Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Numerical Computation of Partial Differential Equations
by Hidden-Layer Concatenated Extreme Learning Machine

Naxian Ni - Suchuan Dong

Received: date / Accepted: date

Abstract Extreme learning machine (ELM) is a type of randomized neural net-
works originally developed for linear classification and regression problems in
the mid-2000s, and has recently been extended to computational partial differ-
ential equations (PDE). This method can yield highly accurate solutions to lin-
ear/nonlinear PDEs, but requires the last hidden layer of the neural network to
be wide to achieve a high accuracy. If the last hidden layer is narrow, the accuracy
of the existing ELM method will be poor, irrespective of the rest of the network
configuration. In this paper we present a modified ELM method, termed HLCon-
cELM (hidden-layer concatenated ELM), to overcome the above drawback of the
conventional ELM method. The HLConcELM method can produce highly accu-
rate solutions to linear /nonlinear PDEs when the last hidden layer of the network
is narrow and when it is wide. The new method is based on a type of modified
feedforward neural networks (FNN), termed HLConcFNN (hidden-layer concate-
nated FNN), which incorporates a logical concatenation of the hidden layers in the
network and exposes all the hidden nodes to the output-layer nodes. HLConcFNNs
have the interesting property that, given a network architecture, when additional
hidden layers are appended to the network or when extra nodes are added to the
existing hidden layers, the representation capacity of the HLConcFNN associated
with the new architecture is guaranteed to be not smaller than that of the original
network architecture. Here representation capacity refers to the set of all functions
that can be exactly represented by the neural network of a given architecture. We
present ample benchmark tests with linear/nonlinear PDEs to demonstrate the
computational accuracy and performance of the HLConcELM method and the
superiority of this method to the conventional ELM from previous works.

Keywords extreme learning machine - hidden layer concatenation - random
weight neural networks - least squares - scientific machine learning - random basis

Naxian Ni
Center for Computational and Applied Mathematics, Department of Mathematics, Purdue
University, USA. E-mail: nin@purdue.edu

Suchuan Dong
Center for Computational and Applied Mathematics, Department of Mathematics, Purdue
University, USA. E-mail: sdong@purdue.edu

2 Naxian Ni, Suchuan Dong

Mathematics Subject Classification (2020) 65D15 - 656M70 - 656M99 - 65N99 -
68T07

1 Introduction

This work extends our recent studies [9,10,13] of a type of random-weight neural
networks, the so-called extreme learning machines (ELMs) [30], for scientific com-
puting and in particular for computational partial differential equations (PDEs).
Specifically, we would like to address the following question:

— Can ELM achieve a high accuracy for solving linear/nonlinear PDEs on net-
work architectures with a narrow last hidden layer?

For the existing ELM method [9,10,13] (referred to as the conventional ELM
hereafter), the answer to this question is negative. The goal of this paper is to
introduce a modified method, referred to as the hidden-layer concatenated ELM
(HLConcELM), to overcome this drawback of the conventional ELM and provide
a positive answer to the above question.

Exploiting randomization in neural networks has a long history [53]. Turing’s
un-organized machine [63] and Rosenblatt’s perceptron [52] in the 1950s are early
examples of randomized neural networks. After a hiatus of several decades, there
has been a strong revival of methods based on random-weight neural networks,
starting in the 1990s [56]. In recent years randomization based neural networks
have attracted a growing interest in a variety of areas [53,20].

Since it is enormously costly and hard to optimize the entire set of adjustable
parameters in the neural network, it seems advisable if one randomly assigns and
fixes a subset of the network’s parameters so that the ensuing optimization task of
network training can be simpler, and ideally linear, without severely compromising
the network’s achievable approximation capability. This strategy underlies the
randomization of neural networks. When applied to feedforward or recurrent neural
networks, randomization leads to techniques such as the random vector functional
link (RVFL) networks [49,48,31], the extreme learning machine [29,30,26], the
echo-state network [32,43], the no-propagation network [64], and the liquid state
machine [44]. The random-weight neural networks (with a single hidden layer) are
universal function approximators. The universal approximation property of such
networks has been studied in [31,39,26,45]. The theoretical results of [31,26,45]
establish that a single hidden-layer feedforward neural network having random
but fixed (not trained) hidden nodes can approximate any continuous function
to any desired degree of accuracy, provided that the number of hidden nodes
is sufficiently large. The expected rate of convergence in the approximation of
Lipschitz continuous functions is given in [31,50,45].

ELM was originally developed in [29,30] for single hidden-layer feedforward
neural networks for linear classification/regression problems. It has since under-
gone a dramatic growth and found widespread applications in a variety of areas
(see e.g. the reviews of [27,1] and the references therein). The method is based
on two strategies: (i) randomly assigned but fixed (not trainable) hidden-layer co-
efficients, and (ii) trainable linear output-layer coefficients computed by a linear
least squares method or by using the pseudoinverse (Moore-Penrose inverse) of the
coefficient matrix [59,48, 3,23].

Hidden-Layer Concatenated ELM 3

While ELM emerged nearly two decades ago, the investigation of this technique
for the numerical solution of differential equations has appeared only quite recently,
alongside the proliferation of deep neural network (DNN) based PDE solvers in
the past few years (see e.g. [54,51,17,66,24,8,33,62,11,42,34,58,60,37,61], among
many others). In [67,57,40,41] the ELM technique has been used for solving linear
ordinary or partial differential equations (ODEs/PDEs) with single hidden-layer
feedforward neural networks, in which certain polynomials (e.g. Legendre, Cheby-
shev, or Bernstein polynomials) serve as the activation function. In [47] the ELM
algorithm is used for solving linear ODEs and PDEs on neural networks with a
single hidden layer, in which the Moore-Penrose inverse of the coefficient matrix
has been used. In [15] a physics-informed ELM method is proposed for solving lin-
ear PDEs by combining the physics-informed neural network and the ELM idea.
The neural network consists of a single hidden layer, and the Moore-Penrose in-
verse is employed to solve the resultant linear system. Interestingly, the authors
set the number of hidden nodes to be equal to the total number of conditions in
the problem. A solution strategy based on the normal equation associated with
the linear system is studied in [16].

The ELM approach is extended to the numerical solution of nonlinear PDEs
in [9] on local or global feedforward neural networks with a single or multiple hid-
den layers. A nonlinear least squares method with perturbations (NLLSQ-perturb)
and a Newton-linear least squares (Newton-LLSQ) method are developed for solv-
ing the resultant nonlinear algebraic system for the output-layer coefficients of
the ELM neural network. The NLLSQ-perturb algorithm therein takes advantage
of the nonlinear least squares implementation from the scipy library, which im-
plements a Gauss-Newton type method combined with a trust-region strategy.
A block time marching (BTM) scheme is proposed in [9] for long-time dynamic
simulations of linear and nonlinear PDE problems, in which the temporal dimen-
sion (if large) is divided into a number of windows (called time blocks) and the
PDE problem is solved on the time blocks individually and successively. More im-
portantly, a systematic comparison of the accuracy and the computational cost
(network training time) between the ELM method and two state-of-the-art deep
neural network (DNN) based PDE solvers, the deep Galerkin method (DGM) [54]
and the physics-informed neural network (PINN) method [51], has been conducted
in [9], as well as a systematic comparison between ELM and the classical finite
element method (FEM). The comparisons show that the ELM method far outper-
forms DGM and PINN in terms of the accuracy and the computational cost, and
that ELM is on par with the classical FEM in computational performance and
outperforms the FEM as the problem size becomes larger. In [9] the hidden-layer
coefficients are set to uniform random values generated on [— R, Rm], where Ry,
is a user-prescribed constant. The results of [9] show that the Ry value has a
strong influence on the numerical accuracy of the ELM results and that the best
accuracy is associated with a range of moderate R;, values for a given problem.
This is consistent with the observation for classification problems [71].

A number of further developments of the ELM technique for solving linear and
nonlinear PDEs appeared recently; see e.g. [10,6,21,13,18], among others. In or-
der to address the influence of random initialization of the hidden-layer coefficients
on the ELM accuracy, a modified batch intrinsic plasticity (modBIP) method is
developed in [10] for pre-training the random coefficients in the ELM network.
This method, together with ELM, is applied to a number of linear and nonlinear

4 Naxian Ni, Suchuan Dong

PDEs. The accuracy of the combined modBIP/ELM method has been shown to be
insensitive to the random initializations of the hidden-layer coefficients. In [6] the
authors have presented a method for solving one-dimensional linear elliptic PDEs
based on ELM with single hidden-layer feedforward neural networks and the sig-
moid activation function. The random parameters in the activation function are
set based on the location of the domain of interest and the function derivative
information. In [21] the authors present a method based on randomized neural
networks with a single hidden layer for solving stiff ODEs. The time integration
therein appears to be similar to the block time marching strategy [9], but with an
adaptation on the time block sizes. It is observed that the presented method is
advantageous over the stiff ODE solvers from MatLab. Noting the influence of the
maximum random-coefficient magnitude (i.e. the Ry, constant) on the ELM accu-
racy as shown by [9], in [13] we have presented a method for computing the optimal
Ry, in ELM based on the differential evolution algorithm, as well as an improved
implementation for computing the differential operators of the last hidden-layer
data. These improvements significantly enhance the ELM computational perfor-
mance and dramatically reduce its network training time as compared with that
of [9]. The improved ELM method is compared systematically with the traditional
second-order and high-order finite element methods for solving a number of linear
and nonlinear PDEs in [13]. The improved ELM far outperforms the second-order
FEM. For smaller problem sizes it is comparable to the high-order FEM in perfor-
mance, and for larger problem sizes the improved ELM outperforms the high-order
FEM markedly. Here, by “outperform” we mean that one method achieves a bet-
ter accuracy under the same computational cost or incurs a lower computational
cost to achieve the same accuracy. In [18] an ELM method is presented for the
numerical solution of stationary nonlinear PDEs based on the sigmoid and radial
basis activation functions. The authors observe that the ELM method exhibits a
better accuracy than the finite difference method and the FEM. Another recent
development related to ELM is [12], in which a method based on the variable pro-
jection strategy is proposed for solving linear and nonlinear PDEs with artificial
neural networks. For linear PDEs, the neural-network representation of the PDE
solution leads to a separable nonlinear least squares problem, which is then refor-
mulated to eliminate the output-layer coefficients, leading to a reduced problem
about the hidden-layer coefficients only. The reduced problem is solved first by the
nonlinear least squares method to determine the hidden-layer coefficients, and the
output-layer coefficients are then computed by the linear least squares method [12].
For nonlinear PDEs, the problem is first linearized by the Newton’s method with
a particular linearization form, and the linearized system is solved by the vari-
able projection framework together with neural networks. The ELM method can
be considered as a special case of the variable projection, i.e. with zero iteration
when solving the reduced problem for the hidden-layer coefficients [12]. It is shown
in [12] that the variable projection method exhibits an accuracy significantly su-
perior to the ELM under identical conditions and network configurations.

As has been shown in previous works [9,10,13], ELM can produce highly ac-
curate results for solving linear and nonlinear PDEs. For smooth field solutions
the ELM errors decrease exponentially as the number of training data points or
the number of training parameters in the neural network increases, and the errors
can reach a level close to the machine zero when the number of degrees of freedom
becomes large. To achieve a high accuracy, however, the existing ELM method

Hidden-Layer Concatenated ELM 5

requires the number of nodes in the last hidden layer of the neural network to be
sufficiently large [9]. Therefore, the ELM network usually has a wide hidden layer
in the case of a shallow neural network, or a wide last hidden layer in the case of
deeper neural networks. If the last hidden layer contains only a small number of
nodes, the results computed with the existing (conventional) ELM will tend to be
poor in accuracy, regardless of the configuration with the rest of the network.

In this paper, we focus on feedforward neural networks (FNNs) with multi-
ple hidden layers, and present a modified ELM method (termed HLConcELM) for
solving PDEs to overcome the above drawback associated with conventional ELM.
The HLConcELM method can produce accurate solutions to linear/nonlinear
PDEs when the last hidden layer of the network is narrow, and when the last
hidden layer is wide.

The new method is based on a type of modified feedforward neural networks,
referred to as hidden-layer concatenated FNN (or HLConcFNN) herein, which in-
corporates a logical concatenation of the hidden layers so that all the hidden nodes
are exposed to and connected with the nodes in the output layer (see Section 2 for
details). The HLConcFNNs have the interesting property that, given a network
architecture, when additional hidden layers are appended to the neural network
or when extra nodes are added to the existing hidden layers, the representation
capacity of the HLConcFNN associated with the new architecture is guaranteed to
be not smaller than that associated with the original network architecture. Here
by representation capacity we refer to the set of all functions that can be exactly
represented by the neural network (see Section 2 for the definition). In contrast,
conventional FINNs do not have a parallel property when additional hidden layers
are appended to the network.

The HLConcELM is attained by assigning (and fixing) the weight/bias coef-
ficients in the hidden layers of the HLConcFNN to random values, and allowing
the connection coefficients between all the hidden nodes and the output nodes to
be adjustable (trainable). More specifically, given a network architecture with L
hidden layers, we set the weight/bias coefficients of the I-th (1 < I < L) hidden
layer to uniform random values generated on the interval [—R;, R;], where R; is a
constant. The vector of R; constants (referred to as the hidden magnitude vector
herein), R = (R1, Ra, ..., Rp), influences the accuracy of HLConcELM, and in this
paper we determine the optimal R using the method from [13] based on the dif-
ferential evolution algorithm. HLConcELMs partially inherit the non-decreasing
representation capacity property of HLConcFNNs. For example, given a network
architecture, when extra hidden layers are appended to the network, the represen-
tation capacity of the HLConcELM associated with the new architecture will not
be smaller than that associated with the original architecture, provided that the
random hidden-layer coefficients for the new architecture are assigned in an ap-
propriate fashion. On the other hand, when extra nodes are added to the existing
hidden layers, HLConcELMs in general do not have a parallel non-decreasing prop-
erty with regard to its representation capacity, because of the randomly assigned
hidden-layer coefficients.

The exploration of neural-network architecture has been actively pursued in
machine learning research, and the connectivity patterns are the focus of a number
of research efforts. Neural networks incorporating shortcut connections (concate-
nations) between the input nodes, the hidden nodes, and the output nodes are
explored in e.g. [28,65,7,36,19] (among others). The hidden-layer concatenated

6 Naxian Ni, Suchuan Dong

neural network adopted in the current paper can be considered in spirit as a sim-
plification of the connection patterns in the DenseNet [28] architecture, and it is
similar to the deep RVFL architecture of [36] but without the connection between
the input nodes and the output nodes. We note that these previous works are
for image and data classification problems, while the current work focuses on sci-
entific computing and in particular the numerical solutions of partial differential
equations.

We present extensive numerical experiments with linear and nonlinear PDEs to
test the performance of the HLConcELM method and compare this method with
the conventional ELM method. These benchmark tests demonstrate unequivocally
that HLConcELM can achieve highly accurate results when the last hidden layer
in the neural network is narrow or wide, and that it is much superior in accuracy
to the conventional ELM. The implementation of the current method is in Python
and employs the Tensorflow (www.tensorflow.org), Keras (keras.io), and the scipy
libraries. All the benchmark tests are performed on a MAC computer (3.2GHz
Intel Core i5 CPU, 24GB memory) in the authors’ institution.

The contribution of this work lies in two aspects. The first one lies in the
HLConcELM method for solving linear and nonlinear PDEs. The other aspect is
with regard to the non-decreasing representation capacity of HLConcFNNs when
additional hidden layers are appended to an existing network architecture. To the
best the authors’ knowledge, this property seems unknown to the community so
far. Bringing this property into collective consciousness can be another contribu-
tion of this paper.

The rest of this paper is organized as follows. In Section 2 we discuss the struc-
tures of HLConcFNNs and HLConcELMs, as well as their non-decreasing repre-
sentation capacity property when additional hidden layers are appended to an ex-
isting architecture. We then develop the algorithm for solving linear and nonlinear
PDEs employing the HLConcELM architecture. In Section 3 we present extensive
benchmark examples to test the current HLConcELM method and compare its
performance with that of the conventional ELM. Section 4 concludes the presen-
tation with several further comments about the presented method. In Appendix A
we provide constructive proofs to the theorems from Section 2 concerning the rep-
resentation capacity of HLConcFNNs and HLConcELMs. Appendix B summarizes
a study of different activation functions with the HLConcELM method. Appendix
C provides further comparisons between HLConcELM and conventional ELM un-
der the setting that the number of trainable parameters is maintained to be the
same in both methods. Further tests of the HLConcELM method are documented
in Appendix D for the Laplace equation around a reentrant corner, in Appendix E
for the Kuramoto-Sivashinsky equation, in Appendix F for the Shrodinger equa-
tion, and in Appendix G for the two-dimensional advection equation.

2 Hidden-Layer Concatenated Extreme Learning Machine
2.1 Conventional ELM and Drawback
The ELM method with feedforward neural networks (FNN) for solving linear and

nonlinear PDEs has been described in e.g. [9,10,13]. Figure 1(a) illustrates such
a network containing three hidden layers. From layer to layer, the arrow in the

Hidden-Layer Concatenated ELM 7

uappry |

(O
concate output

—() —»
output -
nation
(a) (b)

Fig. 1 Illustration of neural network structure (with 3 hidden layers): (a) conventional FNN,
and (b) hidden-layer concatenated FNN (HLConcFNN). In HLConcFNN all the hidden nodes
are exposed to the output nodes, while in conventional FNN only the last hidden-layer nodes
are exposed to the output nodes.

T# 19Ke] uappry
¢# JoKe[uappIy

=3
a
o
19

5

=
<

o

g

It

1# 10Ke] uoppIy
T# 1oAe] uoppiy

)
<
o
=
FH
w

sketch represents the usual FNN logic, an affine transform followed by a function
composition with an activation function [22]. For ELM we require that no activa-
tion function be applied to the output layer and that the output layer contain no
bias. So the output layer is linear and has zero bias. This requirement is adopted
throughout this paper.

As discussed in [9], we pre-set the weight/bias coefficients in all the hidden
layers to random values and fix these values once they are assigned. Only the
weight coefficients of the output layer are trainable. The hidden-layer coefficients
in the neural network are not trainable with ELM.

To solve a given linear or nonlinear PDE with ELM, we first enforce the PDE
and the associated boundary/initial conditions on a set of collocation points in the
domain or on the appropriate domain boundaries. This gives rise to a linear least
squares problem for linear PDEs, or a nonlinear least squares problem for nonlinear
PDEs, about the output-layer coefficients (trainable parameters) of the neural
network [9]. We solve this least squares problem for the output-layer coefficients
by a linear least squares method for linear PDEs and by a nonlinear least squares
method for nonlinear PDEs [9].

ELM can produce highly accurate solutions to PDEs. In particular, for smooth
solutions its errors decrease exponentially as the number of collocation points or
the number of trainable parameters (the number of nodes in the last hidden layer)
increases [9,10]. In addition, it has a low computational cost (network training
time) [9,13].

Hereafter we refer to a vector or a list of positive integers as an architectural
vector (denoted by M),

architectural vector: M = [Mo, M1,...,Mp_1, Mp] (1)

where (L + 1) is the dimension of the vector with L > 2, and M; (0 < i < L)
are positive integers. We associate a given M to the architecture of an FNN with
(L 4 1) layers, where M; (0 < i < L) is the number of nodes in the i-th layer. The
layer 0 and the layer L represent the input and the output layers, respectively.
The layers in between are the hidden layers.

Despite its high accuracy and attractive computational performance, certain
aspect of the ELM method is less appealing and remains to be improved. One
particular aspect in this regard concerns the size of the last hidden layer of the
ELM network. ELM requires the last hidden layer of the neural network to be
wide in order to achieve a high accuracy, irrespective of the sizes of the rest of

8 Naxian Ni, Suchuan Dong

6

5

4

3

2

1

06 °
1

2

> 3
4

5

04 M
7

8

9

1

1

Fig. 2 Illustration of error characteristics of conventional ELM (Poisson equation): Dis-
tributions of (a) the exact solution, (b) the ELM error obtained with the architecture
M; = [2, 300, 30, 1], and (c) the ELM error obtained with the architecture My = [2, 300, 400, 1].

the network architecture. If the last hidden layer contains only a small number of
nodes, the ELM accuracy will be poor even though the preceding hidden layers
can be wide enough. This point is illustrated by Figure 2, which shows the ELM
results for solving the two-dimensional (2D) Poisson equation on a unit square.
Figure 2(a) shows the distribution of the exact solution. Figures 2(b) and (c) show
the ELM error distributions obtained using two network architectures given by
[2,300,30,1] and [2, 300,400, 1], respectively, under otherwise identical conditions.
Both neural networks have the Gaussian activation function o(z) = e for all the
hidden nodes, and are trained on a uniform set of 21 x 21 collocation points. The
only difference between them is the size of the last hidden layer. With 400 nodes
in the last hidden layer the ELM solution is highly accurate, with the maximum
error on the order 10~7 in the domain. With 30 nodes in the last hidden layer, on
the other hand, the ELM solution exhibits no accuracy at all, with the maximum
error on the order of 102, despite the fact that the first hidden layer is fairly large
(containing 300 nodes). With the existing ELM method, only the last hidden-layer
nodes directly contribute to the the output of the neural network, while the nodes
in the preceding hidden layers do not directly affect the network output. In other
words, with the existing ELM, all the degrees of freedom provided by the nodes
in the preceding hidden layers are to some extent “wasted”.

Can one achieve a high accuracy even if the last hidden layer is narrow in the
ELM network? Can we take advantage of the degrees of freedom provided by the

Hidden-Layer Concatenated ELM 9

hidden nodes in the preceding hidden layers with ELM? These are the questions
we are interested in and would like to address in the current work.

The above drawback of the existing ELM method, which will be referred to as
the conventional ELM hereafter, motivates the developments in what follows. We
present a modified ELM method to address this issue and discuss how to use the
modified method for numerical simulations of PDEs.

2.2 Modifying ELM Neural Network with Hidden-Layer Concatenation

To address the aforementioned drawback, we consider a type of modified FNNs for
ELM computation. The idea of the modified network is illustrated in Figure 1(b)
using three hidden layers as an example.

The main strategy here is to expose all the hidden nodes in the neural network
to the output-layer nodes. Starting with a standard FNN, we incorporate a logical
concatenation layer between the last hidden layer and the output layer. This logical
layer concatenates the output fields of all the hidden nodes, from the first to the last
hidden layers, in the original network architecture. From the logical concatenation
layer to the output layer a usual affine transform, together with possibly a function
composition with an activation function, is performed to attain the output fields
of the overall neural network. Note that the logical concatenation layer involves
no parameters.

Hereafter we refer to this type of modified neural networks as the hidden-
layer concatenated FNN (HLConcFNN), and the original FNN as the base neural
network. Thanks to the logical concatenation, in HLConcFNN all the hidden nodes
in the base network architecture are connected with the output nodes.

One can also include the input fields in the logical concatenation layer. Numeri-
cal experiments show that, however, there is no advantage in terms of the accuracy
when the input fields are included. In the current paper we do not include the input
fields in the concatenation.

Let us next use a real-valued function of d (d > 1) variables, u(x) (x € 22 ¢ RY),
represented by a HLConcFNN to illustrate some of its properties. Consider a
HLConcFNN, whose base architecture is given by M in (1), where My = d and
M = 1. The d input nodes represent the d components of x = (z1,z2,...,zq),
and the single output node represents the function u(x). Let o : R — R denote the
activation function for all the hidden nodes. As stated before, we require that no
activation function be applied to the output node and that it contain no bias.

Let) (x) = <¢gi)(x)7...,¢5\2 (x)), 1 < i < L -1, denote the M; output
fields of the i-th hidden layer. The logical concatenation layer contains a total of
Ne(M) = ZlL:_ll M; logical nodes. Then we have the following expansion relation,

L—1 M;) L—1 ,
ux) =3 B0 (x) = > 8V (x)8] = a(x)8", (2)
i=1 j=1 i=1

where 8;; (1 <4< L—1,1<j<M;) denotes the weight coefficient of the output
layer, i.e. the connection coefficient between the output node and the j-th hidden

10 Naxian Ni, Suchuan Dong

node in the i-th hidden layer, and
ﬂi = (5i175i23"'75iMi)7
B=(B1,B2,...,Br-1) = (B11,-- -, Binsy B2ty -, BL—1,Mm5 1) (3)
L— 1 1 2 L—1
&= (qs<1>,qs(2),...,4s< 1>) - (¢§ e, g>,...,¢<ML73).

The logic from layer (i — 1) to layer 4, for 1 < i < L — 1, represents an affine
transform followed by a function composition with the activation function,

M; 1
60 x) = [D o Vw07 |, 1<) <M, w
k=1 4

3V (x) =0 (qs(i—l)(x)w(“ + b“)) .

In the above equation, the constants w,(zj) (1 <k< Mi_q,1<j< M) are the
weights and by) (1 < j < M;) are the biases of layer 4, and

wO=ud] 0= (o e). 5
i— i 5

30 (x) = (o7, 0{”,...,0(})) =x

Define ' . .
0) = flatten [W(z),bm} , 1<i<L—-1, (6)
6
=010 . ol V)= (01,02,...,0n,),

where “flatten” denotes the operation to reshape and combine a list of matrices or
vectors into a single vector, and Ny (M) = ZiL:_ll (M;_1 4 1)M;. Here 89 denotes
the vector of weight/bias coefficients of layer ¢ for 1 < ¢ < L — 1, 8 denotes the
vector of weight/bias coefficients in all the hidden layers, and N is the total
number of hidden-layer coefficients in the neural network.

The output field of the neural network depends on (8, 3), and the output fields
of each hidden layer depend on 6. To make these dependencies more explicit, we
re-write equation (2) into

L—1 M;) L—1]
u(0,8,x) = > Bi0(0.x) =Y 8D (0,x)8] =o(0.x)8", (7)
i=1 j=1 i=1

where &, 9, 8; and B are defined in (3).

A hidden-layer concatenated FNN is characterized by the architectural vector
of the base network and the activation function. Given the architectural vector M
and an activation function o, let HLConcFNN(M, o) denote the associated hidden-
layer concatenated neural network. For a given domain 2 C R?, an architectural
vector M = (Mo, M1, ..., M) with My = d and M = 1, and an activation function
o(-), we define

U(2,M,0) ={u(0,8,x) | w(0,8,x) is the output of HLConcFNN(M, o),
x€ N, RV, ,BGRNC} (8)

Hidden-Layer Concatenated ELM 11

as the collection of all possible output fields of this HLConcENN(M, o). U(£2, M, o)
denotes the set of all functions that can be exactly represented by this HLConcFNN(M, o)
on (2. Hereafter we refer to U(£2,M, o) as the representation capacity of the
HLConcFNN(M, o) for the domain (2.

Remark 1 It should be noted that U(£2, M, o) as defined by (8) is not a linear space,
for the simple fact that it is not closed under addition because of the nonlinear
parameters 6.

The HLConcFNNs have an interesting property. If one appends extra hidden
layers to the network architecture, or adds nodes to any of the existing hidden
layers, the representation capacity of the resultant HLConcFNN is at least as
large as that of the original one. On the other hand, conventional FNNs lack
such a property when additional hidden layers are appended to the architecture.
Specifically, we have the following results.

Theorem 1 Given an architectural vector M1 = (mo,m1,...,mp_1,mp) withmyp =
1, define a new vector Mo = (mo,m1,...,mp_1,n,mp), where n > 1 is an integer.
For a given domain 2 C R™° and an activation function o(-), the following relation
holds

U(2,M1,0) CU(2,Maz,0), (9)
where U is defined in (8).
Theorem 2 Given an architectural vector M1 = (mo,m1,...,mp) with mp = 1,
define a new vector Ma = (mo,m1,...,ms—1,ms+1,ms11,...,mp) for some s (1 <

s < L—1). For a given domain 2 C R™° and an activation function o(-), the following
relation holds

U(£2,M1,0) C U(£2,M2,0), (10)
where U is defined in (8).

These properties can be shown to be true by simple constructions, which are
quite straightforward to devise. Risking on the side of naivety, we still include the
constructive proofs for these two theorems in an Appendix of this paper for the
benefit of a skeptical reader.

It should be noted that for conventional FNNs the relation given by (10) is true,
but the relation given by (9) does not hold. Relation (9) is true for HLConcFNNs
thanks to the concatenation of hidden layers in such networks.

Suppose we start with a base neural network architecture My and generate
a sequence of architectures M; (i > 1), with each one obtained either by adding
extra nodes to the existing hidden layers of or by appending additional hidden
layers to the previous architecture. Then based on the above two theorems the
HLConcFNNs associated with this sequence of architectures exhibit a hierarchi-
cal structure, in the sense that the representation capacities of this sequence of
HLConcFNNs do not decrease, namely

U(£2,Mo,0) CU(2,M1,0) C -+ C U(2,Mp,0) C - . (11)

If the activation function o(-) is nonlinear, the representation capacities of this
sequence of HLConcFNNs should strictly increase.

Remark 2 If the number of nodes in the output layer of the HLConcFNN is more
than one, the relations given by Theorems 1 and 2 about the representation ca-
pacities equally hold.

12 Naxian Ni, Suchuan Dong

Hidden-Layer Concatenated Extreme Learning Machine (HLConcELM) Let us next com-
bine the hidden-layer concatenated FNN with the idea of ELM. We adopt HLCon-
c¢FNNs as the neural network for the ELM computation. We pre-set (and fix) all
the weight/bias coefficients in the hidden layers (i.e. 8) of the HLConcFNN to
random values, and train/compute the output-layer coefficients (i.e. 3) by a linear
or nonlinear least squares method. We will refer to the resultant method as the
hidden-layer concatenated extreme learning machine (HLConcELM).

Given an architectural vector M, an activation function o(-), and the randomly
assigned values for the hidden-layer coefficients 6, let HLConcELM (M, o, 8) denote
the associated hidden-layer concatenated ELM. For a given domain 2 C R% a
vector M = (Mo, My, ..., My) with My = d and My, = 1, and given 8 € RV» and
o, we define

U(2,M,0,0) ={u(8,8,x) | u(0,3,x) is the output of HLConcFNN(M, o),
xen, Be RNc} (12)

as the set of all possible output fields of HLConcELM(M, o,0) on {2, where N
denotes the total number of the output-layer coefficients. Hereafter we refer to
U(£2,M,0,0) as the representation capacity of the HLConcELM(M, o, 0). Note
that U(£2, M, o, 0) forms a linear space.

Analogous to Theorem 1, when one appends hidden layers to a given network
architecture, the representation capacity of the HLConcELM associated with the
resultant architecture will be at least as good as that associated with the original
one, on condition that the random hidden-layer coefficients of the new HLCon-
cELM are set appropriately. On the other hand, if one adds extra nodes to a
hidden layer (other than the last one) of a given architecture, there is no analo-
gous result to Theorem 2 for HLConcELM, because the hidden-layer coefficients
in ELM are randomly set. Specifically, we have the following result.

Theorem 3 Given an architectural vector My = (mg, m1,...,mp_1,mp) withmp =
1, define a new vector Mo = (mo,m1,...,mp_1,n,mp), where n > 1 is an integer.
Let @ € RV"t and 9 € RV denote two random vectors, with the relation 9[1 : Np,] =
O[1 : Np1], where Ny = ZiL:_ll(mi_l + 1)m; and Npg = Npy + (mp_1 + 1)n. Fora
gwen domain 2 C R™ and an activation function o(-), the following relation holds

U(97M1707 0) g U(07M27U719)7 (13)
where U is defined in (12).

By 9[1 : Npi] = O[1 : Np;] we mean that the first Np; entries of ¥ and 6 are
the same. Because of this condition, the random bases for U(§2, M2, o,9) would
contain those bases for U (2, M1, o, 0), giving rise to the relation (13). For the sake
of completeness we have included a proof of Theorem 3 in Appendix A. It should
be noted that conventional ELMs lack a comparable property as expressed by the
relation (13).

In the current paper we set the random hidden-layer coefficients 8 in HLCon-
cELM in the following fashion. Given an architectural vector M = (mg, m1,...,mp_1,mr),
let £ € RV be a random vector generated on the interval [~1,1] from a uniform
distribution, where N; = Zf;ll (mi—1 + 1)m;. Once generated, ¢ will be fixed
throughout the computation for the given architecture M. We next partition £ into

Hidden-Layer Concatenated ELM 13

(L—1) sub-vectors, &€ = (&1,&2,...,€1_1), with & having a dimension (m;_1+1)m;
for 1 <i<L-—1 Let R=(R1,Ra,...,Rr_1) denote (L — 1) constants. We then
set 6 in HLConcELM for the given architecture M to

6(M, R, &) = flatten [R1&1, Roa, ..., R, —1€1-1], (14)

where “flatten” concatenates the list of vectors into a single vector.

Hereafter we refer to the above vector R = (R1,..., Rr_1) as the hidden mag-
nitude vector for the network architecture M. When assigning random hidden-
layer coefficients as described above, we have essentially set the weight /bias coeffi-
cients in the i-th hidden layer to uniform random values generated on the interval
[—|Ri|,|R;|], where R; is the i-th component of R, for 1 < i < L — 1. The con-
stant |R;| denotes the maximum magnitude of the random coefficients for the i-th
hidden layer.

The constants R; (1 < ¢ < L—1) are the hyperparameters of the HLConcELM.
The idea of generating random coefficients for different hidden layers with different
maximum magnitudes is first studied in [13] for conventional feedforward neural
networks, and a method based on the differential evolution algorithm is developed
therein for computing the optimal values of those magnitudes. In the current work,
for a given PDE problem, we use the method of [13] to compute the optimal (or
near-optimal) hidden magnitude vector R*, and employ R = R* in HLConcELM
for the simulations.

Hereafter we use HLConcELM(M, o, R, £) to denote the hidden-layer concate-
nated ELM characterized by the architectural vector M, the activation function
o(+), the randomly-assigned but fixed vector £ on [—1, 1], and the hidden magnitude
vector R. According to Theorem 3, when additional hidden layers are appended
to a given HLConcELM(M, 0, R, £), the representation capacity of the resultant
HLConcELM will not be smaller than that of the original one, if the vectors R
and ¢ of the resultant network are set appropriately.

2.3 Solving linear /nonlinear PDEs with Hidden-Layer Concatenated ELM

We next discuss how to use the hidden-layer concatenated ELM for the numerical
solution of PDEs. Consider a domain £2 ¢ R? and the following boundary value
problem on this domain,

Lu+ F(u) = f(x), x€ £, (15a)
Bu+ G(u) = g(x), x € 912 (15b)

In these equations u(x) is the field function to be solved for. £ is a linear differ-
ential operator. F(u) is a nonlinear operator acting on u and also possibly on its
derivatives. Equation (15b) represents the boundary conditions, where B is a linear
differential or algebraic operator. The boundary condition may possibly contain
some nonlinear operator G(u) acting on u and also possibly on its derivatives. If
both F(u) and G(u) are absent the problem becomes linear. We assume that this
problem is well-posed.

In addition, we assume that £ may possibly include time derivatives (e.g. %,

68—:2). In this case, problem (15) becomes time-dependent, and we will treat the
time variable ¢ in the same way as the spatial coordinate x and consider ¢ as the

14 Naxian Ni, Suchuan Dong

last dimension in d dimensions. We require that the equation (15b) should include
appropriate initial condition(s) for such a case. So the problem (15) may refer to
time-dependent cases, which will not be distinguished in the following discussions.

We represent the solution field u(x) by a hidden-layer concatenated ELM
from the previous subsection. Consider a network architecture given by M =
(mo,m1,...,mr), where mg = d and my = 1, and an activation function o(-). We
use the HLConcFNN(M, o) to represent the solution field u(x) (see Figure 1(b)).
Here the d input nodes represent x, and the single output node represents u(x). The
activation function o is applied to all the hidden nodes in the network. As noted
before, we require that the output layer should contain no activation function and
have zero bias. With a given hidden magnitude vector R = (R, R2,..., R, _1) and
a randomly generated vector £ € RV on [—1,1], where N, = ZiL:_ll(mi_l + 1)my,
we set and fix the random hidden-layer coefficients according to equation (14).

Under these settings, the output field of the neural network is given by equa-
tion (2). Substituting this expression for u(x) into the system (15), we have

L—1 m;) L—1 m;)

S 8 [P+ P Y 8yl 0 | =), xe@, (16a)
i=1 j=1 i=1 j=1

L—1 m;) L—1 m;)

>3 8 B+ [DD 8uel(x) | =g(x), xeo2, (16b)
i=1 j=1 i=1 j=1

where gb;i) (x) (1 <i<L-1,1<j < m;) denotes the output field of the j-th
node in the i-th hidden layer, and 8;; (1 <i< L -1, 1< j < m;) are the weight
coefficients in the output layer of the HLConcELM. It should be noted that, since
the hidden-layer coefficients are randomly set but fixed, ¢>;.Z) (x) are random but
fixed functions. The coefficients 3;; are the trainable parameters in HLConcELM.

We next choose a set of Q (Q > 1) points on (2, referred to as the collocation
points, which can be regular grid points, random points, or chosen based on some
other distribution. Among these points we assume that Qp (1 < Q, < Q — 1)
points reside on the boundary 92 and the rest are from the interior of 2. Let X
denote the set of all the collocation points, and X, denote the set of the boundary
collocation points.

We enforce the equation (16a) on all the collocation points from X, and enforce
the equation (16b) on all the boundary collocation points from X,. This leads to

L—1 m;) L-1m; .
SN 6 26)|+ F [D03 86 (x0) | = 6)s xpE X, 1<p<Q;
i=1 j=1 i=1 j=1

(17a)
L—1 m;) L—1 m;)
S8 (B x| 4G [3D ol (xa) | =a(xa), xq € Koy 1<a< Qe
i=1 j=1 i=1 j=1

(17b)

This is a system of (Q + @Qp) nonlinear algebraic equations about N, = ZiL;ll m;

unknowns, ;;. The differential operators involved in these equations, such as

Hidden-Layer Concatenated ELM 15

L6 (xp), B\ (xq), F(u(xp)) and G(u(x,)) where u(xp) = 315" Y0 B0\ (xp),
can be computed by using automatic differentiation of the neural network

The system (17) is a rectangular system, in which the number of equations
and the number of unknowns are not the same. We seek a least squares solution
to this system. This is a nonlinear least squares problem, and it can be solved
by the Gauss-Newton method together with the trust region strategy [46]. Several
quality implementations of the Gauss-Newton method are available from the scien-
tific libraries. In this work we employ the Gauss-Newton implementation together
with a trust region reflective algorithm [4,5] from the scipy package in Python
(scipy.optimize.least_squares) to solve this problem. We refer to the method im-
plemented in this scipy routine as the nonlinear least squares method in this paper.

The nonlinear least squares method requires two procedures for solving the
system (17), one for computing the residual of this system and the other for com-
puting the Jacobian matrix for a given arbitrary 8;; (1 <i< L —1,1<j < my).
For a given arbitrary B (see (3)), the residual r(8) € RQ+Qb is given by

r(8) = (r1(8),r2(8)),
r1(B8) = (r11,712,-..,71Q), r2(B) = (r21,722,...,720,);
L—1 m; L—1 m;)
Tip = Z Zﬂz] |: ¢(’L) Xp)] + F Z ZBZJQSgZ) (XP) - f(XP)7
i=1 j=1 i=1 j=1
= ! (18)
L—1 m;) L-1mi)
rag= 33 Big B (xa)| + @ | 30 3 Biy0f” (xa) | —9loxa)
i=1 j=1 i=1 j=1
X €Xp, 1<qg< Q.
The Jacobian matrix @ € R(@+Qu)XNe i given by,
ory
or _ [gﬁ‘ :
d s ’
A (Q+Qp)XNe
or1 _ [arlp} Ory _ |:(9T2qi|)
08 ~ L%iilgxn.” 0B~ L9Pilg,xn.’
or
a5 = L0 (o) + F'u(0))8 (o), xp €, (19)
)
1<p<@, 1<i<L-1, 1<j<my;
Ora i i
e Bo\ (xq) + G (u(x¢))0%" (xq), x4 € X,
1<g<Qy, 1<i<L—1, 1<7<my;

where u(xp) is computed based on equation (2). The F’(u) and G’(u) terms denote
the derivatives with respect to u, and may represent the effect of an operator. For
example, the nonlinear function F(u) = uau (as in the Burgers’ equation) leads
to F'(u)p = ¢+ ul2

Therefore, to solve the problem (15) by HLConcELM, the input training data
(denoted by X) to the neural network is a @ xd matrix, consisting of the coordinates

16 Naxian Ni, Suchuan Dong

of all the collocation points, X = [xp]Qxd (for all x, € X). The output data

(denoted by U) of the neural network is a Q x my, matrix, representing the field
solution u(x) on the collocation points, U = [u(xp)]QXmL . The output data of
the logical concatenation layer (denoted by ¥) of the HLConcELM is a Q x N¢
matrix given by ¥ = [45(9, xp)} OxN. " It represents the output fields of the all the
hidden nodes on all the collocation points. Here N, denotes the total number of
hidden nodes in the network, and 6 denotes the random hidden-layer coefficients
given by (14). The relation (7) is translated into, in terms of the neural-network
data,

U=wgT, (20)

where 3 denotes the output-layer coefficients given by (3).

Remark 3 The output data of the logical concatenation layer ¥ can be computed
by a forward evaluation of the neural network (for up to the logical concate-
nation layer) on the input data X. In our implementation we have created a
Keras sub-model with the input layer as its input and the logical concatenation
layer as its output. By evaluating this sub-model on the input data we can at-
tain the output data for all the hidden nodes on the collocation points. The first
and higher derivatives of ¥ with respect to X are computed by a forward-mode
auto-differentiation, implemented by the “Forward Accumulator” in the Tensorflow
library. This forward-mode auto-differentiation is crucial for the computational
performance, because the total number of hidden nodes (N¢) in HLConcELM is
typically much larger than the number of input nodes (d). The differential oper-
ators on the output fields of the hidden nodes involved in (18) and (19), such as
£6$ (xp) (xp € X), Bo (xq) (xq € Xp) and F'(u(xp))¢\" (x), can be computed
based on or extracted from ¥ and its derivatives with respect to X. Once ¥ is
attained, for a given B3, the output data of the neural network can be computed
by (20), which provides the u(xp) (xp € X or xp € X;) for computing the terms
F'(u(xp)) and G’ (u(xq)) in (18) and (19).

Remark 4 If the boundary value problem (15) is linear, i.e. in the absence of the
terms F(u) and G(u), the resultant system (17) is a linear algebraic system of (Q+
Qp) equations about N. unknowns of the parameters j3;;. In this case we use the
linear least squares method to solve this system to compute a least squares solution
for f3;;. In our implementation we employ the linear least squares routine from scipy
(scipy.linalg.1stsq), which in turn employs the linear least squares implementation
from the LAPACK library.

Remark 5 If the problem (15) is time-dependent, for longer-time or long-time sim-
ulations, we employ the block marching scheme from [9] together with the HLCon-
cELM for its computation. The temporal dimension, which can be potentially large
in this case, is first divided into a number of windows (referred as time blocks),
so that each time block is of a moderate size. The problem on each time block
is solved by HLConcELM individually and successively. After one time block is
computed, the solution evaluated at the last time instant, possibly together with
its derivatives, is used as the initial condition for computing the time block that
follows. We refer the reader to [9] for more detailed discussions of the block time
marching scheme.

Hidden-Layer Concatenated ELM 17

Remark 6 HLConcFNNs can be used together with the locELM (local extreme
learning machine) method [9] and domain decomposition for solving PDE prob-
lems. In this case, we employ a HLConcELM for the local neural network on each
sub-domain, and the algorithm for computing the PDE solution is essentially the
same. The only difference lies in that in the system (17) one needs to additionally
include the C* continuity conditions on those collocation points that reside on
the sub-domain boundaries. The residuals in (18) and the Jacobian matrix in (19)
need to be modified accordingly to account for these additional equations from
the C* continuity conditions. We refer the reader to [9] for detailed discussions of
these aspects. For the convenience of presentation, hereafter we will refer to the
locELM method based on HLConcFNNs as the locHLConcELM method (local
hidden-layer concatenated ELM).

Remark 7 For a given problem, the optimal or near-optimal value R* for the hidden
magnitude vector R can be computed by the method from [13] based on the
differential evolution algorithm. For all the test problems in Section 3, we employ
R = R* computed based on the method of [13] in the HLConcELM simulations.

3 Numerical Benchmarks

In this section we employ several benchmark problems in two dimensions (2D) or in
one spatial dimension (1D) plus time to test the performance of the HLConcELM
method for solving linear and nonlinear PDEs. We show that this method can
produce highly accurate results when the network architecture has a narrow last
hidden layer. In contrast, the conventional ELM method in this case utterly loses
accuracy.

The HLConcELM method is implemented in Python based on the Tensor-
flow and Keras libraries. The linear and nonlinear least squares methods em-
ployed in HLConcELM are based on the implementations in the scipy package
(scipy.linalg.lstsq and scipy.optimize.least_squares), as discussed before. The differ-
ential operators on the hidden-layer data (see equations (17a)—(17b)) are computed
by a forward-mode auto-differentiation, as stated in Remark 3. In all the numerical

2
" for

tests of this section we employ the Gaussian activation function o(z) = e~
all the hidden nodes, while the output layer is linear and has zero bias.
The ELM errors reported in the following subsections are computed as follows.
We have considered regular rectangular domains for simplicity in the current pa-
per. For a given architecture we train the HLConcELM network on Q = Q1 x Q1
uniform collocation points (i.e. regular grid points) by the linear or nonlinear least
squares method, with Q1 uniform points in each direction of the 2D domain or
the spatial-temporal domain. After the network is trained, we evaluate the neural
network on a finer set of Q4 = Q2 X Q2 uniform grid points, with Q2 much larger
than @1, to attain the HLConcELM solution data. We evaluate the exact solution
to the problem, if available, on the same set of Q.4 grid points. Then we compare
the HLConcELM solution data and the exact solution data on the Q2 x Q2 grid
points to compute the maximum (I°°) and root-mean-squares (rms, or [?) errors.
We refer to the errors computed above as the HLConcELM errors associated with
the given network architecture and the @ = Q1 x Q1 training collocation points.
When Q) is varied in a range for the convergence tests, we have made sure that Q2

18 Naxian Ni, Suchuan Dong

is much larger than the largest @1 in the prescribed range. When the block time
marching scheme is used for longer-time simulations together with HLConcELM
(see Remark 5), the Q@ = Q1 x Q1 and Q.pe; = Q2 X Q2 points above refer to
the points in each time block. When the locHLConcELM method together with
domain decomposition is used to solve a problem (see Remark 6), the Q@ and Q¢yq;
points refer to the points in each sub-domain. In the current paper we employ a
fixed Qepqr = 101 x 101 (i.e. Q2 = 101) when evaluating the neural network and
computing the HLConcELM errors for all the test problems in this section.

As in our previous works [9,10], we employ a fixed seed for the random number
generator in the Tensorflow library in order to make the reported numerical results
herein exactly reproducible. While the seed value is different for the test problems
in different subsections, it has been fixed to a particular value for the numerical
tests within each subsection. Specifically, the seed to the random number generator
is 10 in Section 3.1, 50 in Section 3.3, and 100 in Sections 3.2, 3.4 and 3.5.

In comparisons with the conventional ELM method [9] in the following subsec-
tions, all the hidden-layer coefficients in conventional ELM are assigned (and fixed)
to uniform random values generated on the interval [— Ry, Rm], with Ry = Rymo,
where Ry is the optimal R,, computed by the method of [13] based on the dif-
ferential evolution algorithm.

3.1 Variable-Coefficient Poisson Equation

The first numerical test involves the 2D Poisson equation with a variable coefficient
field. Consider the 2D domain 2 = [0, 1.6] x [0, 1.6] and the the following boundary
value problem on 2,

2 (e 3) + 2 (atene) = sl (212)
u(0,y) =g1(y), u(l.6,y) =g2(y), u(z,0)=hi(z), wu(z,1.6)=ha(z), (21b)

where (z,y) are the spatial coordinates, u(z,y) is the field function to be solved for,
f(z,y) is a prescribed source term, a(z,y) is the coefficient field given by a(z,y) =
2 + sin(xz 4+ y), and g1, g2, h1 and hg are prescribed boundary distributions. We
choose the source term f and the boundary data g; and h; (i = 1,2) appropriately
such that the following function satisfies the system (21),

u(z,y) = —sin(rz?) sin(my?). (22)

The distribution of this exact solution in the zy plane is illustrated by Figure 3(a).

We employ the HLConcELM method from Section 2 to solve the system (21).
Let the vector M = [2,m1,...,m_1,1] denote the architecture of the HLCon-
cELM, where the two input nodes represent the coordinates = and y and the
single output node represents the solution u. We employ the Gaussian activation
function for all the hidden nodes, as stated at the beginning of Section 3. The out-
put layer is linear and has no bias. The number of hidden layers and the number
of hidden nodes are varied, and the specific architure will be given below when
discussing the results.

We employ a uniform set of Q@ = Q1 x Q1 grid points on the domain 2, with
@1 uniform points on each side of the boundary, as the collocation points for

Hidden-Layer Concatenated ELM 19

5.56-08
5.0E-08

45608

4.0E-08
35E-08
3.0E-08
25E-08
2.0E-08
1.56-08
1.0E-08
5.0E-09

0 0.5 1 15

(b) g (c)

Fig. 3 Variable-coefficient Poisson equation: distributions of (a) the exact solution, (b) the
absolute error of the HLConcELM solution, and (c) the absolute error of the conventional
ELM solution. In (b,c), network architecture M = (2,800, 50, 1], Gaussian activation function,
Q@ = 35x 35 uniform collocation points. R = (3.0,0.005) for HLConcELM in (b). Ry, = Rmo =
0.35 for conventional ELM in (c), where Ry,0 is the optimal R,, computed using the method
of [13].

training the neural network. @i is varied in the tests. As discussed earlier, after
the neural network is trained, we evaluate the neural network on another finer set
of Qeval = Q2 X Q2, with Q2 = 101, uniform grid points on 2 and compute the
HLConcELM errors.

Figures 3(b) and (c) show a comparison of the point-wise absolute-error dis-
tributions in the xy plane of the HLConcELM solution and the conventional ELM
solution obtained using a neural network with a narrow last hidden layer. Note
that in conventional ELM the usual feedforward neural network has been employed
(see Figure 1(a)). For both HLConcELM and conventional ELM we employ here
a neural network with the architecture M = [2,800,50,1] and a uniform set of
Q = 35 x 35 collocation points for the network training. With HLConcELM, for
setting the random hidden-layer coefficients, we employ a hidden magnitude vec-
tor R = (3.0,0.005), which is close to the optimum R* obtained based on the
method of [13]. With conventional ELM, we set the hidden-layer coefficients to
uniform random values generated on the interval [—Rym, Rm] with Rm = Rpmo,
where Rp,0 = 0.35 is the optimal R,, obtained using the method of [13] for this
case. Because the last hidden layer is quite narrow (with 50 nodes), we observe that
the result of the conventional ELM exhibits no accuracy, with a maximum error

20 Naxian Ni, Suchuan Dong

— O maxerror — & maxerror
B rms error B rms error
1oL —--57--— h'error 10'h e
\7 NN: [2, 800, 50, 1] NN: [2, 50, 800, 1]
miO‘— \ mwo"—
<] <]
= =
I.Ist, Luwos—
107 107
S BBl
10 10 20 80 40 50 10° 0 20 80 40 50
Collocation points per direction (a) Collocation points per direction (b)

Fig. 4 Variable-coefficient Poisson equation: the maximum, rms and h! errors of the HLCon-
cELM solution versus the number of collocation points per direction obtained with a net-
work architecture of (a) [2,800,50,1] and (b) [2,50,800,1]. R = (3.0,0.005) in (a), and
R = (0.68,0.82) in (b).

around 85 in the domain. In contrast, the HLConcELM method produces highly
accurate results, with the maximum error on the order of 10~% in the domain.

Figure 4 illustrates the convergence behavior of the HLConcELM solution with
respect to the number of collocation points in the network training. Two neural
networks are considered, with the architectures given by M; = [2,800, 50, 1] and
M. = [2,50,800, 1], respectively. We vary the number of collocation points per
direction (i.e. Q1) systematically between @1 = 5 and @1 = 50, and record the
corresponding HLConcELM errors. Figures 4(a) and (b) show the maximum, rms
and h' errors of HLConcELM as a function of @ for the two neural networks.
Here the h! error is defined as

Qeval 2 2
1 ou QUez ou QUez
> uly, = Uezly,)2+ | 22| — 5 -
Qeval =1 (| ‘ pT‘Xl) <8m b &) Oz X71> (8:{/ X ay x7‘,>

where u and uez; denote the ELM solution and the exact solution, respectively, and
x; (1 €7 < Qepqy) denote the evaluation points. For the network M; we employ
a hidden magnitude vector R = (3.0,0.005), and for the network M2 we employ
a hidden magnitude vector R = (0.68,0.82). These R values are obtained using
the method of [13]. The results indicate that the HLConcELM errors decrease
approximately exponentially with increasing number of collocation points (when
Q1 < 30). The errors stagnate as @1 increases further, because of the fixed network
size. Note that the last hidden layer of the network M; is quite narrow (50 nodes),
while that of the network M is quite wide (800 nodes). The HLConcELM method
produces accurate results with both types of neural networks.

Figure 5 illustrates the convergence behavior, as well as the network training
time, of the HLConcELM method with respect to the number of nodes in the
neural network. We consider two groups of neural networks, with the architec-
tures given by M1 = [2, M, 50,1] and My = [2,50, M, 1], respectively, where M
is varied systematically between M = 100 and M = 1000. For all the test cases,
we employ a fixed uniform set of @ = 35 x 35 collocation points to train the
neural network. For generating the hidden-layer coefficients, we use a hidden mag-
nitude vector R = (3.0,0.005) with the first group of networks M, and a vector

Hidden-Layer Concatenated ELM 21

o
1

s
© NN:[2, M, 50, 1]
T maxeror 5 with M varied
) ---s7---- h'error o
10 [
NN:[2, M, 50, 1] \({)/
with M varied o 1F
g0’ £
=
£ 2
ot =
©ost-
=
107 _E
o
H
o =
. , , , A =z , , , , ,
10 0
200 . 400 600 800 1000 200 . 400 600 800 1000
Nodes in first hidden layer (a) Nodes in first hidden layer (b)
10 15+
NN:[2,50,M, 1]
— o maxerror ! .
e rms error with M varied
10" F ---57---- h' error
NN:[2,50, M, 1]
with M varied s
»n10°r
4
o
[
£
in]

o
o
T

A

Network training time (seconds)

o

200 . 00 669 300 1000 200 | 00 669 500 7000
Nodes in second hidden layer (©) Nodes in second hidden layer ()

Fig. 5 Variable-coefficient Poisson equation: (a) The maximum/rms/h' errors and (b) the
network training time of HLConcELM versus the number of nodes in the first hidden layer for
a network architecture [2, M, 50, 1] (varying M). (c) The maximum /rms/h! errors and (d) the
network training time of HLConcELM versus the number of nodes in the second hidden layer
for a network architecture [2, 50, M, 1] (varying M). @ = 35 X 35 uniform collocation points in
(a,b,c,d). R = (3.0,0.005) in (a,b), and R = (0.68,0.82) in (c,d).

R = (0.68,0.82) with the second group of networks M. Figures 5(a) and (c) de-
pict the maximum/rms/h" errors of HLConcELM as a function of M for these
two groups of neural networks. Figures 5(b) and (d) depict the corresponding wall
time it takes to train these neural networks with HLConcELM. It can be observed
that the HLConcELM errors decrease approximately exponentially with increas-
ing M (before saturation). When M becomes large the HLConcELM results are
highly accurate. The network training time of the HLConcELM method increases
approximately linearly with increasing M. In the range of M values tested here,
it takes around a second to train the neural network to attain the HLConcELM
results.

Table 1 provides a comparison of the HLConcELM accuracy and the conven-
tional ELM accuracy for solving the variable-coefficient Poisson equation on two
network architectures, M; = [2,800,50,1] and Ms = [2,50,800, 1]. The network
M; contains a relatively small number of nodes in its last hidden layer, and the
conventional ELM would not perform well. The network M> contains a large num-
ber of nodes in its last hidden layer, and the conventional ELM should perform
quite well. We consider a sequence of uniform collocation points, ranging from
Q =5x5toQ =30 x 30. Table 1 lists the maximum, rms and h' errors of the
HLConcELM solution and the conventional ELM solution corresponding to each

22 Naxian Ni, Suchuan Dong

network collocation current HLConcELM conventional ELM
points max error rms error hl error max error rms error hl error

[2,800,50,1] | 5x 5 1.91E+0 4.31E-1 3.75E4+0 3.06E+1 6.34E40 5.37TE+1
10 x 10 3.22E-2 7.88E-3 1.14E-1 5.48E+1 1.78E+1 8.00E+1
15 x 15 2.33E-3 3.92E-4 8.15E-3 6.24E+1 2.11E+1 8.85E+1
20 x 20 4.70E-5 1.32E-5 2.29E-4 6.97E+1 2.42E+1 9.62E+1
25 X 25 4.78E-7 1.10E-7 2.52E-6 7T.6TE+1 2.7T0E+1 1.03E+42
30 x 30 3.17E-8 3.79E-9 1.33E-7 8.31E+1 2.96E+1 1.10E+42

[2,50,800,1] 5X5 2.95E40 9.26E-1 4.85E40 2.48E+0 8.85E-1 5.72E+0
10 x 10 9.35E-2 9.93E-3 1.71E-1 1.32E-1 1.50E-2 2.33E-1
15 x 15 1.11E-3 2.40E-4 4.04E-3 6.52E-3 1.00E-3 1.55E-2
20 x 20 3.42E-5 6.91E-6 1.35E-4 7.63E-5 1.33E-5 2.71E-4
25 X 25 2.34E-6 4.45E-7 8.44E-6 1.83E-6 4.14E-7 8.13E-6
30 x 30 3.07E-8 4.81E-9 1.48E-7 9.87E-8 2.02E-8 5.07E-7

Table 1 Variable-coefficient Poisson equation: Comparison of the maximum, rms and h!
errors computed using the current HLConcELM method and the conventional ELM method.
The HLConcELM data in this table correspond to a portion of those in Figure 4(a) for the
network [2, 800, 50, 1] and to those in Figure 4(b) for the network [2, 50, 800, 1]. For conventional
ELM, the random hidden-layer coefficients are assigned to uniform random values generated on
[=Rm, Rm] with Ry, = Rpmo. Here R0 is the optimal R,, obtained using the method of [13],
with R0 = 0.35 for the network [2,800, 50, 1] and Ry,0 = 0.75 for the network [2, 50, 800, 1].

—o&— maxerror
rrrrr A ms error

—©— maxerror
,,,,, A rms error

P NN: [2, 600, 50, 50, 1] NN:[2. M. 50.50. 1]

. -
o A, Ny o

20608 . ;
e N

7000

g Coll 0 i 20 . 30 di 10 " 50 Nzoa) 4(%[? thﬁ(‘i(a Isuo
ollocation points per direction lodes In Tirst hiaden layer
(a) pomep (b) y (c)

Fig. 6 Variable-coefficient Poisson equation (3 hidden layers in NN): (a) Distribution of the
absolute error of the HLConcELM solution. The maximum/rms errors of HLConcELM versus
(b) the number of collocation points per direction, and (c) the number of nodes in the first
hidden layer of the neural network. Neural network architecture M = [2, M,50,50,1], Q@ =
Q1 X Q1 uniform collocation points. M = 600 in (a,b) and is varied in (c). @1 = 35 in (a,c)
and is varied in (b). R = (2.6,0.005,0.8) in (a,b,c).

set of collocation points. The data indicate that the conventional ELM exhibits
no accuracy with the network M;j, and exhibits exponentially increasing accu-
racy with increasing collocation points on the network Msz. On the other hand,
the current HLConcELM method exhibits exponentially increasing accuracy with
increasing collocation points on both networks M; and Mas.

Figure 6 is an illustration of the HLConcELM results obtained on neural net-
works with three hidden layers. Here we consider a network architecture M =
[2, M, 50,50,1], with M either fixed at M = 600 or varied systematically between
M =100 and M = 1000. The set of collocation points (uniform) is either fixed at
Q = 35x 35 or varied systematically between Q = 5x5 and Q = 50 x50. We employ
a fixed hidden magnitude vector R = (2.6,0.005,0.8), obtained using the method
of [13]. Figure 6(a) shows the HLConcELM error distribution corresponding to
M = [2,600, 50, 50,1] and @ = 35 x 35, indicating a quite high accuracy, with the
maximum error in the domain on the order 10~ 7. Figures 6(b) and (c) demon-

Hidden-Layer Concatenated ELM 23

hidden | R Q= 15x15 Q= 30%30

layers max-err rms-err max-err rms-err
1 (2.0) 891E+0 1.48E+0 | 1.48E+1 1.92E+0
2 (0.73,0.023) 4.86E-2 4.69E-3 | 1.10E-1 1.26E-2
3 (0.77,0.07,0.17) 2.57E-3 8.09E-4 | 1.34E-3 1.10E-4
4 (0.6,0.19,0.16,0.05) 1.67E-3 4.07E-4 | 6.69E-5 7.20E-6
5 (0.48,0.23,0.25,0.14,0.3) 1.84E-3 3.81E-4 | 5.54E-6 7.33E-7
6 (0.54,0.24,0.18,0.13,0.38,0.39) 7.66E-4 1.54E-4 | 9.61E-7 8.60E-8
7 (0.58,0.25,0.12,0.25,0.57,1.18,0.12) | 2.74E-3 6.77E-4 | 9.19E-7 5.46E-8

Table 2 Variable-coefficient Poisson equation: the maximum and rms errors of HLConcELM
versus the number of hidden layers (i.e. depth) in the neural network architecture, with two
uniform sets of collocation points (Q = 15 x 15 and 30 x 30). The width of each hidden layer
is 100. For example, the network architecture is [2, 100,100, 100, 100, 1] with 4 hidden layers.
The hidden magnitude vector R is listed in the table.

strate the exponential convergence (before saturation) of the HLConcELM errors
with respect to the collocation points Q1 and the number of nodes M, respectively.
These results show that the current HLConcELM method can produce highly ac-
curate results on neural networks with multiple hidden layers and a narrow last
hidden layer.

Table 2 illustrates the effect of the neural-network depth (number of hidden
layers) on the HLConcELM accuracy. Here we vary the number of hidden layers
systematically between 1 and 7, while the number of nodes in each hidden layer
is fixed at 100. The hidden magnitude vector R is provided in the table for each
network architecture. The maximum and rms errors of the HLConcELM solutions
for two sets of collocation points are listed in the table. For each set of collocation
points, the HLConcELM errors decrease approximately exponentially initially with
increasing number of hidden layers, and then stagnate when the depth increases
beyond a certain level. With @ = 15 x 15 collocation points, the HLConcELM
maximum error reaches a level 1072 with 3 or more hidden layers. With Q =
30 x 30, the maximum error reaches a level 10~7 with 6 or more hidden layers.

3.2 Advection Equation
In the next example we employ the 1D advection equation (plus time) to test

the HLConcELM method. Consider the spatial-temporal domain, (z,t) € 2 =
[0, 5] x [0,40], and the following initial/boundary value problem on (2,

ou ou
u(0,t) = u(5,), (23b)
u(z,0) = 20 tanh (% cos (2% (z — 3))) . (23c)

In the above equations u(z,t) is the field function to be solved for, and we impose
the periodic boundary condition in the spatial direction. This system has the
following exact solution,

u(z, t) = 20 tanh (% cos (%” (o + 2t - 3))) . (24)

24 Naxian Ni, Suchuan Dong

6 -18-1206 0 06 12 1.8

: \
x

AR
AN

0 5 10 15 20 25 30 3 40 (C)

Fig. 7 Advection equation: Distributions in the spatial-temporal domain of (a) the exact
solution, (b) the absolute error of the HLConcELM solution, and (c) the absolute error of
the conventional ELM solution. In (b,c), network architecture [2, 500, 50, 1], 40 uniform time
blocks, @ = 35 x 35 uniform collocation points per time block. R = (3.0,1.0) in (b) for
HLConcELM. Ry, = Rmo = 0.065 in (c) for conventional ELM.

The distribution of this solution on the spatial-temporal domain is illustrated in
Figure 7(a).

To solve the system (23), we employ the HLConcELM method combined with
the block time marching scheme (see Remark 5 and [9]). We divide the domain 2
into 40 uniform time blocks in time. For computing each time block with HLCon-
cELM, we employ a network architecture M = [2,m1,...,mp_1, 1], where the two
input nodes represent x and ¢ and the single output node represents u(z,t). Let
Q = Q1 X Q1 denote the uniform set of collocation points for each time block (Q1
grid points in both z and ¢ directions), where Q1 is varied in the tests. As discussed
before, upon completion of training, the neural network is evaluated on a uniform
set of Qepar = 101 x 101 grid points on each time block and the corresponding
errors are computed. The maximum and rms errors reported below refer to the
errors of the HLConcELM solution on the entire domain 2 (over 40 time blocks).

Figures 7(b) and (c) illustrate the absolute-error distributions on (2 of the
HLConcELM solution and the conventional ELM solution, respectively. For both
methods, we employ 40 time blocks in block time marching, a neural network
architecture M = [2,500, 50, 1] with the Gaussian activation function, and a set of
@ = 35x 35 uniform collocation points per time block. For HLConcELM we employ
R = (3.0,1.0), which is computed by the method of [13]. For conventional ELM
we employ Rm = Rmo = 0.065, which is also obtained by the method of [13], for
generating the random hidden-layer coefficients. Because the number of nodes in
the last hidden layer is quite small, the conventional ELM exhibits a low accuracy,
with the maximum error on the order of 1072 in the domain. On the other hand,

Hidden-Layer Concatenated ELM 25

— 5-
12}
10°F —O— maxerror T NN: [2, 500, 50, 1]
B rms error S
[$] L
. g "
0% NN: [2, 500, 50, 1] -
)
o, £ s
10 =
: g
W =
0 ©
=
x
) PRl
10 g
AL
B Y
ko)
107 L] Z o0 . .
10 20 E 40, 50 10 20 30, 40, 50
Collocation points per direction per time block Collocation points per direction per time block
(a) (b)
w °f
1071 —O— maxerror © NN: [2, 50, 500, 1]
B TS errOr S
[$] L
. g "
0t NN: [2, 50, 500, 1] -
)
2, £
10° =
5 2
W =
o ©
=
x
) PRl
10° g
A A A @
107 L] Z o0 1 .
10 20 E 40, 50 10 20 30, 40, 50
Collocation points per direction per time block () Collocation points per direction per time block (d)
C

Fig. 8 Advection equation: The maximum/rms errors in the domain (2 (a,c) and the network
training time (b,d) of HLConcELM versus the number of collocation points per direction
in each time block. The results are attained with two network architectures: (a,b) Mi =
[2,500,50, 1], and (c,d) My = [2,50,500,1]. R = (3.0,1.0) in (a,b) for the network M, and
R = (0.9,0.5) in (c,d) for the network Mo.

the HLConcELM method produces a highly accurate solution, with the maximum
error on the order of 1072 in the domain.

Figure 8 illustrates the convergence behavior, as well as the growth in the net-
work training time, of the HLConcELm method with respect to the number of col-
location points. We have considered two network architectures, M; = [2, 500, 50, 1]
and My = [2,50, 500, 1], with a narrower last hidden layer in M; and a wider one
in Mz. A uniform set of Q = Q1 X Q1 collocation points is employed, with Q1
varied systematically between Q1 = 5 and Q1 = 50 in the tests. The hidden mag-
nitude vector R computed by the method [13] is used in the simulations, with
R = (3.0,1.0) for the network M; and R = (0.9,0.5) for the network M. Fig-
ures 8(a) and (b) depict the maximum/rms errors on {2 and the network training
time, respectively, as a function of @Q; obtained with the neural network M;j.
Figures 8(c) and (d) show the corresponding results obtained with the network
M;. While the convergence behavior is not quite regular, one can observe that
the HLConcELM errors approximately decrease exponentially (before saturation)
with increasing number of collocation points. The network training time grows
approximately linearly with increasing number of training collocation points.

Figure 9 illustrates the convergence behavior of the HLConcELM method with
respect to the number of nodes in the neural network. Two groups of neural net-

26 Naxian Ni, Suchuan Dong

—&— max error

.
"X rmeerror 0°f A rms error

—O— maxerror

NN: [2, M, 50, 1] 00 NN: [2, 50, M, 1]
with M varied with M varied

200 L Adol 600 800 200 . 00 . 500 800
Nodes in first hidden layer (a) Nodes in second hidden layer (b)

Fig. 9 Advection equation: (a) The HLConcELM maximum/rms errors on {2 versus the
number of nodes in the first hidden layer for the network architecture M; = [2, M, 50,1]
(varying M). (b) The HLConcELM maximum/rms errors on {2 versus the number of nodes
in the second hidden layer for the network architecture Mg = (2,50, M, 1] (varying M). Q =
35 x 35 in (a,b). R = (3.0,1.0) in (a) for the network Mj, and R = (0.9,0.5) in (b) for the
network Mo.

network collocation current HLConcELM | conventional ELM
architecture | points max error rms error max error rms error
(2,500, 50, 1] 5X5 248E+0 1.41E 40 1.33E+0 4.57TE — 1
10 x 10 221E+0 8.26F — 1 5.97TE — 2 1.91F —2
15 x 15 7.45FE — 3 2.78E — 3 4.31E — 2 1.30E — 2
20 x 20 1.22F — 3 1.39FE — 4 3.62F — 2 1.08E — 2
25 x 25 1.39E — 5 2.00FE — 6 3.15E — 2 9.50FE — 3
30 x 30 2.25F — 8 6.47TE — 9 3.24F — 2 8.89F — 3
(2, 50,500, 1] 5X5 1.97TE +0 1.10E+0 1.86E +0 9.18FE — 1
10 x 10 9.33E — 2 3.74FE — 2 4.18FE — 2 1.65FE — 2
15 x 15 1.06FE — 3 4.16E — 4 3.09E — 4 8.48FE — 5
20 x 20 3.16E — 5 6.30E — 6 1.97E — 4 5.01E —5
25 x 25 5.60E — 7 1.36E — 7 7.60E — 5 5.85FE — 6
30 x 30 5.80F — 8 1.45F — 8 9.76E — 8 3.32E — 8

Table 3 Advection equation: Comparison of the maximum/rms errors on {2 from the current
HLConcELM method and the conventional ELM method [9]. The HLConcELM data in this
table correspond to a portion of those in Figure 8(a) for the network [2,500,50,1] and to
those in Figure 8(c) for the network [2,50,500,1]. For conventional ELM, the hidden-layer
coefficients are set to uniform random values generated on [— Ry, Rp] with Ry, = Rpo. Here
R0 is the optimal R,, computed by the method of [13], with R,,0 = 0.065 for the network
[2,500,50,1] and R0 = 0.65 for the network [2, 50, 500, 1].

works are considered in these tests, with an architecture M; = [2, M, 50, 1] for the
first group and My = [2, 50, M, 1] for the second one, with M varied systematically.
A uniform set of Q = 35 x 35 collocation points is employed for training the neural
networks. We use R = (3.0,1.0) for the architecture M; and R = (0.9,0.5) for the
architecture Ma. The plots (a) and (b) show the maximum/rms errors of HLCon-
cELM on 2 as a function of M, indicating that the errors decrease approximately
exponentially (before saturation) with increasing M in the neural network.

Table 3 provides an accuracy comparison of the current HLConcELM method
and the conventional ELM method [9] for solving the advection equation. Two neu-
ral networks are considered here, with the architectures given by My = [2, 500, 50, 1]
and My = [2,50, 500, 1], respectively. The maximum/rms errors of both methods

Hidden-Layer Concatenated ELM 27

2E-03 8E-09 14E-08 2F-08 26E-08 3.2E-08 3.8E-08

N B N X AR
\ N\ \ \
A\ \ A R
\

noOX s

————— X — O maxerror
-l rms error
10"+ 10° -
NN: [2, 400, 30, 30, 30, 1] NN:[2, M, 30,30, 30, 1]
with M varied
0 00
@ @
o o
= =
Whoe Whge
107 10°
AT
B A A A
s D A
100 . , , , , 10 , , n)
10 20 E 40, 50 200 . .40 600 800
Collocation points per direction per time block (b) Nodes in first hidden Iayer ()
C

Fig. 10 Advection equation (4 hidden layers in neural network): (a) Error distribution of
the HLConcELM solution on (2. The HLConcELM maximum/rms errors on {2 versus (b) the
number of collocation points per direction in each time block, and (c¢) the number of nodes
in the first hidden layer (M). Network architecture [2, M, 30, 30, 30, 1], 40 time blocks in block
time marching. @ = 35 x 35 in (a,c), and is varied in (b). M = 400 in (a,b), and is varied in
(¢). R =(3.1,1.0,0.9,0.8) in (a,b,c).

on the domain {2 corresponding to a sequence of collocation points are listed in
the table. With the network M7, whose last hidden layer is narrower, the conven-
tional ELM exhibits only a fair accuracy with increasing collocation points, with
its maximum errors on the order of 1072. In contrast, the current HLConcELM
method produces highly accurate results with the network M, with the maximum
error reaching the order of 108 on the larger set of collocation points. With the
network My, whose last hidden layer is wider, both the conventional ELM and
the current HLConcELM produce highly accurate results with increasing number
of collocation points. These observations are consistent with those in the previous
subsection for the variable-coefficient Poisson equation.

Figure 10 illustrates the HLConcELM results obtained on a deeper neural
network containing 4 hidden layers for solving the advection equation. The network
architecture is given by M = [2, M, 30, 30, 30, 1], where M is either fixed at M =
400 or varied systematically between M = 100 and M = 800. A uniform set
of Q = Q1 x Q1 collocation points is used to train the network, where Q1 is
either fixed at @1 = 35 or varied systematically between @1 = 5 and @1 = 50.
In all simulations we employ a hidden magnitude vector R = (3.1,1.0,0.9,0.8),
which is computed using the method of [13]. Figure 10(a) depicts the distribution
of the absolute error of the HLConcELM solution on (2, which corresponds to
M =400 and @1 = 35. It can be observed that the result is highly accurate, with
a maximum error on the order of 107% in the domain. Figure 10(b) shows the
maximum/rms errors of HLConcELM as a function of @1, with a fixed M = 400
in the tests. Figure 10(c) shows the maximum/rms errors of HLConcELM as a
function of M in the neural network, with a fixed Q1 = 35 for the collocation

28 Naxian Ni, Suchuan Dong

N
PR A A A

@
o

I soe0e
35606

3.0E-06
25606
2.0E-06
1.5E-06
1.0E-06
5.0E-07

v rnoueo

(b) ' (©)

Fig. 11 Nonlinear Helmholtz equation: Distributions of (a) the exact solution, (b) the abso-
lute error of the HLConcELM solution, and (c) the absolute error of the conventional ELM
solution. In (b,c), network architecture [2, 500, 30, 1], Gaussian activation function, Q = 35x 35
uniform collocation points. R = (2.0, 3.0) in (b) for HLConcELM. R,, = Rmo = 0.6 in (c) for
conventional ELM.

points. The exponential convergence of the HLConcELM errors (before saturation)
is unmistakable.

3.3 Nonlinear Helmholtz Equation

We employ a nonlinear Helmholtz equation to test the HLConcELM method for
the next problem. Consider the 2D domain (z,y) € 2 = [0,1.5] x [0,1.5] and the
following boundary value problem on 2,

0%u 9%u
Ei;g +’E£;2 —'IOOU‘+’1OCOSh(U)4——f($,y)7 (25&)

u(0,y) = g1(y), w(l.5,y) =g2(y), wu(x,0)=hi(z), wu(z,1.5)=ha(z). (25b)

In the above equations u(z,y) is the field solution to be sought, f(x,y) is a pre-
scribed source term, g; and h; (: = 1,2) are the Dirichlet boundary data. In this
subsection we choose f, g; and h; (i = 1,2) such that the system (25) has the
following solution,

u(z,y) = 4cos (7rac2) cos <7ry2) . (26)

The distribution of this solution in the zy plane is illustrated in Figure 11(a).

Hidden-Layer Concatenated ELM 29

10'p ~10-
(2]
. —O— maxerror 2 NN: [2, 500, 30, 1]
100 -~ rms error o
(SN
10" 3
NN: [2, 500, 30, 1] ~
107 F o
o £ s
gwo >
Luwo‘— g 4
g
10°F g
S
10° . E
o g N N N\ T
107 . | | | . Z o . | | | .
10 2 | 30 40 50 10 20 30 40 50
Collocation points per direction (a) Collocation points per direction (b)
10'g @
ook 2 NN: [2, 30, 500, 1]
< _rms error 5
0L 8 Es
2
N NN: [2, 30, 500, 1] ~
10" QEJ
oL
Dol =
5 2
10*
- =
10°F ©
E
10° < ol
o
107k Bepo BB A E
(0]
10° . | | | . Z o . | | | .
10 2 30 40 50 10 20 30 40 50
Collocation points per direction (©) Collocation points per direction ()

Fig. 12 Nonlinear Helmholtz equation: The maximum/rms errors (a,c) and the network train-
ing time (b,d) of the HLConcELM method versus the number of collocation points in each
direction. In (a,b), network architecture (2,500, 30, 1], R = (2.0,3.0). In (c,d), network archi-
tecture [2,30,500,1], R = (0.65,0.7). In (a,b,c,d), uniform collocation points @ = Q1 X Q1,
with Q1 varied.

We employ the HLConcELM method with neural networks that contain two
input nodes, representing the x and y, and a single output node, representing the
solution u. The number of hidden layers and the number of hidden nodes are varied
and will be specified below. To train the neural network, we employ a uniform set
of Q = Q1 x Q1 collocation points on (2, with Q1 varied in the tests. The ELM
errors reported below are computed on a finer set of Q.,q = 101 x 101 uniform
grid points, as explained before.

Figures 11(b) and (c) illustrate the absolute-error distributions obtained using
the HLConcELM method and the conventional ELM method with the network
architecture M = [2,500, 30, 1]. A uniform set of Q@ = 35 x 35 collocation points has
been used to train the network with both methods. The hidden magnitude vector
is R = (2.0,3.0) for HLConcELM, which is obtained with the method of [13]. For
conventional ELM we have employed R,, = Rmo = 0.6, which is also obtained
using the method of [13], for generating the random hidden-layer coefficients. The
conventional ELM solution is inaccurate, with the maximum error on order of
10. On the other hand, the current HLConcELM method produces an accurate
solution on the same network architecture, with the maximum error on the order
of 107 in the domain.

Figure 12 illustrates the convergence behavior and the network training time
with respect to the training collocation points of the HLConcELM method for

30 Naxian Ni, Suchuan Dong

10°F — O maxerror ,
oo rms error 107
10 A
- NN: 2, M, 30, 1] 0% NN: [2,30, M, 1]
10 with M varied , with M varied
107
[<
Q. Qio
' |
s 10°F
107 F
10° 10°F .
10 A 10 A N
A AL
108 , , , ; 100 , , , -
200 | 400 600 800 200, 400 600 800
Nodes in first hidden layer (a) Nodes in second hidden layer (b)

Fig. 13 Nonlinear Helmholtz equation: (a) The HLConcELM maximum/rms errors versus the
number of nodes in the first hidden layer with network architecture (2, M, 30,1] (M varied).
(b) The HLConcELM maximum/rms errors versus the number of nodes in the second hidden
layer with the architecture [2,30, M, 1] (M varied). @ = 35 X 35 collocation points in (a,b).
R = (2.0,3.0) in (a), and R = (0.65,0.7) in (b).

solving the nonlinear Helmholtz equation. Two network architectures are consid-
ered here, M; = [2,500,30, 1] and M2 = [2, 30,500, 1]. The number of collocation
points in each direction (Q1) is varied systematically between Q1 = 5 and Q1 = 50
in these tests. We employ R = (2.0, 3.0) for the network M; and R = (0.65,0.7) for
the network Mg, which are obtained using the method of [13]. Figures 12(a) and
(b) show the maximum/rms errors and the network training time of the HLCon-
cELM method as a function of Q1 for the neural network M;. Figures 12(c) and
(d) show the corresponding results for the network Ms. The exponential conver-
gence (before saturation) and the near linear growth in the network training time
observed here for the nonlinear Helmholtz equation are consistent with those for
the linear problems in previous subsections.

Figure 13 illustrates the error convergence of the HLConcELM method with
respect to the number of nodes in the neural network. Two groups of neural net-
works are considered here, with the architectures M1 = [2,M,30,1] and My =
[2,30, M, 1], where M is varied systematically. The networks are trained on a uni-
form set of @ = 35 x 35 collocation points. The plots (a) and (b) show the maxi-
mum /rms errors of HLConcELM as a function of M for these two groups of neural
networks. It can be observed that the errors decrease approximately exponentially
with increasing M.

Table 4 compares the numerical errors of the current HLConcELM method
and the conventional ELM method for solving the nonlinear Helmholtz equation
on two network architectures, M1 = [2, 500, 30, 1] and Ms = [2, 30, 500, 1], trained
on a sequence of uniform sets of collocation points. The HLConcELM method
produces highly accurate results on both neural networks. On the other hand,
while the conventional ELM produces accurate results on the network Mo, its
solution on the network M; is utterly inaccurate.

Figure 14 illustrates the HLConcELM results computed on a deeper neu-
ral network with 5 hidden layers. The network architecture is given by M =
[2, M, 30,30, 30, 30, 1], where M is either fixed at M = 500 or varied systematically
in the tests. The network is trained on a uniform set of Q = Q1 x Q1 collocation
points, where @1 is either fixed at Q1 = 35 or varied systematically. Figure 14(a)

Hidden-Layer Concatenated ELM 31

network collocation current HLConcELM | conventional ELM
architecture | points max error rms error max error rms error
(2,500, 30, 1] 5X5 4.00FE +0 1.48E 40 7T.64E +0 241E+4+0
10 x 10 1.59FE +0 2.80F — 1 9.69FE + 0 2.73E +0
15 x 15 1.27FE -3 1.62E — 4 9.73E +0 2.71E+0
20 x 20 1.27TE -5 2.34FE — 6 9.74E + 0 2.73E+0
25 X 25 2.08E — 6 211E -7 9.74E + 0 2.73E+0
30 x 30 3.7T4E — 6 3.48E — 7 9.75E + 0 2.74FE 4+ 0
(2, 30,500, 1] 5X5 3.23E+0 8.43F — 1 3.80E+0 1.15E+4+0
10 x 10 7.22F — 1 1.32FE — 1 3.08E+0 TA48FE — 1
15 x 15 1.06E — 3 2.36FE — 4 3.86FE — 4 6.29F — 5
20 x 20 2.56FE — 5 3.12E -6 3.15E —5 5.67TE — 6
25 x 25 8.78E — 7 1.38E — 7 1.33E — 6 2.68E — 7
30 x 30 8.99F — 7 8.20F — 8 1.76E — 6 1.92FE — 7

Table 4 Nonlinear Helmholtz equation: Comparison of the maximum/rms errors from the
HLConcELM method and the conventional ELM method [9]. The HLConcELM data in this
table correspond to a portion of those in Figure 12(a) for the network [2,500,30,1] and to
those in Figure 12(c) for the network [2,30,500,1]. For conventional ELM, the hidden-layer
coefficients are set to uniform random values generated on [— R, Rym] with Ry, = Rmo. Here
R0 is the optimal R,, obtained using the method of [13], with R,,0 = 0.6 for the network
[2,500,30,1] and Ry,0 = 0.65 for the network [2, 30, 500, 1].

depicts the absolute-error distribution of the HLConcELM solution obtained with
M =500 and @1 = 35, indicating a quite high accuracy with the maximum error
on the order of 107° in the domain. Figures 14(b) and (c) show the HLConcELM
errors as a function of Q1 and M, respectively. The exponential convergence (prior
to saturation) of these errors is evident.

3.4 Burgers’ Equation

In the next benchmark example we use the viscous Burgers’ equation to test the
performance of the HLConcELM method. Consider the spatial-temporal domain,

(z,t) € 2 =[-1,1] x [0,1], and the following initial/boundary value problem on
2,
ou ou 9y
a"’u%—l/@7 (27&)
u(—1,¢) = u(l,t) =0, (27b)
u(z,0) = —sin(rz), (27¢)

where v = ﬁ, and u(z, t) denotes the field function to be solved for. This problem

has the following exact solution [2],

72
[22_sinm(z —) f(z —n)e” widn

Iz —n)edn

u(z,t) = —) (28)

cos(my)

where f(y) = e~ 2z=v . Figure 15 illustrates the distribution of this solution on
the spatial-temporal domain, which indicates that a sharp gradient develops in
the domain over time.

32 Naxian Ni, Suchuan Dong

10 ¢ 10°¢
. —©— maxerror X —6— maxerror
10°¢ Do rms error 107 wef-- FMS error
10 NN: [2, 500, 30, 30, 30, 30, 1] 10 A NN: [2, M, 30, 30, 30, 30, 1]
with M varied
10°F 10°F
(2] (2]
@ @
810“7 gw‘ E
L L
104L 10°L
10°L 10°L A
-
10°F 107F TALA
R
107 , , ; , 100 , , ,
10 20 30 40 50 200 400 600
Collocation points per direction (b) Nodes in first hidden layer ©

Fig. 14 Nonlinear Helmholtz equation (5 hidden layers in neural network): (a) Error distri-
bution of the HLConcELM solution. The maximum/rms errors of the HLConcELM solution
versus (b) the number of collocation points in each direction and (c) the number of nodes in
the first hidden layer (M). Neural network architecture [2, M, 30, 30, 30,30,1], Q@ = Q1 X Q1
uniform collocation points. M = 500 in (a,b), and is varied in (¢). Q1 = 35 in (a,c), and is
varied in (b). R = (2.1,0.1,2.0,2.5,0.5) in (a,b,c).

Fig. 15 Burgers’ equation: distribution of the exact solution.

Hidden-Layer Concatenated ELM 33

0.5+

-0.59

-

0 01t 02

"o 01 t

(a)

Fig. 16 Burgers’s equation on the smaller domain 2; (¢ € [0,0.2]): (a) Configuration of
the 4 sub-domains in the locHLConcELM simulation. Distributions of the locHLConcELM
solution (b) and its absolute error (c) on (21. Local neural-network architecture: [2, 200, 30,
1], @ = 21 x 21 uniform collocation points per sub-domain, R = (0.9, 0.05).

We will first solve the problem (27) on a smaller domain (with a smaller tem-
poral dimension) 2, = [—1, 1] x [0, 0.2], before the sharp gradient develops, in order
to investigate the convergence behavior of the HLConcELM method. Then we will
compute this problem on the larger domain 2 using HLConcELM.

On the smaller domain 2; we solve the system (27) by the locHLConcELM
method (local version of HLConcELM, see Remark 6). We partition (21 along
the z direction into 4 sub-domains; see Figure 16(a). These sub-domains are non-
uniform, and the z coordinates of the sub-domain boundaries are given by the
vector X = [—1,-0.2,0,0.2,1]. We impose C? continuity conditions in z across the
interior sub-domain boundaries. We employ a HLConcELM for the local neural
network on each sub-domain, which contains two input nodes (representing the
z and ¢ of the sub-domain) and a single output node (representing the solution
u on the sub-domain). The specific architectures of the neural network will be
provided below. On each sub-domain we employ a uniform set of Q@ = Q1 x Q1
collocation points (Q1 points in both x and ¢ directions) for the network training,
with @1 varied in the tests. We train the overall neural network, which consists
of the local neural networks coupled together by the C! continuity conditions, by
the nonlinear least squares method; see Section 2.3 and also [9].

Figures 16(b) and (c) illustrate the distributions of the HLConcELM solution
and its absolute error on the domain (27, respectively. These results are obtained
by locHLConcELMs with an architecture [2,200,30, 1] and a uniform set of @ =
21 x 21 collocation points on each sub-domain. The hidden magnitude vector is
R = (0.9,0.05), which is obtained using the method of [13]. The locHLConcELM
method produces an accurate solution, with the maximum error on the order of
1077 on 1.

Figure 17 illustrates the convergence behavior and the network training time
of the locHLConcELM method with respect to the increase of the collocation
points for the smaller domain §2;. The local network architecture is given by
[2,200, 30, 1], and the collocation points are varied systematically between @ = 5x5
and @ = 30 x 30 in the tests. The plots (a) and (b) show the locHLConcELM er-

34 Naxian Ni, Suchuan Dong

@
S
1

4 sub-domains
local NN: [2, 200, 30, 1]
on each sub-domain

max error

10°

rms error

o
a
T

10°F 4 sub-domains
local NN: [2, 200, 30, 1]

on each sub-domain

N
S
T

o
T

10°

o
T

Network training time (seconds)

8 L , L L]
10 1 0 10 20

0 Zb 30 0 30
Collocation points per direction per subdomain Collocation points per direction per subdomain
a

Fig. 17 Burgers’ equation on the smaller domain £2;: (a) The locHLConcELM maximum/rms
errors and (b) the network training time versus the number of collocation points per direction in
each sub-domain. Local network architecture: [2, 200, 30, 1], Q = Q1 X Q1 uniform collocation
points (Q1 varied), R = (0.9,0.05).

n
o
d

—&—— maxerror

4 sub-domains
local NN: [2, M, 30, 1]
on each sub-domain (varying M)

rms error

10%
4 sub-domains

local NN: [2, M, 30, 1]

on each sub-domain (varying M)

n
S

10°

o
T

=)
T

10°

o
T

7 -
107 A

Network training time (seconds)

o
o

50 K 1_60 K 750 200
Nodes in first hidden layer

Nodes in first hiddan layer
oaes In Tirst hidaen layer

y (a) (b)
Fig. 18 Burgers’ equation on the smaller domain (2;: (a) The locHLConcELM maximum/rms
errors and (b) the network training time versus the number of nodes in the first hidden layer
(M). Local network architecture [2, M, 30, 1] (M varied), @ = 21 x 21 uniform collocation
points per sub-domain, R = (0.9, 0.05).

rors and the network training time as a function of the number of collocation
points in each direction, respectively. We observe that the locHLConcELM errors
decrease exponentially (before saturation) and the network training time grows
approximately linearly with increasing collocation points.

Figure 18 is an illustration of the convergence behavior and the network train-
ing time of the locHLConcELM method with respect to the size of the neural
network. The local network architecture is given by [2, M, 30,1], with M varied
systematically. We employ a fixed uniform set of @ = 21 x 21 collocation points,
and a hidden magnitude vector R = (0.9, 0.05) obtained using the method of [13].
One observes that the errors decrease exponentially and that the network training
time grows superlinearly with increasing M.

Table 5 provides an accuracy comparison of the HLConcELM method and
the conventional locELM method [9] for solving the Burgers’ equation on the

Hidden-Layer Concatenated ELM

35

local network | collocation current locHLConcELM | conventional locELM

architecture points max error rms error max error rms error

(2,200, 30, 1] 5%x5 1.39E — 2 2.64F — 3 4.12FE — 2 1.21FE —2
10 x 10 2.30E — 4 4.44F — 5 6.62F — 2 2.84F — 2
15 x 15 2.98E — 6 5.83E — 7 TA42E — 2 3.16E — 2
20 x 20 4.01E -7 7.06E — 8 T97TE — 2 3.39E — 2
25 x 25 5.59F — 7 9.04F — 8 8.44F — 2 3.58FE — 2
30 x 30 6.60E — 7 1.11E -7 8.86F — 2 3.7T6E — 2

Table 5 Burgers’ equation on the smaller domain £21: Comparison of the maximum/rms errors
from the locHLConcELM method and the conventional locELM method [9]. The locHLCon-
cELM data in this table correspond to those in Figure 17(a). For conventional locELM, the
random hidden-layer coefficients are set to uniform random values generated on [— R, Rm]
with R, = Rmo = 0.175, where Rp,0 is the optimal Ry, obtained using the method of [13].

—&— maxerror

B TS errOT

—C— maxerror

A rms error
4 sub-domains

local NN: [2, M, 30, 30, 1]

on cach sub-domain (varying M)

4 sub-domains
local NN: [2, 200, 30, 30, 1] 10 L
on each sub-domain

Ca
Bep

.
10 R 10 20 30
Collocation points per direction per subdomain

250

50 100 _@ 200
Nodes in first hidden layer

(a) (b)

Fig. 19 Burgers’ equation on the smaller domain (2; (3 hidden layers in network): (a) Error
distribution of the locHLConcELM solution. The locHLConcELM maximum/rms errors versus
(b) the number of collocation points per direction in each sub-domain, and (c) the number of
nodes in the first hidden layer (M). Local network architecture: [2, M, 30,30, 1]. M = 200 in
(a,b), and is varied in (c). @ = 21 x 21 in (a,c), and is varied in (b). R = (1.0,0.035,0.03) in
(a,b,c).

smaller domain 2;. With both methods, we employ 4 sub-domains as shown in
Figure 16(a), a local neural network architecture [2,200, 30, 1], and a sequence of
uniform collocation points ranging from @ = 5 x 5 and @ = 30 x 30. The cur-
rent locHLConcELM method is significantly more accurate than the conventional
locELM method, with their maximum errors on the order of 107 and 1072 re-
spectively.

Figure 19 illustrates the characteristics of the locHLConcELM solution ob-
tained with 3 hidden layers in the local neural network on the smaller domain (2;.
Here we employ a local network architecture [2, M, 30,30, 1], with M either fixed
at M = 200 or varied systematically, and a uniform set of Q@ = Q1 x Q1 colloca-
tion points, with @, either fixed at Q1 = 21 or varied systematically. The hidden
magnitude vector is R = (1.0,0.035,0.03), obtained using the method of [13]. Fig-
ure 19(a) is an illustration of the absolute-error distribution on 2; corresponding
to M = 200 and Q1 = 21, demonstrating a high accuracy with the maximum er-
ror on the order of 1077, Figures 19(b) and (c) show the exponential convergence
behavior of the HLConcELM errors with respect to Q1 and M.

Let us next consider the larger domain 2 (¢ € [0, 1]) and solve the system (27)
using the current method. We employ the locHLConcELM method together with
the block time marching scheme (see Remarks 5 and 6) in the simulation. Specif-

()

36 Naxian Ni, Suchuan Dong

time fime time fime time
block #1 block#2 block#3 block #4 block #5

05

6.5E-05
6.0E-05
5.5E-05
5.0E-05
4.5E-05
4.0E-05
35E05
30E-05
25605
2.0E05
1.56-05
1.0E-05
5.0E-06

o
°
n
o
=
°
>
o
®

(b) (c)

Fig. 20 Burgers’ equation on the larger domain §2 (¢ € [0,1]): (a) Configuration of the 5
uniform time blocks and the 6 non-uniform sub-domains on each time block. Distributions
of (b) the locHLConcELM solution and (c) its absolute error. Local network architecture
[2,300, 1] on each sub-domain, @ = 21 x 21 per sub-domain, R = 2.0.

ically, we divide the temporal dimension into 5 uniform time blocks, and parti-
tion each time block into 6 non-uniform sub-domains along the x direction. Fig-
ure 20(a) illustrates the configuration of the time blocks and the sub-domains on
each time block, where the z coordinates of the sub-domain boundaries are given
by X = [-1,-0.1,-0.02,0,0.02,0.1,1]. We employ a local neural network archi-
tecture M = [2, 300, 1] and a uniform set of @ = 21 x 21 collocation points on each
sub-domain. The hidden magnitude vector is R = 2.0, which is obtained using the
method of [13]. Figures 20(b) and (c) show the distributions of the locHLConcELM
solution and its absolute error on 2. The data indicate that the current method
achieves a quite high accuracy with the sharp gradient present in the domain, with
the maximum error on the order of 1075,

Figure 21 compares profiles of the locHLConcELM solution and the exact
solution (28) for the Burgers’ equation at three time instants ¢ = 0.25, 0.5 and
1.0. The error profiles of the locHLConcELM solution have also been included in
this figure. The simulation configuration and the parameters used here correspond
to those of Figure 20. It is evident that the current locHLConcELM method has
achieved a quite high accuracy for this problem.

3.5 KdV Equation

In the next benchmark problem we employ the Korteweg-de Vries (KdV) equation
to test the HLConcELM method. Consider the spatial-temporal domain (z,t) €

Hidden-Layer Concatenated ELM

37

Profiles

o

Profiles

10*F

5

o

Profiles

—o— HLConcELM solution
- Exact solution
10°F
o
o
2
=
[0
310‘
=
[«
D
Qo
<.,
10
| | , , . , , , ,
05 0 05 1 0 05 0 05 1
X X
(a) (d)
107"
10°
.
o
I
=
(0]
Q 6
o
[}
@
e}
<.
107
. , | ,
107 05 0 05 1
X
(e)
T —©— HLConcELM solution 10*
—hnnrsExact solution
10°
sk
=
(<3
=
[0}
0 210’
=2
o
D
Q10°
<
5
10°
. 05 0 05 1 07 05 0 05 1
X X
(c) ®)

Fig. 21 Burgers’ equation on the larger domain (2: Profiles of the locHLConcELM solution
(first column) and its absolute error (second column) at the time instants: ¢ = 0.25 (a,d),
t = 0.5 (b,e), and t = 1.0 (c,f). The profiles of the exact solution are also shown in (a,b,c),
which overlap with those of the locHLConcELM solution. The locHLConcELM simulation
parameters and configurations follow those of Figure 20.

0 =[1.0,1.5] x [1.0,1.5] and the following initial/boundary value problem,

8u

% —ug—z+@ = f(=,t), (29a)
u(lzt) =01 (t)7 u(1'57t) = gg(t), %(17 t) = 93(t)7 (29b)
u(z, 1) = h(z). (29¢)

In the above equations u(x,t) is the field solution to be sought, f(z,t) is a pre-
scribed source term, g; (i = 1,2,3) and h are the data for the boundary and initial

38 Naxian Ni, Suchuan Dong

(c)

Fig. 22 KdV equation: Distributions of (a) the exact solution, (b) the absolute error of
the HLConcELM solution, and (c) the absolute error of the conventional ELM solution. In
(b,c), neural network architecture M = [2, 800, 50, 1], @ = 35 X 35 uniform collocation points.
R = (3.2,0.01) in (b) for HLConcELM. Ry, = Rmo = 0.27 in (c) for conventional ELM.

conditions. We choose f, g; (i = 1,2,3) and h such that the system (29) has the
following analytic solution,

u(z,t) = 4sin <7rx3) sin (7rt3) . (30)

Figure 22(a) shows the distribution of this solution in the spatial-temporal z¢
plane.

To solve the problem (29) using the HLConcELM method, we employ neural
networks with two input nodes (representing the z and t) and a single output node
(representing u), with the Gaussian activation function for all the hidden nodes.
A uniform set of @ = Q1 x @1 collocation points on the domain {2 is used to train
the neural network, where @Q; is varied systematically in the tests.

Figures 22(b) and (c) illustrate the absolute-error distributions obtained using
the HLConcELM method and the conventional ELM method. Here the network
architecture is given by M = [2,800,50, 1], and a uniform set of @ = 35 x 35
collocation points is used for both methods. The hidden magnitude vector is
R = (3.2,0.01) with HLConcELM, which is obtained using the method of [13].
For conventional ELM, we set the hidden-layer coefficients to random values gen-
erated on [—Rm, Rm] with Ry, = Rpmo, where Rpyo = 0.27 is the optimal R,
obtained using the method of [13]. The conventional ELM solution is observed
to be inaccurate (maximum error on the order of 10?), because of the narrow

Hidden-Layer Concatenated ELM 39

— & maxerror 1071 — O maxerror
& rms error - - rms error
10" "
o NN: [2, M, 50, 1]
NN: [2, 800, 50, 1] wi(l; M.var.léd'
010" U)wQ E
<] <]
= S0k
W, im]
10°
107 o=
""" A 107+
A A
— A A
10° 10 K ;‘a 3.‘0 K 2 10 200 . Adq .s‘oo 500 7000
Collocation points per direction (a) Nodes in first hidden layer (b)

Fig. 23 KdV equation: The HLConcELM maximum/rms errors versus (a) the number of
collocation points per direction, and (b) the number of nodes in the first hidden layer (M).
Network architecture [2, M,50,1]. M = 800 in (a), varied in (b). @ = 35 x 35 in (b), varied in
(a). R =(3.2,0.01) in (a,b).

neural collocation current HLConcELM | conventional ELM

network points max error rms error max error rms error

[2,800,50,1] | 5 x5 467TE+0 1.24E+0 1.66FE + 2 8.18FE + 1
10 x 10 8.28F — 2 1.70FE — 2 1.78E + 2 1.02FE + 2
15 x 15 4.30E -3 T7.21E—4 1.88E + 2 9.36E + 1
20 x 20 8.21E -5 1.64E—5 1.78E + 2 9.80FE + 1
25 x 25 3.02E—-7 5. 7TIE—38 1.75E + 2 8.89F + 1
30 x 30 455E -7 3.32E-38 1.66E + 2 7.76FE + 1
35 x 35 5.55F —8 4.95FE —9 1.67TE + 2 7T77TE +1
40 x 40 1.87TE —7 1.45FE —38 1.67E + 2 7.7AE + 1

Table 6 KdV equation: Comparison of the maximum/rms errors from the HLConcELM
method and the conventional ELM method. Network architecture: [2, 800, 50, 1]. The HLCon-
cELM data in this table correspond to those in Figure 23(a). For conventional ELM, the hidden-
layer coefficients are set to uniform random values generated on [—Rm, Rm] with Ry = Rmo.
Here R,,0 = 0.27 is the optimal R,, obtained using the method of [13].

last hidden layer in the network. In contrast, the HLConcELM solution is highly
accurate, with the maximum error on the order of 10~2 in the domain.

Figure 23 illustrates the convergence behavior of the HLConcELM errors with
respect to the collocation points and the number of nodes in the network. Here the
network architecture is M = [2, M, 50, 1], with M either fixed at M = 800 or varied
between M = 100 and M = 1000. A uniform set of Q@ = Q1 x Q1 collocation points
is used, with @Q; either fixed at Q1 = 35 or varied between Q1 = 5 and Q1 = 40.
The hidden magnitude vector is R = (3.2,0.01), obtained from the method of [13].
The two plots (a) and (b) depict the maximum/rms errors of the HLConcELM
solution as a function of @; and M, respectively. One can observe the familiar
exponential decrease in the errors with increasing @1 or M.

Table 6 provides an accuracy comparison of the HLConcELM method and
the conventional ELM method [9] for solving the KdV equation on a network
architecture M = [2,800, 50, 1] corresponding to a sequence of collocation points.
The HLConcELM solution is highly accurate, while the conventional ELM solution
exhibits no accuracy at all on such a neural network.

Figure 24 illustrates the HLConcELM solutions obtained on a deeper neural
network with 3 hidden layers. The neural network architecture is given by M =

40 Naxian Ni, Suchuan Dong

B rms error '
10"
10"
A NN: [2, 700, 50, 50, 1] NN:[2, M, 50, 50, 1]
100 3 107 with M varied
LiooL &
= Oio0°
ok i
10°F 10°+
10°L
PR 107F
107 T A A A
A a
1o 10 K .2b sl‘o K 2 1o 200 . 469 Isba 500 7000
Collocation points per direction (b) Nodes in first hidden layer ©

Fig. 24 KdV equation (3 hidden layers in network): (a) Distribution of the absolute error of
the HLConcELM solution. The HLConcELM maximum/rms errors versus (b) the number of
collocation points per direction, and (c) the number of nodes in the first hidden layer (M).
Network architecture: [2, M,50,50,1]. M = 700 in (a,b), varied in (¢). @ = 35 x 35 in (a,c),
varied in (b). R = (3.0,0.025, 1.6) in (a,b,c).

[2, M, 50,50,1], where M is either fixed at M = 700 or varied systematically. A
hidden magnitude vector R = (3.0,0.025,1.6) is employed in all the simulations.
Figure 24(a) shows the absolute-error distribution on (2, which corresponds to
M = 700 and a set of Q = 35 x 35 collocation points. The HLConcELM result is
highly accurate, with the maximum error on the order of 10~7 on 2. Figures 24(b)
and (c) depict the maximum/rms errors of HLConcELM as a function of the
number of collocation points and as a function of M, respectively. The data again
signify the exponential (or near exponential) convergence of the HLConcELM
errors.

4 Concluding Remarks

The extreme learning machine (ELM) method can yield highly accurate solu-
tions to linear and nonlinear PDEs. To achieve a high accuracy, the existing ELM
method [9,10,13] requires the last hidden layer of the neural network to be wide.
So the ELM neural network typically contains a large number of nodes in the
last hidden layer, irrespective of the rest of the network configuration. If the last
hidden layer is narrow, the ELM accuracy will suffer and tend to be poor, even

Hidden-Layer Concatenated ELM 41

though the neural network may contain a large number of the nodes in the other
hidden layers.

In the current paper we have presented a method to overcome the above
drawback of the existing (conventional) ELM method. The new method, termed
HLConcELM (hidden-layer concatenated ELM), can produce highly accurate so-
lutions to PDEs when the last hidden layer is wide, and when the last hidden layer
is narrow, in which case the conventional ELM completely losses accuracy.

The new method relies on a type of modified feedforward neural networks
(FNN), which exposes the hidden nodes in all the hidden layers to the output nodes
by incorporating a logical concatenation of the hidden layers into the network.
We refer to this modified network as HLConcFNN (hidden-layer concatenated
FNN) in this paper. In HLConcFNN every hidden node in the network directly
influences the nodes in the output layer, while in conventional FNN only the hidden
nodes in the last hidden layer directly influence the output nodes. HLConcFNNs
have the property that, if new hidden layers are appended to an existing network
architecture or new nodes are added to an existing hidden layer, the representation
capacity of the resultant network architecture is guaranteed to be not smaller than
that of the original one.

The HLConcELM method adopts the HLConcFNN as its neural network. It
assigns random values to (and fixes) the weight/bias coefficients in all the hidden
layers of the neural network, while the coefficients between the output nodes and
all the hidden nodes of the network are trained/computed by a linear or nonlinear
least squares method. Note that in HLConcELM every hidden node in the network
is connected to the output nodes because of the logical hidden-layer concatena-
tion. HLConcELMs partially inherit the non-decreasing representation capacity
property of HLConcFNNs. They have the property that, as new hidden layers
are appended to an existing network architecture, the representation capacity of
the HLConcELM associated with the resultant architecture is not smaller than
that associated with the original one, provided that the random coefficients in the
resultant architecture are assigned in an appropriate fashion.

In essence, when solving PDEs or approximating functions, the ELM method
performs an expansion of the unknown field solution in terms of a set of random
basis functions. With conventional ELM, the random bases consist of the output
fields of the last hidden layer of the neural network. With HLConcELM, on the
other hand, the random bases consist of the output fields of the hidden nodes in
all the hidden layers of the neural network. HLConcELM is able to harvest the
degrees of freedom provided by all the hidden nodes in the network, not limited
to those from the last hidden layer. This is the essential difference between the
HLConcELM method and the conventional ELM method.

We have tested the current HLConcELM method on boundary value problems
and initial/boundary value problems involving a number of linear and nonlinear
PDEs. In particular, we have compared HLConcELM and the conventional ELM
on network architectures whose last hidden layer is narrow or wide. The numerical
results demonstrate that the current HLConcELM method yields highly accurate
results on network architectures with both narrow and wide last hidden layers.
In contrast, the conventional ELM only achieves accurate results on architectures
with a wide last hidden layer, and with a narrow last hidden layer it exhibits
poor or no accuracy. The HLConcELM method displays an exponentially conver-
gent behavior for smooth field solutions, reminiscent of the traditional high-order

42 Naxian Ni, Suchuan Dong

techniques [35,72,69,70,68]. Its numerical errors decrease exponentially or nearly
exponentially as the number of collocation points or the number of trainable pa-
rameters increases.

Appendix A: Proofs of Theorems from Section 2

Proof of Theorem 1:

Consider an arbitrary u(6,8,x) € U(£2,My,0), where 8 € R+ and g8 € RVet,

with Ny = Y1 (mioy + Dmyi and New = Y77 my. Tet wi) (1< i < L—1,

1<k <miq, 1 <5< m) andbg“ (1<i<L-11<j < m) denote
the hidden-layer weight/bias coefficients of the associated HLConcFNN(My, o),
and let 8;; 1 <i<L-1,1<j< m;) denote the output-layer coefficients of
HLConcFNN (M1, o). u(0, 8,x) is given by (7).

Consider a function v(9, a,x) € U(2,Ma,0) with & € RV and a € RNe2,
where Neo = Ne1+n, and Njo = Npy + (mp—1 + 1)n. We will choose ¢ and a such
that v(9, @, x) = u(0, B,x). We construct ¥ and a by setting the hidden-layer and
the output-layer coefficients of HLConcFNN(Mzg, o) as follows.

The HLConcFNN(Mzg,0) has L hidden layers. We set the weight/bias coef-
ficients in its last hidden layer (with n nodes) to arbitrary values. We set those
coefficients that connect the output node and the n nodes in the last hidden layer
to all zeros. For the rest of the hidden-layer coefficients and the output-layer coef-
ficients in HLConcFNN(Ma2, o), we use those corresponding coefficient values from
the network HLConcFNN(My, o).

More specifically, let fl(jj) and nj(-z) denote the weight/bias coefficients in the
hidden layers, and «;; denote the output-layer coeflicients, of HLConcFNN(Mz, o)
associated with the function v(¥, e, x). We set these coefficients by,

o _ fwid, for 1<i< L1, 1<k<min, 1Sj<mis ()
ki arbitrary value, for i = L, 1 <k <mp_1, 1 <j<n
) = b, forall 1<i<L—1, 1<j<m (32)
arbitrary value, for i = L, 1 < j < n;
By, for 1<i<L—1, 1<j<my;
a”_{o, fori=1L, 1<j<n. (33)

With the above coefficients, the last hidden layer of the network HLConcFNN(Ma, o)
may output arbitrary fields, which however have no effect on the output field
of HLConcFNN(Mz,0) because ar; = 0 (1 < j < n). The rest of the hidden
nodes in HLConcFNN (M3, o) and the output node of HLConcFNN(Mog, o) pro-
duce fields that are identical to those of the corresponding nodes in the network
HLConcFNN(Mj, o). We thus conclude that w(0, 8,x) = v(9, a, x). So u(0, 8,x) €
U(£2,M3,0), and the relation (9) holds.

Proof of Theorem 2:

We use the same strategy as that in the proof of Theorem 1. Consider an ar-
bitrary u(6,8,x) € U(£2,My,0), where 8 € RV and 8 € RYe1| with Ny, =

Hidden-Layer Concatenated ELM 43

Zf:_ll (mi—1 +1)m; and N = ZiL:_ll m;. The hidden-layer coefficients of the as-
sociated HLConcFNN(Mj, o) are denoted by w,(c? 1<i<L-1,1<k<mq,
1<j<my;) and bg-’) (1<i<L—-1,1<j<my),and the output-layer coefficients
are denoted by 8;; (1 <i<L—1,1<j<my). u(d,B,x) is given by (7).

Consider a function v(9, a,x) € U(£2,Ma,0) with & € RV and a € RNe2,
where Neg = N + 1, and Npg = Npyp + (ms—1 + 1) +msp1 if 1 < s < L —2
and Npo = Ny + (ms—1 + 1) if s = L — 1. We construct 9 and « by setting the
hidden-layer and the output-layer coefficients of HLConcFNN(Mz3, o) as follows.

In HLConcFNN (M3, o) we set the weight coefficients that connect the extra
node of layer s to those nodes in layer (s+1) to all zeros, and we also set the weight
coefficient that connects the extra node of layer s with the output node to zero.
We set the weight coefficients that connect the nodes of layer (s — 1) to the extra
node of layer s to arbitrary values, and also set the bias coefficient corresponding
to the extra node of layer s to an arbitrary value. For the rest of the hidden-layer
and output-layer coefficients of HLConcFNN(Mz3, o), we use those corresponding
coefficient values from the network HLConcFNN(Mjy, o).

Specifically, let 51(63.) and 77§2) denote the weight/bias coefficients in the hidden
layers, and «;; denote the output-layer coefficients, of the HLConcFNN(Mz, o)
associated with v(9, a, x). We set these coefficients by,

wy), forall (1<i<s—1, ors+2<i<L—1),
1<k<mi_1, 1<j<my;
@ _) iy, fori=s, 1<k<ms1, 1 <j<ms; (34)
ki arbitrary value, for : = s, 1 <k <mgs—1, j=ms+1;
w](c‘?rl), fori=s+1, 1<k<ms, 1 <5< msyr;
0, fori=s+1, k=ms+1, 1 <j<msp1;
_ b, forall1<i<L—1,i#s 1<j<m;
) = b, fori=s, 1<j<ms; (35)

arbitrary value, for i = s, j =ms + 1;

Bij, forall 1 <i<L—1, i#s, 1<j<my;
aij =1 Bsj, fori=s, 1 <j < ms; (36)
0, fori=s, j=ms+1.
With the above coefficients, the extra node in layer s of the network HLConcFNN (Mg, o)

may output an arbitrary field, which however has no contribution to the output
field of HLConcFNN (Mg, o). The rest of the hidden nodes and the output node
of HLConcFNN(Mo3, o) produce identical fields as the corresponding nodes in the
network HLConcFNN(M,). We thus conclude that u(6,3,x) = v(d, a,x). So
u(0,8,x) € U(£2,M2,0) and the relation (10) holds.

Proof of Theorem 3:

We use the same strategy as that in the proof of Theorem 1. Consider an arbitrary
u(0,8,x) € U(2,My,0,6), where 8 € RNt with Ny = S5 m;. We will try to
construct an equivalent function from U(£2, Ma, o, 9).

We consider another function v(9, e, x) € U(£2, Mg, 0, 9), where o € Rz with

Ne2 = Neip +n, and we set the coefficients of the HLConcELM corresponding to

44 Naxian Ni, Suchuan Dong

name o(z) R name o(x) R

Gaussian e’ (3.0,0.005) | sinc w (6.0,0.05)

tanh tanh(z) (2.0,0.05) | GELU 1 (1 + erf%) (4.4,0.01)
28, if x>0, .

RePU-8 {0’ fezo (02204) | swish T (3.8,0.01)

Table 7 Appendix B (variable-coefficient Poisson equation): The activation functions and the
corresponding hidden magnitude vector R employed. The R values used here are close to the
optimal R* obtained by the method of [13] based on the neural network [2,800,50,1] with
Q=35%35 collocation points.

o(x) max error rms error Rl error
Q=15x15 30x30 Q=15x15 30x30 Q=15x15 30x30
Gaussian 2.33E-3 3.17E-8 3.92E-4 3.79E-9 8.15E-3 1.33E-7

tanh 2.33E-3 1.64E-6 3.14E-4 1.10E-7 6.30E-3 5.28E-6
RePU-8 3.40E-3 8.19E-3 6.66E-4 7.30E-4 1.08E-2 1.76E-2
sinc 2.35E-2 4.37E-9 8.27E-3 3.35E-10 1.16E-1 1.51E-8
GELU 2.89E-3 8.75E-8 4.55E-4 5.73E-9 9.34E-3 2.93E-7
swish 1.31E-3 7.07E-7 2.43E-4 5.43E-8 4.95E-3 2.59E-6

Table 8 Appendix B (variable-coefficient Poisson equation): The max/rms/h' errors of
HLConcELM obtained with different activation functions on two uniform sets of collocation
points. Neural network [2,800,50,1]. R values are given in Table 7.

v(9, e, x) as follows. Since 9[1 : Np;] = 0[1 : Np,], the random coefficients in
the first (L — 1) hidden layers of the HLConcELM corresponding to v(9, a,x)
are identical to those corresponding hidden-layer coefficients in the HLConcELM
for u(,3,x). We set the weight/bias coefficients in the L-th hidden layer of the
HLConcELM for v(¥9, at, x), which contains n nodes, to arbitrary random values.
For the output-layer coefficients of the HLConcELM for v(9, a, x), we set those
coefficients that connect the hidden nodes in the first (L — 1) hidden layers and
the output node to be identical to those corresponding output-layer coefficients
in the HLConcELM for u(0, 3,x), namely, a[l : Nci] = B[1 : Nei]. We set those
coefficients that connect the hidden nodes of the L-th hidden layer and the output
node to be zeros in the HLConcELM for v(¥, o, x), namely, a[Ne1 + 1 : Neo] = 0.

With the above coefficient settings, the output fields of those nodes in the
first (L — 1) hidden layers of HLConcELM(Mz, o, 9) are identical to those corre-
sponding nodes of HLConcELM(Mj, o, 0). The output fields of those n nodes in
the L-th hidden layer of HLConcELM (Mg, o, 9) are arbitrary, which however have
no contribution to the output field of HLConcELM (Mg, o,9). The output field
of the HLConcELM(Ma, 0,9) is identical to that of the HLConcELM(Mjy, 0, 8),
ie. v(9,a,x) = u(0,B,x). We thus conclude that «(0,3,x) € U(£2,M2,0,9) and
the relation (13) holds.

Appendix B. Numerical Tests with Several Activation Functions

We have employed the Gaussian activation function for all the numerical simula-
tions in Section 3. This appendix provides additional HLConcELM results using
several other activation functions for solving the variable-coefficient Poisson prob-
lem from Section 3.1. Table 7 lists the activation functions studied below, including

Hidden-Layer Concatenated ELM 45

o(z) max error rms error Al error
M=400 800 M=400 800 M=400 800
Gaussian | 9.00E-4 5.68E-8 | 7.96E-5 5.25E-9 2.26E-3 2.42E-7

tanh 1.84E-3 1.44E-6 | 2.06E-4 1.12E-7 | 6.34E-3 5.39E-6
RePU-8 1.19E-1 6.61E-3 | 1.20E-2 5.47E-4 | 2.32E-1 1.38E-2
sinc 1.32E-3 3.33E-9 | 1.51E-4 1.61E-10 | 4.06E-3 1.38E-8
GELU 1.06E-3 1.05E-7 | 7.71E-5 7.23E-9 | 2.24E-3 3.T7TE-7
swish 1.50E-3 1.78E-6 | 1.17TE-4 7.17E-8 | 3.58E-3 4.35E-6

Table 9 Appendix B (variable-coefficient Poisson equation): The max/rms/hl errors of
HLConcELM obtained with different activation functions on two neural networks with ar-
chitecture [2, M, 50, 1]. @ = 35 x 35 uniform collocation points. R values are given in Table 7.

tanh, RePU-8, sinc, GELU and swish (in addition to Gaussian), as well as the hid-
den magnitude vector R employed for each activation function. Here “RePU-8”
stands for the rectified power unit of degree 8, and “GELU” denotes the Gaussian
error linear unit [25].

Table 8 lists the maximum, rms and h! errors of the HLConcELM solutions
obtained using these activation functions on a neural network [2,800, 50, 1] with
two uniform sets of collocation points @ = 15 x 15 and 30 x 30. Table 9 lists the
maximum, rms and k' errors of HLConcELM using these activation functions on
two neural networks of the architecture [2, M, 50, 1] (with M = 400 and 800) with
a fixed uniform set of Q = 35 x 35 collocation points. One can observe a general
exponential decrease in the errors with these activation functions, except for the
RePU-8 function in Table 8 (where the errors seem to saturate). The results with
the RePU function appears markedly less accurate than those obtained with the
other activation functions studied here.

Appendix C. Additional Comparisons Between HLConcELM and Conven-
tional ELM

This appendix provides additional comparisons between the current HLConcELM
method and the conventional ELM method for the variable-coefficient Poisson
problem (Section 3.1) and the nonlinear Helmholtz problem (Section 3.3).

In those comparisons between HLConcELM and conventional ELM presented
in Section 3, the base neural-network architectures for HLConcELM and conven-
tional ELM are maintained to be the same. HLConcELM is able to harvest the
degrees of freedom in all the hidden layers of the neural network, thanks to the
logical connections between all the hidden nodes and the output nodes (due to
the hidden-layer concatenation). On the other hand, the conventional ELM only
exploits the degrees of freedom afforded by the last hidden layer of the network,
while those degrees of freedom provided by the preceding hidden layers are essen-
tially “wasted” (see the discussions in Section 2.1). This is why the conventional
ELM exhibits a poor accuracy if the last hidden layer is narrow, irrespective of
the rest of the network configuration. This also accounts for why the HLConcELM
method can achieve a high accuracy when the last hidden layer is narrow and when
it is wide.

Note that with HLConcELM the number of training parameters equals the to-
tal number of hidden nodes in the neural network, and with conventional ELM it

46

Naxian Ni, Suchuan Dong

method network Q max error rms error
HLConcELM | [2,800,50, 1] 5X5 1.91E40 4.31E-1
10 x 10 3.22E-2 7.88E-3
15 x 15 2.33E-3 3.92E-4
20 x 20 4.70E-5 1.32E-5
25 X 25 4.78E-7 1.10E-7
30 x 30 3.17E-8 3.79E-9
Conventional | [2,800,850,1] | 5 x5 2.34E40 7.43E-1
ELM 10 x 10 1.02E-1 1.98E-2
15 x 15 3.58E-3 9.09E-4
20 x 20 9.82E-5 2.35E-5
25 X 25 2.97E-6 2.76E-7
30 x 30 4.49E-6 3.26E-7
HLConcELM | [2,50,800,1] | 5x 5 2.95E+0 9.26E-1
10 x 10 9.35E-2 9.93E-3
15 x 15 1.11E-3 2.40E-4
20 x 20 3.42E-5 6.91E-6
25 X 25 2.34E-6 4.45E-7
30 x 30 3.07E-8 4.81E-9
Conventional | [2,50,850,1] 5%x5 3.15E+0 1.05E+0
ELM 10 x 10 1.16E-1 1.92E-2
15 x 15 3.88E-3 7.55E-4
20 x 20 5.59E-5 1.91E-5
25 x 25 8.60E-7 2.16E-7
30 x 30 6.89E-8 1.14E-8

Table 10 Appendix C (variable-coefficient Poisson equation): Comparison of the maximum
and rms errors versus the number of collocation points (Q) obtained by HLConcELM and
conventional ELM. In all cases, the neural network has two hidden layers and a total of 850
trainable parameters for both HLConcELM and conventional ELM. The HLConcELM data in
this table correspond to those in Table 1. For conventional ELM, the hidden-layer coefficients
are assigned to uniform random values from [—Ru,, Rm] with Ry, = Rupmo. Here Ryyo is the
optimal R,, obtained using the method of [13], with R,,0 = 0.38 for the network [2, 800, 850, 1]

and R0 = 0.72 for the network [2, 50, 850, 1].

equals the number of nodes in the last hidden layer. Under the same base network
architecture (with multiple hidden layers), the number of training parameters in
HLConcELM is larger than that in the conventional ELM, because the HLCon-
cELM also exploits the the hidden nodes from the preceding hidden layers.

In what follows we present several additional numerical tests to compare HL.Con-
cELM and conventional ELM, under the configuration that the number of training
parameters in both HLConcELM and conventional ELM is maintained to be the
same. Because of their different characteristics, the base network architectures for
HLConcELM and for conventional ELM in this case will inevitably not be identi-
cal. In the comparisons below we try to keep the two architectures close to each
other, specifically by using the same depth, and the same width for each hidden
layer except the last, for both HLConcELM and conventional ELM. The width of
the last hidden layer in the HLConcELM network and in the conventional-ELM
network is different, with the conventional ELM being wider (and in some cases
considerably wider), while the number of training parameters is kept the same in

both.

Tables 10 and 11 show comparisons of the maximum and rms errors versus
the number of collocation points obtained by HLConcELM and by conventional
ELM for the variable-coefficient Poisson problem from Section 3.1. The results in

Hidden-Layer Concatenated ELM 47

method network Q max €rror rms error
HLConcELM | [2,800,50, 50, 1] 5x5 1.92E40 4.35E-1
10 x 10 3.21E-2 7.91E-3
15 x 15 2.33E-3 3.94E-4
20 x 20 6.07E-5 1.45E-5
25 % 25 4.99E-7 1.16E-7
30 x 30 6.44E-8 5.62E-9
Conventional | [2,800,50,900,1] | 5 x5 2.83E+0 8.32E-1
ELM 10 x 10 2.52E-1 4.58E-2
15 x 15 7.92E-3 1.16E-3
20 x 20 1.14E-4 1.32E-5
25 X 25 4.31E-6 8.18E-7
30 x 30 1.36E-6 9.22E-8

HLConcELM | [2,50,50,800,1] | 5 x5 I81E+0 4.40BE-1
10 x 10 5.83E-2 1.11E-2
15 x 15 3.91E-3 6.24E-4
20 x 20 4.57E-5 6.39E-6
25 x 25 8.10E-7 1.23E-7
30 x 30 2.97E-8 2.66E-9
Conventional | [2,50,50,900,1] 5X%X5 1.49E+0 4.21E-1
ELM 10 x 10 8.79E-2 2.06E-2
15 x 15 1.90E-3 3.15E-4
20 x 20 1.79E-5 3.94E-6
25 x 25 2.56E-6 3.72E-7
30 x 30 6.68E-8 8.31E-9

Table 11 Appendix C (variable-coefficient Poisson equation): Comparison of the maximum
and rms errors versus the number of collocation points (Q) obtained by HLConcELM and con-
ventional ELM. In all cases, the neural network has 3 hidden layers and a total of 900 trainable
parameters for both HLConcELM and conventional ELM. For HLConcELM, the hidden mag-
nitude vector R = (3.0,0.005,0.15) for the network [2, 800, 50,50, 1] and R = (0.5, 0.5, 0.6) for
the network [2, 50, 50, 800, 1]. For conventional ELM, the hidden-layer coefficients are assigned
to uniform random values from [— Ry, Rm]| with Ry, = Rin0. Here Ryyo is the optimal Ry,
obtained using the method of [13], with R,,0 = 0.4 for the network [2,800, 50,900, 1] and
Rpmo = 0.5 for the network [2, 50, 50,900, 1].

Table 10 are attained with two hidden layers in the neural network and a total
of 850 training parameters. The results in Table 11 correspond to three hidden
layers in the neural network with a total of 900 training parameters. The HLCon-
cELM data in Table 10 for the networks [2, 800, 50, 1] and [2, 50, 800, 1] correspond
to those in Table 1. The simulation parameter values are listed in the tables or
provided in the table captions. The exponential convergence of the errors with
respect to the number of collocation points is evident in all test cases. The error
levels from HLConcELM and the conventional ELM are close, reaching the order
around 107® in terms of the maximum error and 10~ in terms of the rms error.
The error values resulting from HLConcELM in general appear better than those
from the Conventional ELM, e.g. by comparing the HLConcELM results (with
[2,800,50,1]) and the conventional ELM results (with [2, 800,850, 1]) in Table 10
or comparing the HLConcELM results (with [2, 800, 50, 50, 1]) and the conventional
ELM results (with [2,800, 50,900, 1]) in Table 11. But this is not true for every
test case; see e.g. the case Q=25x25 between HLConcELM (with [2, 50,800, 1])
and conventional ELM (with [2,50, 850, 1]) in Table 10 or the cases Q=15x15 and
20%20 between HLConcELM (with [2, 50, 50,800, 1]) and conventional ELM (with
[2,50,50,900,1]) in Table 11.

48 Naxian Ni, Suchuan Dong

method network Q max error rms error
HLConcELM | (2,500, 30, 1] 5% 5 4.00E+0 1.48E+0
10 x 10 1.59E+0 2.80E-1
15 x 15 1.27E-3 1.62E-4
20 x 20 1.27E-5 2.34E-6
25 x 25 2.08E-6 2.11E-7
30 x 30 3.74E-6 3.48E-7
Conventional | [2,500,530,1] | 5 x5 3.75E4+0 8.94E-1
ELM 10 x 10 3.46E-1 4.03E-2
15 x 15 1.05E-3 1.92E-4
20 x 20 8.63E-5 1.44E-5
25 x 25 3.90E-5 3.07E-6
30 x 30 3.50E-5 3.84E-6

HLConcELM | [2,30,500,1] | 5 x5 3.23E10 8.43E-1
10 x 10 7.22E-1 1.32E-1
15 x 15 1.06E-3 2.36E-4
20 x 20 2.56E-5 3.12E-6
25 X 25 8.78E-7 1.38E-7
30 x 30 8.99E-7 8.20E-8
Conventional | [2,30,530,1] 5%x5 3.51E+0 9.04E-1
ELM 10 x 10 6.57E-1 1.11E-1
15 x 15 3.87E-4 8.38E-5
20 x 20 1.67E-5 2.07E-6
25 x 25 2.74E-6 3.22E-7
30 x 30 1.87E-6 1.73E-7

Table 12 Appendix C (nonlinear Helmholtz equation): Comparison of the maximum and rms
errors versus the number of collocation points (Q) obtained by HLConcELM and conventional
ELM. In all cases, the neural network has two hidden layers and a total of 530 trainable
parameters for both HLConcELM and conventional ELM. The HLConcELM data in this
table correspond to those in Table 4. For conventional ELM, the hidden-layer coefficients
are assigned to uniform random values from [—Ru,, Rm] with Ry, = Rupmo. Here Ry is the
optimal R, obtained using the method of [13], with R;,0 = 0.4 for the network [2, 500, 530, 1]
and R0 = 0.6 for the network [2, 30, 530, 1].

Tables 12 and 13 show the comparisons between HLConcELM and conven-
tional ELM for the nonlinear Helmholtz problem from Section 3.3. The results in
Table 12 correspond to two hidden layers in the neural network with a total of 530
training parameters, and those in Table 13 correspond to three hidden layers in the
neural network with a total of 560 training parameters. The simulation parameter
values are provided in the table captions or listed in the tables. Note that the
HLConcELM data in Table 12 correspond to those in Table 4 with the networks
[2,500,30,1] and [2,30,500,1]. The relative performance between HLConcELM
and conventional ELM exhibited by these data is similar to what has been ob-
served from Tables 10 and 11 for the variable-coefficient Poisson equation. The
error levels resulting from HLConcELM and conventional ELM are quite close, on
the order of 1078 or 1077 in terms of the maximum error and 10~7 or 1078 in
terms of the rms error. Overall the error values from HLConcELM appear slightly
better than those from the conventional ELM; see e.g. those data in Table 12 and
the cases between HLConcELM with [2, 30, 30,500, 1] and conventional ELM with
[2, 30, 30,560, 1] in Table 13. But this is not consistently so for all the test cases; see
e.g. the cases between HLConcELM with [2,500, 30, 30, 1] and conventional ELM
with [2,500, 30,560, 1] in Table 13.

Hidden-Layer Concatenated ELM 49

method network Q max €rror rms error
HLConcELM | [2,500, 30, 30, 1] 5x5 5.74E+40 1.85E4-0
10 x 10 6.84E-1 1.98E-1
15 x 15 4.45E-3 9.10E-4
20 x 20 1.78E-5 3.46E-6
25 x 25 1.85E-6 1.44E-7
30 x 30 1.52E-6 1.86E-7
Conventional | [2,500,30,560,1] | 5 x5 2.89E+40 9.17E-1
ELM 10 x 10 6.18E-1 1.06E-1
15 x 15 2.05E-3 3.99E-4
20 x 20 3.88E-5 5.72E-6
25 x 25 9.46E-7 1.17E-7
30 x 30 3.51E-7 4.24E-8

HLConcELM | [2,30,30,500,1] | 5 x5 3.30E10 S.69E-1
10 x 10 2.17E-1 4.33E-2
15 x 15 4.42E-3 7.98E-4
20 x 20 7.43E-5 1.53E-5
25 x 25 6.38E-6 1.06E-6
30 x 30 5.82E-6 3.73E-7
Conventional | [2,30,30,560,1] 5x%x5 4.51E40 1.04E+0
ELM 10 x 10 1.47E+0 1.05E-1
15 x 15 8.24E-1 1.53E-1
20 x 20 2.36E-2 2.90E-3
25 x 25 4.49E-5 7.54E-6
30 x 30 6.33E-6 6.68E-7

Table 13 Appendix C (nonlinear Helmholtz equation): Comparison of the maximum and
rms errors versus the number of collocation points (Q) obtained by HLConcELM and conven-
tional ELM. In all cases, the neural network has 3 hidden layers and a total of 560 trainable
parameters for both HLConcELM and conventional ELM. For HLConcELM, the hidden mag-
nitude vector R = (2.1,0.2,2.3) for the network [2, 500, 30, 30, 1] and R = (0.82,0.26,0.34) for
the network [2, 30, 30,500, 1]. For conventional ELM, the hidden-layer coefficients are assigned
to uniform random values from [— Ry, Rm]| with Ry, = Rio. Here Ryyo is the optimal Ry,
obtained using the method of [13], with R,,0 = 0.37 for the network [2,500, 30,560, 1] and
R0 = 0.55 for the network [2, 30, 30, 560, 1].

It is noted that in all these test cases the neural network for the conventional
ELM has a wide last hidden layer. This is consistent with the observation that the
conventional ELM is only accurate when the last hidden layer is wide.

Appendix D. Laplace Equation Around a Reentrant Corner

This appendix provides a test of the HLConcELM method with the Laplace equa-
tion around a reentrant corner, where the solution is not smooth. Figure 25 is a
sketch of the L-shaped domain 2 = OABCDEO (with an reentrant corner at O)
employed in this test. We consider the following problem on 2,

0%u 9%u
@‘5‘@:07 (z,y) € 2, (37a)
u(z,y) =0, (z,y) € OA, OFE, (37b)

: 2k .
u(z,y) = r ¥ sin (59) , (z,y) € AB, BC, CD, DE, (37¢)

50 Naxian Ni, Suchuan Dong

¢ F
P S B
Gt
> o A
gD [E
1 0 1
X

Fig. 25 Appendix D (reentrant corner): sketch of the L-shaped domain OABCDEQO with an
reentrant corner at O. The sketch shows an example set of Q = 3x (10x 10) uniform collocation
points, with 10 x 10 points in each of the three regions OABF, OFCG and OGDE.

k=1 k=2 k=3 k=5

M max-err rms-err max-err rms-err max-err rms-err max-err rms-err
100 | 347BE-1 6.81E2 | 1.07E-1 5.52BE-2 | 3.22E-1 856E-2 | 1.05E+0 3.01E-1
200 | 2.12E-1 2.59E-2 | 8.03E-2 147E-2 | 2.18E-2 3.28E-3 | 891E-2 145E-2
300 | 1.71E-1 1.64E-2 | 6.04E-2 843E-3 | 4.33E-4 5.47E-5 | 347E-3 6.65E-4
400 | 1.53E-1 1.28E-2 | 4.04E-2 4.90E-3 | 5.76E-6 7.44E-7 | 2.56E-3 3.60E-4
500 | 1.37E-1 1.01E-2 | 3.58E-2 3.82E-3 | 2.01E-7 2.84E-8 | 1.68E-3 1.91E-4
600 | 1.21E-1 7.75E-3 | 2.65E-2 2.46E-3 | 7.72E-9 7.24E-10 | 9.08E-4 9.02E-5
700 | 1.11E-1 6.46E-3 | 2.28E-2 187E-3 | 4.69E-10 3.92E-11 | 6.19E-4 548E-5
800 | 1.02E-1 547E-3 | 1.98E-2 1.50E-3 | 1.65E-11 1.06E-12 | 4.27E-4 3.52E-5
900 | 9.62E-2 4.85E-3 | 1.78E-2 1.32E-3 | 1.80E-11 2.60E-12 | 3.33E-4 2.64E-5
1000 | 8.94E-2 6.96E-3 | 1.57E-2 1.23E-3 | 1.37E-11 2.55E-12 | 3.00E-4 3.14E-5

Table 14 Appendix D (reentrant corner): The maximum/rms errors of the HLConcELM solu-
tion versus the number of nodes in the first hidden layer (M) for solution fields with different
regularity (k parameter). In HLConcELM, neural network [2, M, 50, 1], Gaussian activation
function, @ = 3 X (20 x 20) uniform collocation points, R = (5.0,0.1). The solution field
is smooth if k is a multiple of 3, and non-smooth otherwise. The (non-smooth) solution is
smoother if k is larger.

where u(z,y) is the field to be solved for, (r,6) denotes the polar coordinate, and
k > 1 is a prescribed integer. This problem has the following solution,

u(z,y) =77 sin (%ke) (zy) € . (38)

The integer k influences the regularity of the solution. If k is a multiple of 3, then
the solution u(z,y) is smooth (C*°) on (2. Otherwise, the solution is non-smooth,
with its {%W—th derivative being singular at the reentrant corner. We solve this
problem by the HLConcELM method, and employ a set of uniform grid points
in the sub-regions OABF, OFCG and OGDE as the collocation points. Figure 25
shows a set of @ = 3 x (10 x 10) uniform collocation points on the domain as an
example. The Gaussian activation function is employed in the neural network. We
employ a fixed seed value 10 for the random number generators.

Figure 26 shows distributions of the exact solution (38), the HLConcELM
solution and its point-wise absolute error, corresponding to three different solution
fields with k = 1, 3 and 5. The values for the simulation parameters are provided

Hidden-Layer Concatenated ELM

51

(8)

(h)

B o
s0ea

(i)

Fig. 26 Appendix D (reentrant corner): Distributions of the exact solution (a,d,g), the
HLConcELM solution (b,e,h), and the point-wise absolute error of the HLConcELM solu-
tion (c,f,i) to the Laplace equation. (a,b,c) k = 1 (non-smooth), (d,e,f) k = 3 (smooth), and
(g,h,i) £ =5 (non-smooth) in the solution field. In HLConcELM, neural network [2, 800, 50, 1],
Gaussian activation function, @ = 3 x (20 x 20) uniform collocation points, R = (5.0,0.1).

k=1 k=2 k=3 k=5

Q max-err rms-err max-err rms-err max-err rms-err max-err rms-err
3% (5x5) 1.75E-1 6.15B-2 | 9.30E-2 2.60E-2 | 947E-2 3.15E-2 | 2.33E-1 8.27E-2
3x(10x10) | 4.65E-1 6.92E-2 | 7.92E-2 125E-2 | 5.09E-4 9.55E-5 | 1.59E-3 2.31E-4
3%(20x20) | 1.02E-1 5.47E-3 | 1.98E-2 150E-3 | 1.65E-11 1.06E-12 | 4.27E-4 3.52E-5
3x(30x30) | 1.14E-1 6.81E-3 | 2.33E-2 193E-3 | 1.70E-11 1.51E-12 | 6.40E-4 5.75E-5

Table 15 Appendix D (reentrant corner): The maximum/rms errors of the HLConcELM
solution versus the number of collocation points (Q) for solution fields with different regularity.
In HLConcELM, neural network (2,800, 50, 1], Gaussian activation function, R = (5.0,0.1).

in the figure caption. The HLConcELM result is extremely accurate for the case
with a smooth solution (k = 3), with the maximum error on the order 10~*! in
the domain. On the other hand, the HLConcELM solution is much less accurate
for the non-smooth cases (k = 1,5), with the maximum error around 10~! for
k=1 and around 10~* for k = 5. One can note that the computed HLConcELM
solution is more accurate for a smoother solution field (larger k).

52 Naxian Ni, Suchuan Dong

1

0.6

—

0.4
0.2

0

o 05 1x

1
. . 7 -
. 06

; -

- 3 0.4
. 02
% 05 1x 15 2 () 0

Fig. 27 (Appendix E) Kuramoto-Sivashinsky equation (case #1): Distributions of (a) the
exact solution, (b) the HLConcELM solution and (c) its point-wise absolute error. In HLCon-
cELM, 5 uniform time blocks, neural network M = [2,400,50, 1] and Q = 25 X 25 uniform
collocation points per time block, hidden magnitude vector R = (1.64,0.05), Gaussian activa-
tion function.

0 0.5 1 x 1.5 2 (C)

Tables 14 and 15 illustrate the convergence behavior of the HLConcELM errors
with respect to the number of hidden nodes in the neural network and the number
of collocation points (Q). Several cases corresponding to smooth and non-smooth
solution fields are shown. The simulation parameter values are provided in the
captions of these tables. The neural network architecture is given by [2, M, 50, 1],
where M is either fixed at M = 800 or varied systematically. The set of collocation
points is either fixed at @ = 3 x (20 x 20) or varied systematically. For the smooth
case (k = 3), the HLConcELM solution exhibits an exponential convergence with
respect to M and Q. For the non-smooth cases (k = 1,2,5), the convergence is
much slower and in general quite slow. However, if the solution is smoother (larger
k), we can generally observe an initial exponential decrease in the HLConcELM
errors as M or @ increases, and that the error reduction slows down as M or Q
reaches a certain level. For example, with the case k = 5 one can observe in Table 14
the initial exponential decrease in the errors with increasing M for M < 300.

Appendix E. Kuramoto-Sivashinsky Equation

This appendix provides a test of the HLConcELM method with the Kuramoto-
Sivashinsky equation [38,55]. We consider the domain (z,t) € £2 = [a,b] x [0,1],
and the Kuramoto-Sivashinsky equation on §2 with periodic boundary conditions,

Hidden-Layer Concatenated ELM 53

neural network | collocation points | max error rms error

(2,400, 50, 1] 5x5 2.45E+1 5.80E4-0
10 x 10 2.18E-1 4.86E-2
15 x 15 2.62E-4 6.95E-5
20 x 20 2.55E-7 8.08E-8
25 X 25 3.44E-8 4.57E-9
30 x 30 1.61E-8 7.52E-10

[2, 50,400, 1] 5x5 1.96E+1 5.26E40
10 x 10 4.48E+0 9.88E-1
15 x 15 2.59E-4 4.77E-5
20 x 20 2.57TE-6 5.08E-7
25 x 25 4.32E-7 8.16E-8
30 x 30 7.40E-8 2.91E-9

Table 16 (Appendix E) Kuramoto-Sivashinsky equation (case #1): The maximum/rms er-
rors of the HLConcELM solution versus the number of collocation points (Q) on two neural
networks. 5 uniform time blocks, hidden magnitude vector R = (1.64,0.05) for the network
[2,400,50,1] and R = (0.64,0.2) for the network [2, 50,400, 1].

neural network | M max error rms error

[2, M,50,1] 100 | 2.64E+1 6.41E+0
200 | 1.84E-3 3.85E-4
300 | 9.00E-7 1.87E-7
400 | 3.44E-8 4.57E-9
500 | 1.05E-8 1.32E-9

[2,50, M, 1] 100 | 3.20E+1 9.54E4-0
200 | 8.76E-4 1.91E-4
300 | 6.53E-7 8.31E-8
400 | 4.32E-7 8.16E-8
500 | 2.05E-7 2.30E-8

Table 17 (Appendix E) Kuramoto-Sivashinsky equation (case #1): The maximum /rms errors
of the HLConcELM solution versus the number of nodes (M) on two network architectures
[2, M,50,1] and [2,50,M,1] (M varied). 5 uniform time blocks, Q = 25 x 25 uniform collo-
cation points per time block, hidden magnitude vector R = (1.64,0.05) for the architecture
[2, M,50,1] and R = (0.64,0.2) for the architecture [2, 50, M, 1].

ou ou 0%u o4

u
g g g = t 39
b aust 4 By = S, (39)
wat) =), 2% =2 (39b)
9z lap) Ol
2 2 3 3

L;L _ L;‘ o9] 8713‘ , (39¢)
922 |ay 0% |ey 0% (ay 927y

u(z,0) = g(=). (394)

In these equations, («, 8,7) are constants, u(z,t) is the field function to be solved
for, f is a prescribed source term, and g denotes the initial distribution. The
domain parameters a, b and t; will be specified below. We solve this problem by
the locHLConcELM method (see Remark 6) together with the block time marching
scheme (see Remark 5). The seed for the random number generators is set to 100
in the following tests.

Case #1: Manufactured Analytic Solution. We first consider a manufactured analytic
solution to (39) to illustrate the convergence behavior of HLConcELM. We employ

54 Naxian Ni, Suchuan Dong

0.8

0.6

0.4

02

@ Ttk)

Fig. 28 (Appendix E) Kuramoto-Sivashinsky equation (case #2): Distributions of (a) the
locHLConcELM solution and (b) the Chebfun solution. In Chebfun, 400 Fourier grid points
in x, time step size At = le — 4. In locHLConcELM, 20 uniform time blocks, 4 uniform
sub-domains along x within each time block, neural network M = [2,400,1] and @ = 25 x
25 uniform collocation points on each sub-domain, hidden magnitude vector R = 8.0, sine
activation function.

the following parameter values,
a=0, b=2 tiy=1 a=1 p=1 =01,

and the analytic solution given by

3 T 27 3T 3 T
u(z,t) = [5 cos <7rx + %) + 30 co8 (27r:c - ?)] [5 cos <7rt + %>

27 3
—|—% cos (271'15 — €>} .

The source term f and the initial distribution g are chosen such that the expres-
sion (40) satisfies the system (39). The distribution of this solution is shown in
Figure 27(a).

The distributions of the HLConcELM solution and its point-wise absolute error
are shown in Figures 27(b) and (c). We have employed 5 uniform time blocks in
the HLConcELM simulation, and a neural network architecture [2,400, 50, 1] with
the Gaussian activation function within each time block. The other simulation
parameter values are provided in the caption of Figure 27. The HLConcELM
method captures the solution accurately, with the maximum error on the order
1078 in the spatial-temporal domain.

Tables 16 and 17 illustrate the exponential convergence behavior of the HLCon-
cELM accuracy with respect to the collocation points and the network size for the
Kuramoto-Sivashinsky equation. Table 16 lists the HLConcELM errors versus the
number of collocation points (Q) obtained with two neural networks, with a narrow
and wide last hidden layer, respectively. Table 17 shows the HLConcELM errors
versus the number of nodes (M) in the first or the last hidden layer of the neural
network, obtained with a fixed set of @ = 25 x 25 uniform collocation points. The
captions of these tables provide the parameter values in these simulations. It can
be observed that the HLConcELM errors decrease exponentially as the number of
collocation points or the network size increases.

(40)

Case #2: No Ezxact Solution and Comparison with Chebfun. We next consider the
following parameter values and settings:

a=-1, b=1, ty=1, a=5 =05 +=0.005
f(z,t) =0, g(z) = —sin(rz).

Hidden-Layer Concatenated ELM

55

T 05

t=02

Absolute error

K} 05 0 05
X

Absolute error

t=0.5

@ x

t

=08

05 0
X

()

Fig. 29 (Appendix E) Kuramoto-Sivashinsky equation (case #2): Comparison of solution
profiles between locHLConcELM and Chebfun at ¢t = 0.2 (a), t = 0.5 (b), and ¢ = 0.8 (c).
Profiles of the absolution error between the Chebfun and the HLConcELM solutions at ¢ = 0.2
(d), t =0.5 (e), and ¢t = 0.8 (f). Simulation settings and parameters follow those of Figure 28.

The exact solution for this case is unknown. We will employ the result computed
by the software package Chebfun [14], with a sufficient resolution, as the reference
solution to compare with HLConcELM.

Figure 28 shows the solution distributions obtained by the locHLConcELM
method and by Chebfun in the spatial-temporal domain for this case. With locHLCon-
cELM, we have employed 20 uniform time blocks, 4 uniform sub-domains (along
the = direction) within each time block, and a local neural network [2,400, 1] with
Q = 25 x 25 uniform collocation points on each sub-domain. The sine activation,
o(z) = sin(z), has been employed with the local neural networks. The Chebfun
solution is obtained with 400 Fourier grad points along the x direction and a time
step size At = 107%. The locHLConcELM solution agrees well with the Chebfun

solution qualitatively.

Figure 29 provides quantitative comparisons between locHLConcELM and
Chebfun for this case. It compares the solution profiles obtained by these two
methods at three time instants ¢ = 0.2, 0.5 and 0.8 (top row), and also shows the
corresponding profiles of the absolute error between these two methods (bottom
row). No difference can be discerned from the solution profiles between locHLCon-
cELM and Chebfun. The errors between these two methods generally increase over
time, with the maximum error on the order 107% at t = 0.2 and 10™% at t = 0.5
and 0.8. These results indicate that the current method has captured the solution

quite accurately.

Case #3: Another Comparison With Chebfun. We consider still another set of prob-
lem parameters as follows:

a=-—1,

f(z,t) =0,

b=1,

t; =0.25,

g(z) = —sin(rz).

a =06,

B =0.5,

4 = 0.001,

56 Naxian Ni, Suchuan Dong

@ | (b)

Fig. 30 (Appendix E) Kuramoto-Sivashinsky equation (case #3): Distributions of (a) the
locHLConcELM solution and (b) the Chebfun solution. In Chebfun, 1000 Fourier grid points
in z, time step size At = le — 5. In locHLConcELM, 12 time blocks (time block size: 0.025
for the first 8 time blocks, 0.0125 for the last 4 time blocks), 10 uniform sub-domains along x
within each time block, neural network M = [2,300, 1] and @ = 21 x 21 uniform collocation
points within each sub-domain, hidden magnitude vector R = 2.5, sinc activation function.

u(x.t)

(a) " (b) (© " (d)

" 10 =01 o =015 =02

=

2

Absolute %rror N
E
Abso\uée ermor
Abszo\u(e error _
Abscé\uleserrosr

&

" (e) " () " (2) " (h)
Fig. 31 (Appendix E) Kuramoto-Sivashinsky equation (case #3): Comparison of solution
profiles between locHLConcELM and Chebfun at (a) t = 0.05, (b) ¢ = 0.1, (¢) t = 0.15,
and (d) t = 0.2. Profiles of the absolute error between the locHLConcELM solution and the
Chebfun solution at (e) t = 0.05, (f) t = 0.1, (g) t = 0.15, and (h) ¢t = 0.2. Simulation settings
and parameters follow those of Figure 30.

ol

We again compare the HLConcELM result with the reference solution computed
by Chebfun.

Figure 30 compares distributions of the locHLConcELM solution and the Cheb-
fun solution. With locHLConcELM, we have employed 12 time blocks, 10 uniform
sub-domains along the z direction within each time block, a local neural net-
work [2,300,1] and a uniform set of @ = 21 x 21 collocation points on each sub-
domain. The random magnitude vector is R = 2.5, and the sinc activation function
(o(z) = %) is employed. With Chebfun, we have employed 1000 Fourier grid
points along the z direction and a time step size At = 10~°. The distribution of the
locHLConcELM solution is qualitatively similar to that of the Chebfun solution.

Hidden-Layer Concatenated ELM 57

Figure 31 provides a quantitative comparison of the solution profiles between
locHLConcELM and Chebfun at several time instants (top row), and also shows
the corresponding profiles of the absolute error between the locHLConcELM solu-
tion and the Chebfun solution (bottom row). The locHLConcELM solution agrees
very well with the Chebfun solution initially, and the difference between these two
solutions grows over time.

Appendix F. Schrodinger Equation

This appendix provides a test of the HLConcELM method with the Schrodinger
equation. We consider the domain (z,t) € 2 = [a,b] x [0,t¢], and the Schrodinger

equation on 2 with periodic boundary conditions:

oh 10%h

i— + ——— +|h|?h = t 11

28t+28$2+|\ f(z,1), (41a)
oh h

hat)=hv,t), 2| =2 (41b)
817 (a,t) dI (b,t)

h(I,O) = g(m)7 (41C)

where h(z,t) is the complex field function to be solved for, f(x,t) is a prescribed
complex source term, and g(z) is the initial distribution. Let h = u(z,t) 4 iv(z, t),
where u and v denote the real and the imaginary parts of h, respectively. The
domain parameters a, b and t; will be specified below.

We solve this problem by the HLConcELM method, or the locHLConcELM
method (see Remark 6), combined with the block time marching scheme (see Re-
mark 5). The input layer of the neural network consists of two nodes, representing
x and ¢, respectively. The output layer consists also of two nodes, representing
the real part and the imaginary part of h(z,t), respectively. Accordingly, the sys-
tem (41) is re-written into an equivalent form in terms of the real part and the
imaginary part of h(x,t). The reformulated system is employed in the HLCon-
cELM simulation. When multiple sub-domains are employed in locHLConcELM,
we impose C' continuity conditions along the z direction and C° continuity con-
ditions along the ¢ direction across the shared sub-domain boundaries. The seed
for the random number generators is set to 100 in the HLConcELM simulations.

Case #1: Manufactured Analytic Solution. We first illustrate the convergence be-
havior of HLConcELM using a manufactured analytic solution. We employ the
following domain parameters,

a=-1, b=1, t;=15,

and the analytic solution h = u + iv, where
(1) [3 . (+77r>+27 . (2 37r)j| [3 . (t+77r)
ulxT = |—SsIn | 7T —_— — S1n mr — — — s | T —_—
' 2 20 20 5 2 20

+27 . (2 . 377)}
—sin (27t — —) |,
20 5

5 T 3

58 Naxian Ni, Suchuan Dong

‘~5-4~3»240123A557 543210123456 051152253 35445555665775

0x 05 1 (a) - 0. X g 05 0x . 1 (c)

2E09 6E09 1E0B 14E08 18E08 22608
= = — —

1 (d) -1 -0. 0x . 1 (e) -1 05 0x 0.5 1 (f)

Fig. 32 (Appendix F) Schrodinger equation (case #1): Distributions of the real part (a) and
its point-wise absolute error (d), the imaginary part (b) and its point-wise absolute error (e),
the norm (c) and its point-wise absolute error (f), of the HLConcELM solution h(z,t). Neural
network (2,400, 30, 2], Gaussian activation function, = 25 x 25 uniform collocation points,
hidden magnitude vector R = (1.7,0.01).

neural Q real(h) imag(h) |h|

network max-eIT rIns-err max-err rms-err max-err rms-err
[2,400,30,1] | 5x 5 1.04E4+1 3.11E40 | 9.32E40 2.86E40 | 6.43E4+0 1.81E40
10 x 10 | 6.44E4+0 9.78E-1 1.01IE+1 1.63E4+0 | 9.27E4+0 1.43E+0
15 x 15 | 3.66E-5 3.79E-6 6.32E-5 5.79E-6 5.68E-5 5.29E-6
20 x 20 | 9.32E-8 9.93E-9 1.09E-7 1.03E-8 1.23E-7 1.01E-8
25 x 25 | 2.23E-8 3.39E-9 2.32E-8 3.47E-9 2.25E-8 3.20E-9
30 x 30 | 1.51E-8 1.94E-9 1.52E-8 2.32E-9 1.52E-8 2.13E-9
[2,30,400,1] | 5x 5 8.51E4+0 2.46E+40 | 1.85E+1 4.74E+0 | 1.27E+1 3.18E+0
10 x 10 | 3.12E-1 3.20E-2 1.32E-1 3.63E-2 2.43E-1 3.23E-2
15 x 15 | 5.37E-4 4.45E-5 6.30E-4 4.71E-5 7.16E-4 4.72E-5
20 x 20 | 3.86E-6 2.95E-7 1.93E-6 2.18E-7 3.77E-6 2.32E-7
25 x 25 | 2.75E-7 3.31E-8 2.75E-7 3.23E-8 2.74E-7 3.03E-8
30 x 30 | 1.55E-7 3.16E-8 1.90E-7 3.65E-8 1.95E-7 3.14E-8

Table 18 (Appendix F) Schrodinger equation (case #1): The maximum/rms errors of the
HLConcELM solution versus the number of collocation points (Q) on two neural networks.
Hidden magnitude vector R = (1.7,0.01) for the network [2, 400,30, 1] and R = (0.86,0.25)
for the network [2, 30,400, 1]. “real(h)”, “imag(h)” and |h| refer to the real part, the imaginary
part, and the norm of h(x,t).

The source term f(z,t) and the initial distribution g(z,t) are chosen such that the
expression (42) satisfies the system (41).

Figure 32 shows distributions of the real part u, the imaginary part v, and
the norm |h| of the HLConcELM solution h(z,t), as well as their point-wise abso-
lute errors when compared with the analytic solution (42), in the spatial-temporal
domain. The neural network architecture is given by M = [2,400, 30, 2], and the
other simulation parameter values are listed in the figure caption. The HLCon-
cELM solution is observed to be highly accurate, and the maximum error on the
order 1078 for all of these quantities.

Hidden-Layer Concatenated ELM 59

neural M real(h) imag(h) [h|

network max-err IMs-err | max-eIrr IMS-err | max-eIrr Ims-err
[2,M,30,1] | 50 1.13E+0 1.59E-1 | 2.84E4+0 3.00E-1 | 1.85E40 2.44E-1
100 | 1.21E-1 1.91E-2 | 1.04E-1 2.04E-2 | 1.14E-1 1.95E-2
200 | 9.07E-5 1.45E-5 | 1.05E-4 1.64E-5 | 9.55E-5 1.53E-5
300 | 1.70E-7 3.38E-8 | 1.98E-7 3.62E-8 | 1.99E-7 3.34E-8
400 | 2.23E-8 3.39E-9 | 2.32E-8 3.47E-9 | 2.25E-8 3.20E-9
500 | 1.42E-8 1.20E-9 | 1.79E-8 1.37E-9 | 1.55E-8 1.31E-9
[2,30,M,1] | 50 3.36E+0 3.70E-1 | 2.43E+0 3.39E-1 | 3.60E+0 3.75E-1
100 | 9.70E-2 1.08E-2 | 7.37TE-2 1.54E-2 | 9.52E-2 1.44E-2
200 | 1.57E-3 1.53E-4 | 1.46E-3 1.51E-4 | 2.04E-3 1.52E-4
300 | 1.21E-5 2.09E-6 | 1.78E-5 1.96E-6 | 1.36E-5 1.93E-6
400 | 2.75E-7 3.31E-8 | 2.75E-7 3.23E-8 | 2.T4E-7 3.03E-8
500 | 1.70E-7 2.35E-8 | 9.68E-8 1.91E-8 | 1.57E-7 2.13E-8

Table 19 (Appendix F) Schrodinger equation (case #1): The maximum/rms errors of
the HLConcELM solution versus the number of nodes (M) on two network architectures
[2,M,30,2] and (2,30, M, 2] (M varied). @ = 25 x 25 uniform collocation points, hidden mag-
nitude vector R = (1.7,0.01) for the architecture [2, M,30,1] and R = (0.86,0.25) for the
architecture [2,30, M, 1].

The exponential convergence of the HLConcELM accuracy is illustrated by the
data in Tables 18 and 19. Table 18 lists the maximum and rms errors of the real
part, the imaginary part, and the norm of h(z,t) as a function of the number of
collocation points (Q) obtained by HLConcELM on two neural networks with a
narrow and a wide last hidden layer, respectively. Table 19 lists the HLConcELM
errors for the real/imaginary parts and the norm of h(z,t) on two network archi-
tectures having two hidden layers, with the number of nodes (M) in the first or the
last hidden layer varied. The values for the simulation parameters are listed in the
captions of these two tables. It is evident that the HLConcELM errors decrease ap-
proximately exponentially (before saturation) as the number of collocation points
or the number of nodes in the neural network increases.

Case #2: No Exact Solution and Comparison with Chebfun. We next consider a case
with no exact solution available, and so we use the numerical result obtained by
Chebfun [14] as a reference to compare with the HLConcELM solution. We employ
the following parameter values for the domain and the system (41),

a=-1, b=1, ty=1, f(z,t)=0, gz)= Z [cos(mz) + 1].

Figure 33 illustrates the distributions of the locHLConcELM solution and the
Chebfun solution for the real part, the imaginary part, and the norm of h(x,t). The
Chebfun solution is obtained on 1024 Fourier grid points along the z direction with
a time step size At = 10~%. For locHLConcELM with block time marching, we
have employed 5 uniform time blocks, 3 sub-domains along the x direction within
each time block (interior sub-domain boundaries located at = —0.35 and 0.35),
and a local neural network M = [2, 400, 2] with the Gaussian activation function on
each sub-domain. The other simulation parameter values are listed in the figure
caption. No apparent difference can be discerned between the locHLConcELM
solution and the Chebfun solution qualitatively.

Figure 34 provides a comparison between the locHLConcELM solution and
the Chebfun solution quantitatively. Figures 34(a,b,c) compare profiles of the

60 Naxian Ni, Suchuan Dong

[

45 4 95 3 25 2 151 05 0 05 1 15 2 25 3 35 45 435 3 25 2 151 05 0 05 1 15 2 25 3 35

0 x 05 1 (b)

45435 3 25 215 1050 05 1 15 2 25 3 35 4 45

Fig. 33 (Appendix F) Schrodinger equation (case #2): Distributions of (a,b) the real part,
(c,d) the imaginary part, and (e,f) the norm, of h(x,t) obtained by HLConcELM (a,c,e) and
by Chebfun (b,d,f). In Chebfun, 1024 Fourier grid points in z, time step size At = 10~%. In
HLConcELM, 5 uniform time blocks, 3 sub-domains along the z direction within each time
block (sub-domain boundary points X = [—1,—0.35,0.35, 1]), local neural network [2,400, 2]
and @ = 25 x 25 uniform collocation points on each sub-domain, R = 2.0, Gaussian activation
function.

—0— W NI.CamELM —0— \M NI.Com:ELM —0— \M HLConcELM
< <1 |, Che
,,,,,,,,,, n
T e m., e T i, HLConcEu
A yul{h) ==-A--- real(h), Chebfun
4 mag(h, ML ConcELM 4 ag(h, HLConGELM
lmap(hi Chebfun - =<7--- imag(h), Chebfun

N W s

imag(h)

Absolute error

Absolute error
Absolute error

-1 -0.5 0 0.5 1

x (d) (e)
Fig. 34 (Appendix F) Schrodinger equation (case #2): Comparison of the solution profiles
between locHLConcELM and Chebfun at (a) ¢t = 0.2, (b) t = 0.5, and (c) ¢ = 0.8. Profiles of the

absolute error between the locHLConcELM solution and the Chebfun solution at (d) ¢t = 0.2,
(e) t =0.5, and (f) t = 0.8. Simulation settings and parameters follow those of Figure 33.

Hidden-Layer Concatenated ELM 61

09-07-05-03-0.1 0.1 03 05 07 0.9

-09-0.7-0503-0.1 0.1 03 05 07 09

(c)

Fig. 35 (Appendix G) 2D Advection equation: Distributions of (a) the exact solution, (b) the
HLConcELM solution and (c) its point-wise absolute error in the spatial-temporal domain. In
HLConcELM (with block time marching), 20 uniform time blocks, neural network [3, 1000, 1]
and @ = 15 x 15 x 15 uniform collocation points within each time block, hidden magnitude
vector R = 0.6, Gaussian activation function.

collocation points max error rms error

4x4x4 1.87E+0 7.32E-1
8Xx8x8 1.59E-1 3.35E-2
12 X 12 x 12 9.92E-5 1.77E-5
16 x 16 x 16 7.94E-6 1.94E-6
20 x 20 x 20 8.29E-6 2.11E-6

Table 20 (Appendix G) 2D Advection equation: The maximum and rms errors of the HLCon-
cELM solution versus the number of uniform collocation points. 20 uniform time blocks, neural
network [3, 1000, 1] within each time block, hidden magnitude vector R = 0.6, Gaussian acti-
vation function.

locHLConcELM solution and the Chebfun solution for the real part, the imag-
inary part and the norm of h(z,t) at three time instants ¢t = 0.2, 0.5 and 0.8. The
locHLConcELM solution profiles and the Chebfun solution profiles exactly over-
lap with one another. Figures 34(d,e,f) show profiles of the absolute error between
the locHLConcELM solution and the Chebfun solution at the same time instants.
One can observe that the difference between locHLConcELM and Chebfun is on
the order of 1074, suggesting that the locHLConcELM result agrees well with the
Chebfun result for this problem.

Appendix G. Two-Dimensional Advection Equation

This appendix provides a further test of the HLConcELM method with the ad-
vection equation in two spatial dimensions plus time. Note that the numerical
results in Section 3.2 are for the one-dimensional advection equation (plus time).
We consider the spatial-temporal domain (z,y,t) € 2 = [0,2] x [0, 2] x [0,10], and

62 Naxian Ni, Suchuan Dong

M max error Irms error
200 8.51E-1 3.50E-1
400 3.75E-2 1.05E-2
600 1.62E-3 4.46E-4
800 1.79E-4 4.23E-5
1000 7.39E-6 1.90E-6

Table 21 (Appendix G) 2D Advection equation: The maximum and rms errors of the HLCon-
cELM solution versus the number of nodes in hidden layer. 20 uniform time blocks, neural
network [3, M, 1] (M varied) and @ = 15 x 15 x 15 uniform collocation points within each time
block, hidden magnitude vector R = 0.6, Gaussian activation function.

the advection equation on {2 with periodic boundary conditions,

5_%—@:0, (43a)
uw(0,y,t) = u(2,y,t), u(z,0,t) =u(z,2,t), (43Db)
u(z,y,0) =cos[r(z+y—1)]. (43c¢)

This initial /boundary value problem has the following exact solution,
u(z,y,t) =cos[r(z+y+t—1). (44)

We solve the problem (43) by the HLConcELM method together with block
time marching (see Remark 5). We employ 20 uniform time blocks in the sim-
ulation, with a size 0.5 for each time block. Within each time block we employ
a neural network architecture [3, M, 1] (M varied) with the Gaussian activation
function, and a uniform set of Q = Q1 x Q1 x Q1 collocation points (@1 varied).
The seed for the random number generators is set to 100 in the numerical tests.
After the network is trained, we evaluate the neural network on another fixed set
of Qepar = 51 x 51 x 51 uniform grid points within each time block to attain the
HLConcELM solution values for all time blocks. We then compare the HLCon-
cELM solution with the exact solution (44) on the same set of Q¢ points within
each time block, to compute the maximum (I°°) and rms (1?) errors over the entire
spatial-temporal domain 2. The error values as computed above are said to be
associated with the neural network [3, M, 1] with the Q = Q1 x Q1 X Q1 collocation
points.

Figure 35 illustrates the distributions of the exact solution (44), the HLCon-
cELM solution, and the point-wise absolute error of the HLConcELM solution over
2. The values for the simulation parameters in HLConcELM are provided in the
figure caption. The HLConcELM solution is quite accurate, with the maximum
error on the order 107% over the entire domain f2.

The exponential convergence of the HLConcELM accuracy is illustrated by
Tables 20 and 21. Table 20 lists the maximum and rms errors of HLConcELM (over
) as a function of the number of collocation points (Q), obtained with a neural
network [3,1000, 1]. Table 21 lists the maximum and rms errors of HLConcELM
as a function of the number of hidden nodes (M) in the neural network, obtained
on a fixed set of @ = 15 x 15 x 15 uniform collocation points. The other simulation
parameter values are provided in the captions of these tables. It is evident that
the HLConcELM errors decrease exponentially (before saturation) with increasing
number of collocation points or increasing number of hidden nodes in the network.

Hidden-Layer Concatenated ELM 63

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

. Alaba, P., Popoola, S., Olatomiwa, L., Akanle, M., Ohunakin, O., Adetiba, E., Alex,

O., Atayero, A., Daud, W.: Towards a more efficient and cost-sensitive extreme learning
machine: a state-of-the-art review of recent trend. Neurocomputing 350, 70-90 (2019)

. Basdevant, C., Deville, M., Haldenwang, P., Lacroix, J., Ouazzani, J., Peyret, R., Orlandi,

P., Patera, A.: Spectral and finite difference solutions of the Burgers equation. Computers
and Fluids 14, 23-41 (1986)

. Braake, H., Straten, G.: Random activation weight neural net (RAWN) for fast non-

iterative training. Eng. Applic. Artif. Intell. 8, 71-80 (1995)

. Branch, M., Coleman, T., Li, Y.: A subspace, interior, and conjugate gradient method

for large-scale bound-constrained minimization problems. SIAM Journal on Scientific
Computing 21, 1-23 (1999)

. Byrd, R., Schnabel, R., Shultz, G.: Approximate solution of the trust region problem by

minimization over two-dimensional subspaces. Math. Programming (1988)

. Calabro, F., Fabiani, G., Siettos, C.: Extreme learning machine collocation for the nu-

merical solution of elliptic PDEs with sharp gradients. Computer Methods in Applied
Mechanics and Engineering 387, 114188 (2021)

. Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., Yang, S.: Adanet: Adaptive structural

learning of artificial neural networks. arXiv:1607.01097 (2016)

. Cyr, E., Gulian, M., Patel, R., Perego, M., Trask, N.: Robust training and initialization

of deep neural networks: An adaptive basis viewpoint. Proceedings of Machine Learning
Research 107, 512-536 (2020)

. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving

linear and nonlinear partial differential equations. Computer Methods in Applied Mechan-
ics and Engineering 387, 114129 (2021). (also arXiv:2012.02895)

Dong, S., Li, Z.: A modified batch intrinsic plascity method for pre-training the random
coeflicients of extreme learning machines. Journal of Computational Physics 445, 110585
(2021). (also arXiv:2103.08042)

Dong, S., Ni, N.: A method for representing periodic functions and enforcing exactly pe-
riodic boundary conditions with deep neural networks. Journal of Computational Physics
435, 110242 (2021). (also arXiv:2007.07442)

Dong, S., Yang, J.: Numerical approximation of partial differential equations by a variable
projection method with artificial neural networks. arXiv:2201.09989 (2022)

Dong, S., Yang, J.: On computing the hyperparameter of extreme learning machines:
algorithm and application to computational PDEs and comparison with classical and
high-order finite elements. Journal of Computational Physics 463, 111290 (2022). (also
arXiv:2110.14121)

Driscoll, T., Hale, N., Trefethen, L.: Chebfun Guide. Pafnuty Publications, Oxford (2014)
Dwivedi, V., Srinivasan, B.: Physics informed extreme learning machine (pielm) — a rapid
method for the numerical solution of partial differential equations. Neurocomputing 391,
96-118 (2020)

Dwivedi, V., Srinivasan, B.: A normal equation-based extreme learning machine for solving
linear partial differential equations. Journal of Computing and Information Science in
Engineering 22, 014502 (2022)

E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics 6, 1-12
2018

%abia%i, G., Calabro, F., Russo, L., Siettos, C.: Numerical solution and bifurcation analysis
of nonlinear partial differential equations with extreme learning machines. Journal of
Scientific Computing 89, 44 (2021)

Fokina, D., Oseledets, I.: Growing axons: greedy learning of neural networks with appli-
cation to function approximation. arXiv:1910.12686 (2020)

Freire, A., Rocha-Neto, A., Barreto, G.: On robust randomized neural networks for re-
gression: a comprehensive review and evaluation. Neural Computing and Applications 32,
16931-16950 (2020)

Galaris, E., Fabiani, G., Calabro, F., Serafino, D., Siettos, C.: Numerical solution of stiff
ODEs with physics-informed random projection neural networks. arXiv:2108.01584 (2021)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)

Guo, P., Chen, C., Sun, Y.: An exact supervised learning for a three-layer supervised
neural network. In: Proceedings of 1995 International Conference on Neural Information
Processing, pp. 1041-1044 (1995)

64

Naxian Ni, Suchuan Dong

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

He, J., Xu, J.: MgNet: A unified framework for multigrid and convolutional neural network.
Science China Mathematics 62, 1331-1354 (2019)

Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELU). arXiv:1606.08415 (2016)
Huang, G., Chen, L., Siew, C.K.: Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks
17, 879-892 (2006)

Huang, G., Huang, G., Song, S., You, K.: Trends in extreme learning machines: a review.
Neural Networks 61, 32-48 (2015)

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely connected convolutional
networks. arXiv:1608.06993 (2018)

Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme
of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural
Networks, vol. 2, pp. 985-990 (2004)

Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489-501 (2006)

Igelnik, B., Pao, Y.: Stochastic choice of basis functions in adaptive function approximation
and the functional-link net. IEEE Transactions on Neural Networks 6, 1320-1329 (1995)
Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of
echo state networks with leaky integrator neurons. Neural Networks 20, 335-352 (2007)
Jagtap, A., Kharazmi, E., Karniadakis, G.: Conservative physics-informed neural networks
on discrete domains for conservation laws: applications to forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering 365, 113028 (2020)
Karniadakis, G., Kevrekidis, G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-
informed machine learning. Nature Reviews Physics 3, 422-440 (2021)

Karniadakis, G., Sherwin, S.: Spectral/hp element methods for computational fluid dy-
namics, 2nd edn. Oxford University Press (2005)

Katuwal, R., Suganthan, P., Tanveer, M.: Random vector functional link neural network
based ensemble deep learning. arXiv:1907.00350 (2019)

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.: Characterizing possible
failure modes in physics-informed neural networks. arXiv:2109.01050 (2021)

Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Progress of Theoretical Physics
Supplement 64, 346-367 (1978)

Li, J.Y., Chow, W., Igelnik, B., Pao, Y.H.: Comments on “stochastic choice of basis func-
tions in adaptive function approximaton and the functional-link net”. IEEE Trans. Neural
Netw. 8, 452-454 (1997)

Liu, H., Xing, B., Wang, Z., Li, L.: Legendre neural network method for several classes of
singularly perturbed differential equations based on mapping and piecewise optimization
technology. Neural Processing Letters 51, 2891-2913 (2020)

Liu, M., Hou, M., Wang, J., Cheng, Y.: Solving two-dimensional linear partial differential
equations based on Chebyshev neural network with extreme learning machine algorithm.
Engineering Computations 38, 874-894 (2021)

Lu, L., Meng, X., Mao, Z., Karniadakis, G.: DeepXDE: a deep learning library for solving
differential equations. SIAM Review 63, 208-228 (2021)

Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3, 127-149 (2009)

Maas, W., Markram, H.: On the computational power of recurrent circuits of spiking
neurons. J. Comput. Syst. Sci. 69, 593-616 (2004)

Needell, D., Nelson, A., Saab, R., Salanevich, P.: Random vector functional link networks
for function approximation on manifolds. arXiv:2007.15776 (2020)

Nocedal, J., Wright, S.: Numerical Optimization, Second Edition. Springer (2006)
Panghal, S., Kumar, M.: Optimization free neural network approach for solving ordinary
and partial differential equations. Engineering with Computers 37, 2989-3002 (2021)
Pao, Y., Park, G., Sobajic, D.: Learning and generalization characteristics of the random
vector functional-link net. Neurocomputing 6, 163-180 (1994)

Pao, Y., Takefuji, Y.: Functional-link net computing: theory, system architecture, and
functionalities. Computer 25, 76-79 (1992)

Rahimi, A., Recht, B.: Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio and L. Bottou,
editors, Advances in Neural Information Processing Systems (NIPS) 2, 1316-1323 (2008)
Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differ-
ential equations. Journal of Computational Physics 378, 686-707 (2019)

Hidden-Layer Concatenated ELM 65

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychol. Rev. 65, 386-408 (1958)

Scardapane, S., Wang, D.: Randomness in neural networks: an overview. WIREs Data
Mining Knowl. Discov. 7, €1200 (2017)

Sirignano, J., Spoliopoulos, K.: DGM: A deep learning algorithm for solving partial dif-
ferential equations. Journal of Computational Physics 375, 1339-1364 (2018)
Sivashinsky, G.: Nonlinear analysis of hydrodynamic instability in laminar flames — I.
derivation of basic equations. Acta Astronautica 4, 1177-1206 (1977)

Suhanthan, P., Katuwal, R.: On the origins of randomization-based feedforward neural
networks. Applied Soft Computing 105, 107239 (2021)

Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential
equations based on bernsteirn neural network and extreme learning machine algorithm.
Neural Processing Letters 50, 1153-1172 (2019)

Tang, K., Wan, X., Liao, Q.: Adaptive deep density estimation for fokker-planck equations.
Journal of Computational Physics 457, 111080 (2022)

Verma, B., Mulawka, J.: A modified backpropagation algorithm. In: Proceedings of 1994
IEEE International Conference on Neural Networks, vol. 2, pp. 840-844 (1994)

Wan, X., Wei, S.: VAE-KRnet and its applications to variational Bayes. Communications
in Computational Physics 31, 1049-1082 (2022)

Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: a neural tangent
kernel perspective. Journal of Computational Physics 449, 110768 (2022)

Wang, Y., Lin, G.: Efficient deep learning techniques for multiphase flow simulation in
heterogeneous porous media. Journal of Computational Physics 401, 108968 (2020)
Webster, C.: Alan Turing’s unorganized machines and artificial neural networks: his re-
markable early work and future possibilities. Evol. Intel. 5, 35-43 (2012)

Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The no-prop algorithm: a new learning
algorithm for multilayer neural networks. Neural Networks 37, 182-188 (2013)
Wilamowski, B., Yu, H.: Neural network learning without backpropagation. IEEE Trans-
actions on Neural Networks 21, 1793-1803 (2010)

Winovich, N.; Ramani, K., Lin, G.: ConvPDE-UQ: Convolutional neural networks with
quantified uncertainty for heterogeneous elliptic partial differential equations on varied
domains. Journal of Computational Physics 394, 263-279 (2019)

Yang, Y., Hou, M., Luo, J.: A novel improved extreme learning machine algorithm in
solving ordinary differential equations by legendre neural network methods. Advances in
Differential Equations 469, 1-24 (2018)

Yang, Z., Dong, S.: An unconditionally energy-stable scheme based on an implicit auxiliary
energy variable for incompressible two-phase flows with different densities involving only
precomputable coefficient matrices. Journal of Computational Physics pp. 229-257 (2019)
Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems
based on a generalized auxiliary variable with guaranteed positivity. Journal of Compu-
tational Physics 404, 109121 (2020). (also arXiv:1904.00141)

Yang, Z., Lin, L., Dong, S.: A family of second-order energy-stable schemes for Cahn-
Hilliard type equations. Journal of Computational Physics 383, 24-54 (2019)

Zhang, L., Suganthan, P.: A comprehensive evaluation of random vector functional link
networks. Inf. Sci. 367—368, 1094-1105 (2016)

Zheng, X., Dong, S.: An eigen-based high-order expansion basis for structured spectral
elements. Journal of Computational Physics 230, 8573-8602 (2011)

Statements and Declarations

Funding:
This work was partially supported by US National Science Foundation (DMS-
2012415).

Competing Interests:
The authors have no relevant financial or non-financial interests to disclose.

66 Naxian Ni, Suchuan Dong

Author Contributions:

N. Ni: software, data acquisition, data visualization, data analysis, writing of pa-
per.

S. Dong: conceptualization, methodology, software, data acquisition, data analy-
sis, writing of paper.

Data Availability:
The datasets related to this paper are available from the correpsonding author on
reasonable request.

	Introduction
	Hidden-Layer Concatenated Extreme Learning Machine
	Numerical Benchmarks
	Concluding Remarks

