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An Unconditionally Energy-Stable Scheme
for the Convective Heat Transfer Equation

Abstract

Purpose-This paper aims to present an unconditionally energy stable scheme for approximating
the convective heat transfer equation.

Design/Methodology/Approach - The scheme stems from the generalized Positive Auxiliary
Variable (gPAV) idea and exploits a special treatment for the convection term. The original
convection term is replaced by its linear approximation plus a correction term, which is under the
control of an auxiliary variable. The scheme entails the computation of two temperature fields
within each time step, and the linear algebraic system resulting from the discretization involves a
coefficient matrix that is updated periodically. This auxiliary variable is given by a well-defined
explicit formula that guarantees the positivity of its computed value.

Findings - Compared with the semi-implicit scheme and the gPAV-based scheme without the
treatment on the convection term, the current scheme can provide an expanded accuracy range and
achieve more accurate simulations at large (or fairly large) time step sizes. Extensive numerical
experiments have been presented to demonstrate the accuracy and stability performance of the
scheme developed herein.

Originality /value - This study shows the unconditional discrete energy stability property of the

current scheme, irrespective of the time step sizes.

Keywords Energy stability, Generalized positive auxiliary variable, Heat transfer, Navier-Stokes

equations, Unconditional stability, Auxiliary variable.
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1. Introduction

In this paper, we consider the numerical approximations of the convective heat transfer equation,
which in combination with the incompressible Navier-Stokes equations constitutes a vital basis for
heat transfer and fluid dynamics (Bo et al. (1995); Yan et al. (2022); Liu et al. (2020)). Convective
heat transfer problems are common in nature and have been applied in a wide range of engineering
and science fields, such as energy systems, material production, solar energy, and electronic cooling.
The development of efficient numerical algorithms for the equation can have implications in the
field of convective heat transfer and beyond.

This work focus on proposing an unconditional energy-stable scheme for the convective heat
transfer problems. Energy stability is an attractive property in the numerical approximation and
simulation of partial differential equations described in dissipative systems. An energy-stable
approximation means that the system can maintain the energy dissipative (conservative) nature on
the discrete level, which is not only consistent with important aspects of the underlying structure of
continuous systems, but also provides a numerical stability control in practical computer simulations,
allowing large time steps to be applied to computer simulations. Therefore, for the simulation of
dissipative systems including but not limited to the Navier-Stokes (Lin et al. (2020a,b)), Cahn-
Hilliard (Yang et al. (2019); Qian et al. (2020)) and convective heat transfer equations (Zhang &
Yang (2020); Chandra & Chhabra (2011)), energy stability is a highly desirable property for the
numerical algorithm of the systems.

The main challenge encountered in the numerical solution of the convective heat transfer
equation arises from the coupling of the temperature and velocity fields, represented by the
convective term. The most commonly used method is semi-implicit type schemes, which typically
treat the convection term explicitly and thus can provide a natural and favorable way to decouple
the temperature and velocity fields. Within a time step, the semi-implicit scheme only requires
solving linear algebraic systems with a constant and time-independent coefficient matrix that can
be pre-computed. Thanks to the low computational cost, the semi-implicit type schemes have
been widely used in the simulations of convective heat transfer in fluid flow (Woodruff (2022);
Bhinder et al. (2012); Chandra & Chhabra (2011); Wang & Pepper (2009); Feldman (2018); Soo
et al. (2017); Liu et al. (2020)). A downside of the schemes is their conditional stability. Stable
computation can be achieved only when the time step is small enough. However, the practitioners

of computational heat transfer always desire to use larger time step sizes in computer simulations.
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Energy-stable type schemes present a favorable method to alleviate the time step size constraint
encountered with semi-implicit schemes. The attractive property of the energy stable schemes lies
in the preservation of the energy dissipation on the discrete level, which can provide a control on
the numerical stability. The potential drawback of energy-stable schemes is their computational
cost. Because these schemes oftentimes entail the solution of a nonlinear algebraic system or a
linear algebraic system multiple times, their computational cost per time step is typically higher
than the semi-implicit type schemes, we refer to Celledoni et al. (2012); Shen et al. (2018); Yang
(2016); Dahlby & Owren (2011); Eidnes et al. (2018) for example. The focus of the current work is
to develop an unconditional energy-stable scheme with a relatively low computational cost for the
convective heat transfer equation.

A number of energy stable schemes have been proposed and applied in the approximation of
incompressible Navier-Stokes equations (Chen et al. (2018); Jiang et al. (2016); Labovsky et al.
(2009); Simo & Armero (1994); Verstappen & Veldman (2003); Lin et al. (2019, 2020a); Sanderse
(2013)). These schemes can effectively alleviate the time step size constraints faced by semi-implicit
schemes, which represents a major precondition for simulating the convective heat transfer problems
efficiently. In the past few years, the use of auxiliary variables turns out to be particularly effective
in devising energy-stable schemes. Two prominent examples of such methods are the scalar auxiliary
variable (SAV) Shen et al. (2018) and the invariant energy quadratization (IEQ) Yang (2016); see e.g.
(Cheng & Shen (2018); Gong et al. (2018); Li et al. (2019); Yang et al. (2019); Zhao et al. (2018)).
These two kinds of schemes have been employed in the approximation of the dendritic solidification
systems (Zhang & Yang (2020); Chen & Yang (2019)), which involve the convective heat transfer
equation. In both IEQ and SAV, the discrete energy stability of their resultant numerical schemes
is built on the use of the auxiliary variable/field in the form of square root functions. An interesting
recent development in this area is Yang & Dong (2020), which describes a systematic roadmap
for devising discretely energy-stable schemes for general dissipative systems. This roadmap is
developed based on the generalized Positive Auxiliary Variable (gPAV) method, which employs
a scalar-valued number as the auxiliary variable and endows the discrete energy stability to the
resultant scheme. Compared to the related works in (Shen et al. (2018); Yang & Dong (2019); Yang
(2016)), the gPAV method can allow using a general class of function form to define the auxiliary
variable, and ensure the positivity of the computed values of the generalized auxiliary variable.

Several works (Lin et al. (2020a,b); Qian et al. (2020)) have employed the roadmap to devise the
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energy-stable scheme, which turn out that the gPAV method is particular effective to achieve the
discrete energy stability for general dissipative partial differential equations. Further development
of this approach is discussed very recently in Lin et al. (2020b). This work proposes a numerical
scheme for the incompressible Navier-Stokes equations under the gPAV framework and introduces
a numerical treatment to the nonlinear term.

In the current work, we present an unconditionally energy stable scheme for the convective heat
transfer equation. This scheme can achieve accurate simulations at large or fairly large time step
sizes without seriously sacrificing the computational cost. The prominent feature of the scheme
lies in a gPAV-based reformulation and a numerical treatment for the convection term inspired
by Lin et al. (2020b). In the reformulated system, the convection term is replaced by its linear
approximation plus a correction term. The correction term is then controlled by an auxiliary
variable to guarantee unconditional energy stability.

The proposed algorithm requires computing two copies of the temperature field within a time
step by solving a linear algebraic system that is with a periodically updated coefficient matrix.
The updating frequency of the coefficient matrix can be specified by the user. The auxiliary
variable is computed by a well-defined explicit formulation that guarantees the positivity of its
computed values, which is consistent with the physical definition. The unconditional stability of the
scheme has been shown. The reported results demonstrated that the simulation with the proposed
algorithm can achieve accurate results at large or fairly large time step sizes, depending on the
Reynolds number. It is observed that employing the gPAV method directly will lead to a higher
computational cost compared to the semi-implicit scheme, which is an undesirable aspect of the new
scheme. By introducing a numerical treatment on the convection term, our scheme substantially
expands the accuracy range for the time step size and thus makes the proposed scheme favorable
for simulating convective heat transfer problems efficiently.

The contribution of this work lies in the unconditional energy-stable scheme for the convective
heat transfer system developed herein. This specifically includes: (i) the introduction of the gPAV
approach into the resultant reformulation of the convective heat transfer system, (ii) the numerical
scheme for approximating the reformulated system of equations, (iii) an improved accuracy under a
relatively low computational cost.

The rest of the paper is structured as follows. In Section 2 we first derive the reformulation of

the convective heat transfer equation utilizing the gPAV approach and present the energy stable
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scheme for the reformulated system. The discretely energy stable property of the scheme is proved.
We also present the solution algorithm of the scheme and its detailed implementation based on
high-order spectral elements (Karniadakis & Sherwin (2005); Blackburn & Henderson (1999); Zheng
& Dong (2011); Sherwin & Karniadakis (1995)). In Section 3 we demonstrate the convergence rates
using a manufactured analytic solution and test the accuracy and performance of the proposed
scheme using two canonical problems involving convective heat transfer in fluid flows. Section 4
concludes discussions with some closing remarks. Appendix A provides a summary of the numerical
algorithm for the incompressible Navier-Stokes equations, which are employed in the current work.
Appendix B provides the commonly used semi-implicit algorithms for solving the convective heat
transfer equation. In addition, derivations of two equations in the main text are given in Appendix

C.

2. Discretely energy-stable scheme for the convective heat transfer equation

2.1. Convective heat transfer equation and energy balance relation

Consider a domain €2 (with boundary 02) in two or three dimensions, and an incompressible
flow contained in the domain. The convective heat transfer problem is then described by the

following system of equations in non-dimensional form:

ou

E—FU'VU‘FVP_Vqu:f(X)t)a (1&)

V.-u=0, (1b)
T

%—t+u-VT:aV2T+9(X7t)a (1c)

where u(x, t) and p(x,t) are respectively the non-dimensional velocity and pressure, f(x,t) is an
external body force, T'(x,t) is the non-dimensional temperature, g(x,t) is an external volumetric
heat source term, and x and t are the spatial coordinate and time. v is non-dimensional viscosity

or the reciprocal of the Reynolds number Re,
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where v is the kinematic viscosity of the fluid, and Uy and L are the velocity and length scales. «
denotes the non-dimensional thermal diffusivity or the reciprocal of the Peclet number,
1 . ayf

oa=—

Pe - U()L’ (3>

where oy is the thermal diffusivity of the fluid. In the current work, we assume that both v and
a are constant, and no viscous dissipation of energy. Only one-way coupling will be considered
between the flow and the temperature, i.e., the flow affects the temperature distribution while the
effect of the temperature on the fluid flow will be ignored. Note that Eqs. (1a)-(1b) for describing
the motion of the flow are the incompressible Navier-Stokes equations.

On the domain boundary 052, we assume that the velocity is known,

u=w(x,t), ondf, (4)

where w denotes the boundary velocity. In order to provide a uniquely defined pressure, we impose

the often-used condition in the current work,

/Q pdQ = 0 (5)

In terms of temperature, we assume that 0€) consists of two non-overlapping types: 02 =

02y U 0L),,. We impose the Dirichlet boundary condition on 0€)y,

T =Tyx,t), on 0Qq, (6)

where Ty is the known boundary temperature, and the Neumann boundary condition on 052,

n-VT = g.(x,t), on €, (7)

where g.(x,t) is a prescribed term associated with the heat flux on boundary and n is the outward-
pointing unit vector normal to the boundary 0f2,,. In addition, the system is supplemented by the

initial conditions for the velocity,

u(x,0) = win(x), (8)



1 and for the temperature,

T(x,0) = Tin(x), (9)

> where u;, and Tj, denote the initial velocity and temperature distribution.
3 We focus on the numerical approximation of the convective heat transfer equation (1c). Multi-

+ plying (1c) by T and integrating over 02, we obtain an energy balance equation as follows,

1
2/—\T!QCiQ:—(Jz/ \VT|2dQ+/g(X,t)TdQ
ot Jq 2 Q Q

i /aQ {an VI - %(n : u)T} TdA, (10)

s where integration by parts and the divergence theorem are used. With the boundary conditions (6)

s and (7), the energy balance equation (10) is then transformed into

3/ Lipaa = —a/ |VT]2dQ+/g(x,t)TdQ
ot Jq 2 0 Q

+ /6% {an.VT— %(n.u)Td] TudA + /dﬂn {Oégc(x’ P %(n w7 TdA (11)

7 2.2. gPAV-reformulated system

8 In order to facilitate the development of the discretely energy-stable scheme, we will firstly
o reformulate the system consisting of Eq. (1c), the boundary conditions (6) and (7) and the initial
1 condition (9) into an equivalent form.

1 Define a shifted energy,

E(t)=E(T) = /Q %|T|2dQ + Co, (12)

12 where Cj is a chosen energy constant such that E(¢) > 0 for all ¢ > 0. For a convective heat
13 transfer system, the energy is bounded from below, thus can always be found and be considered as
1= the lower bound of the system energy. Based on the gPAV framework Yang & Dong (2020), we

15 introduce an auxiliary variable R(t) based on E(t),



1

R(t)?, (13a)

VE®). (13b)

Et)
R(t)

Then R(t) satisfies the following dynamic equation,

dR orT
I'R— — T . —dS). 14
Rdt /Q atd (14)

Note that both R(t) and E(t) are scalar numbers instead of field variables, and so % =1

With the variables defined above, we rewrite the Eq. (1c) into the following equivalent form,

T
88_15 + M(ug, T) — aV?T =

[M<u07T) —N(U,T)] +g(x, t)a (15)
where N(u,T) =u- VT, and M(ug,T) is a linear approximation of N(u,T") defined as following,

1
M(UO,T) :uO-VT+§(V-u0)T, (16)

where ug is a chosen velocity that can be updated occasionally in time. In the presented work, we
set ug to be the velocity field at every ko-th time step, where kg is an integer parameter provided
by the user. It means that the velocity field is updated only once at every kg time step.
Following the gPAV idea in Yang & Dong (2020) and also the work Lin et al. (2020b), we
incorporate a number of zero term into the right hand side (RHS) of Eq. (14) and rewrite the



1 equation as follows,

23% = /QT %—fdmr E((t? — 1} /Q [—M(uo, T) + aV?T + g(x,t)] Td2

4 };2((;)) < /Q (M(uo, T) — N(u, T)] TdS2 — /Q (M(uo, T) — N(u, T)] TdQ>
+ [1 — };;((tt))} ( /Qg(x, t)TdQ‘ + /m {an -VT — %(n : u)T] TdAD
/Q T- aa—fdQ };2 ((tt)) /Q [N, T) 4+ aV*T + g(x,t)] TdQ

— / {—M(uo, T) + aV*T + g(x,t) + RE(1) (M(ug,T) — N(u, T))} TdS)

B o[
5o | [ ot t)TdQ‘ +

/8 N [an VT - im. u)Td} T,dA
+/aﬂn {agc(x, £ — %(n-u)T} TdAD .

(17)

2

In the above equation, |(-)| denotes the absolute value of (-). In light of Eq. (11), we further

2

3 transform the Eq. (17) into the final reformulated equivalent form

dR T
2R— = [ T-=—dQ
dt /Q ot

LB [ /\VT| dQ+/ o(x, 1) TdS)

[agc(x,t) _ %(n . u)T} TdA}

{ozn VT—%(n u)Td} TddA—l—/
d

T
“J,
/{ (ug, T) + aV?T + g(x,1) 1 )(M(uO,T)—N(u,T))]TdQ (18)
-5
“J,

_l’_
1
/ an- VT — §(n : u)Td] TadA

g(x,1) TdQ'

) (I

1
{agc x,t) — é(n u)T] TdA‘

Q

The reformulated system consists of Eqgs. (15) and (58), the boundary conditions Egs. (6) and

4
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(7), and the initial condition Eq. (9) for temperature and the following initial condition for R(t),

R(0) = \/E(0), where E(0) = / %|Tm|2d§2+(]o. (19)
Q

In this system, the dynamic variables are T'(x,t) and R(t), which are coupled with Egs. (15)
and (58). E(t) is given by Eq. (12). Note that R(t) is obtained by solving the coupled system of

equations, not by using Eq. (13b). So to this extent, R(¢)? is an approximation of F(t).

Remark 2.1. [t is worth noting that by modifying the original equation (1c) to equation (15), we
put the convection term under the control of the auxiliary variable and introduce a special treatment
for the convection term which helps to expand the accuracy range in the numerical simulations.
The reformulated equation (15) is the equivalent form of equation (1c) on the continuous level.
Based on the modification, the auziliary variable is further given by a well-defined explicit formula
that guarantees the positivity of its computed value. This also leads to an approximation of R that
does not necessarily fulfill the relation R?> = E at the numerical level. Both the modification for
convective heat transfer (including the boundary conditions) and the explicit formula of the auziliary
variable make up the reformulated system. In the reformulated system, the two dynamic variables
are T and R, which are obtained by solving the coupled system of equations (15) and (58) when
performing numerical approximation. So to this extent, R* is an approzimation of E. With the
gPAV style reformulation and the proper scheme design, the unconditional energy stability of the

system can be guaranteed, which will be proven in the next section.

2.8. Numerical scheme and unconditional energy stability

We next present the unconditional energy-stable scheme for the reformulated heat transfer
system consisting of Eqgs. (15) and (58), the boundary conditions Eqs. (6) and (7), as well as the
initial conditions Eq. (9) and (19). We assume that the velocity u has already been calculated
by solving the incompressible Navier-Stokes equations (1a) and (1b), together with the boundary
condition (4) and (5).

Let n > 0 denote the time step index, and (-)™ denotes (-) at time step n. Define

T° =T, R’=R(0). (20)

10
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Then given (7™, R") and these values at previous time steps, we compute the 7"*! through the

following scheme:

For 77+
T+l T
7T 4 Mg, T — a2
At (21a)
— 5 [M(HO,T*’n+1) . N(un—i-l?T*,n—l-l)} 4 gn+1 (X, t),
T =Tt (x,t), on 98y, (21b)
n- VTt = ¢g"(x,t), on 99,, (21c¢)
(Rn+3/2)2
£ = W’ (21d)
BT = / 1 a0+ Gy, (21e)
Q
For R™+!L:

3 n+1 n 1 n—1 %RH—H _2Rn+%Rn_1
(23 VR R ) o

T+l _ T
— / R AN
0 Al
_/ [—M(UO,Tn+1) + aVQTn—H +gn+1 +5(M(u0,T*’"+1) _ N(u“H,T*’"H)} Tn+1dQ
Q
—n ——n =T 1
+ ¢ (—a/ VT 20 + / g T a0 +/ {an VT~ Z(n- u”“)TC?“} T dA
Q Q 00y 2
1 = A
+/ {ag?ﬂ — —(n-u"™HT H} T +1dA)
0y, 2

+(1-¢) < / {an VT - 1(n : u)TQH} TidA
99, 2

1 =0 =0
et ey
o, 2

/ g (x, t)T"HdQ‘ +
Q

(22)

'YOTn+1 _T

s where At is the time step size. Let J (J =1 or 2) denote the temporal order of accuracy. Y

7 is the approximation of %—f "' based on the J-th order backward differentiation formula (BDF), in

11
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which

1, J=1, . T, J=1,
Yo = T = (23)
3/2, J=2; 21" — 1T, J =2

T*"+1 s a J-th order explicit approximation of 77!, given by
, J=1,
T+t = (24)
2T — Tt J =2,

/

T and T are second-order approximation of 7"+ and T"+3/2 and will be given later.

R™3/2 and R™*1/? are defined by

3 1 3 1
n+3/2 _ 2 pntl _ ~ pn n+1/2 _ “pn _ ~ pn-1 )
R SR SRR SR — SR (25)

Besides, when dealing with the Eq. (22), we use the following relationship

(%RnJrl + R — %Rnfl) (%Rn+1 —2R" ¢+ %Rnfl)

(n+3/2 n+1/2 n+3/2 n+1/2 n+3/2) 2 n+1/2)2 (26)
= (R + RH/2) (RH3/2 — Rptl/2) = (Rn3/2)" — (RH/2)7.

The scheme presented by Eqs. (21a)-(22) is energy stable due to the following property.

Theorem 2.1. In the absence of the external volumetric and boundary heat source terms (i.e.
g =0 and g. = 0), and together with the velocity w = 0 on 0 and the temperature Dirichlet
boundary Ty = 0 on 08, the scheme (21a)-(22) satisfies the following property:

(R”+3/2)2 B (R"+1/2)2 _ —{Ata/ |VT”+1|2dQ <0, (27)
Q

where R"3/% and R"Y/? are defined by Eq. (25).

PROOF. Multiplying the equation (21a) by 7!, and adding the resultant equation to Eq. (22),

we arrive at

(Rm3/2)? — (Rrt1/2)? = —§Atoz/ VT 2dQ — €S0t + S AL, (28)
Q

12



1 where

10

So = (1B = B) +(IC] - C),
S = B[ +1C],

B:/g”Jrl X, t TanQ,
RARSD (20)

1 1
C = / {an VT~ 2 (- w) T;“} TdA
a0y

[ )

+ / {ag?“(x, t)— = (n-w"t) Tnﬂ} T A
\ 10197 2

Ifg=0,9.=0,w=0,7;=0, then Sy =0 and S; = 0. Therefore equation (28) leads to (27).
In light of Eq. (21d) and (21e), it can be noted that £ > 0. We conclude that the inequality in (27)

holds. O

2.4. Solution algorithm and implementation with high-order spectral elements

Let us now consider how to implement the scheme represented by Egs. (21a)-(22). Note that
the variable R(t), £ and E(T) are scalar-valued numbers, instead of field functions. In addition, £
is computed depending on T'. Taking advantage of the fact that £ is a scalar number, we introduce
two field functions (T, T5™!) as solutions of the following equations:

For T}

70]:’;“ +ug - VTP + % (V-ug) T] — aV2T]
e (30a)
= g"(x, 1) + A7
T =Tyt (x,t),  on 98y, (30b)
n- VI = g™t (x,t), on 09,. (30c)

13



i For Tyt

70T2n+1 + Ug - VT2n+1 + 1 (V . 110) T2n+1 — (IVQTQTL—H
At 2 (31a)
— M(UO, T*,n—H) o N(un—&-l’ T*’n""l)?
T3 =0,  on 09y, (31b)
n-VIy™ =0, on 09, (31c)

2 Then it is straightforward to verify that the solution to Egs. (21a), (21b) and (21c¢) is given by,

Tn+1 — T1n+1 + 5T2n+1, (32)

s where T Tyt are the solutions of equations (30a) and (31a), and £ is to be determined later.

" With 77+ and T3+, we define

. — 3ni1 1
T =t ot TR T o ST (33)

s which are second-order approximation of 77! and T"+3/2 respectively. By Eq. (21d), we have

(Rn+3/2)2 _ f(En+3/2)- (34)

6 Note that Eq. (22) can be transformed into equation (28). Inserting Eq. (34) into equation (28),

7 we can obtain the solution for &,

(Rn+l/2>2 + S, At

= — , (35)
E [T *3/2] + (A+ Sp) At
s where Sy and S are given in (29), and
A=a / VT 2a. (36)
Q

o With & known, T""! can be computed by equation (32). Using equations (35) and (21e), R"*!

14



1 is computed as follows,

R = Jer [T, (37)

Rl = 2Rnt3/2 4 1R,

2 It should be noted that in the proposed algorithm, the original convection term is replaced by
3 its linear approximation plus a correction term, and the correction term is put under the control of
s+ an auxiliary variable. In the discrete temperature equation (21), the temperature in the linearized
s approximation of the convection term is approximated implicitly while the temperature in the
s correction term is given by its second-order explicit approximation. The utilized time integration
7 scheme is the second-order backward differentiation formula. For the R equation (22), we do not
s use this equation directly. This equation is further transformed into equation (35). Therefore, we
o first calculate the value of the scalar number and then calculate the value of R using equation (37).
10 The equations (30a) and (31a) require to be solved for the field 77! and T3, Let us next
1 consider how to implement the proposed energy-stable scheme. We employ C°-continuous high-order
1> spectral elements for spatial discretization. Let ¢(x) denote an arbitrary test function that vanishes
13 on 0y, i.e. ply, = 0. Multiplying ¢ to Eqgs. (30a) and (31a), and integrating over the domain (2,
1 we obtain the weak form about T}"** and T3 as follow,

15 For T

1 1 [1
/VTlnﬂ VpdQ + 0 [ T g0 + —/uO VT pdQ + _/ —(V - ug) T+ pd
Q alt Jq a Jq a o2
1 LT : (38)
— a/Q gt 4+ A gon+/8Q gzﬂr wdA, Vo with 90|an =0.
16 For T2n+11
1 1 [1
/ VTQ”‘H - VipdQ) + o T;-ﬁ-lgde + = / u - VTQTL—HQOCZQ + _/ —(V- UO)T2n+190dQ
) e o o (39)

1 1
_ _/ (uo . VT*’n+1 + 5 (V . uO) T*,n—‘rl _ un—i—l . VT*,n—I—l) (de’ \V/(,D with (10|8Qd = 0.
@ Ja

17 where we have used integration by part, the divergence theorem, and Egs. (30c) and (31c). The
18 weak form (38) and (39), together with the Dirichlet condition (30b) and (31b), can be discretized

15
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using C? spectral elements in a standard way Karniadakis & Sherwin (2005). Note that the ug is
set to update every kg time steps when solving the temperature field.

Combining the above discussion, we arrive at the final solution algorithm within a time step:

(i) compute the velocity u®*! and pressure p"*! using the algorithm from the Appendix A.
(ii) solve equation (38) together with (30b) for the temperature 77"
solve equation (39) together with (31b) for the temperature 75",
(iii) compute the coefficients A, SO, S1 based on (36) and (29);
(iv) compute ¢ from equation (35)

(v) compute T"*! from equation (32) and R™™! from equation (37).

Figure 1 shows a flowchart of the proposed algorithm for solving the convective heat transfer
equation. The unknown variables to be calculated and the related equations to be solved are both
provided. All the equations involved therein are presented in their weak form, which can be directly

solved using C°- continuous high-order spectral elements method.

Remark 2.2. Note that a modified scheme can be obtained by choosing M(u) =0 in Eq.(15) and
it can be implemented using the same algorithm represented by Eqs.(21a)-(22). With this modified
scheme the discrete energy stability as given by Theorem 2.1 still holds. Compared to the current
scheme, the strength of the modification is that upon discretization the temperature linear systems
only involve constant coefficient matrixz that can be pre-computed. However, the modified scheme
18 less accurate at moderate or fairly large time step size and its accurancy range is significantly
influenced by the parameter Cy. These points will be demonstrated by numerical experiments in

Section 3.

Remark 2.3. In the current work, the energy stable scheme requires the computation of two
temperature fields within each time step by solving the temperature linear algebraic system involving
a coefficient matriz updated periodically. The auxiliary variable is given by a well-defined explicit
formulation. Thus, no Newton-type method is used when solving the heat transfer system. The
coefficient matriz in the temperature linear algebraic systems is non-symmetric ( but positive definite)
and is solved using the bi-conjugate gradient stabilized (BiCGStab) linear solver. We use a simple

Jacobi pre-conditioner for all the test problems presented subsequently.
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I. Imitialization:
set mesh parameters
set the properties of fluid flow and heat transfer
apply initial conditions equations (8) and (9)
set the time step index n=0
make the chosen velocity field u, equal to the initial velocity field
)
II. Begin time evolution
>| set the uy’s updating parameter k = mod (n + 1, k), where uo will
be updated every ko-th time step and ko is given by users
W

III. Solve the velocity field
a. solve discretized pressure equation (46) for p
b. solve discretized momentum equation (47) for u™*1

v

IV. Update the chosen velocity field u,
a. ifk=0,set uy = u™*!
b. else, do nothing.

o po op

n+1

v

n=n+l V. Solve the temperature field 77 'and T3
a. solve discretized temperature equation (38) for T7+1
b. solve discretized temperature equation (39) for T2+1

v

VI. Compute the coefficients of the auxiliary variable R
a. compute A, Sp; and S; based on equations (36) and (29)

b. compute £ based on equation (35)

v

VII. Compute the auxiliary variable R and the
temperature field 77!

a. compute T™*! based on Eqn. (32)
b. compute R**! based on Eqn. (37)

v

IX. Check if the desired time iteration is finished

Yes \l/

X. Write output

No

Figure 1 Flowchart of the proposed numerical algorithm for the convective heat transfer equation.
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3. Representative simulations

In this section, we use several convective heat transfer problems in two dimensions to test
the performance of the scheme presented above. The spatial and temporal convergence rates of
the method are firstly demonstrated, and then the effects of the algorithmic parameters on the
simulation results will be studied, especially the stability and the accuracy at large time step sizes
will be demonstrated. A survey of literature indicates the semi-implicit schemes based on the
second-order backward differentiation formula (BDF-2) and based on the Crank-Nicolson/Adams-
Bashforth (CNAB-2) scheme are the most commonly-used methods for heat transfer problems;
see e.g. Liu et al. (2020); Zheng et al. (2015); Rakotondrandisa et al. (2020); Pan et al. (2021);
Qaddah et al. (2022) for BDF and Yoon et al. (2020); Son & Park (2021); Seo et al. (2020) for
CNAB. Therefore, we also provide a comparison of the current scheme with the semi-implicit BDF
and CNAB schemes in the following tests. The semi-implicit BDF-2 and CNAB-2 schemes have
been provided in the Appendix B for the sake of completeness.

3.1. Convergence rates

We first investigate the spatial and temporal convergence rates of the algorithm developed herein
using a manufactured analytic solution to the heat transfer equation. Consider the rectangular
domain ABCD as depicted in Fig. 2(a), 0 < 2 < 2, =1 < y < 1 and the following analytical
solution to Eqs. (1a) -(1c),

u = 2sin(mwz) cos(my) sin(2t),
v = —2cos(mx) sin(my) sin(2t),

p = 2sin(mz) sin(mwy) cos(2t),

| T = 2 cos(mz) sin(my) sin(2t),

where velocity u = (u, v). In equations (1a) and (1c), the source terms f(x, t) and g(x,t) are chosen
such that the equations are satisfied by the expressions from (40).

The computational domain is discretized by two quadrilateral elements with the same size as
shown in Fig. 2(a). We impose condition (4) and (5)on the domain boundary for the velocity
field. For the temperature field, Dirichlet condition (6) is imposed on sides AB, AE, ED and C'D,

and Neumann condition (7) is imposed on the sides BF and FC. Both the boundary values for

Dirichlet and Neumann conditions are chosen according to analytical expressions from (40). The
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Figure 2 Convergence tests: (a) Flow domain and configuration; (b) Temperature errors (L, L?
and H' norms) vs. the element order (fixed ¢; = 0.1 and At =0.001); (¢) Temperature errors vs.
time step size At (fixed ty = 0.5 and element order 16 ).

initial velocity u;, and temperature T, are chosen according to the analytical expressions from
(40) by setting t = 0.

We integrate the heat transfer and Navier-Stokes equations in time from ¢ = 0 to ¢t = t; (to be
specified later). The algorithm from Section 2 and Appendix A are used to solve the temperature
and velocity fields, respectively. A fixed non-dimensional viscosity ¥ = 0.01 and thermal diffusivity
a = 0.01 are chosen for the problem. Other parameters include the constant Cy = 1.0 in Eq. (12)
and the constant integer ko = 1 in Eq. (16). To test the spatial and temporal convergence behavior
of the proposed algorithm, we have varied the element order and time step size systematically, and
computed the corresponding errors in the L>, L? and H' norms.

Fig. 2(b) illustrates the spatial convergence behavior of the proposed method. We employ fixed
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t; = 0.1 and At = 0.001, and vary the element order between 4 and 20 in the simulations. This
figure shows the temperature errors in L*°, L? and H' norms at ¢ = t; as a function of the element
order. With increasing element order, a clear exponential decrease in the errors is observed for
the element orders 12 and below. As the element order increases over 12, an error saturation is
observed, owing to the dominance of temporal truncation errors.

Fig. 2(c) illustrates the behavior of the method for temporal convergence tests. We fix the
element order 16 and ¢y = 0.5, and vary the time step size between At = 0.1 to At = 0.0001. The
figure shows the L>, L? and H' errors at t = t; as a function of At. It is evident that the scheme

exhibits a second-order convergence rate in time for the temperature.

3.2. Flow past a warm circular cylinder

In this section, we test the proposed unconditional energy stable scheme using a canonical
problem, the heat transfer in the flow past a warm circular cylinder.

We first compare our simulations with previous studies Bharti et al. (2007); Zhang et al. (2008)
to verify the accuracy of the proposed method. Consider a flow domain depicted in Fig. 3(a),
—5d < x <10d, —10d < y < 10d, where d is the diameter of the circular cylinder and the cylinder
center coincides with the origin of the coordinate system. On the left side of the domain, u = (1,0)
and T = 0 are prescribed. On the right side, an open boundary condition is imposed for the velocity
field and a zero-normal derivative (n- VT = 0) is specified for the temperature field. On the surface
of the cylinder wall, we set u = (0,0) and two kinds of boundary conditions for the temperature:
T =1 for the case of the constant wall temperature (CWT) and n- VT = —1 for the case of the
constant wall heat-flux (CWH). The top and bottom of the domain are assumed to be periodic.
Up=1,d =1, and T; = 1 degree Celsius are chosen as the velocity, length, and temperature scales,
respectively, and all the physical variables and parameters are normalized accordingly.

For comparison, the convective heat transfer problem is performed under Reynolds number
Re = 20 and Prandtl number Pr = v/a = 0.7. We employ the scheme from Section 2 to simulate
the temperature field with ¢ = 0 in Eq. (1c¢), and use the algorithm in Appendix A to solve the
Navier-Stokes equations (1a)- (1b) with f = 0. We have meshed the domain into 1228 quadrilateral
elements and employed element order 4, At = 0.001, Cy = 1000 and kg = 20 for the simulations.
The temperature distribution of the two cases are shown in Fig. 3(b) and 3(c). Fig. (4) demonstrates
the distributions of the local Nusselt number Nu on the cylinder wall from the current simulation

and from the previous works of (Bharti et al. (2007); Zhang et al. (2008)). The results evidently
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Figure 3 Circular cylinder flow: (a) Flow domain and mesh of 1228 quadrilateral elements; (b)
Temperature distribution for constant wall temperature, 7' = 1.0; (¢) Temperature distribution for
constant wall heat flux, n- VI' = —1. Plots (b) and (c) are obtained at Reynolds number Re = 20
and Pr =0.7.

show that our simulation results are in good agreement with those of (Bharti et al. (2007); Zhang
et al. (2008)).

Let us next look into the performance of the proposed method. Consider the flow domain
depicted in Fig. 5, —2.5d < x < 6.5d, —1.5d < y < 1.5d. The surface of the cylinder is set to be
Ty, = 80 degree Celsius. The top and bottom of the domain are the cooling walls, which are set
ton- VT =10.0 and T" = 20.0 respectively. The left and right sides are assumed to be periodic.
A external force f = (21,0) is imposed on the domain to drive the flow. This configuration is
equivalent to the flow past an infinite sequence of a warm circular cylinder in the horizonal direction.

We have discretized the domain using a mesh of 720 quadrilateral elements as shown in Fig. 5.
No-slip condition for the velocity is imposed on the top, bottom and cylinder surface walls for the
velocity field. The Dirichlet condition is employed for the bottom boundary with T; = 20 degree
Celsius and the cylinder surface with 7T), = 80 degree Celsius. A Neumann condition with g. = 10
in Eq. (7) is imposed on the top boundary. In addition, periodic conditions are imposed on the left
and right boundaries for both temperature and velocity fields. We use the algorithm from Section
2 to simulate the temperature with ¢ = 0 in Eq. (1c¢) and the algorithm in Appendix A to solve
the Navier-Stokes equations (1a)- (1b) with a horizontal body force f = (2v,0). Three Reynolds
numbers (Re = 100, 500 and 3000) and three thermal diffusivity (o = 0.01, 0.005 and 0.001) are
chosen for numerical simulations. For each case, a long-time simulation is conducted such that the

flow and temperature have reached a statistically stationary state, and thus the initial condition
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Figure 5 Circular cylinder flow: Domain configuration and the mesh of 720 quadrilateral elements

will have no effect on the presented results.

Fig. 6 provides an overview of the characteristic of the flow and temperature fields, which
visualize the flow pattern (left column) and temperature distribution (right column) at Reynolds
numbers Re = 100 (top row) and Re = 500 (bottom row) with the non-dimensional thermal
diffusivity a = 0.01. For Re = 100, the result is performed with an element order 4, a time step
size At = 0.01. For Re = 500, the simulations is performed using an element order 6, a time step
size At = 0.005. The parameters Cy = 1000 and ky = 1 are employed for both cases. At the lower
Reynolds number, i.e Re = 100, this is a steady flow. At Reynolds number Re = 500, the regular
vortex shedding can be observed in the cylinder wake. Because of the periodicity, after the fluid

passing through the warm cylinder, the warmed fluid re-enters the domain from the left side and

22



10

11

12

13

14

15

Figure 6 Circular cylinder flow: Instantaneous velocity and temperature distributions for Re = 100
(plots (a) and (b)) and Re = 500 (plots (c) and (d)) with thermal diffusivity o = 0.01.

interacts with the cylinder.
To describe the overall evolution characteristic quantitatively, we have computed and monitored

the L2 and H1 norms of the temperature field as following,

Tialt) = \f5 JalTGe 0P, Tin(t) = \J3 Jo [(Toe ) + VTP a2, (41)

where Vg = fQ dS) is the volume of the domain. Fig. 7 shows a window of the time histories of T75(t)
and Ty (t) at Reynolds numbers Re = 500 with a thermal diffusivity o = 0.01. The simulation
is performed using an element order 6, a time step size At = 0.005, Cy = 1000 and kg = 1. A
regular fluctuation in time is observed for both temperature norms. The T4y (t) exhibits a large
magnitude, while the T75(t) is much weaker in comparison. These time histories in the plot show
a long-term stability of our simulations. It can be observed that the Tro(t) and T4y (t) fluctuate
at some constant average level. Such invariable characteristics indicate that the temperature and
velocity fields have reached a statistically stationary state.

Based on the time histories of Tp(t) and Ty (t), we can obtain the statistical quantities and
compare them to test the effect of simulation parameters. The time-average mean value and
root-mean-square (rms) value of T7o(¢) and Ty (t) will be computed in the following simulations.

In Table 1 we list the mean values (T, and T;) and rms values (77, and T};,) of Tro(t) and
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Figure 7 Circular cylinder flow: Time histories of Ty2(t) and T (f) at Reynolds number Re = 500
with a = 0.01

Ty (t) obtained using different element orders, for Reynolds number Re = 100, 500 and 3000 with
thermal diffusivity @ = 0.01. The time step size is set as At = 0.001 for Re = 100 and Re = 500,
and At = 5e — 4 for Re = 3000. In these simulations, fixed values of Cy = 1000 and kg = 1 are
employed. It is observed that the mean and rms values of temperature norms are basically the
same for all the element orders, demonstrating a sense of convergence. In the results reported

below, the simulations are performed using element order 4 for Re = 100 and element order 6 for

Re = 500 and Re = 3000.

Table 1
Circular cylinder flow: Mean and rms values of T75(t) and Ty (t) obtained with various element
orders at three Reynolds numbers. Thermal diffusivity is o = 0.01.

7

Reynolds number Element order 7'z T, T Ty,
100 2 50.909 0 57.874 0
3 50.901 0 57.862 0
4 50.901 0 57.861 0
5 50.901 0 57.862 0
6 50.901 0 57.862 0
500 3 45.106 1.48e-2 55.992 0.398
4 45.127 1.46e-2  55.996 0.397
5 45.128 1.46e-2 55.995 0.397
6 45.128 1.46e-2 56.002 0.397
7 45.128 1.46e-2 56.002 0.397
3000 3 43.786 0.591  53.634 0.904
4 43.729 0.589  53.600 0.824
5 43.753 0.529  53.593 0.815
6 43.619 0.546  53.577 0.849
7 43.650 0.510  53.522 0.816
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Let us next focus on the effect of the time step size on accuracy and stability of the simulation
results. Note that in the previous simulations, the time step size used for solving velocity and
temperature fields are the same. To eliminate the effect of the velocity time step sizes on simulation
results, we fix them at constant values in all the simulations below and solve the temperature field
at every N-th time step of the velocity, where N is an integer given by users. Here, we denote Aty
as the velocity time step size and Aty as the temperature time step size. The relationship of the
two time step sizes can be given as Aty = N x Aty. It is worth noting that in such cases, the
velocity field ug will be updated at every N x kg velocity time step instead of at every kq velocity
time step.

Table 2 lists the mean and rms values of the temperature norms computed using current scheme
with temperature time step size ranging from Aty = 0.01 to Aty = 100. We also perform the
same simulations with the semi-implicit methods i.e. second-order back forward formula (BDF-2)
and Crank-Nicolson Adam-Bashforth (CNAB-2) methods for comparison. The details of the two
semi-implicit methods are gathered in Appendix B. In these simulations, the velocity time step
sizes are given as Aty = 0.01, 0.005 and 0.001 for the tests corresponding to Reynolds numbers
Re = 100, 500 and 3000 respectively. Fixed Cy = 1000 and ky = 1 are employed for all the cases.
The thermal diffusivity is @ = 0.01 for Reynolds number Re = 100 and 500, and o = 0.001 for
Re = 3000. We observe that current method can produce stable results even at a very large time
step size. Moreover, at lower Reynolds number, see Re = 100, the accuracy results can be obtained
even at Aty = 100, while the semi-implicit method is ineffective once the Aty increases to 0.04.

For the higher Reynolds numbers, the simulations with current scheme seem to lose accuracy at
a very large Atp, see the cases Aty = 2.5 and larger for Re = 500 and the cases Aty = 5.0 and
larger for Re = 3000. To clarify the effect of the time step size, we plot the time history of the
simulations for two higher Reynolds numbers, as demonstrated in Fig. 8 and Fig. 9. It can be
observed that the accuracy of the results can be obtained even at Aty = 0.5 for Re = 500 with
a = 0.01 and Aty = 1.0 for Re = 3000 with o« = 0.001. For these cases for Re = 500 based on the
semi-implicit methods, the effective results can only be obtained below Aty = 0.05 for the BDF-2
method and below Aty = 0.025 for the CNAB-2 method. As shown in Table 2, the main drawback
of the traditional semi-implicit method is its conditional stability. A stable computation can be
achieved only when the time step is small enough.

Since the velocity time step size is fixed, the calculated CFL numbers for each Reynolds number
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flow are same, i.e. CFL = 1.70 for Reynolds number Re = 100, CFL = 1.25 for Reynolds number
Re= 500, and CFL = 0.178 for Reynolds number Re = 3000. Therefore, we introduce an effective
CFL number, (CFL)7, which is defined in terms of the temperature time step size. As shown in
Table 2, the accurate results with current method can be obtained even at a very large (CFL)r,
which is (CFL)7r=17000 for Re = 100 and (CFL)7=89 for Re = 3000. At the same time, the semi-
implicit method shows its weakness, where the acceptable (CFL)r is much smaller, i.e., (CFL),T
= 3.4 for Re = 100 and (CFL)7r= 1.78 for Re = 3000. The proposed method demonstrates an
effective way to extend the range of both accuracy and stability, as is evident from the results

above.
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Table 2

Circular cylinder flow: (CFL)7, mean and rms values of T7o(t) and Ty (f) computed using a range
of temperature time step sizes at three Reynolds numbers and two thermal diffusivity for several
solvers.

7 7

Re «a Method Aty (CFL)r Trs T, Tm Ty
100 0.01  Current 0.01 1.7 50.901 0 57.862 0
0.1 17 50.902 0 57.862 0
1 170 50.902 0 57.862 0
10 1700 50.902 0 57.862 0
100 17000 50.902 0 57.862 0
Semi-implicit BDF-2 0.01 1.7 50.901 0 57.862 0
002 34 50.901 0 57.862 0
0.04 6.8 blow up
Semi-implicit CNAB-2 0.01 1.7 50.901 0 57.862 0
0.02 34 50.901 0 57.862 0
0.04 6.8 blow up
500 0.01  Current 0.005 1.25 45.128 1.46e-2  55.998 0.397

0.1 12.5 45.123 1.45e-2  55.995 0.395
0.25 31.25 45.103 1.44e-2  55.975 0.397
0.5 62.5 45.039 1.37e-2  55.887 0.387
2.5 312.5 45.874 6.16e-3 55.266 0.208
5 625 47.548 3.85e-3 55.582 0.104
25 3125 49.581 8.32e-2 57.006 0.163

Semi-implicit BDF-2 0.005 1.25 45.127 1.46e-2  56.000 0.396
0.06 125 45.130 1.46e-2  55.997 0.396
0.1 25 blow up

Semi-implicit CNAB-2 0.005 1.25 45.128 1.46e-2 56.000 0.397
0.025 6.25 45.128 1.46e-2 56.000 0.396
0.05 125 blow up

3000 0.001 Current 0.001 0.178 46.488 0.305  65.689 1.653
0.025 4.45 46.490 0.304  65.694 1.652
0.05 89 46.489 0.304  65.693 1.652
0.1 17.8 46.488 0.304  65.690 1.650
0.5 89 46.542 0.336  65.417 1.637
1 178 46.427 0.338  64.876 1.527
) 890 46.592 0.364  62.858 1.032

10 1780 A7.577 0.547  62.057 0.905
50 8900 50.357 1.569 61.767 1.277

Semi-implicit BDF-2 0.001 0.178 46.016 0.302 65.489 1.743
0.01 1.78 45.910 0.387  65.447 1.639
0.02 3.56 blow up

Semi-implicit CNAB-2 0.001 0.178 46.004 0.367  65.502 1.674
0.01 1.78 45.943 0.408 65.627 1.822
0.02 3.56 blow up
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Figure 8 Circular cylinder flow: Time histories of the T75 and Ty, at Re = 500 with o = 0.01
obtained with different time step sizes Atr.

28



76

J 'j’a j-%,ﬁ\.'v‘}w_,».
58 - —T,
52 Th
46— T
40 L L L L
1.35 1.39 1.43 1.47 1.51 1.
Time «10°
(a) Atr = 0.001
76

i

I
s/iad @
r\":p, I

LY
A L
58 1 —T,
52T Tht
46—
40 L L L L
1.35 1.39 1.43 1.47 1.51 1.
Time «10°
(C) AtT =05
76
— T
0 o TH1
2 i A s . B
64 ""\ﬁf‘u/‘a!ﬁ'\,\ﬂf" V"-vx\/".‘;.“v\../"""wq!"\""'h A"v j"""’""’\f’\\,&"‘” “-'\VJ.." '\J"Vﬁ"",\\,/'\__,’,v ;"\/A".“‘”L Py
58 [
52
60—
40 L L L L
1.35 1.39 1.43 1.47 1.51 1.
Time «10%
(e) AtT =5.0

76

o8r — T

52 - T

46 e

40 L L L L

1.35 1.39 1.43 1.47 1.51 1.55
Time «10%
(b) Aty =0.1
76

46

40

1.35

76
70
64
58
52
46

40
1.45

1.39

1.43 1.47 1.51
Time

1.55
%104

(d) Aty =1.0

prtei e
;

(L

i
5

iifhen fim o
M en iy !

e moa ~
1 i, i T Y
Tt ‘\._.&/ WA b R T

1.49

1.53 1.57 1.61
Time

1.65
x10%

(f) Aty =10

Figure 9 Circular cylinder flow: Time histories of the Ty, and Ty, at Re = 3000 with a = 0.001
obtained with different time step sizes Atr.

In the presented method, the velocity field ug is updated at every N x kg velocity time step,

leading to a periodically updating of the temperature coefficient matrix. We observe that the

frequency for updating ug has an impact on the accuracy of the simulation results. Note that the

frequency is influenced by two factors, N and ky. When the time step size of velocity Aty is fixed,

the larger Aty means a larger N. Table 2 can also be seen as the effectiveness tests of N on the

accuracy of the simulations, which shows that a too large N can cause an accuracy degradation.
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We observe that with a too large kg, the simulation results can also lose accuracy. Note that for
the steady flow, once the velocity field reaches its steady state, the value of kg can not cause an
effect on accuracy. It is because that the velocity field will not change with time. Therefore, in the
following tests, the simulations corresponding to higher Reynolds numbers are mainly conducted.

Table 3 provides the mean and rms values of the temperature norms at Reynolds number
Re = 500 with thermal diffusivity o = 0.01 and 0.005, and Re = 3000 with o = 0.001. In this set
of simulations, we have employed Aty = 5e — 3 for Re = 500 and Aty = le — 3 for Re = 3000.
Element order 6 and Cy = 1000 are employed for all cases. We vary the constants kg and N (Atr)
systematically to demonstrate the effect of the two parameters on the accuracy. It can be observed
that with the increase of kg, the accuracy of the simulation based on a large Aty shows an apparent
decrease. For example, for Re = 500, when k( increases to 20, the accuracy starts to deteriorate at
time step size Aty = 0.5; while for the case of kg = 1, a accurate result can also be maintained.
This kind of accuracy deterioration is far more serious than the situation of a very large time
step as shown in Fig. 8 and 9. This point is also demonstrated by Fig. 10 and 11, which show
time histories of the temperature norms with ug updated with different frequency. For Re = 3000,
when kg increases to 10, the characteristics of the computed temperature norms at Aty = 0.5
becomes notably different from the accurate result. At this case, the velocity field ug is updated
at every 5000 velocity time steps. These results imply that, when ug is updated too rarely, the
correction term (M (ug,T) — N(u,T)) may become very large and thus causes a significant error in

simulations.
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Table 3
Circular cylinder flow: Mean and rms values of Ty5(t) and Txy(t) computed using a range of

temperature time step sizes at Reynolds numbers Re = 500 with o« = 0.01 and 0.005 and Re = 3000
with a = 0.001.

7 7

Re (0% ]{70 AtT TLQ TL2 THI THl
500 0.01 1 0.005 45.128 1.46e-2 55.998 0.397
0.1 45.123 1.45e-2 55.995 0.395

0.25 45.103 1.44e-2 55.975 0.397

0.5 45.039 1.37e-2 55.887 0.387

10 0.005 45.128 1.46e-2 56.000 0.397

0.1 45.122 1.45e-2 55.996 0.396

0.25 45.088 1.43e-2 55.965 0.392

0.5 44944 1.32e¢-2 55.832 0.369

20 0.005 45.128 1.46e-2 56.999 0.397

0.1 45.121 1.46e-2 55.996 0.397

0.25 45.072 1.42e-2 55.945 0.389

0.5 46.039 2.28e-2 57.605 3.768

0.005 1 0.006 45931 8.59e-3 58.989 0.520
0.06 45.929 8.58e-3 58.985 0.519

0.25 45.886 8.31le-3 58.925 0.501

0.5 45.795 7.62e-3 58.722 0.451

5 0.005 45931 8.59e-3 58.989 0.520
0.06 45.929 8.56e-3 58.988 0.518

0.25  45.877 8.29e-3 58.924 0.497

0.5 45.730 7.44e-3 58.785 0.438

10 0.005 45931 8.59e-3 58.989 0.520

0.05 45.929 8.58e-3 58.988 0.519

0.25 45.864 8.24e-3 58.924 0.492

0.5 45.855 8.58e-3 59.575 1.636

3000 0.001 1 0.001 46.488 0.305 65.689 1.653
0.1 46.488 0.304 65.690 1.650

0.5 46.542  0.336 65.417 1.637

1 46.427 0.338 64.876 1.527

5 0.001 46.594 0.337  65.661 1.698

0.1 46.591 0.336 65.657 1.696

0.5 46.527 0.334 65.488 1.651

1 46.446 0.347 66.842 8.963

10 0.001 46.594 0.337 65.661 1.698

0.1 46.591 0.336 65.656 1.696

0.5 46.644 0.353 67.199 14.540

31



62

,‘/\"‘ ",‘. \,"\ "\, :\,/\ “'\,",‘H/"\ "‘,‘/n'. ",“.1!/."‘\,",\,/\"\
58”“ \.,\ LV ARY; VoV VoV [VARY) (VAR VARV
54 + TL2 4

"""" TH1
50 1
46
42 L L L
7200 7300 7400 7500 76
Time
(a) ko = 10, Aty = 0.005
62
,\»"‘.,“-'\ ‘w\'.,""-/\ :‘./\,"‘/- "‘,“.u ",l'\,"‘-,/"‘\f“-\,"\..'"i,""r"l.’"\r’

58

50

46

42

7400 7500

Time

(C) ko = 10, AtT =0.25

7200 7300

62

7

[VAVRY) (RVAVAY

58 *

54 -

50

46 F

A A A A A AN AN A A A A A
,\\ \ »\/\,\,.”/‘/\H A '\/\,\,”\/\/.,,‘,”‘/ /./\\.

YAV

VoY

To |

7—H 1

42

7200 7400 7500

Time

(e) ko = 57 AtT

7300

0.5

76

62

58 f

54

50

46

42

A A A A
:‘.’"‘,
Vo

A A A A A A A
A A A \\l\,m,‘,‘.:\/\'\,A‘,‘lnm AN A

i 4 |1 ! ! v
"\:\,’ Vo Y J VoA ‘\l\'

7200

62

58

54

50

46

42
72

46

42
7200

7400 7500
Time

(b) ko = 10, Aty = 0.1

7300 7600

AN
/\,\,./
4 (VRY;

AN NS N AN AN A ! A A S
l TAVAVEAY: r P IVAVAY g v ’/\ \ 7 /\
V4 1,'.’\1‘"\,’\"’\,l\"\’\l\"l\J\.’u‘.;

00

7400 7500
Time

(d) ko =1, Aty = 0.5

7300 7600

7400 7500
Time

(f) ko = 10, Aty = 0.5

7300 7600

Figure 10 Circular cylinder flow: Time histories of the 175 and Ty at Reynolds number Re = 500
with thermal diffusivity o = 0.005, obtained using a range of kg values and time step sizes Atrp.
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Figure 11 Circular cylinder flow: Time histories of the T, and Ty at Reynolds number Re = 3000
with o = 0.001, obtained with different frequency parameter ky and time step sizes Aty.
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We can also utilize a modified scheme with M (ug,T’) = 0 to simulate the convective heat transfer
problem. Note that for the modified scheme, the same algorithm presented by Egs.(21a)-(22)
can be used and the energy stable property still holds on. The modification shows an advantage
in the computational cost, since the discretized linear systems only involve the constant and
time-independent coefficient metrics and can be pre-computed. However, the modified method
shows a lower accuracy and robustness compared with the presented scheme when the time step
size increases to a fairly large values.

Table 4 provides the mean and rms values of temperature norms at Re = 100 with o = 0.01
obtained with the modified scheme. Element order 4 and Aty = 0.01 is employed for the simulations,
and the constant Cy and time step size Aty are varied systematically. This table can be compared
with Table 2, in which the results are attained by using current method and the accurate results
can be obtained even at Aty = 100. It can be observed that the modified scheme can provide
stable results at large time step sizes, however, the accuracy range of the simulations is reduced
and significantly influenced by Cj. Table 5 demonstrates the effect of Cj on the accuracy of
simulation results using the current method. These simulations are performed with element order
4, Aty = 0.01, Aty = 0.05 and kg = 20. We observe that the computed results are the same
corresponding to different C values. This suggests that our method has a low sensitivity to Cp,
showing a superior accuracy and robustness to the modified method. Since the current method is
not quite sensitive to Cy, choosing the Cy value is largely a preference of the user. In practice, we
recommend using a small Cj such as 1 or 10 for low Reynolds numbers and a relatively larger C

such as 1e3 or 1e6 for higher Reynolds numbers.

Table 4
Circular cylinder flow: Mean and rms values of Tp5(t) and Tpyq(t) using a range of Cy and
temperature time step size at Reynolds number Re = 100 with modified scheme M (ug,T") = 0.

Thermal diffusion is a = 0.01. _ i _ ;
Co Aty Tpo T, T m Ty

1 0.01 50.899 0 57.859 0
0.02 50.899 0 27.859 0
0.05 50.461 1.95e-2 58.109 2.220
le3 0.01 50.899 0 27.859 0
0.02 50.898 0 57.859 0
0.05 50.527 8.87e-2 57.807 4.973
1le9 0.01 50.901 0 57.862 0
0.02 50901 O 57.862 0
0.05 49.729 0 56.670 0
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Table 5
Circular cylinder flow: Mean and rms values of Ty(t) and T () using a range of Cy at Reynolds

number Re = 100 and time step size Aty = 0.05 with current method. Thermal diffusion is
a = 0.01.

7 7

OO TL2 TLQ THl TH1
le-3 50.902 0 597.862 0
1 50.902 0 57.862 0
le3 50902 O 57.862 0
1le9 50901 O 57.862 0

Fig. 12 and 13 show a temporal sequence of the velocity and temperature fields at the Reynolds
number Re = 3000 and a non-dimensional thermal diffusivity a = 0.001. Here, we have employed
element order 6, Cy = 1000 and ky = 1. A time step At = 0.001 is used for solving both temperature
and velocity fields. It can be observed that strong vortices generate at the warm cylinder and shed
into the wake. Besides, due to the periodicity, the vortices contained warm fluid pass through the
right boundary and go into the upstream of the domain. Then the re-entered flow interacts with

the warm cylinder and generates complex heat and fluid dynamics.
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Figure 12 Circular cylinder flow: Temporal sequence of snapshots of the velocity fields at Reynolds
number Re = 3000, (a) t = to, (b)t =ty + 6.4, (c) t =ty + 12.8, (d)t = to + 19.2, (e) t = to + 25.6,
(f)t=1to+32.0,(g) t=1to+384, (h) t =ty +44.8, (i) t =to +51.2, (j) t =ty + 57.6. ¢y denotes
the initial time instance of the sequence.
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Figure 13 Circular cylinder flow: Temporal sequence of snapshots of the temperature field at
Reynolds number Re = 3000 and thermal diffusivity o = 0.001, at identical time instance as in Fig.
12, (a) t =to, (b)t =to+ 6.4, (c) t = to + 12.8, (d)t =ty + 19.2, (&) t = to + 25.6, (f) t =t + 32.0,
(g) t=1to+38.4, (h) t =1ty +44.8, (i) t =to+51.2, (j) t =ty + 57.6.
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3.3. Flow past a warm square cylinder in a T-shaped periodical channel

In this subsection we test the accuracy and stability of the presented scheme by simulating
another canonical convective heat transfer problem in two dimensions, flow past a warm square
cylinder in a T-shape periodical channel.

Specifically, we consider a domain depicted in Fig. 14. A square cylinder with a length of side
0.5 is mounted on the center of the channel, and the cylinder center coincides with the point (1, 0).
A horizontal body force of normalized magnitude |f| = 200v is imposed on the domain and drives
the flow. The boundaries of the domain in the horizontal direction (x = 0,2) are assumed periodic.
All the rest of the boundaries are walls. The surface of the cylinder is maintained at T}, = 80 degrees
Celsius. The top wall is set at T; = 20 degrees Celsius. A fixed heat-flux n - VT = 10 is imposed
on the bottom walls of the domain. This configuration mimics the flow past an infinite array of a
square cylinder in the horizontal direction. We choose the height of the channel (—0.5 < x < 0.5)
as the length scale, Uy = 1 as the velocity scale and T; = 1 degree Celsius as the temperature scale.

All the other physical variables and parameters are then normalized accordingly.

0.4

0.2

04Ff

0 05 1 15 2
X

Figure 14 Square cylinder flow: Flow domain and the mesh of 1000 quadrilateral elements

We discretise the domain using a mesh of 1000 quadrilateral elements as shown in Fig. 14. On
the top and bottom of the domain, and on the surface of the square cylinder, no-slip boundary
conditions are imposed for the velocity field. For the temperature field, we impose Dirichlet
boundary condition with 7; = 20 and T}, = 80 on the top wall and on the surface of the cylinder.
Neumann boundary condition is imposed on the bottom walls as mentioned before. Periodic
conditions are imposed on the left and right boundaries for all field variables. The algorithm from
Section 2 is employed to solve the temperature field with ¢ = 0. The Navier-Stokes equations
with a horizontal body force f = (200v,0), are solved using the algorithm in Appendix A. We
have conducted the simulations for three Reynolds numbers (Re = 300, 1000, and 5000) and two
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Peclet numbers (corresponding to thermal diffusivity v = 0.01 and 0.001). The effect of parameters
including element order, time step size, and ky on the heat transfer characteristics are systematically
investigated.

An overview of the flow and heat transfer characteristics of this problem is provided by Fig. 15,
which visualize the flow pattern using streamlines and temperature distribution at two Reynolds
numbers Re = 300 and 1000 with thermal diffusivity o = 0.01. These results are computed using
element order 6 and Cy = 1000 for Re = 300, and element order 7 and Cy = 1e9 for Re = 1000.
The parameters At = 5e — 4, kg = 20 are employed for both cases. At low Reynolds number, i.e.,
Re = 300, one observes a steady flow. As the Reynolds number increases to Re = 1000, it can be
seen that the length of vortices near the walls becomes larger. The vortices flow past the right
side of the domain and then re-enter the upstream of the cylinder, which further influences the

temperature distribution of the domain.
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Figure 15 Square cylinder flow: Velocity streamlines and temperature distributions for Re = 300
(plots (a) and (b)) and Re = 1000 (plots (c¢) and (d)) with oo = 0.01

We have computed the time-averaged mean and rms norms of temperature based on the time

1« histories of Tp5(t) and Ty (t) to quantitatively demonstrate the overall characteristics of the heat

39



10

11

12

13

14

transfer problem. Table 6 lists the mean and rms values of the temperature obtained with the
element order ranging from 3 to 9 for three Reynolds numbers. In these simulations, we employ a
time step size At = 5e — 4 and ko = 20 for the lower Reynolds number, i.e., Re = 300 and 1000
with thermal diffusivity o = 0.01, and At = 2e — 4 and kg = 10 for Re = 5000 with o = 0.001. The
energy constant Cj is set as Cy = 1e3d for Re = 300 and Cy = 1e9 for Re = 1000 and 5000. We
observe that for Re = 300, with element order 4 and above, the computed values for the temperature
norms are essentially the same. For Re = 1000 and 5000, as the element order increases to 6 and
above, the computed values of T7»(t) and Ty (t) become very close. These results suggest that the
simulations are numerically converged with respect to the spatial resolution. In the following tests,
the values of the element order are employed 6, 7 and 8 for the simulations of Re = 300, 1000 and
5000, respectively.

Table 6
Square cylinder flow: Time-averaged mean and rms values of T75(t) and Ty (t) obtained with
various element orders for three Reynolds numbers.
Re o Element order T
300  0.01 61.645
61.671
61.675
61.676

7

T

150.218
150.241
150.239
150.237
61.676 150.235
61.676 150.234
61.625 1.06e-2 151.206 1.072
61.670 1.02e-2 151.197 1.033
61.681 1.0le-2 151.179 1.013
61.683 1.0le-2 151.194 1.019
61.684 1.0le-2 151.198 1.021
61.684 1.0le-2 151.200 1.023
97.067 9.61le-2 229.036 5.571
596.687 8.26e-2 238.116 5.815
06.742 8.77e-2 238.539 5.711
56.710 8.62e-2 238.676 5.740
56.709 8.43e-2 238.827 5.788
56.710 8.32e-2 238.921 5.812
56.710 8.24e-2  238.990 5.827

S O oo oo
°
O O O O oo
=

1000 0.01

5000 0.001

© 00 I O Tt WO JO Tt WO O Ot =W

The effect of time step size At on the accuracy of simulated results has also been studied. Here,
we fix the velocity time step size Aty and vary the temperature time step size Aty. Table 7 lists

the mean and rms values of the temperature norms using different Aty values for several Reynolds
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and Peclet numbers. We employ Cy = 1e3, kg = 20, Aty = 5e — 4 for the cases Reynolds number
Re = 300 with thermal diffusivity a = 0.01; Cy = 1€9, ky = 10, Aty = 5e — 4 for Re = 1000 with
a = 0.001; Cy = 1e9, kg = 10, Aty = 2e — 4 for Re = 5000 with a = 0.001. As demonstrated in
Table 7, the present method can produce stable and accurate results with a large time step size for
the Re = 300 and 1000. With At; increases, the accuracy of the simulations seems to degrade at a
higher or fairly high Reynolds number. This point can also be demonstrated by Fig. 16. The figure
shows a comparison of time histories of the temperature norms for Re = 5000 with o« = 0.001.
These simulations are performed using an element order 8, Cy = 1€9,ky = 1, Aty = 2e — 4. We
observe that when Aty increase to 0.4, the results seem to lose accuracy for some extent. Note
that the simulations using a typical semi-implicit BDF-2 scheme can only produce stable results
with Aty = 0.002 or smaller under the same resolution for the case Re = 5000 with o« = 0.001. At
this point, the CNAB-2 method can only yield accurate results when Aty is less than or equal to

4e-4. However, our method can still maintain an accurate result with Aty = 0.02.
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Figure 16 Square cylinder flow: Time histories of the Tr5 and Ty, at Re = 5000 with oo = 0.001,
obtained using a range of time step size Aty with kg = 1.
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Table 7

Square cylinder flow: Mean and rms values of Ty(t) and Ty () at several Reynolds numbers,
obtained with a range of temperature time step sizes. The results are computed from the semi-
implicit methods and the current method.

Re  Method Atr T e T Ty,
300  Current 0.0005 61.676 0 150.237 0
0.025 61.676 0 150.237 0
0.05 61.676 0 150.237 0
0.5 61.676 0 150.237 0
2.5 61.676 0 150.237 0
5 61.676 0 150.237 0
25 61.676 0 150.237 0
Semi-implicit BDF-2 ~ 5e-4 61.676 0 150.237 0
0.0025 61.676 0 150.237 0
0.0045 blow up
Semi-implicit CNAB-2  5e-4 61.676 0 150.236 0
0.001 61.676 0 150.237 0
0.0025 blow up
1000 Current be-4 64.039 3.17e-3 166.724 2.373

0.005 64.042 3.20e-3 166.751 2.378
0.05 64.293 2.91e-2 167.162 2.741
0.25 65.047 1.81e-1 159.508 0.363
1 64.663 7.64e-2  159.947 0.611
Semi-implicit BDF-2 oe-4 64.040 3.24e-3  166.716 2.372
0.001  blow up
Semi-implicit CNAB-2  5e-4 64.042 3.17e-3  166.704 2.372
0.001 64.038 3.17e-3 166.726 2.373
0.0025 blow up
5000 Current 2e-4 56.710 8.32e-2 238.921 5.812
0.002 56.710 8.32e-2 238.923 5.812
0.01 56.698 8.32e-2 238.945 5.805
0.02 56.664 8.31le-2  239.012 5.722
0.1 58.259 0.150 216.031 14.087
Semi-implicit BDF-2 2e-4 56.710 8.32e-2 238.918 5.812
0.002 56.724 8.53e-2  239.085 5.738
0.004 blow up
Semi-implicit CNAB-2 2e-4 56.707 8.42e-2 239.049 5.834
de-4 56.709 8.36e-2  238.959 5.833
0.001  blow up

1 We next investigate the effect of the updating frequency Q of the velocity field ug on the accuracy
> of simulations. As Aty = N x Aty, the updating frequency @) satisfies that () = N x ko. Here, we
; fix the temperature time step size Aty (that is also a fixed N) and update the velocity every kg
s+ time steps, which is set from 1 to 2000 for Reynolds number Re = 1000 and 5000 with thermal
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diffusivity = 0.001. We employ Aty = 5e-4 and Atr= 0.05 for the simulations corresponding to
Re = 1000, and Aty= 2e-4 and Atr= 0.002 for the cases Re = 5000. The parameter Cy = 1€9 is
chosen for all cases. The simulation results are listed in Table 8. For the lower Reynolds number,
it can be observed that the accuracy can be guaranteed even at ky = 2000, while for a higher
Reynolds number, the simulation will lose accuracy with a very large ky. See the cases with Re
= 5000, the computed temperature norms are essentially the same when kg is no more than 100.
However, when kg increases to 500, the characteristics of the temperature distribution are notably
different. This point can also be demonstrated in Fig. 17, which plots the time histories of T and
Ty described in Table 8 in the case of Re = 5000. These results indicate that, for a high Reynolds

number, the velocity field ug should be updated more frequently.

Table 8
Square cylinder flow: Mean and rms values of T75(t) and Ty (t) using a range of ky values at
Reynolds numbers Re = 1000 and 5000. Thermal diffusivity is o = 0.001.
Re ko Tpo Ty, T Ty,
1000 1 64.288 8.96e-2 166.689 2.531
10 64.293 2.9le-2 167.162 2.741
20 64.290 2.87e-2 167.049 2.674
50 64.277 2.65e-2 167.087 2.656
100  64.272 2.60e-2 167.097 2.644
500  64.274 2.69e-2 167.089 2.639
1000 64.273 2.66e-2 167.080 2.617
2000 64.271 2.49e-2 167.073 2.602
5000 1 56.710 8.32e-2 238.923 5.812
10 56.710 8.32e-2 238.923 5.812
20 56.710 8.32e-2 238.923 5.812
50 56.710 8.32e-2 238.922 5.811
100 56.710 8.32e-2 238921 5.811
500  56.629 10.023 503.524 7935.640
2000 56.915 8.53e-2 224.007 7.353

Finally, Fig. 18 illustrates the dynamic of the square cylinder flow with a temporal sequence of
snapshots of the velocity field at the Reynolds number Re = 5000. Fig. 19 shows the temporal
sequence of snapshots of temperature fields at thermal diffusivity @ = 0.001 corresponding to
the velocity field. Here we have employed element order 8, Cy = 1e9 and kg = 1. A time step
size At = 2e — 4 is used for the solution of both temperature and velocity field. A continuous
vortices moving can be observed. These vortices generate near the walls and flow past the right

side. Besides, a prominent feature of this flow lies in that the re-entering vortices interact with the
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1 square cylinder due to the periodicity. Such interactions give rise to some vortices hitting on the
2 left wall of the cylinder and then split into two ways and new vortices near the wall are spawn.

3 Such a complex flow pattern makes a complicated temperature distribution in the T-shape channel.
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Figure 17 Square cylinder flow: Time histories of the 775 and T, at Reynolds number Re = 5000

with e = 0.001 and time step size Aty = 0.002, obtained using a range of kg values.
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t=to+ 25, (g) t =ty + 30, (h) t =ty + 35. ty denotes the initial time instance of the sequence.

18 Square cylinder flow: Temporal sequence of snapshots of the velocity fields at Reynolds

number Re = 5000, (a) t = tq, (b)t
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4. Concluding remarks

In the current work we have presented an unconditionally energy stable scheme for convective
heat transfer simulations. The scheme endows a discrete energy stability property, and stable
results can be obtained irrespective of the time step size. The developed scheme also features an
expanded accuracy range compared with the common-used semi-implicit scheme. It is observed
that our algorithm can provide accurate simulation results at a large or fairly large time step
size. The salient property of the scheme lies in the gPAV-based reformulation and the numerical
treatment of the convection term. In the reformulated system, the convection term is replaced
by a linear term and a correction term, and the correction term is placed under the control of an
auxiliary variable. Within each time step, the energy stable scheme requires the computation of
two temperature fields by solving the temperature linear algebraic system involving a coefficient
matrix updated periodically. The auxiliary variable is given by a well-defined explicit formulation,
which guarantees the positivity of its computational value.

Extensive numerical experiments have been provided with several convective heat transfer
problems in fluid flows. The numerical tests demonstrated the unconditional energy stability of
the proposed scheme. Besides, at a large or fairly large time step size, accurate simulation results
can also be achieved by our method. The update frequency kj of velocity ug has an impact on
the accuracy range of the simulation results for the high or fairly high Reynolds number fluid flow.
Normally, for a relatively low Reynolds number, the ky has a very small effect on the accuracy of
the results, thus one can select a high (such as 1000 for R, = 1000 in the circular cylinder flow
case); while for a high Reynolds number, the velocity field should be updated more frequently.
Overall, with an overly large kg, the simulation will lose the accuracy at a large time step size. The
results show that the allowed maximum time step size that can achieve accurate simulation results
with our scheme is typically considerably larger than that with the semi-implicit type scheme or the
modied scheme from Remark 2.3. We anticipate that combing with the unconditional energy-stable
scheme for incompressible Navier-Stokes equations, the presented scheme can be a powerful tool for

efficient simulations of convective heat transfer problems and beyond.

Appendix A Numerical algorithm for incompressible Navier-Stokes equations

We adopt the semi-implicit scheme herein to solve the incompressible Navier-Stokes Eqs. (1a) -

(1b) together with the boundary condition (4) and the initial condition (8). A summary of the
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1 numerical algorithm is presented in this appendix.

2 The same notation is utilized here as in the main text.
3 Given u” we compute p"*! and u™™! successively in a de-coupled fashion as follows:
4 For p™ti:
u" ! —a
AT +ut L vutt L vttt LV x Vo ut T = £ (42a)
V-a'tt =0, (42b)
n-a"" =n-w""  on Q. (42¢)
5 For u™t!:
un+1 _ ﬁn—i—l
Bl Bl —vVPu" = vV x V x u*"t (43a)
At
u"t =w" on 9Q. (43b)
6 In the above equations, u"™! is an auxiliary variable approximating u"™! and J (J = 1 or 2)

7 denotes the temporal order of accuracy as in main text. 7 is defined by:

1, J=1,
0= (44)
3/2, J =2,
s and 0 and u*"*! are defined by
u”, J =1, u”, J =1,
u= utnt = (45)
2u” — tunl J=2; 2u” —u"l, J=2.

2

o The weak form for the pressure p"*! can be derived from Eqs. (42a)-(42c), which is given by,

/Vpn+1.Vq:/G"+1.Vq—V/ nxw*’"“-vq—ﬁ/ n-w'lg, Vg€ H(Q), (46)
Q Q o0 At onN

w where G™ = 71 4 & —u* . Vu*" ! and w = V x u. For the velocity, the weak form is given
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1
o / u" o +/ Ve -Vu'"t = —/ (G = Vp" ) g, Ve HY(Q) with ¢[,, =0. (47)
VAt Q Q vV Jo d
2 The weak forms in (46) and (47) can be discretized using C° spectral elements in the standard
5 fashion. Within each time step, we first solve Eq. (46) for p"™! and then solve Eq. (47), together
+ with the boundary condition (4), for u"*!. It is worth noting that the auxiliary variable ™! is

s not explicitly computed.

s Appendix B Semi-implicit algorithms for solving the convective heat transfer equa-

7 tion

8 A summary of the semi-implicit algorithms to solve the convective heat transfer equation
o (1c) combined with the boundary condition (6)-(7) and initial condition (9) are presented in this
10 subsection. The two employed semi-implicit methods are second-order backward differentiation

1 formula (BDF-2) and Crank-Nicolson Adam-Bashforth (CNAB-2) methods.

-

1w Semi-implicit BDF-2 algorithm for solving the convective heat transfer equation

13 Here, we utilize the same notation as in the main text. Given 7™ and u®!, we can compute

1w T™! based on the BDF-2 scheme (Liu et al. (2020); Qaddah et al. (2022)), which reads as follows:

T+l T
T A T VT = a VT 4 g (x 1), (48a)
T =Tt (x,t), on 99y, (48b)
n- VIt = g™t (x,t), on 09,. (48c)
15 In the above equations, the detailed definition of all the related variables can be found in

16 Section 2.3. Furthermore, we can employ the C°-continuous high-order spectral elements for spatial
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1 discretizations. The weak form about 77! is given as follows,

/ VI VpdQ + 0 [ TrHpd0
Q Q

aAt
1 ; (49)
= —/ (g”Jrl + — —u"tt. VT*’”H) pdS) +/ g odA, Vo with Ploa, =
a Jo At 0,
> where we have used integration by parts, the divergence theorem, and the equation (50c).
s Semi-implicit CNAB-2 algorithm for solving the convective heat transfer equation
4 Given T™ and u™*!, we can compute 77" based on the following CN-AB scheme:
Tn+1 _Tn
— utE VT = o VAT 4 gt E(x, 1), (50a)
T =Tt (x,t),  on 98y, (50b)
n- VIt = g™ (x,t),  on 09Q,, (50c)
where
nt+i 1 n+1 n n+1 1 n+1 n n+z 1 n+1 n
u 2:§(u +u"), T 2:§(T +T"), g 2:§(g +g"), (51)
and
3 1
T+ = 2 - 52
2= 5 (52)
5 Furthermore, we can employ the C°-continuous high-order spectral elements for spatial dis-

s cretizations. The weak form about 77! is given as follows,
/ VT . VpdS +— / T pdQ)

i nts +3 . VT3 | odQ) / "odA
a/ﬂ(g +At urz.v )go +a§z © (53)

+/ u-VImpdA — / VI™ - NVpdQ, Yo with o[y, =0,
o0 Q

7 where we have used integration by parts, the divergence theorem, and the equation (50c).
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1 Appendix C A more detailed derivation of equations (15) and (18)

2 In this appendix, we derive the governing equations of the gPAV style reformulated system,

3 which corresponds to equaitons (15) and (18). As pointed out in Section 2.2, the reformulated

+ system is the core and key to develope the discretely energy-stable scheme. In light of % =1on

s the continuum level, the reformulation is realized by incorporating a number of identically zero

s terms into the original equations.
7 Deriwation of Equations (15)

8 With % = 1 on the continuum level, the convective heat transfer equation (1c) can be written

9 as,

oT  R2(t)

RA(t)
o ED

N, T) = aVT + | 30

— 1M (o, T) + g(x,1). (54)

10 Note that the M (ug,T) is a linear approximation of N(u,T). By moving the terms associated

R2(t)

11 With E(t)

to the right hand, the equation (54) can be further transformed into equations (15),

12 which is an equivalent form of equations (1c) at the continuum level.
s Derivation of Equations (18)

With % = 1, we incorporate three zero terms into the right hand side (RHS) of Eq. (14),

QR@:/T-a—TdQ
Q

dt ot
R (1)
" [E(t)

—1}/9[—M(u0,T)+on T + g(x,t)] Td$)

N ]?E ((f)) ( /Q (M(uo, T) — N(u, T)] TS — /Q [M(uo,T) — N(u,T)] Tdﬂ) (55)

#i- ];(tt))} ( [ Jom- 97— 5o wr] TdAD'

14 Such reformulation follows the gPAV idea presented in Yang & Dong (2020). The equation that

/ 9(x, t)TdQ‘ +
Q

15 includes three identically zero terms presents an equivalent form of equations (14) at the continuum

16 level.
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The equation (55) can be further transformed into

dR oT
2R = /QT o
R (1) 2
+ 0 [ M(uo,T) + aV*T + g(x,t)] TdS)

R R(t)

s / (M (uo, T) — N(u, )] TdS)
/ )+ aV*T + g(x,t)] TdQ
RY(

‘T/W( . T) = N(u, T)] Td)

=) (|

/Q a;; ];()/[ N(u,T)+ aV>?T + g(x,t)] TdS

g(x, )TdQ| +

{an VT — %(n : u)T} TdAD (56)

_/{ M(ug, T) + aV>T + g(x, t)+R2(t) (M(uo,T) — N(u, T))] TdS

Et)
' 1—5—](

|
e~

g(x,t)TdQ)| +

|:Oén VT — = Il u Td:| TddA

where 092 = 094 U 0€2,,. In light of the energy balance equation (11), we obtain that

/ [~N(@,T) +aV*T +g(x, )] TdQ = —a/ !VT\2dQ+/g(x,t)TdQ
+Q/ [ VI S )T]TdA+/ {Q i (57)
oo L g\ Whd| Ld o age(x,t) = 5(n u)T} TdA.
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Then we finally attain the equation (18) as follows,

2Rd—R:/T a—TdQ
Q

dt ot
T o [1vrpas [ g
+ o, {ozn VT — %(n : U>Td} TydA + /asz [agc(x,t) - %(n : U)T] TdA]

—/Q {—M(uo, T) + V2T + g(x, t)—l—Iz(tt)(M(uo,T)—N(u,T))} TdS (58)
+ [1 }272(%)} (/Q %, 1) TdQ) / an-VT—%(n-u)Td] TydA
<,

N {agc(x, t) — %(n : u)T] TdA‘
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