], Q = 25× 25, Qs = 50, Rm = 3.0, λmea=1.

problem) and beyond, the three algorithms produce highly accurate results. This seems to be a common

characteristic of these algorithms for all the test problems considered in this work.

In the foregoing tests no noise is considered in the measurement data (ϵ = 0). Tables 3 and 4 and Figure 7

demonstrate the effect of noisy measurement data on the computation results. Table 3 shows the computed

α values by the NLLSQ algorithm corresponding to different noise levels, ranging from ϵ = 0 (0%) to ϵ = 1.0

(100%). Table 4 lists the α errors and the u errors corresponding to several noise levels obtained by the

NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Figure 7 provides the α and u relative errors as a function of

ϵ for several λmea (scaling factor of measurement residual) values with the NLLSQ algorithm. The presence

of noise degrades the simulation accuracy. But the current method and these algorithms appear to be quite

robust. For example, with 10% (ϵ = 0.1) noise in the measurement data the relative error of α is around

1% for the three methods. With 100% (ϵ = 1.0) noise in the data, the computed α exhibits a relative error

around 10% with these algorithms. For noisy data, scaling the measurement residual by λmea can improve

the accuracy of computation results and make the method more robust (see Figure 7), compared with the

NLLSQ VarPro-F1 VarPro-F2
ϵ eα l∞-u l2-u eα l∞-u l2-u eα l∞-u l2-u

0.0 6.79E-9 1.81E-6 1.93E-7 5.93E-8 7.59E-7 1.38E-7 4.20E-10 4.50E-7 2.31E-8
0.001 1.25E-4 2.79E-4 8.04E-5 1.33E-4 2.82E-4 8.50E-5 1.23E-4 2.81E-4 7.85E-5
0.005 6.22E-4 1.39E-3 4.01E-4 6.73E-4 1.42E-3 4.29E-4 6.10E-4 1.41E-3 3.92E-4
0.01 1.24E-3 2.79E-3 8.02E-4 1.35E-3 2.85E-3 8.61E-4 1.22E-3 2.81E-3 7.82E-4
0.05 6.16E-3 1.39E-2 4.00E-3 6.63E-3 1.42E-2 4.26E-3 6.49E-3 1.41E-2 4.07E-3
0.1 1.22E-2 2.79E-2 7.98E-3 1.33E-2 2.86E-2 8.58E-3 1.19E-2 2.81E-2 7.75E-3
0.5 5.67E-2 1.42E-1 3.90E-2 6.08E-2 1.44E-1 4.17E-2 5.52E-2 1.43E-1 3.78E-2
1.0 1.04E-1 2.88E-1 7.63E-2 1.11E-1 2.93E-1 8.14E-2 1.08E-1 2.90E-1 7.62E-2

Table 4: Inverse Poisson problem: α and u relative errors versus ϵ (noise level) computed by the NLLSQ, VarPro-F1
and VarPro-F2 algorithms. Single sub-domain, NN [2, 500, 1], Q = 25×25, Qs = 50, λmea=1; Rm = 3.0 with NLLSQ,
Rm = 2.8 with VarPro-F1, and Rm = 2.0 with VarPro-F2.

22



Noise level ε

R
el

at
iv

e 
α

 e
rr

or

0 0.2 0.4 0.6 0.8 1
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

lambda-mea = 1.0

lambda-mea = 0.5

lambda-mea = 0.25

lambda-mea = 0.1

(a) Noise level ε

R
el

at
iv

e 
m

ax
 u

 e
rr

or

0 0.2 0.4 0.6 0.8 1
10-6

10-5

10-4

10-3

10-2

10-1

100

lambda-mea = 1.0

lambda-mea = 0.5

lambda-mea = 0.25

lambda-mea = 0.1

(b) Noise level ε

R
el

at
iv

e 
rm

s 
u 

er
ro

r

0 0.2 0.4 0.6 0.8 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

lambda-mea = 1.0

lambda-mea = 0.5

lambda-mea = 0.25

lambda-mea = 0.1

(c)

Figure 7: Inverse Poisson problem: α and u (l∞-u and l2-u) relative errors versus ϵ for several λmea (scaling
coefficient of measurement residual) values computed by the NLLSQ algorithm. Single sub-domain, NN
[2, 500, 1], Q = 25× 25, Qs = 50, Rm = 3.0.

case of no scaling. A smaller λmea in general leads to a better accuracy.

3.2 Parametric Nonlinear Helmholtz Equation

Consider the 2D domain, (x, y) ∈ Ω = [0, 1.4]× [0, 1.4], and the inverse problem on Ω,

∂2u

∂x2
+

∂2u

∂y2
− α1u+ α2 cos(2u) = f(x, y), (50a)

u(0, y) = g1(y), u(1.4, y) = g2(y), u(x, 0) = g3(x), u(x, 1.4) = g4(x), (50b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ Ω, 1 ⩽ i ⩽ NQs, (50c)

where f and gi (1 ⩽ i ⩽ 4) are prescribed source term and boundary data, Y denotes the set of random mea-

surement points in Ω, and the parameters (α1, α2) and the field u(x, y) are the unknowns to be determined.

We consider the following manufactured solution to this problem in the tests,

αex
1 = 100, αex

2 = 5, uex(x, y) = cos(πx2) cos(πy2). (51)

The measurement data S(ξi, ηi) (1 ⩽ i ⩽ NQs) are given by (48), in which uex is given by (51). The u

errors are computed on a set of 101 × 101 uniform grid points in each sub-domain after the neural network

is trained. The notations below follow those of the previous sub-section.

Figure 8 shows distributions of the u(x, y) solution and its point-wise absolute error computed by the

VarPro-F1 algorithm on 4 uniform sub-domains, with the 120 random measurement points in total (Qs = 30

points per sub-domain) displayed in Figure 8(a). The figure caption lists the crucial simulation parameters

for this test. VarPro-F1 exhibits a high accuracy, with the maximum u error on the order of 10−8. The

relative errors of the computed α1 and α2 are 3.52× 10−11 and 4.76× 10−10, respectively, in this test.

The convergence of the simulation results with respect to the number of collocation points (Q) is illus-

trated by Table 5 and Figure 9. Table 5 lists the computed α1 and α2 by the NLLSQ algorithm corresponding

to a range of Q values. Figure 9 shows the relative α1 and α2 errors and the l2 norm of the relative u error

corresponding to different Q obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The crucial

simulation parameter values are provided in the table/figure captions. A general exponential convergence in

the errors with respect to Q can be observed. One can also observe that the convergence of the VarPro-F2

algorithm appears to be less regular. The VarPro-F2 results are inaccurate with a small Q (Q = 15× 15 or

less), and its errors abruptly drop to 10−7 ∼ 10−8 as the collocation points reach Q = 20× 20 and beyond.
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(a) (b)

Figure 8: Inverse nonlinear Helmholtz problem: distributions of (a) the VarPro-F1 solution for u(x, y) and (b) its
point-wise absolute error, with the random measurement points shown in (a) as “+” symbols. Four uniform sub-
domains (2 in each direction), local NN [2, 300, 1], Q = 20 × 20, Qs = 30, Rm = 1.5, λmea=1, ϵ=0 (no noise in
measurement data).
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Figure 9: Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and l2-u versus Q1 (Q = Q1 ×Q1)
obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 500, 1], Qs = 100;
Rm = 2.25 with NLLSQ and VarPro-F1, and Rm = 2.5 with VarPro-F2; λmea=1, ϵ=0. eα1 and eα2 denote
the relative errors of α1 and α2.
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Figure 10: Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and l2-u versus M (number of
training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN
[2,M, 1], Qs = 100, Q = 30 × 30; Rm = 2.25 with NLLSQ and VarPro-F1, and Rm = 2.5 with VarPro-F2;
ϵ=0, λmea=1.
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Q computed α1 computed α2

5×5 9.946591149073E+1 5.169760481373E+0
10×10 9.999987125506E+1 4.999987933629E+0
15×15 9.999999986638E+1 5.000000027512E+0
20×20 9.999999982078E+1 4.999999813483E+0
25×25 1.000000001774E+2 4.999999946859E+0
30×30 1.000000001832E+2 4.999999843159E+0
35×35 9.999999989070E+1 5.000000059829E+0
40×40 9.999999957958E+1 5.000001280912E+0

Table 5: Inverse nonlinear Helmholtz problem: α1 and α2 versus Q (number of collocation points) obtained by the
NLLSQ algorithm. Single sub-domain, NN [2, 500, 1], Qs = 100, Rm = 2.25, ϵ = 0, λmea=1.
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Figure 11: Inverse nonlinear Helmholtz problem: Network training time as a function of (a) the number of
collocation points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. The test settings and parameters in (a) follow those of Figure 9, and in (b) follow
those of Figure 10.

Figure 10 illustrates the convergence of the α1, α2 and u errors, obtained by the NLLSQ, VarPro-F1 and

VarPro-F2 algorithms, with respect to the training parameters (M). The figure caption lists values of the

main simulation parameters. The relative errors of α1, α2 and u decrease exponentially with increasing M .

Figure 11 shows the network training time with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms as a

function of the number of collocation points per direction (plot (a)) and the number of training parameters

(plot (b)) for the inverse nonlinear Helmholtz problem. The problem settings and the simulation parameters

employed in the three algorithms for these two plots correspond to those of Figures 9 and 10, respectively.

We observe a quasi-linear growth in the network training time with the increase of the collocation points or

the training parameters. In general, the cost of NLLSQ appears a little larger than that of VarPro-F1, which

in turn appears a little larger than VarPro-F2 for this problem. We observe an outlier in Figure 11(a) with

VarPro-F2 (corresponding to 15×15 collocation points), and in Figure 11(b) with VarPro-F1 (corresponding

to 300 training parameters). This is caused by the larger number of actual Newton iterations in VarPro-F2

for the outlier case in Figure 11(a), and by the triggering of subiterations in Algorithm 7 with VarPro-F1

for the case in Figure 11(b).

Table 6 shows the computed α1 and α2 relative errors, and the u relative errors (l∞ and l2 norms)

obtained by the NLLSQ algorithm corresponding to a range of Qs (number of random measurement points).

The effect of Qs on the errors appears to be not significant, unless Qs is very small. This is similar to what

has been observed with linear forward PDEs (see e.g. Section 3.1).

No noise is considered in the measurement data in the foregoing tests. Figure 12 illustrates the effect of

the noise level (ϵ) on the accuracy of the computed α1, α2 and u by the NLLSQ, VarPro-F1 and VarPro-F2
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Qs eα1 eα2 l∞-u l2-u

5 5.41E-9 1.03E-6 7.79E-8 4.13E-8
10 7.30E-10 1.24E-7 6.03E-8 8.65E-9
20 1.18E-9 5.71E-9 9.67E-8 8.94E-9
30 6.74E-10 7.83E-8 7.97E-8 8.18E-9
50 1.99E-9 1.32E-7 7.56E-8 1.05E-8
100 1.83E-9 3.14E-8 9.37E-8 1.00E-8

Table 6: Inverse nonlinear Helmholtz problem: the relative-errors of α1 and α2, and the u relative errors, versus the
number of random measurement points (Qs), computed by the NLLSQ algorithm. Single sub-domain, NN [2, 500, 1],
Q = 30× 30, Rm = 2.25, λmea=1, ϵ=0.
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Figure 12: Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and l2-u versus the noise level (ϵ) in
the measurement data, obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain,
NN [2, 500, 1], Q = 30× 30, Qs = 50, λmea=1; Rm = 2.25 with NLLSQ and VarPro-F1, and Rm = 2.5 with
VarPro-F2.

algorithms. The main parameters for these simulations are listed in the figure caption. The simulation errors

generally increase with increasing noise level in the measurement data. However, the α2 error appears to be

somewhat less regular for a range of noise levels (around ϵ ≈ 0.06) for this problem. The accuracy of these

algorithms appears quite robust to the noise. For example, with 1% noise (ϵ = 0.01) in the measurement

data the relative errors for α1 and α2 obtained by the three methods are on the order of 0.1%, and with 10%

noise (ϵ = 0.1) in the measurement data the relative errors for α1 and α2 are on the order of 1 ∼ 4%.

3.3 Parametric Viscous Burgers Equation

Consider the spatial-temporal domain, (x, t) ∈ Ω = [0, 2] × [0, 1.5], and the inverse problem with the para-

metric Burgers’ equation,

∂u

∂t
+ α1u

∂u

∂x
= α2

∂2u

∂x2
+ f(x, t), (52a)

u(0, t) = g1(t), u(2, t) = g2(t), u(x, 0) = h(x), (52b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ Ω, 1 ⩽ i ⩽ NQs, (52c)

where f is a prescribed source term, g1 and g2 are prescribed Dirichlet boundary data, h is the initial

distribution, the constants αi (i = 1, 2) and the field u(x, t) are the unknowns to be solved for, Y denotes the

set of random measurement points, N is the number of sub-domains, and Qs is the number of measurement
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(a) (b)

Figure 13: Inverse Burgers’ problem: distributions of (a) the NLLSQ solution and (b) its point-wise absolute error,
with the random measurement points shown by the “+” symbols in (a). Two uniform sub-domains (along t), local
NN [2, 300, 1], Q = 25× 25, Qs = 50, Rm = 1.5, ϵ=0 (no noise in measurement data), λmea=1.

Q α1 α2

5×5 9.999660775275E-2 9.994514983290E-3
10×10 9.999998874379E-2 9.999992607237E-3
15×15 1.000000000074E-1 1.000000000018E-2
20×20 1.000000000060E-1 1.000000000487E-2
25×25 9.999999999967E-2 9.999999999698E-3
30×30 1.000000000049E-1 9.999999998052E-3

Table 7: Inverse Burgers’ problem: the computed α1 and α2 versus Q (number of collocation points) obtained with
the NLLSQ algorithm. Single sub-domain, NN [2, 400, 1], Qs = 100, Rm = 1.9, λmea=1, ϵ=0.

points per sub-domain. We employ the following manufactured solution in the tests,
αex
1 = 0.1, αex

2 = 0.01,

uex(x, t) =
(
1 +

x

20

)(
1 +

t

20

)[
3

2
cos

(
πx+

7π

20

)
+

27

20
cos

(
2πx− 3π

5

)][
3

2
cos

(
πt+

7π

20

)
+
27

20
cos

(
2πt− 3π

5

)]
.

(53)

The source term f and the boundary/initial data are chosen such that the expressions in (53) satisfy the

equations (52a)–(52b). The measurement data S(ξi, ηi) is assumed to be given by (48), in which uex is given

by (53). In the following the u errors are computed on a 101× 101 uniform grid points in each sub-domain,

and we adopt the same notations (e.g. Q, Qs, M , Rm and ϵ) as in previous sub-sections.

Figure 13 illustrates the u(x, t) solution and its point-wise absolute error computed by the NLLSQ

algorithm with two uniform sub-domains along t, and the 100 random measurement points (50 points per

sub-domain) in the domain are shown in Figure 13(a). The figure caption provides the main parameter values

in this simulation. The results signify a high accuracy for the computed u solution, with the maximum error

on the order of 10−8. The relative errors of the computed α1 and α2 are 1.30 × 10−9 and 1.48 × 10−8,

respectively, for this simulation.

Table 7 and Figure 14 illustrate the convergence behavior of the NLLSQ, VarPro-F1 and VarPro-F2

algorithms with respect to the number of collocation points (Q). Table 7 shows the computed α1 and α2

values by the NLLSQ algorithm for several Q. Figure 14 shows the relative errors of α1 and α2 and the l2

norm of relative u error corresponding to different Q. We refer the reader to the table/figure captions for

the simulation parameter values. One can observe the familiar exponential convergence with respect to Q

(before stagnation when Q reaches a certain level). The VarPro-F2 algorithm appears not as accurate as

NLLSQ/VarPro-F1 with a small number of collocation points (below Q = 20× 20). But its errors drop to a
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Figure 14: Inverse Burgers’ problem: relative errors of (a) α1, (b) α2, and (c) l2-u versus Q1 (Q = Q1 ×Q1)
obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Qs = 100;
Rm = 1.9 with NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2; ϵ=0, λmea=1.
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Figure 15: Inverse Burgers’ problem: relative errors of (a) α1, (b) α2, and (c) u versus M (number of
training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain,
NN [2,M, 1] (M varied), Qs=150, Q = 30× 30, ϵ=0, λmea=1; Rm = 1.9 with NLLSQ and VarPro-F1, and
Rm = 2.0 with VarPro-F2.

level similar to those of NLLSQ and VarPro-F1 for Q = 20× 20 and beyond.

The exponential convergence of the simulation results with respect to the number of training parameters

(M) for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms is illustrated by Figure 15. This figure shows the

relative errors of the computed α1, α2 and u obtained by the three algorithms. One should again refer to

the caption for the main settings and simulation parameters.

Figure 16 shows the network training time of the NLLSQ/VarPro-F1/VarPro-F2 algorithms as a function

of the number of collocation points per direction and the number of training parameters for the inverse

Burgers’ problem. The settings here correspond to those of Figures 14 and 15, respectively. One can

again observe a near-linear growth in the computational cost. The network training time of VarPro-F2 is

significantly larger than those of NLLSQ/VarPro-F1, while the cost of NLLSQ and VarPro-F1 appears to

be comparable. Some irregularity is observed in the training time with VarPro-F2 in Figure 16(a), due to

the irregularity in the actual number of outer Newton iterations with VarPro-F2 for this problem.

Figure 17 illustrates the effect of the noisy measurement data (ϵ) on the simulation accuracy of the

NLLSQ, VarPro-F1 and VarPro-F2 algorithms for the inverse Burgers problem. It shows the relative errors

of α1, α2 and l2-u as a function of the noise level ϵ in the measurement data. It is observed that the accuracy

of these algorithms is quite robust to the noise. For example, with 1% noise in the measurement data the

relative errors of these methods are around 0.026% for the computed α1 and around 0.2% for the computed

28



Collocation points per direction

ne
tw

or
k 

tra
in

in
g 

tim
e 

(s
ec

on
ds

)

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

NLLSQ

VarPro­F1

VarPro­F2

(a) Number of training parameters

ne
tw

or
k 

tra
in

in
g 

tim
e 

(s
ec

on
ds

)

100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

NLLSQ

VarPro­F1

VarPro­F2

(b)

Figure 16: Inverse Burgers’ problem: Network training time as a function of (a) the number of collocation
points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters in (a) follow those of Figure 14, and in (b) follow those of
Figure 15.

Noise level ε

re
la

tiv
e 

α
1 e

rr
or

0 0.2 0.4 0.6 0.8 1
10-11

10-9

10-7

10-5

10-3

10-1

NLLSQ

VarPro­F1

VarPro­F2

(a) Noise level ε

re
la

tiv
e 

α
2 e

rr
or

0 0.2 0.4 0.6 0.8 1
10-10

10-8

10-6

10-4

10-2

100

NLLSQ

VarPro­F1

VarPro­F2

(b) Noise level ε

rm
s 

re
la

tiv
e 

u 
er

ro
r

0 0.2 0.4 0.6 0.8 1
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

NLLSQ

VarPro­F1

VarPro­F2

(c)

Figure 17: Inverse Burgers’ problem: relative errors of (a) α1, (b) α2, and (c) l2-u versus ϵ (noise level)
obtained with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Q =
30× 30, Qs=100, λmea=1; Rm = 1.9 with NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2.

α2; with 10% noise in the measurement the relative errors are around 0.27% for α1 and around 2.7% for α2.

(a) (b) (c) (d)

Figure 18: Inverse variable-coefficient Helmholtz problem: distributions of (a) the NLLSQ solution for u(x, y) and
(b) its point-wise absolute error, (c) the NLLSQ solution for γ(x, y) and (d) its point-wise absolute error, with the
Qs = 300 random measurement points shown in (a) as “+” symbols. Single sub-domain, NN [2, 400, 1], Q = 30× 30,
Rm = 1.5, λmea = 1, ϵ = 0 (no noise), λ1 = λ2 = 0 (no regularization).

29



3.4 Helmholtz Equation with Inverse Variable Coefficient

In this example, we use our method to study a problem involving an inverse coefficient field. Consider the

domain (x, y) ∈ Ω = [0, 1.5]× [0, 1.5] and the inverse problem on Ω,

∂2u

∂x2
+

∂2u

∂y2
− γ(x, y)u = f(x, y), (54a)

u(a1, y) = g1(y), u(b1, y) = g2(y), u(x, a2) = g3(x), u(x, b2) = g4(x), (54b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ Ω, 1 ⩽ i ⩽ NQs, (54c)

where f is a prescribed source term, gi (1 ⩽ i ⩽ 4) denote the prescribed boundary data, Y is the set of

measurement points, S(ξi, ηi) denotes the measurement data at the random point (ξi, ηi), and γ(x, y) and

u(x, y) are two field functions to be determined. We employ the following manufactured solutions,
γex(x, y) = 100

[
1 +

1

4
sin(2πx) +

1

4
sin(2πy)

]
,

uex(x, y) =

[
5

2
sin

(
πx− 2π

5

)
+

3

2
cos

(
2πx+

3π

10

)][
5

2
sin

(
πy − 2π

5

)
+

3

2
cos

(
2πy +

3π

10

)]
.

(55)

f and gi (1 ⩽ i ⩽ 4) are chosen accordingly such that the expressions in (55) satisfy the equations (54a)–

(54b). The measurement data S(ξi, ηi) are given by equation (48), in which the uex is given in (55). The

relative errors for u(x, y) are defined in (49), and the relative errors for γ(x, y) are defined analogously.

The γ(x, y) and u(x, y) errors reported below are computed on a uniform Qeval = 101 × 101 grid in each

sub-domain. The notations here follow those of previous subsections.

We employ the algorithm modification as outlined in Remark 2.7 for solving this problem. Compared with

previous subsections, the main change here lies in that the local neural network on each sub-domain contains

two nodes in the output layer, one representing u(x, y) and the other γ(x, y). The output-layer coefficients

contributing to γ(x, y) play the role of the inverse parameters. We also find it preferable to regularize the

the output-layer coefficients that contribute to γ(x, y) (or u(x, y)) for this problem. For regularization we

employ the extra terms for the underlying loss function,
λ2
1

2 ∥α∥2+ λ2
2

2 ∥β∥2, where α and β denote the vectors

of output-layer coefficients for γ(x, y) and u(x, y), respectively, and the prescribed non-negative constants

λ1 and λ2 are the corresponding regularization coefficients.

Figure 18 shows distributions of the solutions for u(x, y) and γ(x, y), and their point-wise absolute errors,

obtained by the NLLSQ algorithm. The random measurement points are also shown in Figure 18(a). The

figure caption lists the main parameter values for this simulation. We observe a fairly high accuracy, with

the maximum u error on the order of 10−8 and the maximum γ error on the order of 10−5 in the domain.

Table 8 lists the relative errors for γ and u (l∞ and l2 norms) computed by the NLLSQ algorithm in

several sets of tests, with respect to Q (number of collocation points), M (number of training parameters),

Qs (number of random measurement points), and ϵ (noise level). The settings and the simulation parameter

values are provided in the table caption for each set of tests. One can observe an approximately exponential

decrease in the γ and u errors with respect to Q, M and Qs (before saturation). One can also observe the

deterioration in the simulation accuracy with increasing noise level in the measurement data. Note that no

regularization is employed in these simulations. The noise appears to affect the γ results more significantly

than u. For example, with 1% noise (ϵ = 0.01) in the measurement data, the maximum (l∞) relative error

for γ(x, y) is around 43% and the l2 relative error is around 5%, while for u(x, y) these errors are around 4%

and 0.6% respectively.
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l∞-γ l2-γ l∞-u l2-u

collocation Q = 5×5 9.84E-2 3.15E-2 7.94E-3 4.38E-4
point test 10×10 4.05E-3 2.90E-4 1.63E-4 1.02E-5

15×15 1.15E-4 4.94E-6 3.38E-6 2.99E-7
20×20 4.99E-6 4.84E-7 2.65E-7 2.70E-8
25×25 4.42E-6 3.57E-7 3.34E-7 2.90E-8
30×30 1.56E-6 1.46E-7 1.19E-7 1.08E-8
35×35 1.61E-6 1.73E-7 1.26E-7 1.15E-8

training M = 50 6.79E+0 1.67E+0 1.63E+0 5.67E-1
parameter 100 8.64E-2 1.10E-2 8.44E-3 2.00E-3
test 200 1.98E-4 2.08E-5 6.46E-6 6.42E-7

300 2.07E-6 1.26E-7 3.13E-8 2.46E-9
400 5.08E-7 2.95E-8 5.76E-9 5.29E-10
500 1.61E-7 1.18E-8 1.95E-9 1.91E-10

measurement Qs = 10 1.36E-3 3.11E-4 2.49E-4 6.60E-5
point test 30 1.93E-4 3.69E-5 2.03E-5 4.24E-6

50 2.69E-5 4.08E-6 2.03E-6 3.83E-7
100 3.18E-6 2.95E-7 2.25E-7 1.78E-8
200 5.30E-6 2.53E-7 8.21E-8 5.48E-9
300 1.45E-6 9.93E-8 2.45E-8 2.00E-9
400 2.65E-6 8.80E-8 1.40E-8 1.79E-9

noise level ϵ = 0.0 1.61E-6 1.73E-7 1.26E-7 1.15E-8
test 0.0005 5.15E-2 5.54E-3 3.32E-3 4.54E-4

0.001 7.57E-2 7.31E-3 5.46E-3 6.63E-4
0.005 2.69E-1 2.92E-2 2.28E-2 3.12E-3
0.01 4.26E-1 4.96E-2 3.94E-2 5.98E-3
0.05 1.50E+0 2.00E-1 1.44E-1 2.71E-2
0.1 1.85E+0 2.97E-1 2.26E-1 4.97E-2

Table 8: Inverse variable-coefficient Helmholtz problem: relative l∞ and l2 errors of γ(x, y) and u(x, y) in several
tests with the NLLSQ algorithm. Single sub-domain, NN [2,M, 2]. In collocation point test, M = 400, Qs = 100,
ϵ = 0, Q is varied. In training parameter test, Q = 30 × 30, Qs = 300, ϵ = 0, M is varied. In measurement point
test, Q = 25 × 25, M = 300, ϵ = 0, Qs is varied. In noise level test, Q = 35 × 35, M = 400, Qs = 100, ϵ is varied.
Rm = 1.5 and λmea = 1 in all tests. No regularization (λ1 = λ2 = 0). l∞-γ and l2-γ denote the relative errors (l∞

and l2 norms) of γ(x, y), respectively.

Figure 19 illustrates the effect of noise in the measurement data on the accuracy of the NLLSQ, VarPro-

F1 and VarPro-F2 algorithms. The relative errors for γ and u corresponding to different noise levels have

been shown. In these simulations the output-layer coefficients for γ(x, y) (and also for u(x, y) with NLLSQ)

have been regularized, with the regularization coefficients and the other simulation parameter values given in

the table caption. The regularization generally improves the accuracy in the presence of noise. For γ(x, y),

the NLLSQ results appear to be generally more accurate than those obtained with VarPro-F1 and VarPro-

F2. On the other hand, the u(x, y) results obtained with the three methods appear to have a comparable

accuracy (with VarPro-F2 slightly better).

Figure 20 shows the network training time of the NLLSQ/VarPro-F1/VarPro-F2 algorithms as a function

of the noise level ϵ in the same group of tests as Figure 19. The increase in the noise level in the measurement

data appears to have little effect on the network training time, or appears to cause the training time to slightly

increase (see e.g. the curves with NLLSQ and VarPro-F2 in Figure 20).
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Figure 19: Inverse variable-coefficient Helmholtz problem: relative l∞ and l2 errors of γ(x, y) and u(x, y)
versus ϵ (noise level) by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2,400,2],
Q = 30 × 30, Qs = 300, λmea = 1; Rm = 1.5 with NLLSQ, Rm = 2.5 with VarPro-F1, Rm = 3.0 with
VarPro-F2; Regularization coefficients: (λ1, λ2) = (1E− 8, 1E− 8) with NLLSQ, (λ1, λ2) = (1E− 7, 0) with
VarPro-F1, and (λ1, λ2) = (1E − 6, 0) with VarPro-F2.
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Figure 20: Inverse variable-coefficient Helmholtz problem: Network training time as a function of the noise
level ϵ for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters follow those
of Figure 19.
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4 Concluding Remarks

In this paper we have presented a method for solving inverse parametric PDE problems based on randomized

neural networks. This method extends the local extreme learning machine (locELM) technique to inverse

PDEs. The field solution is represented by a set of local random-weight neural networks (randomly assigned

but fixed hidden-layer coefficients, trainable output-layer coefficients), one for each sub-domain. The local

neural networks are coupled through the Ck (with k related to the PDE order) continuity conditions on

the shared sub-domain boundaries. The inverse parameters of the PDE and the trainable parameters of the

local neural networks are the unknowns to be determined in the system.

Three algorithms are developed for training the neural network to solve the inverse problem. The first

algorithm (NLLSQ) computes the inverse parameters and the trainable network parameters all together

by the nonlinear least squares method and is an extension of the nonlinear least squares method with

perturbations (NLLSQ-perturb) of [16] (developed for forward PDEs) to inverse PDE problems. The second

and the third algorithms are based on the variable projection idea. The second algorithm (VarPro-F1)

employs variable projection to eliminate the inverse parameters from the problem and attain a reduced

problem about the trainable network parameters only. Then the reduced problem is solved first by the

NLLSQ-perturb algorithm for the trainable network parameters, and the inverse parameters are computed

afterwards by the linear least squares method. The third algorithm (VarPro-F2) provides a reciprocal

formulation with variable projection. It eliminates the trainable network parameters (or equivalently the

field solution) from the problem first to arrive at a reduced problem about the inverse parameters only.

Then the inverse parameters are computed first by solving the reduced problem with the NLLSQ-perturb

algorithm, and afterwards the trainable network parameters are computed based on the inverse parameters

already obtained. The VarPro-F2 algorithm is suitable for parametric PDEs that are linear with respect to

the field solution. For PDEs that are nonlinear with respect to the field solution, this algorithm needs to be

combined with a Newton iteration.

The presented method is numerically tested using several inverse parametric PDE problems (We refer the

reader to the Appendices C and D for additional test problems). It is also compared with the PINN method

(see Appendix E). For smooth solutions and noise-free data, the errors for the inverse parameters and the field

solution computed by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms decrease exponentially with respect

to the number of collocation points and the number of training parameters. When these parameters become

large, the errors can reach a level close to the machine accuracy. These characteristics are in some sense

analogous to those observed for the forward PDE problems in [16, 19]. For noisy measurement data, these

algorithms can produce computation results with good accuracy, indicating robustness of the method. We

observe that, in the presence of noise, by scaling the measurement residual by a factor λmea (0 < λmea < 1)

one can in general improve the simulation accuracy of the current method markedly, while this scaling only

slightly degrades the accuracy for the noise-free data. The comparison with PINN shows that the current

method has an advantage in terms of both accuracy and the network training time. In particular, for the

noise-free data the current method exhibits an accuracy significantly higher than PINN.

In terms of the computational cost, the predominant operations of all three algorithms lie in the nonlinear

least squares computation (Algorithm 7) of either the overall inverse problem (with NLLSQ) or the reduced

problem (with VarPro-F1 and VarPro-F2). The nonlinear least squares computation (as implemented in

the Scipy library and adopted in the current method) consists of the Gauss-Newton iterations, and each

iteration generally involves the computation of the residual vector and the Jacobian matrix, the solution of

a linear least squares problem and the approximate solution of a trust-region problem. In addition, if the
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perturbation/sub-iteration is triggered in Algorithm 7, which occurs when the returned cost of the Gauss-

Newton iteration fails to meet a tolerance, this will increase the computational cost. We have looked into the

network training time, which includes the cost for the nonlinear least squares and associated computations,

with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for different test problems. In general, the network

training time grows approximately linearly as the number of collocation points or the number of training

parameters increases for all three algorithms. In terms of the relative cost of these three algorithms, the

picture seems to be mixed. Among the three, no single algorithm is consistently faster than the others for

all the test problems considered here. For the test problems with an associated forward PDE that is linear,

the VarPro-F2 algorithm seems to be generally faster than NLLSQ and VarPro-F1. We note that for the

test problems and the problem sizes considered in the current paper, the network training time ranges from

a few seconds to dozens of seconds with the three algorithms.

These test results suggest that the method developed herein is an effective and promising technique for

computing inverse PDEs. The exponential convergence exhibited by the method is especially interesting,

suggesting a high accuracy of this technique. We anticipate that this technique will be a useful and meaningful

addition to the arsenal for tackling this class of problems and be instrumental in computational science and

engineering applications.
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Appendix A. Nonlinear Least Squares Algorithm with Perturba-
tions (NLLSQ-perturb)

We summarize the nonlinear least squares algorithm with perturbations (NLLSQ-perturb) below in Algo-

rithm 7, which is adapted from the one developed in [16] with certain modifications.

In this algorithm, δ controls the maximum magnitude of each component of the random perturbation

vector ∆θ. The vector θ0 provides the initial guess to the solution of the nonlinear least squares problem.

If the returned solution from the scipy least squares() routine corresponding to θ0 is not acceptable (i.e. the

returned cost exceeding the tolerance ε), then a sub-iteration procedure is triggered in which new initial

guesses (ϑ0) are generated by perturbing either the origin or the best approximation to the solution obtained

so far with a random vector. The scipy least squares() routine is invoked with the new initial guesses until an

acceptable solution is obtained or until the maximum number of sub-iterations is reached. The integer flag

η controls around which point the perturbation is performed. If η = 0 the new initial guess is generated by

perturbing the origin. Otherwise, the current best approximation to the solution is perturbed to generate a

new initial guess. The parameter “max-nllsq-iterations” controls the maximum number of iterations (e.g. the

maximum number of residual function evaluations) in the scipy least squares() routine. The parameter “max-

sub-iterations” controls the maximum number of sub-iterations for the initial guess perturbation. One can

turn off the perturbation in the NLLSQ-perturb algorithm by setting max-sub-iterations to zero. Note that

the scipy least squares() function requires two routines in the input, one for computing the residual and the

other for computing the Jacobian matrix for an arbitrary given approximation to the solution.
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Algorithm 7: NLLSQ-perturb (nonlinear least squares with perturbations) algorithm

input : max perturbation magnitude δ > 0; initial guess vector θ0; routine for computing residual; routine
for computing Jacobian matrix; perturbation flag η (integer, 0 or 1); tolerance ε > 0;
max-nllsq-iterations (positive integer); max-sub-iterations (non-negative integer).

output: solution vector θ, associated cost c

1 invoke the scipy.optimize.least squares routine, with the inputs (initial guess θ0, routines for
residual/jacobian-matrix calculations, and max-nllsq-iterations)

2 set θ ← returned solution, and set c← returned cost
3 if c is below ε then
4 return θ and c
5 end

6 for i← 1 to max-sub-iterations do
7 generate a uniform random number ξ on the interval [0, 1]
8 set δ1 ← ξδ
9 generate a uniform random vector ∆θ of the same shape as θ on the interval [−δ1, δ1]

10 if η is 0 then
11 ϑ0 ← ∆θ
12 else
13 ϑ0 ← θ +∆θ
14 end

15 invoke the scipy.optimize.least squares routine, with the inputs (initial guess ϑ0, routines for
residual/jacobian-matrix calculations, and max-nllsq-iterations)

16 if the returned cost is less than c then
17 set θ ← the returned solution, and set c← the returned cost
18 if c is below ε then
19 break
20 end

21 end

22 end
23 return θ and c

Appendix B. Matrices in the NLLSQ and VarPro-F2 Algorithms

NLLSQ Algorithm:

The vectors in the expression (17) are given by

Rpde =


...

Rpde
ep

..

.


NQ×1

; Rmea =


.
..

Rmea
ep

..

.


NQs×1

; Rbc =


Rbc1

Rbc2

Rbc3

Rbc4

 ; Rck =


Rck1

Rck2

Rck3

Rck4

 ; Rbc1 =


...

Rbc1
lj

.

..


N2Q2×1

,

Rbc2 =


..
.

Rbc2
lj

.

.

.


N2Q2×1

, Rbc3 =


.
..

Rbc3
mi
...


N1Q1×1

, Rbc4 =


...

Rbc4
mi
..
.


N1Q1×1

; Rck1 =


.
..

Rck1
mlj

.

..


(N−N2)Q2×1

,

Rck2 =


.
..

Rck2
mlj

.

..


(N−N2)Q2×1

, Rck3 =


...

Rck3
mli
.
..


(N−N1)Q1×1

, Rck4 =


...

Rck4
mli
.
..


(N−N1)Q1×1

.

(56)

In the above expressions, Rpde
ep is the left hand side (LHS) of (12), and Rmea

ep is the LHS of (14). Rbc1
lj ,

Rbc2
lj , Rbc3

mi and Rbc4
mi are the LHSs of (13a)–(13d), respectively. Rck1

mlj , R
ck2
mlj , R

ck3
mli and Rck4

mli are the LHSs

of (15a)–(15d), respectively.
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The matrices in the expression (18) are given by,

∂Rpde

∂α
=

[
∂Rpde

ep

∂αi

]
NQ×n

=
[
L1(ue(xe

p)) . . . Ln(ue(xe
p))

]
NQ×n

,
∂Rpde

∂β
=

[
∂Rpde

ep

∂βij

]
NQ×NM

,

∂Rmea

∂β
=

[
∂Rmea

ep

∂βij

]
NQs×NM

,
∂Rbc

∂β
=


∂Rbc1

∂β
∂Rbc2

∂β
∂Rbc3

∂β
∂Rbc4

∂β

 ,
∂Rck

∂β
=


∂Rck1

∂β
∂Rck2

∂β
∂Rck3

∂β
∂Rck4

∂β

 ,
∂Rbc1

∂β
=

[
∂Rbc1

lj

∂βik

]
N2Q2×NM

,

∂Rbc2

∂β
=

[
∂Rbc2

lj

∂βik

]
N2Q2×NM

,
∂Rbc3

∂β
=

[
∂Rbc3

mi
∂βlk

]
N1Q1×NM

,
∂Rbc4

∂β
=

[
∂Rbc4

mi
∂βlk

]
N1Q1×NM

,

∂Rck1

∂β
=

[
∂Rck1

mlj

∂βiq

]
(N−N2)Q2×NM

,
∂Rck2

∂β
=

[
∂Rck2

mlj

∂βiq

]
(N−N2)Q2×NM

,
∂Rck3

∂β
=

[
∂Rck3

mli
∂βjq

]
(N−N1)Q1×NM

,

∂Rck4

∂β
=

[
∂Rck4

mli
∂βjq

]
(N−N1)Q1×NM

.

(57)

In the matrix ∂Rpde

∂β the only non-zero terms are

∂Rpde
ep

∂βej
= α1L′

1(ue(x
e
p))ϕej(x

e
p) + · · ·+ αnL′

n(ue(x
e
p))ϕej(x

e
p) + F ′(ue(x

e
p))ϕej(x

e
p),

for 1 ⩽ (e, p, j) ⩽ (N,Q,M), (58)

where L′
i(u) (1 ⩽ i ⩽ n) denote the derivatives of Li(u) with respect to u, and F ′(u) denotes the derivative

of F(u) with respect to u. In the matrix ∂Rmea

∂β the only non-zero terms are

∂Rmea
ep

∂βej
= Mϕej(ξ

e
p), for 1 ⩽ (e, p, j) ⩽ (N,Qs,M). (59)

In the matrices ∂Rbc1

∂β , ∂Rbc2

∂β , ∂Rbc3

∂β and ∂Rbc4

∂β the only non-zero terms are,

∂Rbc1
lj

∂βlq
= Bϕeq(a1, y

e
p), where e = e(1, l), p = p(1, j), for 1 ⩽ (l, j, q) ⩽ (N2, Q2,M);

∂Rbc2
lj

∂βlq
= Bϕeq(b1, y

e
p), where e = e(N1, l), p = p(Q1, j), for 1 ⩽ (l, j, q) ⩽ (N2, Q2,M);

∂Rbc3
mi

∂βmq
= Bϕeq(x

e
p, a2), where e = e(m, 1), p = p(i, 1), for 1 ⩽ (m, i, q) ⩽ (N1, Q1,M);

∂Rbc4
mi

∂βmq
= Bϕeq(x

e
p, b2), where e = e(m,N2), p = p(i, Q2), for 1 ⩽ (m, i, q) ⩽ (N1, Q1,M).

(60)

In the matrices ∂Rck1

∂β , ∂Rck2

∂β , ∂Rck3

∂β and ∂Rck4

∂β the only non-zero terms are,

∂Rck1
mlj

∂βe1q
= ϕe1q(Xm, ye1p1 ),

∂Rck1
mlj

∂βe2q
= −ϕe2q(Xm, ye2p2 ), where e1 = e(m, l), e2 = e(m+ 1, l),

p1 = p(Q1, j), p2 = p(1, j), for 1 ⩽ (m, l, j, q) ⩽ (N1 − 1, N2, Q2,M);

∂Rck2
mlj

∂βe1q
=

∂ϕe1q

∂x

∣∣∣∣
(Xm,y

e1
p1

)

,
∂Rck2

mlj

∂βe2q
= −

∂ϕe2q

∂x

∣∣∣∣
(Xm,y

e2
p2

)

, where e1 = e(m, l), e2 = e(m+ 1, l),

p1 = p(Q1, j), p2 = p(1, j), for 1 ⩽ (m, l, j, q) ⩽ (N1 − 1, N2, Q2,M);

∂Rck3
mli

∂βe1q
= ϕe1q(x

e1
p1

, Yl),
∂Rck3

mli

∂βe2q
= −ϕe2q(x

e2
p2

, Yl), where e1 = e(m, l), e2 = e(m, l + 1),

p1 = p(i, Q2), p2 = p(i, 1), for 1 ⩽ (m, l, i, q) ⩽ (N1, N2 − 1, Q1,M);

∂Rck4
mli

∂βe1q
=

∂ϕe1q

∂y

∣∣∣∣
(x

e1
p1

,Yl)

,
∂Rck4

mli

∂βe2q
= −

∂ϕe2q

∂y

∣∣∣∣
(x

e2
p2

,Yl)

, where e1 = e(m, l), e2 = e(m, l + 1),

p1 = p(i, Q2), p2 = p(i, 1), for 1 ⩽ (m, l, i, q) ⩽ (N1, N2 − 1, Q1,M).

(61)
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Var-F2 Algorithm:

The matrices in the expression (38) are given by,

bpde =


...

f(xe
p)

...


NQ×1

, bmea =


...

S(ξep)

...


NQs×1

, bbc1 =


...

g(a1, y
e(1,l)
p(1,j)

)

...


N2Q2×1

,

bbc2 =


...

g(b1, y
e(N1,l)
p(Q1,j)

)

...


N2Q2×1

, bbc3 =


...

g(x
e(m,1)
p(i,1)

, a2)

...


N1Q1×1

, bbc4 =


...

g(x
e(m,N2)
p(i,Q2)

, a2)

..

.


N1Q1×1

,

Hpde =
[
hpde
ij

]
NQ×NM

, Hmea =
[
hmea
ij

]
NQs×NM

, Hbc1 =
[
hbc1
ij

]
N2Q2×NM

, Hbc2 =
[
hbc2
ij

]
N2Q2×NM

,

Hbc3 =
[
hbc3
ij

]
N1Q1×NM

, Hbc4 =
[
hbc4
ij

]
N1Q1×NM

, Hck1 =
[
hck1
ij

]
(N−N2)Q2×NM

,

Hck2 =
[
hck2
ij

]
(N−N2)Q2×NM

, Hck3 =
[
hck3
ij

]
(N−N1)Q1×NM

, Hck4 =
[
hck4
ij

]
(N−N1)Q1×NM

.

(62)

In the matrices Hpde and Hmea the only non-zero terms are,
hpde
ij =α1L1ϕeq(x

e
p) + · · ·+ αnLnϕeq(x

e
p) + Fϕeq(x

e
p),

i = (e− 1)Q+ p, j = (e− 1)M + q, for 1 ⩽ (e, p, q) ⩽ (N,Q,M);

hmea
ij =Mϕeq(ξ

e
p), i = (e− 1)Qs + p, j = (e− 1)M + q, for 1 ⩽ (e, p, q) ⩽ (N,Qs,M).

(63)

In the matrices Hbc1, Hbc2, Hbc3 and Hbc4 the only non-zero terms are,
hbc1
ij =Bϕeq(a1, y

e
p), e = e(1, l), p = p(1, k), i = (l − 1)Q2 + k, j = (e− 1)M + q, for 1 ⩽ (l, k) ⩽ (N2, Q2);

hbc2
ij =Bϕeq(b1, y

e
p), e = e(N1, l), p = p(Q1, k), i = (l − 1)Q2 + k, j = (e− 1)M + q, for 1 ⩽ (l, k) ⩽ (N2, Q2);

hbc3
ij =Bϕeq(x

e
p, a2), e = e(m, 1), p = p(k, 1), i = (m− 1)Q1 + k, j = (e− 1)M + q, for 1 ⩽ (m, k) ⩽ (N1, Q1);

hbc4
ij =Bϕeq(x

e
p, b2), e = e(m,N2), p = p(k,Q2), i = (m− 1)Q1 + k, j = (e− 1)M + q, for 1 ⩽ (m, k) ⩽ (N1, Q1),

(64)

where the functions e(·, ·) and p(·, ·) are given by (7) and (10). In the matrices Hck1, Hck2, Hck3 and Hck4

the only non-zero terms are,

hck1
ij1

=ϕe1q(Xm, ye1p1 ), hck1
ij2

= −ϕe2q(Xm, ye2p2 ), e1 = e(m, l), p1 = p(Q1, k), e2 = e(m+ 1, l),

p2 = p(1, k), i = (m− 1)N2Q2 + (l − 1)Q2 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 ⩽ (m, l, k, q) ⩽ (N1 − 1, N2, Q2,M);

hck2
ij1

=
∂ϕe1q

∂x

∣∣∣∣
(Xm,y

e1
p1

)

, hck2
ij2

= −
∂ϕe2q

∂x

∣∣∣∣
(Xm,y

e2
p2

)

, e1 = e(m, l), p1 = p(Q1, k), e2 = e(m+ 1, l),

p2 = p(1, k), i = (m− 1)N2Q2 + (l − 1)Q2 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 ⩽ (m, l, k, q) ⩽ (N1 − 1, N2, Q2,M);

hck3
ij1

=ϕe1q(x
e1
p1

, Yl), hck3
ij2

= −ϕe2q(x
e2
p2

, Yl), e1 = e(m, l), p1 = p(k,Q2), e2 = e(m, l + 1),

p2 = p(k, 1), i = (l − 1)N1Q1 + (m− 1)Q1 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 ⩽ (m, l, k, q) ⩽ (N1, N2 − 1, Q1,M);

hck4
ij1

=
∂ϕe1q

∂y

∣∣∣∣
(x

e1
p1

,Yl)

, hck4
ij2

= −
∂ϕe2q

∂y

∣∣∣∣
(x

e2
p2

,Yl)

, e1 = e(m, l), p1 = p(k,Q2), e2 = e(m, l + 1),

p2 = p(k, 1), i = (l − 1)N1Q1 + (m− 1)Q1 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 ⩽ (m, l, k, q) ⩽ (N1, N2 − 1, Q1,M).

(65)

37



(a) (b)

Figure 21: Inverse advection problem: distributions of (a) the NLLSQ solution for u(x, t) and (b) its point-wise
absolute error, with the random measurement points shown in (a) as “+” symbols. Single sub-domain, NN [2, 400, 1],
Q = 25 × 25 (collocation points), Qs = 100 (measurement points), Rm = 2.5, λmea=1, ϵ = 0 (no noise in measure-
ment).

Q c (NLLSQ) c (VarPro-F1) c (VarPro-F2)
5×5 3.000074167561E+0 2.999935510214E+0 6.785575335360E-1
10×10 2.999998340831E+0 3.000000635012E+0 6.785578125741E-1
15×15 2.999999999982E+0 2.999999999967E+0 -7.284017530389E-2
20×20 3.000000000029E+0 3.000000000041E+0 3.000000000378E+0
25×25 3.000000000845E+0 3.000000000869E+0 3.000000000025E+0
30×30 3.000000000534E+0 3.000000000542E+0 3.000000001047E+0
35×35 3.000000000596E+0 3.000000000596E+0 3.000000001295E+0
40×40 3.000000000771E+0 3.000000000770E+0 3.000000001534E+0

Table 9: Inverse advection problem: the computed c versus Q obtained by the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, 400, 1], Qs = 100; Rm = 2.5 with NLLSQ and VarPro-F1, and Rm = 2.0 with
VarPro-F2; λmea=1, ϵ = 0.

Appendix C. Parametric Advection Equation

This appendix provides a further test of the algorithms developed herein with the inverse parametric advec-

tion equation. Consider the spatial-temporal domain, (x, t) ∈ Ω = [0, 3] × [0, 1], and the following inverse

problem,

∂u

∂t
− c

∂u

∂x
= 0, (66a)

u(0, t) = u(3, t), u(x, 0) = 10 sinh

[
1

10
sin

2π

3

(
x− 5

2

)]
, (66b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ Ω, 1 ⩽ i ⩽ NQs, (66c)

where Y denotes the set of measurement points in Ω. The wave speed c and the field u(x, t) are the unknowns

to be determined in this problem. We employ the following exact solution to this problem in the tests,

cex = 3, uex(x, t) = 10 sinh

[
1

10
sin

2π

3

(
x+ 3t− 5

2

)]
. (67)

We employ random measurement points in Ω, and the measurement data are given by (48), in which uex is

given by (67). The notations adopted below (e.g. Q, M , N , Qs, Rm, ϵ) are the same as in Section 3.1. The

l∞ and l2 norms of the u relative error reported below are computed on a set of Qeval = 101× 101 uniform

grid points in each sub-domain after the network is trained.

Figure 21 illustrates the distributions of the NLLSQ solution for u(x, t) and its point-wise absolute error

in Ω. The crucial simulation parameters are listed in the figure caption. The solution is highly accurate,

with a maximum error on the level 10−8 in the domain. The computed wave speed c has a relative error

2.82× 10−10 for this case.
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(b) Collocation points per direction
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Figure 22: Inverse Advection problem: c and u (l∞-u, l2-u) relative errors versus Q1 (Q = Q1×Q1) obtained
by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Qs = 100, λmea=1,
ϵ=0; Rm = 2.5 with NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2.
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(b) Number of training parameters
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Figure 23: Inverse advection problem: c and u (l∞-u, l2-u) relative errors versus M (number of training
parameters) obtained with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN
[2,M, 1], Q = 25 × 25, Qs = 50, λmea=1, ϵ=0; Rm = 2.5 with NLLSQ and VarPro-F1, and Rm = 2.0 with
VarPro-F2.

The convergence behaviors of the computed c and u with respect to the collocation points (Q) and to

the training parameters (M ) are illustrated in Table 9 and Figures 22 and 23 (without noise). Table 9

and Figure 22 show the computed c values, and the relative errors of c and u, for several sets of uniform

collocation points obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Figure 23 shows the c

errors and the u errors for several sets of training parameters with the three algorithms. One can observe the

general exponential convergence of the c and u errors with respect to Q and to M . Table 9 and Figure 22

indicate that the convergence of VarPro-F2 with respect to Q is not quite regular. If the set of collocation

points is too small (Q = 15× 15 and below), the computed VarPro-F2 results are not accurate.

Figure 24 illustrates the computational cost of the NLLSQ/VarPro-F1/VarPro-F2 algorithms for solving

the inverse advection problem by showing the network training time versus the number of collocation points

and the number of training parameters. The test configurations and the simulation parameters in the two

plots correspond to those of Figures 22 and 23, respectively. A near-linear growth in the network training

time can be observed as the number of training parameters or the number of collocation points increases.

The cost of NLLSQ is significantly larger than those of VarPro-F1/VarPro-F2 for this problem, while the

cost of VarPro-F1 appears generally larger than that of VarPro-F2.

The effects of noisy measurement data on the computation accuracy are illustrated by Tables 10 and 11

and Figure 25. Table 10 lists the computed c by the NLLSQ algorithm corresponding to several noise levels
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Figure 24: Inverse advection problem: Network training time as a function of (a) the number of collocation
points per direction, and (b) the number of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters in (a) follow those of Figure 22, and in (b) follow those of
Figure 23.

ϵ computed c ϵ computed c ϵ computed c

0.0 3.000000000534E+0 0.01 2.9997368E+0 0.1 2.9971795E+0
0.001 2.9999739E+0 0.03 2.9991975E+0 0.2 2.9937846E+0
0.002 2.9999477E+0 0.05 2.9986396E+0 0.5 2.9779459E+0
0.005 2.9998688E+0 0.07 2.9980677E+0 0.7 2.9570522E+0
0.007 2.9998158E+0 0.09 2.9974839E+0 1.0 2.8441808E+0

Table 10: Inverse advection problem: c computed by the NLLSQ algorithm corresponding to several noise levels ϵ.
Single sub-domain, NN [2, 400, 1], Q = 30× 30, Qs = 100, Rm = 2.5, λmea=1.

ϵ in the measurement data. Table 11 shows the c and u relative errors corresponding to different noise

levels, computed by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Figure 25 shows the relative errors

for c and u as a function of the noise level ϵ for several λmea values, illustrating the effect of scaling the

measurement residual (see Remark 2.6). The computation results are observed to be quite robust to the

noise in the measurement. For example, with 10% noise (ϵ = 0.1) in the measurement, the relative errors

of c computed by these methods are generally on the level of 0.1% (see Table 11). Scaling the measurement

residual by λmea < 1 markedly improves the simulation accuracy in the presence of noise, while only slightly

degrading the accuracy for the noise-free data; see Figure 25.

NLLSQ VarPro-F1 VarPro-F2
ϵ ec l∞-u l2-u ec l∞-u l2-u ec l∞-u l2-u

0.0 1.78E-10 8.29E-8 3.23E-9 1.81E-10 8.29E-8 3.24E-9 3.49E-10 9.89E-8 5.13E-9
0.001 8.72E-6 4.91E-4 1.77E-4 8.73E-6 4.91E-4 1.77E-4 4.67E-6 6.91E-4 1.76E-4
0.005 4.37E-5 2.46E-3 8.85E-4 4.41E-5 2.46E-3 8.84E-4 2.26E-5 3.49E-3 8.80E-4
0.01 8.77E-5 4.91E-3 1.77E-3 8.81E-5 4.91E-3 1.77E-3 4.61E-5 7.00E-3 1.76E-3
0.05 4.53E-4 2.46E-2 8.84E-3 4.55E-4 2.45E-2 8.84E-3 2.49E-4 3.50E-2 8.79E-3
0.1 9.40E-4 4.92E-2 1.77E-2 9.54E-4 4.92E-2 1.77E-2 5.53E-4 6.95E-2 1.76E-2
0.5 7.35E-3 2.47E-1 8.90E-2 7.40E-3 2.47E-1 8.90E-2 5.42E-3 3.59E-1 8.86E-2
1.0 5.19E-2 5.04E-1 2.06E-1 5.19E-2 5.04E-1 2.06E-1 3.78E-2 8.03E-1 1.95E-1

Table 11: Inverse advection problem: c and u relative errors versus ϵ obtained with the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Q = 30 × 30, Qs = 100, λmea=1; Rm = 2.5 with NLLSQ
and VarPro-F1, and Rm = 2.0 with VarPro-F2.
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Figure 25: Inverse advection problem: c and u (l∞-u, l2-u) relative errors versus ϵ and λmea (scaling
coefficient of measurement residual) obtained with the NLLSQ algorithm. Single sub-domain, NN [2, 400, 1],
Q = 30× 30, Qs = 100, Rm = 2.5. These can be compared with the NLLSQ data in Table 11 for λmea=1.

Appendix D. Parametric Sine-Gordon Equation

This appendix provides a further test of the proposed method with the parametric Sine-Gordon equation.

Consider the inverse parametric Sine-Gordon equation on the domain (x, t) ∈ Ω = [0, 1]× [0, 1],

∂2u

∂t2
− α1

∂2u

∂x2
+ α2u+ α3 sin(u) = f(x, t), (68a)

u(0, t) = g1(t), u(1, t) = g2(t), u(x, 0) = h1(x),
∂u

∂t

∣∣∣∣
(x,0)

= h2(x), (68b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ Ω, 1 ⩽ i ⩽ NQs, (68c)

where f is a prescribed source term, gi (i = 1, 2) and hi (i = 1, 2) are prescribed boundary and initial

conditions, Y is the set of random measurement points, and the constants αi (i = 1, 2, 3) and the field u(x, t)

are the unknowns to be determined. We employ the following manufactured analytic solution in the tests,
αex
1 = αex

2 = αex
3 = 1,

uex(x, t) =

[
5

2
cos

(
πx− 2π

5

)
+

3

2
cos

(
2πx+

3π

10

)][
5

2
cos

(
πt− 2π

5

)
+

3

2
cos

(
2πt+

3π

10

)]
.

(69)

Accordingly, f , gi (i = 1, 2), and hi (i = 1, 2) are chosen such that the expressions in (69) satisfy (68a)–(68b).

The measurement data are given by equation (48), in which uex is given in (69). The u errors are computed

on a uniform 101 × 101 grid in each sub-domain. The notations here follow those of previous numerical

examples.

Figure 26 shows distributions of the u(x, t) solution and its point-wise absolute error in Ω obtained by

the VarPro-F2 algorithm, with 50 random measurement points (no noise). The other parameter values are

provided in the figure caption. We can observe a high accuracy in the solution, with the maximum error on

the order of 10−8 in the domain. In this simulation the relative errors for the computed α1, α2 and α3 are

2.07× 10−10, 7.54× 10−9 and 2.39× 10−8, respectively.

The convergence of the simulation results obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms

is demonstrated by the data in Table 12 and Figure 27. In these tests the number of training parameters

(M) is varied systematically (no noise in measurement), while the other simulation parameters are fixed and

their values are provided in the table/figure captions. Table 12 lists the computed αi (i = 1, 2, 3) values by

the NLLSQ algorithm corresponding to a set of M . Figure 27 lists the relative errors of α1, α2 and α3, as

well as the l∞ and l2 norms of the relative error for u(x, t), computed by NLLSQ, VarPro-F1 and VarPro-F2
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(a) (b)

Figure 26: Inverse Sine-Gordon problem: distributions of (a) the VarPro-F2 solution for u(x, t) and (b) its point-
wise absolute error, with the measurement points shown as “+” symbols in (a). Single sub-domain, NN [2, 300, 1],
Q = 25× 25, Qs = 50, Rm = 1.3, λmea=1, ϵ = 0 (no noise in measurement data).

M α1 α2 α3

50 -3.525085809204E+1 -6.376776028198E+0 6.877670126056E+1
100 1.006414746681E+0 9.536423027578E-1 1.058573631607E+0
200 1.000000694463E+0 9.999830213887E-1 1.000056517879E+0
300 9.999999995066E-1 1.000000013620E+0 9.999999510014E-1
400 1.000000000001E+0 9.999999999962E-1 1.000000000096E+0

Table 12: Inverse Sine-Gordon problem: αi (i = 1, 2, 3) versus M (number of training parameters) obtained by the
NLLSQ algorithm. Single sub-domain, NN [2,M, 1], Q = 25× 25, Qs = 100, Rm = 1.5, λmea=1, ϵ=0.

corresponding to different M . It is evident that the errors decrease exponentially with increasing number of

training parameters with these algorithms.

Figure 28 illustrates the computational cost of the three algorithms for solving the inverse Sine-Gordon

problem by showing the network training time as a function of the number of training parameters in the

same set of tests as Figure 27. The data suggest a general quasi-linear growth in the training time with

increasing number of training parameters. The VarPro-F2 algorithm is more costly than VarPro-F1, which

in turn is more costly than NLLSQ for this problem. The training time with VarPro-F1 and VarPro-F2,

especially VarPro-F2, is not quite regular. One can observe a fluctuation in the timing curves corresponding

to these methods.

The effect of noise in the measurement data on the simulation accuracy is illustrated by Tables 13

and 14 for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The relative errors of α1, α2, α3, and u(x, t)

corresponding to a range of noise levels are provided in these two tables. The other crucial simulation

NLLSQ VarPro-F1 VarPro-F2
ϵ eα1 eα2 eα3 eα1 eα2 eα3 eα1 eα2 eα3

0.0 1.93E-12 4.90E-11 1.35E-10 1.50E-12 4.42E-12 2.23E-11 3.61E-11 9.72E-10 3.02E-9
0.001 6.90E-4 2.66E-3 3.00E-3 6.88E-4 2.64E-3 3.09E-3 6.86E-4 2.63E-3 3.08E-3
0.005 3.44E-3 1.31E-2 1.45E-2 3.44E-3 1.32E-2 1.54E-2 3.43E-3 1.32E-2 1.54E-2
0.01 6.88E-3 2.63E-2 2.93E-2 6.86E-3 2.63E-2 3.08E-2 6.84E-3 2.62E-2 3.04E-2
0.05 3.38E-2 1.27E-1 1.39E-1 3.38E-2 1.30E-1 1.53E-1 3.39E-2 1.32E-1 1.60E-1
0.1 6.65E-2 2.49E-1 2.76E-1 6.65E-2 2.55E-1 3.05E-1 6.65E-2 2.57E-1 3.12E-1
0.5 2.67E-1 8.07E-1 5.90E-1 2.65E-1 7.69E-1 4.39E-1 2.66E-1 7.95E-1 5.41E-1
1.0 4.09E-1 1.01E+0 2.18E-1 4.12E-1 1.07E+0 5.43E-1 4.15E-1 1.10E+0 6.27E-1

Table 13: Inverse Sine-Gordon problem: α1, α2 and α3 relative errors versus the noise level (ϵ) obtained by the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN: [2, 400, 1], Q = 30 × 30, Qs = 50, λmea=1;
Rm = 1.5 with NLLSQ, Rm = 1.3 with VarPro-F1 and VarPro-F2;
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Figure 27: Inverse Sine-Gordon problem: relative errors of α1, α2, α3 and u (l∞-u, l2-u) versus M (number
of training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain,
NN [2,M, 1], Qs = 100, Q = 25× 25, λmea=1, ϵ=0; Rm = 1.5 with NLLSQ, Rm = 1.3 with VarPro-F1 and
VarPro-F2.
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Figure 28: Inverse Sine-Gordon problem: Network training time as a function of the number of training
parameters for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters follow
those of Figure 27.
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NLLSQ VarPro-F1 VarPro-F2
ϵ l∞-u l2-u l∞-u l2-u l∞-u l2-u

0.0 3.44E-11 4.16E-12 7.03E-11 5.01E-12 7.73E-10 1.57E-10
0.001 8.76E-4 3.71E-4 8.49E-4 3.70E-4 8.51E-4 3.69E-4
0.005 4.39E-3 1.86E-3 4.26E-3 1.85E-3 4.25E-3 1.85E-3
0.01 8.77E-3 3.71E-3 8.50E-3 3.70E-3 8.51E-3 3.70E-3
0.05 4.35E-2 1.87E-2 4.25E-2 1.87E-2 4.24E-2 1.86E-2
0.1 8.65E-2 3.78E-2 8.46E-2 3.77E-2 8.43E-2 3.76E-2
0.5 4.10E-1 1.95E-1 4.08E-1 1.95E-1 4.07E-1 1.95E-1
1.0 8.90E-1 3.83E-1 8.97E-1 3.84E-1 9.07E-1 3.86E-1

Table 14: Inverse Sine-Gordon problem: u relative errors versus ϵ obtained by the NLLSQ, VarPro-F1 and VarPro-
F2 algorithms. Simulation settings and parameters follow those of Table 13.

ϵ=0 ϵ=0.01
method eα l∞-u l2-u time(sec) eα l∞-u l2-u time(sec)

PINN (Adam) 6.31E-3 1.08E-2 3.56E-3 134.5 5.53E-3 1.03E-2 3.30E-3 130.9

current (NLLSQ) 1.66E-8 3.66E-6 2.62E-7 11.5 9.72E-4 1.76E-3 5.26E-4 10.4

Table 15: Inverse Poisson problem: relative errors of α and u and the network training time (seconds) obtained
by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Qs=100, Gaussian
activation function. In PINN, neural network [2, 30, 30, 30, 1]; 20, 000 training epochs; γbc = 0.99; learning rate
decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single
sub-domain, neural network [2, 500, 1], Rm=3.0, λmea=0.1.

parameters are provided in the caption of Table 13. The accuracy in the computation results deteriorates

as the measurement data becomes more noisy. With 1% measurement noise (ϵ = 0.01) the relative errors

of the computed αi (i = 1, 2, 3) are around 0.7 ∼ 3%, and the relative error of u (l2 norm) is around 0.4%

with the three algorithms. With 5% measurement noise (ϵ = 0.05) the relative errors of the computed αi

are around 3 ∼ 15% and the relative error of u (l2 norm) is less than 2%.

Appendix E. Comparison with PINN

This appendix provides a comparison of the simulation results obtained by the current method (NLLSQ

algorithm) and the physics-informed neural network (PINN) method [50] for several test problems. The

PINN method is also implemented in Python based on the Tensorflow and Keras libraries. The PINN loss

function consists of those contributions from the parametric PDE, the measurement, and the boundary/initial

conditions (BC/IC). Let γbc ∈ (0, 1) denote the penalty coefficient in front of the BC/IC loss term, and we

employ (1−γbc) as the penalty coefficient for the PDE and measurement loss terms. We have varied γbc, the

learning rate schedule, and the random initialization for the weights/biases of PINN systematically. PINN

is trained by the Adam optimizer. The PINN/Adam results reported below are the best we have obtained

for these problems using PINN. We have also tried the L-BFGS optimizer with PINN, and its results for

these inverse problems are quite poor and worse than the Adam results.

Tables 15 through 19 summarize the errors of the inverse parameters and the solution field, as well as the

network training time, obtained by the current and the PINN methods for the inverse Poisson, advection,

nonlinear Helmholtz, Burgers’, and the Sine-Gordon problems. The table captions provide the respective

parameter values in these simulations for the two methods. We observe that the current method produces

more accurate results than PINN for both the inverse parameters and the solution field, and that the network

training time of the current method is markedly smaller than that of PINN. For the noise-free data, the
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ϵ=0 ϵ=0.01
method ec l∞-u l2-u time(sec) ec l∞-u l2-u time(sec)

PINN (Adam) 1.18E-5 7.18E-3 7.63E-4 133.5 1.47E-4 9.15E-3 1.67E-3 134.9

current (NLLSQ) 2.32E-10 8.51E-8 4.66E-9 29.6 2.61E-5 2.85E-4 1.10E-4 39.3

Table 16: Inverse advection problem: relative errors of c and u and the network training time (seconds) obtained
by the PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Qs=100, Gaussian
activation function. In PINN, neural network [2, 30, 30, 30, 30, 1]; 20, 000 training epochs; γbc = 0.2; learning rate
decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single
sub-domain, neural network [2, 400, 1], Rm=2.5, λmea=0.1.

noise level method eα1 eα2 l∞-u l2-u training-time(sec)

ϵ = 0 PINN (Adam) 7.08E-1 2.68E-1 1.48E+0 5.65E-1 3049.2
current (NLLSQ) 5.71E-9 3.05E-7 5.98E-8 1.49E-8 10.3

ϵ = 0.01 PINN (Adam) 6.74E-1 7.76E-1 1.56E+0 6.79E-1 2742.9
current (NLLSQ) 4.34E-3 7.13E-4 5.25E-3 2.38E-3 10.0

Table 17: Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and u and the network training time
(seconds) obtained by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30,
Qs=100, Gaussian activation function. In PINN, neural network [2, 30, 30, 30, 30, 30, 30, 1]; 200, 000 training epochs;
γbc = 0.99; learning rate decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards.
In NLLSQ, single sub-domain, neural network [2, 500, 1], Rm=2.25, λmea=0.25.

current method is significantly more accurate (typically by several orders of magnitude) than PINN.

Appendix F. Parameter Values in Algorithm 7 for Numerical Tests

Section 3.1 (Parametric Poisson Equation):

For NLLSQ:

In Figure 3, Table 1, Figures 4 and 5, Tables 3 and 4: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-

8,1.0,1,0).

In Table 2: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,1.0,1,0).

For VarPro-F1:

In Figure 4 and Table 4: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,1.0,1,0).

In Figure 5: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,1.0,1,0).

In Table 2: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(100,2,1E-8,4.0,1,0).

For VarPro-F2:

In Figures 4 and 5, and Table 4: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,1.0,1,0).

In Table 2: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,1.0,1,0).

noise level method eα1 eα2 l∞-u l2-u training-time(sec)

ϵ = 0 PINN (Adam) 2.40E-4 7.26E-4 1.59E-3 2.06E-4 529.0
current (NLLSQ) 4.31E-10 2.33E-9 3.31E-9 5.86E-10 4.2

ϵ = 0.01 PINN (Adam) 1.80E-3 2.66E-3 5.65E-3 7.83E-4 540.1
current (NLLSQ) 1.12E-5 1.23E-4 9.87E-5 3.75E-5 6.4

Table 18: Inverse Burgers’ problem: relative errors of α1, α2 and u and the network training time (seconds) obtained
by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Qs=100, Gaussian
activation function. In PINN, neural network [2, 30, 30, 30, 30, 1]; 50, 000 training epochs; γbc = 0.9; learning rate
decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single
sub-domain, neural network [2, 400, 1], Rm=1.9, λmea=0.1.
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noise level method eα1 eα2 eα3 l∞-u l2-u training-time(sec)

ϵ = 0 PINN (Adam) 9.21E-3 2.30E-1 7.33E-1 1.86E-2 3.32E-3 1853.3
current (NLLSQ) 7.65E-10 4.49E-9 6.60E-9 7.97E-10 3.50E-10 23.6

ϵ = 0.01 PINN (Adam) 1.16E-2 1.35E-1 3.51E-1 1.18E-2 2.97E-3 1833.2
current (NLLSQ) 5.45E-3 2.59E-2 5.09E-3 5.76E-3 2.63E-3 30.1

Table 19: Inverse Sine-Gordon problem: relative errors of αi (i = 1, 2, 3) and u and the network training time
(seconds) obtained by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30,
Qs=100, Gaussian activation function. In PINN, neural network [2, 30, 30, 30, 30, 1]; 200, 000 training epochs; γbc =
0.99, learning rate decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In
NLLSQ, single sub-domain, neural network [2, 400, 1], Rm=1.5, λmea=0.01.

Section 3.2 (Parametric Nonlinear Helmholtz Equation):

For NLLSQ:

In Table 5, Figures 9 and 10, Table 6, Figure 12: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-

8,0.5,1,0).

For VarPro-F1:

In Figures 8, 9, 10 and 12: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,0.5,1,0).

For VarPro-F2:

In Figuress 9, 10 and 12: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,0,1E-8,0.5,1,0); max-newton-

iterations=15.

Section 3.3 (Parametric Viscous Burgers’ Equation):

For NLLSQ:

In Figure 13, Table 7, Figures 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-

8,0.5,1,0).

For VarPro-F1:

In Figures 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,1.0,1,0).

For VarPro-F2:

In Figures 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-12,1.0,0,ξ0); max-

newton-iterations=15. Here ξ0 is a uniform random vector from [-1,1].

Section 3.4 (Helmholtz Equation with Inverse Variable Coefficient):

For NLLSQ:

In Figure 18, Table 8 and Figure 19: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,1.0,1,0).

For VarPro-F1:

In Figure 19: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,0.01,1,0).

For VarPro-F2:

In Figure 19: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(50,2,1E-8,0.5,1,0).

Appendix C (Parametric Advection Equation):

For NLLSQ:

In Figures 21, 22, 23 and 25, Tables 9, 10, and 11: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,10,1E-

8,10.0,0,ϑ0).

For VarPro-F1:

In Figure 22: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,5.0,0,ϑ0).

In Figure 23 and Table 11: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(100,5,1E-8,5.0,0,ϑ0).

For VarPro-F2:
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In Figure 22: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,5.0,0,ξ0).

In Figure 23: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,1.0,1,ξ0).

In Table 11: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,1.0,1,ξ0).

In the above, ξ0 is a uniform random vector from [-1,1]. ϑ0 is a uniform random vector generated by the

lines 7 through 14 of Algorithm 7 with the δ as specified above and η = 0.

Appendix D (Parametric Sine-Gordon Equation):

For NLLSQ:

In Tables 12, 13 and 14, and Figure 27: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,5.0,0,0).

For VarPro-F1:

In Figure 27, and Tables 13 and 14: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,5.0,0,0).

For VarPro-F2:

In Figures 26 and 27, and Tables 13 and 14: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-

8,1.0,0,0); max-newton-iterations=15.

Appendix E (Comparison with PINN):

For NLLSQ:

In Table 15: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,1.0,1,0).

In Table 16: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,10,1E-8,10.0,0,ϑ0). Here ϑ0 is a uniform

random vector generated by the lines 7 through 14 of Algorithm 7 with the δ as specified here and η = 0.

In Table 17: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,0.5,1,0).

In Table 18: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,2,1E-8,0.5,1,0).

In Table 19: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0)=(80,5,1E-8,5.0,0,0).
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