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1. Introduction1

In this paper, we consider the numerical approximations of the convective heat transfer equation,2

which in combination with the incompressible Navier-Stokes equations constitutes a vital basis for3

heat transfer and fluid dynamics (Bo et al. (1995); Yan et al. (2022); Liu et al. (2020)). Convective4

heat transfer problems are common in nature and have been applied in a wide range of engineering5

and science fields, such as energy systems, material production, solar energy, and electronic cooling.6

The development of efficient numerical algorithms for the equation can have implications in the7

field of convective heat transfer and beyond.8

This work focus on proposing an unconditional energy-stable scheme for the convective heat9

transfer problems. Energy stability is an attractive property in the numerical approximation and10

simulation of partial differential equations described in dissipative systems. An energy-stable11

approximation means that the system can maintain the energy dissipative (conservative) nature on12

the discrete level, which is not only consistent with important aspects of the underlying structure of13

continuous systems, but also provides a numerical stability control in practical computer simulations,14

allowing large time steps to be applied to computer simulations. Therefore, for the simulation of15

dissipative systems including but not limited to the Navier-Stokes (Lin et al. (2020a,b)), Cahn-16

Hilliard (Yang et al. (2019); Qian et al. (2020)) and convective heat transfer equations (Zhang &17

Yang (2020); Chandra & Chhabra (2011)), energy stability is a highly desirable property for the18

numerical algorithm of the systems.19

The main challenge encountered in the numerical solution of the convective heat transfer20

equation arises from the coupling of the temperature and velocity fields, represented by the21

convective term. The most commonly used method is semi-implicit type schemes, which typically22

treat the convection term explicitly and thus can provide a natural and favorable way to decouple23

the temperature and velocity fields. Within a time step, the semi-implicit scheme only requires24

solving linear algebraic systems with a constant and time-independent coefficient matrix that can25

be pre-computed. Thanks to the low computational cost, the semi-implicit type schemes have26

been widely used in the simulations of convective heat transfer in fluid flow (Woodruff (2022);27

Bhinder et al. (2012); Chandra & Chhabra (2011); Wang & Pepper (2009); Feldman (2018); Soo28

et al. (2017); Liu et al. (2020)). A downside of the schemes is their conditional stability. Stable29

computation can be achieved only when the time step is small enough. However, the practitioners30

of computational heat transfer always desire to use larger time step sizes in computer simulations.31
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Energy-stable type schemes present a favorable method to alleviate the time step size constraint1

encountered with semi-implicit schemes. The attractive property of the energy stable schemes lies2

in the preservation of the energy dissipation on the discrete level, which can provide a control on3

the numerical stability. The potential drawback of energy-stable schemes is their computational4

cost. Because these schemes oftentimes entail the solution of a nonlinear algebraic system or a5

linear algebraic system multiple times, their computational cost per time step is typically higher6

than the semi-implicit type schemes, we refer to Celledoni et al. (2012); Shen et al. (2018); Yang7

(2016); Dahlby & Owren (2011); Eidnes et al. (2018) for example. The focus of the current work is8

to develop an unconditional energy-stable scheme with a relatively low computational cost for the9

convective heat transfer equation.10

A number of energy stable schemes have been proposed and applied in the approximation of11

incompressible Navier-Stokes equations (Chen et al. (2018); Jiang et al. (2016); Labovsky et al.12

(2009); Simo & Armero (1994); Verstappen & Veldman (2003); Lin et al. (2019, 2020a); Sanderse13

(2013)). These schemes can effectively alleviate the time step size constraints faced by semi-implicit14

schemes, which represents a major precondition for simulating the convective heat transfer problems15

efficiently. In the past few years, the use of auxiliary variables turns out to be particularly effective16

in devising energy-stable schemes. Two prominent examples of such methods are the scalar auxiliary17

variable (SAV) Shen et al. (2018) and the invariant energy quadratization (IEQ) Yang (2016); see e.g.18

(Cheng & Shen (2018); Gong et al. (2018); Li et al. (2019); Yang et al. (2019); Zhao et al. (2018)).19

These two kinds of schemes have been employed in the approximation of the dendritic solidification20

systems (Zhang & Yang (2020); Chen & Yang (2019)), which involve the convective heat transfer21

equation. In both IEQ and SAV, the discrete energy stability of their resultant numerical schemes22

is built on the use of the auxiliary variable/field in the form of square root functions. An interesting23

recent development in this area is Yang & Dong (2020), which describes a systematic roadmap24

for devising discretely energy-stable schemes for general dissipative systems. This roadmap is25

developed based on the generalized Positive Auxiliary Variable (gPAV) method, which employs26

a scalar-valued number as the auxiliary variable and endows the discrete energy stability to the27

resultant scheme. Compared to the related works in (Shen et al. (2018); Yang & Dong (2019); Yang28

(2016)), the gPAV method can allow using a general class of function form to define the auxiliary29

variable, and ensure the positivity of the computed values of the generalized auxiliary variable.30

Several works (Lin et al. (2020a,b); Qian et al. (2020)) have employed the roadmap to devise the31
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energy-stable scheme, which turn out that the gPAV method is particular effective to achieve the1

discrete energy stability for general dissipative partial differential equations. Further development2

of this approach is discussed very recently in Lin et al. (2020b). This work proposes a numerical3

scheme for the incompressible Navier-Stokes equations under the gPAV framework and introduces4

a numerical treatment to the nonlinear term.5

In the current work, we present an unconditionally energy stable scheme for the convective heat6

transfer equation. This scheme can achieve accurate simulations at large or fairly large time step7

sizes without seriously sacrificing the computational cost. The prominent feature of the scheme8

lies in a gPAV-based reformulation and a numerical treatment for the convection term inspired9

by Lin et al. (2020b). In the reformulated system, the convection term is replaced by its linear10

approximation plus a correction term. The correction term is then controlled by an auxiliary11

variable to guarantee unconditional energy stability.12

The proposed algorithm requires computing two copies of the temperature field within a time13

step by solving a linear algebraic system that is with a periodically updated coefficient matrix.14

The updating frequency of the coefficient matrix can be specified by the user. The auxiliary15

variable is computed by a well-defined explicit formulation that guarantees the positivity of its16

computed values, which is consistent with the physical definition. The unconditional stability of the17

scheme has been shown. The reported results demonstrated that the simulation with the proposed18

algorithm can achieve accurate results at large or fairly large time step sizes, depending on the19

Reynolds number. It is observed that employing the gPAV method directly will lead to a higher20

computational cost compared to the semi-implicit scheme, which is an undesirable aspect of the new21

scheme. By introducing a numerical treatment on the convection term, our scheme substantially22

expands the accuracy range for the time step size and thus makes the proposed scheme favorable23

for simulating convective heat transfer problems efficiently.24

The contribution of this work lies in the unconditional energy-stable scheme for the convective25

heat transfer system developed herein. This specifically includes: (i) the introduction of the gPAV26

approach into the resultant reformulation of the convective heat transfer system, (ii) the numerical27

scheme for approximating the reformulated system of equations, (iii) an improved accuracy under a28

relatively low computational cost.29

The rest of the paper is structured as follows. In Section 2 we first derive the reformulation of30

the convective heat transfer equation utilizing the gPAV approach and present the energy stable31
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scheme for the reformulated system. The discretely energy stable property of the scheme is proved.1

We also present the solution algorithm of the scheme and its detailed implementation based on2

high-order spectral elements (Karniadakis & Sherwin (2005); Blackburn & Henderson (1999); Zheng3

& Dong (2011); Sherwin & Karniadakis (1995)). In Section 3 we demonstrate the convergence rates4

using a manufactured analytic solution and test the accuracy and performance of the proposed5

scheme using two canonical problems involving convective heat transfer in fluid flows. Section 46

concludes discussions with some closing remarks. Appendix A provides a summary of the numerical7

algorithm for the incompressible Navier-Stokes equations, which are employed in the current work.8

Appendix B provides the commonly used semi-implicit algorithms for solving the convective heat9

transfer equation. In addition, derivations of two equations in the main text are given in Appendix10

C.11

2. Discretely energy-stable scheme for the convective heat transfer equation12

2.1. Convective heat transfer equation and energy balance relation13

Consider a domain Ω (with boundary ∂Ω) in two or three dimensions, and an incompressible14

flow contained in the domain. The convective heat transfer problem is then described by the15

following system of equations in non-dimensional form:16

∂u

∂t
+ u · ∇u +∇p− ν∇2u = f(x, t), (1a)

∇ · u = 0, (1b)

∂T

∂t
+ u · ∇T = α∇2T + g(x, t), (1c)

17

where u(x, t) and p(x, t) are respectively the non-dimensional velocity and pressure, f(x, t) is an18

external body force, T (x, t) is the non-dimensional temperature, g(x, t) is an external volumetric19

heat source term, and x and t are the spatial coordinate and time. ν is non-dimensional viscosity20

or the reciprocal of the Reynolds number Re,21

ν =
1

Re
=

νf
U0L

, (2)
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where νf is the kinematic viscosity of the fluid, and U0 and L are the velocity and length scales. α1

denotes the non-dimensional thermal diffusivity or the reciprocal of the Peclet number,2

α =
1

Pe
=

αf
U0L

, (3)

where αf is the thermal diffusivity of the fluid. In the current work, we assume that both ν and3

α are constant, and no viscous dissipation of energy. Only one-way coupling will be considered4

between the flow and the temperature, i.e., the flow affects the temperature distribution while the5

effect of the temperature on the fluid flow will be ignored. Note that Eqs. (1a)-(1b) for describing6

the motion of the flow are the incompressible Navier-Stokes equations.7

On the domain boundary ∂Ω, we assume that the velocity is known,8

u = w(x, t), on ∂Ω, (4)

where w denotes the boundary velocity. In order to provide a uniquely defined pressure, we impose9

the often-used condition in the current work,10

∫
Ω

pdΩ = 0 (5)

In terms of temperature, we assume that ∂Ω consists of two non-overlapping types: ∂Ω =11

∂Ωd ∪ ∂Ωn. We impose the Dirichlet boundary condition on ∂Ωd,12

T = Td(x, t), on ∂Ωd, (6)

where Td is the known boundary temperature, and the Neumann boundary condition on ∂Ωn,13

n · ∇T = gc(x, t), on ∂Ωn, (7)

where gc(x, t) is a prescribed term associated with the heat flux on boundary and n is the outward-14

pointing unit vector normal to the boundary ∂Ωn. In addition, the system is supplemented by the15

initial conditions for the velocity,16

u(x, 0) = uin(x), (8)
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and for the temperature,1

T (x, 0) = Tin(x), (9)

where uin and Tin denote the initial velocity and temperature distribution.2

We focus on the numerical approximation of the convective heat transfer equation (1c). Multi-3

plying (1c) by T and integrating over ∂Ω, we obtain an energy balance equation as follows,4

∂

∂t

∫
Ω

1

2
|T |2dΩ = −α

∫
Ω

|∇T |2dΩ +

∫
Ω

g(x, t)TdΩ

+

∫
∂Ω

[
αn · ∇T − 1

2
(n · u)T

]
TdA,

(10)

where integration by parts and the divergence theorem are used. With the boundary conditions (6)5

and (7), the energy balance equation (10) is then transformed into6

∂

∂t

∫
Ω

1

2
|T |2dΩ = −α

∫
Ω

|∇T |2dΩ +

∫
Ω

g(x, t)TdΩ

+

∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA.

(11)

2.2. gPAV-reformulated system7

In order to facilitate the development of the discretely energy-stable scheme, we will firstly8

reformulate the system consisting of Eq. (1c), the boundary conditions (6) and (7) and the initial9

condition (9) into an equivalent form.10

Define a shifted energy,11

E(t) = E(T ) =

∫
Ω

1

2
|T |2dΩ + C0, (12)

where C0 is a chosen energy constant such that E(t) > 0 for all t ≥ 0. For a convective heat12

transfer system, the energy is bounded from below, thus can always be found and be considered as13

the lower bound of the system energy. Based on the gPAV framework Yang & Dong (2020), we14

introduce an auxiliary variable R(t) based on E(t),15
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E(t) = R(t)2, (13a)

R(t) =
√
E(t). (13b)

Then R(t) satisfies the following dynamic equation,1

2R
dR

dt
=

∫
Ω

T · ∂T
∂t
dΩ. (14)

Note that both R(t) and E(t) are scalar numbers instead of field variables, and so R2(t)
E(t)

= 1.2

With the variables defined above, we rewrite the Eq. (1c) into the following equivalent form,3

∂T

∂t
+M(u0, T )− α∇2T =

R2(t)

E(t)
[M(u0, T )−N(u, T )] + g(x, t), (15)

where N(u, T ) = u · ∇T , and M(u0, T ) is a linear approximation of N(u, T ) defined as following,4

M(u0, T ) = u0 · ∇T +
1

2
(∇ · u0)T, (16)

where u0 is a chosen velocity that can be updated occasionally in time. In the presented work, we5

set u0 to be the velocity field at every k0-th time step, where k0 is an integer parameter provided6

by the user. It means that the velocity field is updated only once at every k0 time step.7

Following the gPAV idea in Yang & Dong (2020) and also the work Lin et al. (2020b), we8

incorporate a number of zero term into the right hand side (RHS) of Eq. (14) and rewrite the9
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equation as follows,1

2R
dR

dt
=

∫
Ω

T · ∂T
∂t
dΩ +

[
R2(t)

E(t)
− 1

] ∫
Ω

[
−M(u0, T ) + α∇2T + g(x, t)

]
TdΩ

+
R2(t)

E(t)

(∫
Ω

[M(u0, T )−N(u, T )]TdΩ−
∫

Ω

[M(u0, T )−N(u, T )]TdΩ

)
+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ω

[
αn · ∇T − 1

2
(n · u)T

]
TdA

∣∣∣∣)
=

∫
Ω

T · ∂T
∂t
dΩ +

R2(t)

E(t)

∫
Ω

[
−N(u, T ) + α∇2T + g(x, t)

]
TdΩ

−
∫

Ω

[
−M(u0, T ) + α∇2T + g(x, t) +

R2(t)

E(t)
(M(u0, T )−N(u, T ))

]
TdΩ

+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA

+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA

∣∣∣∣) .

(17)

In the above equation, |(·)| denotes the absolute value of (·). In light of Eq. (11), we further2

transform the Eq. (17) into the final reformulated equivalent form3

2R
dR

dt
=

∫
Ω

T · ∂T
∂t
dΩ

+
R2(t)

E(t)

[
−α
∫

Ω

|∇T |2dΩ +

∫
Ω

g(x, t)TdΩ

+

∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA

]
−
∫

Ω

[
−M(u0, T ) + α∇2T + g(x, t) +

R2(t)

E(t)
(M(u0, T )−N(u, T ))

]
TdΩ

+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA

+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA

∣∣∣∣) .

(18)

The reformulated system consists of Eqs. (15) and (58), the boundary conditions Eqs. (6) and4
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(7), and the initial condition Eq. (9) for temperature and the following initial condition for R(t),1

R(0) =
√
E(0), where E(0) =

∫
Ω

1

2
|Tin|2 dΩ + C0. (19)

In this system, the dynamic variables are T (x, t) and R(t), which are coupled with Eqs. (15)2

and (58). E(t) is given by Eq. (12). Note that R(t) is obtained by solving the coupled system of3

equations, not by using Eq. (13b). So to this extent, R(t)2 is an approximation of E(t).4

Remark 2.1. It is worth noting that by modifying the original equation (1c) to equation (15), we5

put the convection term under the control of the auxiliary variable and introduce a special treatment6

for the convection term which helps to expand the accuracy range in the numerical simulations.7

The reformulated equation (15) is the equivalent form of equation (1c) on the continuous level.8

Based on the modification, the auxiliary variable is further given by a well-defined explicit formula9

that guarantees the positivity of its computed value. This also leads to an approximation of R that10

does not necessarily fulfill the relation R2 = E at the numerical level. Both the modification for11

convective heat transfer (including the boundary conditions) and the explicit formula of the auxiliary12

variable make up the reformulated system. In the reformulated system, the two dynamic variables13

are T and R, which are obtained by solving the coupled system of equations (15) and (58) when14

performing numerical approximation. So to this extent, R2 is an approximation of E. With the15

gPAV style reformulation and the proper scheme design, the unconditional energy stability of the16

system can be guaranteed, which will be proven in the next section.17

2.3. Numerical scheme and unconditional energy stability18

We next present the unconditional energy-stable scheme for the reformulated heat transfer19

system consisting of Eqs. (15) and (58), the boundary conditions Eqs. (6) and (7), as well as the20

initial conditions Eq. (9) and (19). We assume that the velocity u has already been calculated21

by solving the incompressible Navier-Stokes equations (1a) and (1b), together with the boundary22

condition (4) and (5).23

Let n ≥ 0 denote the time step index, and (·)n denotes (·) at time step n. Define24

T 0 = Tin, R0 = R(0). (20)
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Then given (T n, Rn) and these values at previous time steps, we compute the T n+1 through the1

following scheme:2

For T n+1:3

γ0T
n+1 − T̂
∆t

+M(u0, T
n+1)− α∇2T n+1

= ξ
[
M(u0, T

∗,n+1)−N(un+1, T ∗,n+1)
]

+ gn+1(x, t),

(21a)

T n+1 = T n+1
d (x, t), on ∂Ωd, (21b)

n · ∇T n+1 = gn+1
c (x, t), on ∂Ωn, (21c)

ξ =
(Rn+3/2)2

E(T
n+3/2

)
, (21d)

E(T
n+3/2

) =

∫
Ω

1

2

∣∣∣T n+3/2
∣∣∣2 dΩ + C0. (21e)

4

For Rn+1:5

(
3

2
Rn+1 +Rn − 1

2
Rn−1

) 3
2
Rn+1 − 2Rn + 1

2
Rn−1

∆t

=

∫
Ω

γ0T
n+1 − T̂
∆t

T n+1dΩ

−
∫

Ω

[
−M(u0, T

n+1) + α∇2T n+1 + gn+1 + ξ(M(u0, T
∗,n+1)−N(un+1, T ∗,n+1)

]
T n+1dΩ

+ ξ

(
−α
∫

Ω

|∇T n+1|2dΩ +

∫
Ω

gn+1T
n+1

dΩ +

∫
∂Ωd

[
αn · ∇T n+1 − 1

2
(n · un+1)T n+1

d

]
T n+1
d dA

+

∫
∂Ωn

[
αgn+1

c − 1

2
(n · un+1)T

n+1
]
T
n+1

dA

)
+ (1− ξ)

(∣∣∣∣∫
Ω

gn+1(x, t)T
n+1

dΩ

∣∣∣∣+

∣∣∣∣∫
∂Ωd

[
αn · ∇T n+1 − 1

2
(n · u)T n+1

d

]
T n+1
d dA

+

∫
∂Ωn

[
αgn+1

c − 1

2
(n · un+1)T

n+1
]
T
n+1

dA

∣∣∣∣) ,
(22)

where ∆t is the time step size. Let J (J = 1 or 2) denote the temporal order of accuracy. γ0Tn+1−T̂
∆t

6

is the approximation of ∂T
∂t

∣∣n+1
based on the J-th order backward differentiation formula (BDF), in7

11



which1

γ0 =

 1, J = 1,

3/2, J = 2;
T̂ =

 T n, J = 1,

2T n − 1
2
T n−1, J = 2.

(23)

T ∗,n+1 is a J-th order explicit approximation of T n+1, given by2

T ∗,n+1 =

 T n, J = 1,

2T n − T n−1, J = 2.
(24)

T
n+1

and T
n+3/2

are second-order approximation of T n+1 and T n+3/2 and will be given later.3

Rn+3/2 and Rn+1/2 are defined by4

Rn+3/2 =
3

2
Rn+1 − 1

2
Rn, Rn+1/2 =

3

2
Rn − 1

2
Rn−1. (25)

Besides, when dealing with the Eq. (22), we use the following relationship5

(
3
2
Rn+1 +Rn − 1

2
Rn−1

) (
3
2
Rn+1 − 2Rn + 1

2
Rn−1

)
=
(
Rn+3/2 +Rn+1/2

) (
Rn+3/2 −Rn+1/2

)
=
(
Rn+3/2

)2 −
(
Rn+1/2

)2
.

(26)

The scheme presented by Eqs. (21a)-(22) is energy stable due to the following property.6

Theorem 2.1. In the absence of the external volumetric and boundary heat source terms (i.e.7

g = 0 and gc = 0), and together with the velocity w = 0 on ∂Ω and the temperature Dirichlet8

boundary Td = 0 on ∂Ωd, the scheme (21a)-(22) satisfies the following property:9

(
Rn+3/2

)2 −
(
Rn+1/2

)2
= −ξ∆tα

∫
Ω

|∇T n+1|2dΩ ≤ 0, (27)

where Rn+3/2 and Rn+1/2 are defined by Eq. (25).10

Proof. Multiplying the equation (21a) by T n+1, and adding the resultant equation to Eq. (22),11

we arrive at12

(
Rn+3/2

)2 −
(
Rn+1/2

)2
= −ξ∆tα

∫
Ω

|∇T n+1|2dΩ− ξS0∆t+ S1∆t, (28)

12



where1



S0 = (|B| − B) + (|C| − C) ,

S1 = |B|+ |C| ,

B =

∫
Ω

gn+1(x, t)T
n+1

dΩ,

C =

∫
∂Ωd

[
αn · ∇T n+1 − 1

2

(
n ·wn+1

)
T n+1
d

]
T n+1
d dA

+

∫
∂Ωn

[
αgn+1

c (x, t)− 1

2

(
n ·wn+1

)
T
n+1
]
T
n+1

dA.

(29)

If g = 0, gc = 0, w = 0, Td = 0, then S0 = 0 and S1 = 0. Therefore equation (28) leads to (27).2

In light of Eq. (21d) and (21e), it can be noted that ξ ≥ 0. We conclude that the inequality in (27)3

holds. �4

2.4. Solution algorithm and implementation with high-order spectral elements5

Let us now consider how to implement the scheme represented by Eqs. (21a)-(22). Note that6

the variable R(t), ξ and E(T ) are scalar-valued numbers, instead of field functions. In addition, ξ7

is computed depending on T . Taking advantage of the fact that ξ is a scalar number, we introduce8

two field functions (T n+1
1 , T n+1

2 ) as solutions of the following equations:9

For T n+1
1 :10

γ0T
n+1
1

∆t
+ u0 · ∇T n+1

1 +
1

2
(∇ · u0)T n+1

1 − α∇2T n+1
1 ,

= gn+1(x, t) +
T̂

∆t
,

(30a)

T n+1
1 = T n+1

d (x, t), on ∂Ωd, (30b)

n · ∇T n+1
1 = gn+1

c (x, t), on ∂Ωn. (30c)

13



For T n+1
2 :1

γ0T
n+1
2

∆t
+ u0 · ∇T n+1

2 +
1

2
(∇ · u0)T n+1

2 − α∇2T n+1
2

= M(u0, T
∗,n+1)−N(un+1, T ∗,n+1),

(31a)

T n+1
2 = 0, on ∂Ωd, (31b)

n · ∇T n+1
2 = 0, on ∂Ωn. (31c)

Then it is straightforward to verify that the solution to Eqs. (21a), (21b) and (21c) is given by,2

T n+1 = T n+1
1 + ξT n+1

2 , (32)

where T n+1
1 , T n+1

2 are the solutions of equations (30a) and (31a), and ξ is to be determined later.3

With T n+1
1 and T n+1

2 , we define4

T
n+1

= T n+1
1 + T n+1

2 , T
n+3/2

=
3

2
T
n+1 − 1

2
T n, (33)

which are second-order approximation of T n+1 and T n+3/2, respectively. By Eq. (21d), we have5

(Rn+3/2)2 = ξ(En+3/2). (34)

Note that Eq. (22) can be transformed into equation (28). Inserting Eq. (34) into equation (28),6

we can obtain the solution for ξ,7

ξ =

(
Rn+1/2

)2
+ S1∆t

E
[
T
n+3/2

]
+ (A+ S0) ∆t

, (35)

where S0 and S1 are given in (29), and8

A = α

∫
Ω

|∇T n+1|2dΩ. (36)

With ξ known, T n+1 can be computed by equation (32). Using equations (35) and (21e), Rn+1
9

14



is computed as follows,1

 Rn+3/2 =

√
ξE
[
T
n+3/2

]
,

Rn+1 = 2
3
Rn+3/2 + 1

3
Rn.

(37)

It should be noted that in the proposed algorithm, the original convection term is replaced by2

its linear approximation plus a correction term, and the correction term is put under the control of3

an auxiliary variable. In the discrete temperature equation (21), the temperature in the linearized4

approximation of the convection term is approximated implicitly while the temperature in the5

correction term is given by its second-order explicit approximation. The utilized time integration6

scheme is the second-order backward differentiation formula. For the R equation (22), we do not7

use this equation directly. This equation is further transformed into equation (35). Therefore, we8

first calculate the value of the scalar number and then calculate the value of R using equation (37).9

The equations (30a) and (31a) require to be solved for the field T n+1
1 and T n+1

2 . Let us next10

consider how to implement the proposed energy-stable scheme. We employ C0-continuous high-order11

spectral elements for spatial discretization. Let ϕ(x) denote an arbitrary test function that vanishes12

on ∂Ωd, i.e. ϕ|∂Ωd
= 0. Multiplying ϕ to Eqs. (30a) and (31a), and integrating over the domain Ω,13

we obtain the weak form about T n+1
1 and T n+1

2 as follow,14

For T n+1
1 :15

∫
Ω

∇T n+1
1 · ∇ϕdΩ +

γ0

α∆t

∫
Ω

T n+1
1 ϕdΩ +

1

α

∫
Ω

u0 · ∇T n+1
1 ϕdΩ +

1

α

∫
Ω

1

2
(∇ · u0)T n+1

1 ϕdΩ

=
1

α

∫
Ω

(
gn+1 +

T̂

∆t

)
ϕdΩ +

∫
∂Ωn

gn+1
c ϕdA, ∀ϕ with ϕ|∂Ωd

= 0.

(38)

For T n+1
2 :16

∫
Ω

∇T n+1
2 · ∇ϕdΩ +

γ0

α∆t

∫
Ω

T n+1
2 ϕdΩ +

1

α

∫
Ω

u0 · ∇T n+1
2 ϕdΩ +

1

α

∫
Ω

1

2
(∇ · u0)T n+1

2 ϕdΩ

=
1

α

∫
Ω

(
u0 · ∇T ∗,n+1 +

1

2
(∇ · u0)T ∗,n+1 − un+1 · ∇T ∗,n+1

)
ϕdΩ, ∀ϕ with ϕ|∂Ωd

= 0.

(39)

where we have used integration by part, the divergence theorem, and Eqs. (30c) and (31c). The17

weak form (38) and (39), together with the Dirichlet condition (30b) and (31b), can be discretized18

15



using C0 spectral elements in a standard way Karniadakis & Sherwin (2005). Note that the u0 is1

set to update every k0 time steps when solving the temperature field.2

Combining the above discussion, we arrive at the final solution algorithm within a time step:3

(i) compute the velocity un+1 and pressure pn+1 using the algorithm from the Appendix A.4

(ii) solve equation (38) together with (30b) for the temperature T n+1
15

solve equation (39) together with (31b) for the temperature T n+1
2 .6

(iii) compute the coefficients A, S0, S1 based on (36) and (29);7

(iv) compute ξ from equation (35)8

(v) compute T n+1 from equation (32) and Rn+1 from equation (37).9

Figure 1 shows a flowchart of the proposed algorithm for solving the convective heat transfer10

equation. The unknown variables to be calculated and the related equations to be solved are both11

provided. All the equations involved therein are presented in their weak form, which can be directly12

solved using C0- continuous high-order spectral elements method.13

Remark 2.2. Note that a modified scheme can be obtained by choosing M(u) = 0 in Eq.(15) and14

it can be implemented using the same algorithm represented by Eqs.(21a)-(22). With this modified15

scheme the discrete energy stability as given by Theorem 2.1 still holds. Compared to the current16

scheme, the strength of the modification is that upon discretization the temperature linear systems17

only involve constant coefficient matrix that can be pre-computed. However, the modified scheme18

is less accurate at moderate or fairly large time step size and its accurancy range is significantly19

influenced by the parameter C0. These points will be demonstrated by numerical experiments in20

Section 3.21

Remark 2.3. In the current work, the energy stable scheme requires the computation of two22

temperature fields within each time step by solving the temperature linear algebraic system involving23

a coefficient matrix updated periodically. The auxiliary variable is given by a well-defined explicit24

formulation. Thus, no Newton-type method is used when solving the heat transfer system. The25

coefficient matrix in the temperature linear algebraic systems is non-symmetric ( but positive definite)26

and is solved using the bi-conjugate gradient stabilized (BiCGStab) linear solver. We use a simple27

Jacobi pre-conditioner for all the test problems presented subsequently.28
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3. Representative simulations1

In this section, we use several convective heat transfer problems in two dimensions to test2

the performance of the scheme presented above. The spatial and temporal convergence rates of3

the method are firstly demonstrated, and then the effects of the algorithmic parameters on the4

simulation results will be studied, especially the stability and the accuracy at large time step sizes5

will be demonstrated. A survey of literature indicates the semi-implicit schemes based on the6

second-order backward differentiation formula (BDF-2) and based on the Crank-Nicolson/Adams-7

Bashforth (CNAB-2) scheme are the most commonly-used methods for heat transfer problems;8

see e.g. Liu et al. (2020); Zheng et al. (2015); Rakotondrandisa et al. (2020); Pan et al. (2021);9

Qaddah et al. (2022) for BDF and Yoon et al. (2020); Son & Park (2021); Seo et al. (2020) for10

CNAB. Therefore, we also provide a comparison of the current scheme with the semi-implicit BDF11

and CNAB schemes in the following tests. The semi-implicit BDF-2 and CNAB-2 schemes have12

been provided in the Appendix B for the sake of completeness.13

3.1. Convergence rates14

We first investigate the spatial and temporal convergence rates of the algorithm developed herein15

using a manufactured analytic solution to the heat transfer equation. Consider the rectangular16

domain ABCD as depicted in Fig. 2(a), 0 ≤ x ≤ 2, −1 ≤ y ≤ 1 and the following analytical17

solution to Eqs. (1a) -(1c),18



u = 2 sin(πx) cos(πy) sin(2t),

v = −2 cos(πx) sin(πy) sin(2t),

p = 2 sin(πx) sin(πy) cos(2t),

T = 2 cos(πx) sin(πy) sin(2t),

(40)

where velocity u = (u, v). In equations (1a) and (1c), the source terms f(x, t) and g(x, t) are chosen19

such that the equations are satisfied by the expressions from (40).20

The computational domain is discretized by two quadrilateral elements with the same size as21

shown in Fig. 2(a). We impose condition (4) and (5)on the domain boundary for the velocity22

field. For the temperature field, Dirichlet condition (6) is imposed on sides AB, AE, ED and CD,23

and Neumann condition (7) is imposed on the sides BF and FC. Both the boundary values for24

Dirichlet and Neumann conditions are chosen according to analytical expressions from (40). The25

18
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Figure 2 Convergence tests: (a) Flow domain and configuration; (b) Temperature errors (L∞, L2

and H1 norms) vs. the element order (fixed tf = 0.1 and ∆t =0.001); (c) Temperature errors vs.
time step size ∆t (fixed tf = 0.5 and element order 16 ).

initial velocity uin and temperature Tin are chosen according to the analytical expressions from1

(40) by setting t = 0.2

We integrate the heat transfer and Navier-Stokes equations in time from t = 0 to t = tf (to be3

specified later). The algorithm from Section 2 and Appendix A are used to solve the temperature4

and velocity fields, respectively. A fixed non-dimensional viscosity ν = 0.01 and thermal diffusivity5

α = 0.01 are chosen for the problem. Other parameters include the constant C0 = 1.0 in Eq. (12)6

and the constant integer k0 = 1 in Eq. (16). To test the spatial and temporal convergence behavior7

of the proposed algorithm, we have varied the element order and time step size systematically, and8

computed the corresponding errors in the L∞, L2 and H1 norms.9

Fig. 2(b) illustrates the spatial convergence behavior of the proposed method. We employ fixed10

19



tf = 0.1 and ∆t = 0.001, and vary the element order between 4 and 20 in the simulations. This1

figure shows the temperature errors in L∞, L2 and H1 norms at t = tf as a function of the element2

order. With increasing element order, a clear exponential decrease in the errors is observed for3

the element orders 12 and below. As the element order increases over 12, an error saturation is4

observed, owing to the dominance of temporal truncation errors.5

Fig. 2(c) illustrates the behavior of the method for temporal convergence tests. We fix the6

element order 16 and tf = 0.5, and vary the time step size between ∆t = 0.1 to ∆t = 0.0001. The7

figure shows the L∞, L2 and H1 errors at t = tf as a function of ∆t. It is evident that the scheme8

exhibits a second-order convergence rate in time for the temperature.9

3.2. Flow past a warm circular cylinder10

In this section, we test the proposed unconditional energy stable scheme using a canonical11

problem, the heat transfer in the flow past a warm circular cylinder.12

We first compare our simulations with previous studies Bharti et al. (2007); Zhang et al. (2008)13

to verify the accuracy of the proposed method. Consider a flow domain depicted in Fig. 3(a),14

−5d ≤ x ≤ 10d, −10d ≤ y ≤ 10d, where d is the diameter of the circular cylinder and the cylinder15

center coincides with the origin of the coordinate system. On the left side of the domain, u = (1, 0)16

and T = 0 are prescribed. On the right side, an open boundary condition is imposed for the velocity17

field and a zero-normal derivative (n ·∇T = 0) is specified for the temperature field. On the surface18

of the cylinder wall, we set u = (0, 0) and two kinds of boundary conditions for the temperature:19

T = 1 for the case of the constant wall temperature (CWT) and n · ∇T = −1 for the case of the20

constant wall heat-flux (CWH). The top and bottom of the domain are assumed to be periodic.21

U0 = 1, d = 1, and Td = 1 degree Celsius are chosen as the velocity, length, and temperature scales,22

respectively, and all the physical variables and parameters are normalized accordingly.23

For comparison, the convective heat transfer problem is performed under Reynolds number24

Re = 20 and Prandtl number Pr = ν/α = 0.7. We employ the scheme from Section 2 to simulate25

the temperature field with g = 0 in Eq. (1c), and use the algorithm in Appendix A to solve the26

Navier-Stokes equations (1a)- (1b) with f = 0. We have meshed the domain into 1228 quadrilateral27

elements and employed element order 4, ∆t = 0.001, C0 = 1000 and k0 = 20 for the simulations.28

The temperature distribution of the two cases are shown in Fig. 3(b) and 3(c). Fig. (4) demonstrates29

the distributions of the local Nusselt number Nu on the cylinder wall from the current simulation30

and from the previous works of (Bharti et al. (2007); Zhang et al. (2008)). The results evidently31
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Figure 3 Circular cylinder flow: (a) Flow domain and mesh of 1228 quadrilateral elements; (b)
Temperature distribution for constant wall temperature, T = 1.0; (c) Temperature distribution for
constant wall heat flux, n · ∇T = −1. Plots (b) and (c) are obtained at Reynolds number Re = 20
and Pr = 0.7.

show that our simulation results are in good agreement with those of (Bharti et al. (2007); Zhang1

et al. (2008)).2

Let us next look into the performance of the proposed method. Consider the flow domain3

depicted in Fig. 5, −2.5d ≤ x ≤ 6.5d, −1.5d ≤ y ≤ 1.5d. The surface of the cylinder is set to be4

Th = 80 degree Celsius. The top and bottom of the domain are the cooling walls, which are set5

to n · ∇T = 10.0 and T = 20.0 respectively. The left and right sides are assumed to be periodic.6

A external force f = (2ν, 0) is imposed on the domain to drive the flow. This configuration is7

equivalent to the flow past an infinite sequence of a warm circular cylinder in the horizonal direction.8

We have discretized the domain using a mesh of 720 quadrilateral elements as shown in Fig. 5.9

No-slip condition for the velocity is imposed on the top, bottom and cylinder surface walls for the10

velocity field. The Dirichlet condition is employed for the bottom boundary with Td = 20 degree11

Celsius and the cylinder surface with Th = 80 degree Celsius. A Neumann condition with gc = 1012

in Eq. (7) is imposed on the top boundary. In addition, periodic conditions are imposed on the left13

and right boundaries for both temperature and velocity fields. We use the algorithm from Section14

2 to simulate the temperature with g = 0 in Eq. (1c) and the algorithm in Appendix A to solve15

the Navier-Stokes equations (1a)- (1b) with a horizontal body force f = (2ν, 0). Three Reynolds16

numbers (Re = 100, 500 and 3000) and three thermal diffusivity (α = 0.01, 0.005 and 0.001) are17

chosen for numerical simulations. For each case, a long-time simulation is conducted such that the18

flow and temperature have reached a statistically stationary state, and thus the initial condition19
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Figure 5 Circular cylinder flow: Domain configuration and the mesh of 720 quadrilateral elements

will have no effect on the presented results.1

Fig. 6 provides an overview of the characteristic of the flow and temperature fields, which2

visualize the flow pattern (left column) and temperature distribution (right column) at Reynolds3

numbers Re = 100 (top row) and Re = 500 (bottom row) with the non-dimensional thermal4

diffusivity α = 0.01. For Re = 100, the result is performed with an element order 4, a time step5

size ∆t = 0.01. For Re = 500, the simulations is performed using an element order 6, a time step6

size ∆t = 0.005. The parameters C0 = 1000 and k0 = 1 are employed for both cases. At the lower7

Reynolds number, i.e Re = 100, this is a steady flow. At Reynolds number Re = 500, the regular8

vortex shedding can be observed in the cylinder wake. Because of the periodicity, after the fluid9

passing through the warm cylinder, the warmed fluid re-enters the domain from the left side and10

22



(a) (b)

(c) (d)

Figure 6 Circular cylinder flow: Instantaneous velocity and temperature distributions for Re = 100
(plots (a) and (b)) and Re = 500 (plots (c) and (d)) with thermal diffusivity α = 0.01.

interacts with the cylinder.1

To describe the overall evolution characteristic quantitatively, we have computed and monitored2

the L2 and H1 norms of the temperature field as following,3

TL2(t) =
√

1
VΩ

∫
Ω

[T (x, t)]2dΩ, TH1(t) =
√

1
VΩ

∫
Ω

[(T (x, t))2 + |∇T |2] dΩ, (41)

where VΩ =
∫

Ω
dΩ is the volume of the domain. Fig. 7 shows a window of the time histories of TL2(t)4

and TH1(t) at Reynolds numbers Re = 500 with a thermal diffusivity α = 0.01. The simulation5

is performed using an element order 6, a time step size ∆t = 0.005, C0 = 1000 and k0 = 1. A6

regular fluctuation in time is observed for both temperature norms. The TH1(t) exhibits a large7

magnitude, while the TL2(t) is much weaker in comparison. These time histories in the plot show8

a long-term stability of our simulations. It can be observed that the TL2(t) and TH1(t) fluctuate9

at some constant average level. Such invariable characteristics indicate that the temperature and10

velocity fields have reached a statistically stationary state.11

Based on the time histories of TL2(t) and TH1(t), we can obtain the statistical quantities and12

compare them to test the effect of simulation parameters. The time-average mean value and13

root-mean-square (rms) value of TL2(t) and TH1(t) will be computed in the following simulations.14

In Table 1 we list the mean values (TL2 and TH1) and rms values (T
′
L2 and T

′
H1) of TL2(t) and15
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Figure 7 Circular cylinder flow: Time histories of TL2(t) and TH1(t) at Reynolds number Re = 500
with α = 0.01

TH1(t) obtained using different element orders, for Reynolds number Re = 100, 500 and 3000 with1

thermal diffusivity α = 0.01. The time step size is set as ∆t = 0.001 for Re = 100 and Re = 500,2

and ∆t = 5e − 4 for Re = 3000. In these simulations, fixed values of C0 = 1000 and k0 = 1 are3

employed. It is observed that the mean and rms values of temperature norms are basically the4

same for all the element orders, demonstrating a sense of convergence. In the results reported5

below, the simulations are performed using element order 4 for Re = 100 and element order 6 for6

Re = 500 and Re = 3000.7

Table 1
Circular cylinder flow: Mean and rms values of TL2(t) and TH1(t) obtained with various element
orders at three Reynolds numbers. Thermal diffusivity is α = 0.01.

Reynolds number Element order TL2 T
′
L2 TH1 T

′
H1

100 2 50.909 0 57.874 0
3 50.901 0 57.862 0
4 50.901 0 57.861 0
5 50.901 0 57.862 0
6 50.901 0 57.862 0

500 3 45.106 1.48e-2 55.992 0.398
4 45.127 1.46e-2 55.996 0.397
5 45.128 1.46e-2 55.995 0.397
6 45.128 1.46e-2 56.002 0.397
7 45.128 1.46e-2 56.002 0.397

3000 3 43.786 0.591 53.634 0.904
4 43.729 0.589 53.600 0.824
5 43.753 0.529 53.593 0.815
6 43.619 0.546 53.577 0.849
7 43.650 0.510 53.522 0.816
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Let us next focus on the effect of the time step size on accuracy and stability of the simulation1

results. Note that in the previous simulations, the time step size used for solving velocity and2

temperature fields are the same. To eliminate the effect of the velocity time step sizes on simulation3

results, we fix them at constant values in all the simulations below and solve the temperature field4

at every N -th time step of the velocity, where N is an integer given by users. Here, we denote ∆tV5

as the velocity time step size and ∆tT as the temperature time step size. The relationship of the6

two time step sizes can be given as ∆tT = N ×∆tV . It is worth noting that in such cases, the7

velocity field u0 will be updated at every N × k0 velocity time step instead of at every k0 velocity8

time step.9

Table 2 lists the mean and rms values of the temperature norms computed using current scheme10

with temperature time step size ranging from ∆tT = 0.01 to ∆tT = 100. We also perform the11

same simulations with the semi-implicit methods i.e. second-order back forward formula (BDF-2)12

and Crank-Nicolson Adam-Bashforth (CNAB-2) methods for comparison. The details of the two13

semi-implicit methods are gathered in Appendix B. In these simulations, the velocity time step14

sizes are given as ∆tV = 0.01, 0.005 and 0.001 for the tests corresponding to Reynolds numbers15

Re = 100, 500 and 3000 respectively. Fixed C0 = 1000 and k0 = 1 are employed for all the cases.16

The thermal diffusivity is α = 0.01 for Reynolds number Re = 100 and 500, and α = 0.001 for17

Re = 3000. We observe that current method can produce stable results even at a very large time18

step size. Moreover, at lower Reynolds number, see Re = 100, the accuracy results can be obtained19

even at ∆tT = 100, while the semi-implicit method is ineffective once the ∆tT increases to 0.04.20

For the higher Reynolds numbers, the simulations with current scheme seem to lose accuracy at21

a very large ∆tT , see the cases ∆tT = 2.5 and larger for Re = 500 and the cases ∆tT = 5.0 and22

larger for Re = 3000. To clarify the effect of the time step size, we plot the time history of the23

simulations for two higher Reynolds numbers, as demonstrated in Fig. 8 and Fig. 9. It can be24

observed that the accuracy of the results can be obtained even at ∆tT = 0.5 for Re = 500 with25

α = 0.01 and ∆tT = 1.0 for Re = 3000 with α = 0.001. For these cases for Re = 500 based on the26

semi-implicit methods, the effective results can only be obtained below ∆tT = 0.05 for the BDF-227

method and below ∆tT = 0.025 for the CNAB-2 method. As shown in Table 2, the main drawback28

of the traditional semi-implicit method is its conditional stability. A stable computation can be29

achieved only when the time step is small enough.30

Since the velocity time step size is fixed, the calculated CFL numbers for each Reynolds number31
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flow are same, i.e. CFL = 1.70 for Reynolds number Re = 100, CFL = 1.25 for Reynolds number1

Re= 500, and CFL = 0.178 for Reynolds number Re = 3000. Therefore, we introduce an effective2

CFL number, (CFL)T , which is defined in terms of the temperature time step size. As shown in3

Table 2, the accurate results with current method can be obtained even at a very large (CFL)T ,4

which is (CFL)T=17000 for Re = 100 and (CFL)T=89 for Re = 3000. At the same time, the semi-5

implicit method shows its weakness, where the acceptable (CFL)T is much smaller, i.e., (CFL)TT6

= 3.4 for Re = 100 and (CFL)T= 1.78 for Re = 3000. The proposed method demonstrates an7

effective way to extend the range of both accuracy and stability, as is evident from the results8

above.9
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Table 2
Circular cylinder flow: (CFL)T , mean and rms values of TL2(t) and TH1(t) computed using a range
of temperature time step sizes at three Reynolds numbers and two thermal diffusivity for several
solvers.

Re α Method ∆tT (CFL)T TL2 T
′
L2 TH1 T

′
H1

100 0.01 Current 0.01 1.7 50.901 0 57.862 0
0.1 17 50.902 0 57.862 0
1 170 50.902 0 57.862 0
10 1700 50.902 0 57.862 0
100 17000 50.902 0 57.862 0

Semi-implicit BDF-2 0.01 1.7 50.901 0 57.862 0
0.02 3.4 50.901 0 57.862 0
0.04 6.8 blow up

Semi-implicit CNAB-2 0.01 1.7 50.901 0 57.862 0
0.02 3.4 50.901 0 57.862 0
0.04 6.8 blow up

500 0.01 Current 0.005 1.25 45.128 1.46e-2 55.998 0.397
0.1 12.5 45.123 1.45e-2 55.995 0.395
0.25 31.25 45.103 1.44e-2 55.975 0.397
0.5 62.5 45.039 1.37e-2 55.887 0.387
2.5 312.5 45.874 6.16e-3 55.266 0.208
5 625 47.548 3.85e-3 55.582 0.104
25 3125 49.581 8.32e-2 57.006 0.163

Semi-implicit BDF-2 0.005 1.25 45.127 1.46e-2 56.000 0.396
0.05 12.5 45.130 1.46e-2 55.997 0.396
0.1 25 blow up

Semi-implicit CNAB-2 0.005 1.25 45.128 1.46e-2 56.000 0.397
0.025 6.25 45.128 1.46e-2 56.000 0.396
0.05 12.5 blow up

3000 0.001 Current 0.001 0.178 46.488 0.305 65.689 1.653
0.025 4.45 46.490 0.304 65.694 1.652
0.05 8.9 46.489 0.304 65.693 1.652
0.1 17.8 46.488 0.304 65.690 1.650
0.5 89 46.542 0.336 65.417 1.637
1 178 46.427 0.338 64.876 1.527
5 890 46.592 0.364 62.858 1.032
10 1780 47.577 0.547 62.057 0.905
50 8900 50.357 1.569 61.767 1.277

Semi-implicit BDF-2 0.001 0.178 46.016 0.302 65.489 1.743
0.01 1.78 45.910 0.387 65.447 1.639
0.02 3.56 blow up

Semi-implicit CNAB-2 0.001 0.178 46.004 0.367 65.502 1.674
0.01 1.78 45.943 0.408 65.627 1.822
0.02 3.56 blow up
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Figure 8 Circular cylinder flow: Time histories of the TL2 and TH1 at Re = 500 with α = 0.01
obtained with different time step sizes ∆tT .
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Figure 9 Circular cylinder flow: Time histories of the TL2 and TH1 at Re = 3000 with α = 0.001
obtained with different time step sizes ∆tT .

In the presented method, the velocity field u0 is updated at every N × k0 velocity time step,1

leading to a periodically updating of the temperature coefficient matrix. We observe that the2

frequency for updating u0 has an impact on the accuracy of the simulation results. Note that the3

frequency is influenced by two factors, N and k0. When the time step size of velocity ∆tV is fixed,4

the larger ∆tT means a larger N . Table 2 can also be seen as the effectiveness tests of N on the5

accuracy of the simulations, which shows that a too large N can cause an accuracy degradation.6
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We observe that with a too large k0, the simulation results can also lose accuracy. Note that for1

the steady flow, once the velocity field reaches its steady state, the value of k0 can not cause an2

effect on accuracy. It is because that the velocity field will not change with time. Therefore, in the3

following tests, the simulations corresponding to higher Reynolds numbers are mainly conducted.4

Table 3 provides the mean and rms values of the temperature norms at Reynolds number5

Re = 500 with thermal diffusivity α = 0.01 and 0.005, and Re = 3000 with α = 0.001. In this set6

of simulations, we have employed ∆tV = 5e − 3 for Re = 500 and ∆tV = 1e − 3 for Re = 3000.7

Element order 6 and C0 = 1000 are employed for all cases. We vary the constants k0 and N (∆tT )8

systematically to demonstrate the effect of the two parameters on the accuracy. It can be observed9

that with the increase of k0, the accuracy of the simulation based on a large ∆tT shows an apparent10

decrease. For example, for Re = 500, when k0 increases to 20, the accuracy starts to deteriorate at11

time step size ∆tT = 0.5; while for the case of k0 = 1, a accurate result can also be maintained.12

This kind of accuracy deterioration is far more serious than the situation of a very large time13

step as shown in Fig. 8 and 9. This point is also demonstrated by Fig. 10 and 11, which show14

time histories of the temperature norms with u0 updated with different frequency. For Re = 3000,15

when k0 increases to 10, the characteristics of the computed temperature norms at ∆tT = 0.516

becomes notably different from the accurate result. At this case, the velocity field u0 is updated17

at every 5000 velocity time steps. These results imply that, when u0 is updated too rarely, the18

correction term (M(u0, T )−N(u, T )) may become very large and thus causes a significant error in19

simulations.20

30



Table 3
Circular cylinder flow: Mean and rms values of TL2(t) and TH1(t) computed using a range of
temperature time step sizes at Reynolds numbers Re = 500 with α = 0.01 and 0.005 and Re = 3000
with α = 0.001.

Re α k0 ∆tT TL2 T
′
L2 TH1 T

′
H1

500 0.01 1 0.005 45.128 1.46e-2 55.998 0.397
0.1 45.123 1.45e-2 55.995 0.395
0.25 45.103 1.44e-2 55.975 0.397
0.5 45.039 1.37e-2 55.887 0.387

10 0.005 45.128 1.46e-2 56.000 0.397
0.1 45.122 1.45e-2 55.996 0.396
0.25 45.088 1.43e-2 55.965 0.392
0.5 44.944 1.32e-2 55.832 0.369

20 0.005 45.128 1.46e-2 56.999 0.397
0.1 45.121 1.46e-2 55.996 0.397
0.25 45.072 1.42e-2 55.945 0.389
0.5 46.039 2.28e-2 57.605 3.768

0.005 1 0.005 45.931 8.59e-3 58.989 0.520
0.05 45.929 8.58e-3 58.985 0.519
0.25 45.886 8.31e-3 58.925 0.501
0.5 45.795 7.62e-3 58.722 0.451

5 0.005 45.931 8.59e-3 58.989 0.520
0.05 45.929 8.56e-3 58.988 0.518
0.25 45.877 8.29e-3 58.924 0.497
0.5 45.730 7.44e-3 58.785 0.438

10 0.005 45.931 8.59e-3 58.989 0.520
0.05 45.929 8.58e-3 58.988 0.519
0.25 45.864 8.24e-3 58.924 0.492
0.5 45.855 8.58e-3 59.575 1.636

3000 0.001 1 0.001 46.488 0.305 65.689 1.653
0.1 46.488 0.304 65.690 1.650
0.5 46.542 0.336 65.417 1.637
1 46.427 0.338 64.876 1.527

5 0.001 46.594 0.337 65.661 1.698
0.1 46.591 0.336 65.657 1.696
0.5 46.527 0.334 65.488 1.651
1 46.446 0.347 66.842 8.963

10 0.001 46.594 0.337 65.661 1.698
0.1 46.591 0.336 65.656 1.696
0.5 46.644 0.353 67.199 14.540
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Figure 10 Circular cylinder flow: Time histories of the TL2 and TH1 at Reynolds number Re = 500
with thermal diffusivity α = 0.005, obtained using a range of k0 values and time step sizes ∆tT .
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Figure 11 Circular cylinder flow: Time histories of the TL2 and TH1 at Reynolds number Re = 3000
with α = 0.001, obtained with different frequency parameter k0 and time step sizes ∆tT .
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We can also utilize a modified scheme with M(u0, T ) = 0 to simulate the convective heat transfer1

problem. Note that for the modified scheme, the same algorithm presented by Eqs.(21a)-(22)2

can be used and the energy stable property still holds on. The modification shows an advantage3

in the computational cost, since the discretized linear systems only involve the constant and4

time-independent coefficient metrics and can be pre-computed. However, the modified method5

shows a lower accuracy and robustness compared with the presented scheme when the time step6

size increases to a fairly large values.7

Table 4 provides the mean and rms values of temperature norms at Re = 100 with α = 0.018

obtained with the modified scheme. Element order 4 and ∆tV = 0.01 is employed for the simulations,9

and the constant C0 and time step size ∆tT are varied systematically. This table can be compared10

with Table 2, in which the results are attained by using current method and the accurate results11

can be obtained even at ∆tT = 100. It can be observed that the modified scheme can provide12

stable results at large time step sizes, however, the accuracy range of the simulations is reduced13

and significantly influenced by C0. Table 5 demonstrates the effect of C0 on the accuracy of14

simulation results using the current method. These simulations are performed with element order15

4, ∆tV = 0.01, ∆tT = 0.05 and k0 = 20. We observe that the computed results are the same16

corresponding to different C0 values. This suggests that our method has a low sensitivity to C0,17

showing a superior accuracy and robustness to the modified method. Since the current method is18

not quite sensitive to C0, choosing the C0 value is largely a preference of the user. In practice, we19

recommend using a small C0 such as 1 or 10 for low Reynolds numbers and a relatively larger C020

such as 1e3 or 1e6 for higher Reynolds numbers.21

Table 4
Circular cylinder flow: Mean and rms values of TL2(t) and TH1(t) using a range of C0 and
temperature time step size at Reynolds number Re = 100 with modified scheme M(u0, T ) = 0.
Thermal diffusion is α = 0.01.

C0 ∆tT TL2 T
′
L2 TH1 T

′
H1

1 0.01 50.899 0 57.859 0
0.02 50.899 0 57.859 0
0.05 50.461 1.95e-2 58.109 2.220

1e3 0.01 50.899 0 57.859 0
0.02 50.898 0 57.859 0
0.05 50.527 8.87e-2 57.807 4.973

1e9 0.01 50.901 0 57.862 0
0.02 50.901 0 57.862 0
0.05 49.729 0 56.670 0
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Table 5
Circular cylinder flow: Mean and rms values of TL2(t) and TH1(t) using a range of C0 at Reynolds
number Re = 100 and time step size ∆tT = 0.05 with current method. Thermal diffusion is
α = 0.01.

C0 TL2 T
′
L2 TH1 T

′
H1

1e-3 50.902 0 57.862 0
1 50.902 0 57.862 0
1e3 50.902 0 57.862 0
1e9 50.901 0 57.862 0

Fig. 12 and 13 show a temporal sequence of the velocity and temperature fields at the Reynolds1

number Re = 3000 and a non-dimensional thermal diffusivity α = 0.001. Here, we have employed2

element order 6, C0 = 1000 and k0 = 1. A time step ∆t = 0.001 is used for solving both temperature3

and velocity fields. It can be observed that strong vortices generate at the warm cylinder and shed4

into the wake. Besides, due to the periodicity, the vortices contained warm fluid pass through the5

right boundary and go into the upstream of the domain. Then the re-entered flow interacts with6

the warm cylinder and generates complex heat and fluid dynamics.7
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Figure 12 Circular cylinder flow: Temporal sequence of snapshots of the velocity fields at Reynolds
number Re = 3000, (a) t = t0, (b)t = t0 + 6.4, (c) t = t0 + 12.8, (d)t = t0 + 19.2, (e) t = t0 + 25.6,
(f) t = t0 + 32.0, (g) t = t0 + 38.4, (h) t = t0 + 44.8, (i) t = t0 + 51.2, (j) t = t0 + 57.6. t0 denotes
the initial time instance of the sequence.
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Figure 13 Circular cylinder flow: Temporal sequence of snapshots of the temperature field at
Reynolds number Re = 3000 and thermal diffusivity α = 0.001, at identical time instance as in Fig.
12, (a) t = t0, (b)t = t0 + 6.4, (c) t = t0 + 12.8, (d)t = t0 + 19.2, (e) t = t0 + 25.6, (f) t = t0 + 32.0,
(g) t = t0 + 38.4, (h) t = t0 + 44.8, (i) t = t0 + 51.2, (j) t = t0 + 57.6.
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3.3. Flow past a warm square cylinder in a T-shaped periodical channel1

In this subsection we test the accuracy and stability of the presented scheme by simulating2

another canonical convective heat transfer problem in two dimensions, flow past a warm square3

cylinder in a T-shape periodical channel.4

Specifically, we consider a domain depicted in Fig. 14. A square cylinder with a length of side5

0.5 is mounted on the center of the channel, and the cylinder center coincides with the point (1, 0).6

A horizontal body force of normalized magnitude |f | = 200ν is imposed on the domain and drives7

the flow. The boundaries of the domain in the horizontal direction (x = 0, 2) are assumed periodic.8

All the rest of the boundaries are walls. The surface of the cylinder is maintained at Th = 80 degrees9

Celsius. The top wall is set at Tl = 20 degrees Celsius. A fixed heat-flux n · ∇T = 10 is imposed10

on the bottom walls of the domain. This configuration mimics the flow past an infinite array of a11

square cylinder in the horizontal direction. We choose the height of the channel (−0.5 < x < 0.5)12

as the length scale, U0 = 1 as the velocity scale and Td = 1 degree Celsius as the temperature scale.13

All the other physical variables and parameters are then normalized accordingly.14

Figure 14 Square cylinder flow: Flow domain and the mesh of 1000 quadrilateral elements

We discretise the domain using a mesh of 1000 quadrilateral elements as shown in Fig. 14. On15

the top and bottom of the domain, and on the surface of the square cylinder, no-slip boundary16

conditions are imposed for the velocity field. For the temperature field, we impose Dirichlet17

boundary condition with Tl = 20 and Th = 80 on the top wall and on the surface of the cylinder.18

Neumann boundary condition is imposed on the bottom walls as mentioned before. Periodic19

conditions are imposed on the left and right boundaries for all field variables. The algorithm from20

Section 2 is employed to solve the temperature field with g = 0. The Navier-Stokes equations21

with a horizontal body force f = (200ν, 0), are solved using the algorithm in Appendix A. We22

have conducted the simulations for three Reynolds numbers (Re = 300, 1000, and 5000) and two23
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Peclet numbers (corresponding to thermal diffusivity α = 0.01 and 0.001). The effect of parameters1

including element order, time step size, and k0 on the heat transfer characteristics are systematically2

investigated.3

An overview of the flow and heat transfer characteristics of this problem is provided by Fig. 15,4

which visualize the flow pattern using streamlines and temperature distribution at two Reynolds5

numbers Re = 300 and 1000 with thermal diffusivity α = 0.01. These results are computed using6

element order 6 and C0 = 1000 for Re = 300, and element order 7 and C0 = 1e9 for Re = 1000.7

The parameters ∆t = 5e− 4, k0 = 20 are employed for both cases. At low Reynolds number, i.e.,8

Re = 300, one observes a steady flow. As the Reynolds number increases to Re = 1000, it can be9

seen that the length of vortices near the walls becomes larger. The vortices flow past the right10

side of the domain and then re-enter the upstream of the cylinder, which further influences the11

temperature distribution of the domain.12

x

y

0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4

(a) (b)

x

y

0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4

(c) (d)

Figure 15 Square cylinder flow: Velocity streamlines and temperature distributions for Re = 300
(plots (a) and (b)) and Re = 1000 (plots (c) and (d)) with α = 0.01

We have computed the time-averaged mean and rms norms of temperature based on the time13

histories of TL2(t) and TH1(t) to quantitatively demonstrate the overall characteristics of the heat14
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transfer problem. Table 6 lists the mean and rms values of the temperature obtained with the1

element order ranging from 3 to 9 for three Reynolds numbers. In these simulations, we employ a2

time step size ∆t = 5e− 4 and k0 = 20 for the lower Reynolds number, i.e., Re = 300 and 10003

with thermal diffusivity α = 0.01, and ∆t = 2e− 4 and k0 = 10 for Re = 5000 with α = 0.001. The4

energy constant C0 is set as C0 = 1e3 for Re = 300 and C0 = 1e9 for Re = 1000 and 5000. We5

observe that for Re = 300, with element order 4 and above, the computed values for the temperature6

norms are essentially the same. For Re = 1000 and 5000, as the element order increases to 6 and7

above, the computed values of TL2(t) and TH1(t) become very close. These results suggest that the8

simulations are numerically converged with respect to the spatial resolution. In the following tests,9

the values of the element order are employed 6, 7 and 8 for the simulations of Re = 300, 1000 and10

5000, respectively.11

Table 6
Square cylinder flow: Time-averaged mean and rms values of TL2(t) and TH1(t) obtained with
various element orders for three Reynolds numbers.

Re α Element order TL2 T
′
L2 TH1 T

′
H1

300 0.01 3 61.645 0 150.218 0
4 61.671 0 150.241 0
5 61.675 0 150.239 0
6 61.676 0 150.237 0
7 61.676 0 150.235 0
8 61.676 0 150.234 0

1000 0.01 3 61.625 1.06e-2 151.206 1.072
4 61.670 1.02e-2 151.197 1.033
5 61.681 1.01e-2 151.179 1.013
6 61.683 1.01e-2 151.194 1.019
7 61.684 1.01e-2 151.198 1.021
8 61.684 1.01e-2 151.200 1.023

5000 0.001 3 57.067 9.61e-2 229.036 5.571
4 56.687 8.26e-2 238.116 5.815
5 56.742 8.77e-2 238.539 5.711
6 56.710 8.62e-2 238.676 5.740
7 56.709 8.43e-2 238.827 5.788
8 56.710 8.32e-2 238.921 5.812
9 56.710 8.24e-2 238.990 5.827

The effect of time step size ∆t on the accuracy of simulated results has also been studied. Here,12

we fix the velocity time step size ∆tV and vary the temperature time step size ∆tT . Table 7 lists13

the mean and rms values of the temperature norms using different ∆tT values for several Reynolds14
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and Peclet numbers. We employ C0 = 1e3, k0 = 20,∆tV = 5e− 4 for the cases Reynolds number1

Re = 300 with thermal diffusivity α = 0.01; C0 = 1e9, k0 = 10,∆tV = 5e− 4 for Re = 1000 with2

α = 0.001; C0 = 1e9, k0 = 10,∆tV = 2e − 4 for Re = 5000 with α = 0.001. As demonstrated in3

Table 7, the present method can produce stable and accurate results with a large time step size for4

the Re = 300 and 1000. With ∆tT increases, the accuracy of the simulations seems to degrade at a5

higher or fairly high Reynolds number. This point can also be demonstrated by Fig. 16. The figure6

shows a comparison of time histories of the temperature norms for Re = 5000 with α = 0.001.7

These simulations are performed using an element order 8, C0 = 1e9, k0 = 1,∆tV = 2e − 4. We8

observe that when ∆tT increase to 0.4, the results seem to lose accuracy for some extent. Note9

that the simulations using a typical semi-implicit BDF-2 scheme can only produce stable results10

with ∆tT = 0.002 or smaller under the same resolution for the case Re = 5000 with α = 0.001. At11

this point, the CNAB-2 method can only yield accurate results when ∆tT is less than or equal to12

4e-4. However, our method can still maintain an accurate result with ∆tT = 0.02.13
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Figure 16 Square cylinder flow: Time histories of the TL2 and TH1 at Re = 5000 with α = 0.001,
obtained using a range of time step size ∆tT with k0 = 1.
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Table 7
Square cylinder flow: Mean and rms values of TL2(t) and TH1(t) at several Reynolds numbers,
obtained with a range of temperature time step sizes. The results are computed from the semi-
implicit methods and the current method.

Re Method ∆tT TL2 T
′
L2 TH1 T

′
H1

300 Current 0.0005 61.676 0 150.237 0
0.025 61.676 0 150.237 0
0.05 61.676 0 150.237 0
0.5 61.676 0 150.237 0
2.5 61.676 0 150.237 0
5 61.676 0 150.237 0
25 61.676 0 150.237 0

Semi-implicit BDF-2 5e-4 61.676 0 150.237 0
0.0025 61.676 0 150.237 0
0.0045 blow up

Semi-implicit CNAB-2 5e-4 61.676 0 150.236 0
0.001 61.676 0 150.237 0
0.0025 blow up

1000 Current 5e-4 64.039 3.17e-3 166.724 2.373
0.005 64.042 3.20e-3 166.751 2.378
0.05 64.293 2.91e-2 167.162 2.741
0.25 65.047 1.81e-1 159.508 0.363
1 64.663 7.64e-2 159.947 0.611

Semi-implicit BDF-2 5e-4 64.040 3.24e-3 166.716 2.372
0.001 blow up

Semi-implicit CNAB-2 5e-4 64.042 3.17e-3 166.704 2.372
0.001 64.038 3.17e-3 166.726 2.373
0.0025 blow up

5000 Current 2e-4 56.710 8.32e-2 238.921 5.812
0.002 56.710 8.32e-2 238.923 5.812
0.01 56.698 8.32e-2 238.945 5.805
0.02 56.664 8.31e-2 239.012 5.722
0.1 58.259 0.150 216.031 14.087

Semi-implicit BDF-2 2e-4 56.710 8.32e-2 238.918 5.812
0.002 56.724 8.53e-2 239.085 5.738
0.004 blow up

Semi-implicit CNAB-2 2e-4 56.707 8.42e-2 239.049 5.834
4e-4 56.709 8.36e-2 238.959 5.833
0.001 blow up

We next investigate the effect of the updating frequency Q of the velocity field u0 on the accuracy1

of simulations. As ∆tT = N ×∆tV , the updating frequency Q satisfies that Q = N × k0. Here, we2

fix the temperature time step size ∆tT (that is also a fixed N) and update the velocity every k03

time steps, which is set from 1 to 2000 for Reynolds number Re = 1000 and 5000 with thermal4
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diffusivity = 0.001. We employ ∆tV = 5e-4 and ∆tT= 0.05 for the simulations corresponding to1

Re = 1000, and ∆tV = 2e-4 and ∆tT= 0.002 for the cases Re = 5000. The parameter C0 = 1e9 is2

chosen for all cases. The simulation results are listed in Table 8. For the lower Reynolds number,3

it can be observed that the accuracy can be guaranteed even at k0 = 2000, while for a higher4

Reynolds number, the simulation will lose accuracy with a very large k0. See the cases with Re5

= 5000, the computed temperature norms are essentially the same when k0 is no more than 100.6

However, when k0 increases to 500, the characteristics of the temperature distribution are notably7

different. This point can also be demonstrated in Fig. 17, which plots the time histories of TL2 and8

TH1 described in Table 8 in the case of Re = 5000. These results indicate that, for a high Reynolds9

number, the velocity field u0 should be updated more frequently.10

Table 8
Square cylinder flow: Mean and rms values of TL2(t) and TH1(t) using a range of k0 values at
Reynolds numbers Re = 1000 and 5000. Thermal diffusivity is α = 0.001.

Re k0 TL2 T
′
L2 TH1 T

′
H1

1000 1 64.288 8.96e-2 166.689 2.531
10 64.293 2.91e-2 167.162 2.741
20 64.290 2.87e-2 167.049 2.674
50 64.277 2.65e-2 167.087 2.656
100 64.272 2.60e-2 167.097 2.644
500 64.274 2.69e-2 167.089 2.639
1000 64.273 2.66e-2 167.080 2.617
2000 64.271 2.49e-2 167.073 2.602

5000 1 56.710 8.32e-2 238.923 5.812
10 56.710 8.32e-2 238.923 5.812
20 56.710 8.32e-2 238.923 5.812
50 56.710 8.32e-2 238.922 5.811
100 56.710 8.32e-2 238.921 5.811
500 56.629 10.023 503.524 7935.640
2000 56.915 8.53e-2 224.007 7.353

Finally, Fig. 18 illustrates the dynamic of the square cylinder flow with a temporal sequence of11

snapshots of the velocity field at the Reynolds number Re = 5000. Fig. 19 shows the temporal12

sequence of snapshots of temperature fields at thermal diffusivity α = 0.001 corresponding to13

the velocity field. Here we have employed element order 8, C0 = 1e9 and k0 = 1. A time step14

size ∆t = 2e − 4 is used for the solution of both temperature and velocity field. A continuous15

vortices moving can be observed. These vortices generate near the walls and flow past the right16

side. Besides, a prominent feature of this flow lies in that the re-entering vortices interact with the17
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square cylinder due to the periodicity. Such interactions give rise to some vortices hitting on the1

left wall of the cylinder and then split into two ways and new vortices near the wall are spawn.2

Such a complex flow pattern makes a complicated temperature distribution in the T-shape channel.3
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Figure 17 Square cylinder flow: Time histories of the TL2 and TH1 at Reynolds number Re = 5000
with α = 0.001 and time step size ∆tT = 0.002, obtained using a range of k0 values.
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Figure 18 Square cylinder flow: Temporal sequence of snapshots of the velocity fields at Reynolds
number Re = 5000, (a) t = t0, (b)t = t0 + 5, (c) t = t0 + 10, (d)t = t0 + 15, (e) t = t0 + 20, (f)
t = t0 + 25, (g) t = t0 + 30, (h) t = t0 + 35. t0 denotes the initial time instance of the sequence.
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Figure 19 Square cylinder flow: Temporal sequence of snapshots of the temperature fields at
Reynolds number Re = 5000 and thermal diffusivity α = 0.001, at identical time instance as in
Fig. 18, (a) t = t0, (b)t = t0 + 5, (c) t = t0 + 10, (d)t = t0 + 15, (e) t = t0 + 20, (f) t = t0 + 25, (g)
t = t0 + 30, (h) t = t0 + 35.
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4. Concluding remarks1

In the current work we have presented an unconditionally energy stable scheme for convective2

heat transfer simulations. The scheme endows a discrete energy stability property, and stable3

results can be obtained irrespective of the time step size. The developed scheme also features an4

expanded accuracy range compared with the common-used semi-implicit scheme. It is observed5

that our algorithm can provide accurate simulation results at a large or fairly large time step6

size. The salient property of the scheme lies in the gPAV-based reformulation and the numerical7

treatment of the convection term. In the reformulated system, the convection term is replaced8

by a linear term and a correction term, and the correction term is placed under the control of an9

auxiliary variable. Within each time step, the energy stable scheme requires the computation of10

two temperature fields by solving the temperature linear algebraic system involving a coefficient11

matrix updated periodically. The auxiliary variable is given by a well-defined explicit formulation,12

which guarantees the positivity of its computational value.13

Extensive numerical experiments have been provided with several convective heat transfer14

problems in fluid flows. The numerical tests demonstrated the unconditional energy stability of15

the proposed scheme. Besides, at a large or fairly large time step size, accurate simulation results16

can also be achieved by our method. The update frequency k0 of velocity u0 has an impact on17

the accuracy range of the simulation results for the high or fairly high Reynolds number fluid flow.18

Normally, for a relatively low Reynolds number, the k0 has a very small effect on the accuracy of19

the results, thus one can select a high (such as 1000 for Re = 1000 in the circular cylinder flow20

case); while for a high Reynolds number, the velocity field should be updated more frequently.21

Overall, with an overly large k0, the simulation will lose the accuracy at a large time step size. The22

results show that the allowed maximum time step size that can achieve accurate simulation results23

with our scheme is typically considerably larger than that with the semi-implicit type scheme or the24

modied scheme from Remark 2.3. We anticipate that combing with the unconditional energy-stable25

scheme for incompressible Navier-Stokes equations, the presented scheme can be a powerful tool for26

efficient simulations of convective heat transfer problems and beyond.27

Appendix A Numerical algorithm for incompressible Navier-Stokes equations28

We adopt the semi-implicit scheme herein to solve the incompressible Navier-Stokes Eqs. (1a) -29

(1b) together with the boundary condition (4) and the initial condition (8). A summary of the30
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numerical algorithm is presented in this appendix.1

The same notation is utilized here as in the main text.2

Given un we compute pn+1 and un+1 successively in a de-coupled fashion as follows:3

For pn+1:4

γ0ũ
n+1 − û

∆t
+ u∗,n+1 · ∇u∗,n+1 +∇pn+1 + ν∇×∇× u∗,n+1 = fn+1, (42a)

∇ · ũn+1 = 0, (42b)

n · ũn+1 = n ·wn+1, on ∂Ω. (42c)

For un+1:5

γ0u
n+1 − γ0ũ

n+1

∆t
− ν∇2un+1 = ν∇×∇× u∗,n+1, (43a)

un+1 = wn+1, on ∂Ω. (43b)

In the above equations, ũn+1 is an auxiliary variable approximating un+1 and J (J = 1 or 2)6

denotes the temporal order of accuracy as in main text. γ0 is defined by:7

γ0 =

 1, J = 1,

3/2, J = 2,
(44)

and û and u∗,n+1 are defined by8

û =

 un, J = 1,

2un − 1
2
un−1, J = 2;

u∗,n+1 =

 un, J = 1,

2un − un−1, J = 2.
(45)

The weak form for the pressure pn+1 can be derived from Eqs. (42a)-(42c), which is given by,9

∫
Ω

∇pn+1 · ∇q =

∫
Ω

Gn+1 · ∇q − ν
∫
∂Ω

n× ω∗,n+1 · ∇q − γ0

∆t

∫
∂Ω

n ·wn+1q, ∀q ∈ H1(Ω), (46)

where Gn+1 = fn+1 + û
∆t
−u∗,n+1 · ∇u∗,n+1 and ω = ∇×u. For the velocity, the weak form is given10
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by,1

γ0

ν∆t

∫
Ω

un+1ϕ+

∫
Ω

∇ϕ · ∇un+1 =
1

ν

∫
Ω

(
Gn+1 −∇pn+1

)
ϕ, ∀ϕ ∈ H1(Ω) with ϕ|∂Ωd

= 0. (47)

The weak forms in (46) and (47) can be discretized using C0 spectral elements in the standard2

fashion. Within each time step, we first solve Eq. (46) for pn+1 and then solve Eq. (47), together3

with the boundary condition (4), for un+1. It is worth noting that the auxiliary variable ũn+1 is4

not explicitly computed.5

Appendix B Semi-implicit algorithms for solving the convective heat transfer equa-6

tion7

A summary of the semi-implicit algorithms to solve the convective heat transfer equation8

(1c) combined with the boundary condition (6)-(7) and initial condition (9) are presented in this9

subsection. The two employed semi-implicit methods are second-order backward differentiation10

formula (BDF-2) and Crank-Nicolson Adam-Bashforth (CNAB-2) methods.11

Semi-implicit BDF-2 algorithm for solving the convective heat transfer equation12

Here, we utilize the same notation as in the main text. Given T n and un+1, we can compute13

T n+1 based on the BDF-2 scheme (Liu et al. (2020); Qaddah et al. (2022)), which reads as follows:14

γ0T
n+1 − T̂
∆t

+ un+1 · ∇T ∗,n+1 = α∇2T n+1 + gn+1(x, t), (48a)

T n+1 = T n+1
d (x, t), on ∂Ωd, (48b)

n · ∇T n+1 = gn+1
c (x, t), on ∂Ωn. (48c)

In the above equations, the detailed definition of all the related variables can be found in15

Section 2.3. Furthermore, we can employ the C0-continuous high-order spectral elements for spatial16
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discretizations. The weak form about T n+1 is given as follows,1

∫
Ω

∇T n+1 · ∇ϕdΩ +
γ0

α∆t

∫
Ω

T n+1ϕdΩ

=
1

α

∫
Ω

(
gn+1 +

T̂

∆t
− un+1 · ∇T ∗,n+1

)
ϕdΩ +

∫
∂Ωn

gn+1
c ϕdA, ∀ϕ with ϕ|∂Ωd

= 0.

(49)

where we have used integration by parts, the divergence theorem, and the equation (50c).2

Semi-implicit CNAB-2 algorithm for solving the convective heat transfer equation3

Given T n and un+1, we can compute T n+1 based on the following CN-AB scheme:4

T n+1 − T n

∆t
+ un+ 1

2 · ∇T ∗,n+ 1
2 = α∇2T n+ 1

2 + gn+ 1
2 (x, t), (50a)

T n+1 = T n+1
d (x, t), on ∂Ωd, (50b)

n · ∇T n+1 = gn+1
c (x, t), on ∂Ωn, (50c)

where

un+ 1
2 =

1

2
(un+1 + un), T n+ 1

2 =
1

2
(T n+1 + T n), gn+ 1

2 =
1

2
(gn+1 + gn), (51)

and

T ∗,n+ 1
2 =

3

2
T n − 1

2
T n−1. (52)

Furthermore, we can employ the C0-continuous high-order spectral elements for spatial dis-5

cretizations. The weak form about T n+1 is given as follows,6

∫
Ω

∇T n+1 · ∇ϕdΩ +
2

α∆t

∫
Ω

T n+1ϕdΩ

=
2

α

∫
Ω

(
gn+ 1

2 +
T n

∆t
− un+ 1

2 · ∇T ∗,n+ 1
2

)
ϕdΩ +

∫
∂Ωn

gn+1
c ϕdA

+

∫
∂Ω

u · ∇T nϕdA−
∫

Ω

∇T n · ∇ϕdΩ, ∀ϕ with ϕ|∂Ωd
= 0,

(53)

where we have used integration by parts, the divergence theorem, and the equation (50c).7
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Appendix C A more detailed derivation of equations (15) and (18)1

In this appendix, we derive the governing equations of the gPAV style reformulated system,2

which corresponds to equaitons (15) and (18). As pointed out in Section 2.2, the reformulated3

system is the core and key to develope the discretely energy-stable scheme. In light of R2(t)
E(t)

= 1 on4

the continuum level, the reformulation is realized by incorporating a number of identically zero5

terms into the original equations.6

Derivation of Equations (15)7

With R2(t)
E(t)

= 1 on the continuum level, the convective heat transfer equation (1c) can be written8

as,9

∂T

∂t
+
R2(t)

E(t)
N(u, T ) = α∇2T + [

R2(t)

E(t)
− 1]M(u0, T ) + g(x, t). (54)

Note that the M(u0, T ) is a linear approximation of N(u, T ). By moving the terms associated10

with R2(t)
E(t)

to the right hand, the equation (54) can be further transformed into equations (15),11

which is an equivalent form of equations (1c) at the continuum level.12

Derivation of Equations (18)13

With R2(t)
E(t)

= 1, we incorporate three zero terms into the right hand side (RHS) of Eq. (14),

2R
dR

dt
=

∫
Ω

T · ∂T
∂t
dΩ

+

[
R2(t)

E(t)
− 1

] ∫
Ω

[
−M(u0, T ) + α∇2T + g(x, t)

]
TdΩ

+
R2(t)

E(t)

(∫
Ω

[M(u0, T )−N(u, T )]TdΩ−
∫

Ω

[M(u0, T )−N(u, T )]TdΩ

)
+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ω

[
αn · ∇T − 1

2
(n · u)T

]
TdA

∣∣∣∣) .
(55)

Such reformulation follows the gPAV idea presented in Yang & Dong (2020). The equation that14

includes three identically zero terms presents an equivalent form of equations (14) at the continuum15

level.16
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The equation (55) can be further transformed into1

2R
dR

dt
=

∫
Ω

T · ∂T
∂t
dΩ

+
R2(t)

E(t)

∫
Ω

[
−M(u0, T ) + α∇2T + g(x, t)

]
TdΩ

+
R2(t)

E(t)

∫
Ω

[M(u0, T )−N(u, T )]TdΩ

−
∫

Ω

[
−M(u0, T ) + α∇2T + g(x, t)

]
TdΩ

− R2(t)

E(t)

∫
Ω

[M(u0, T )−N(u, T )]TdΩ

+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ω

[
αn · ∇T − 1

2
(n · u)T

]
TdA

∣∣∣∣)
=

∫
Ω

T · ∂T
∂t
dΩ +

R2(t)

E(t)

∫
Ω

[
−N(u, T ) + α∇2T + g(x, t)

]
TdΩ

−
∫

Ω

[
−M(u0, T ) + α∇2T + g(x, t) +

R2(t)

E(t)
(M(u0, T )−N(u, T ))

]
TdΩ

+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA

+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA

∣∣∣∣) ,

(56)

where ∂Ω = ∂Ωd ∪ ∂Ωn. In light of the energy balance equation (11), we obtain that∫
Ω

[
−N(u, T ) + α∇2T + g(x, t)

]
TdΩ = −α

∫
Ω

|∇T |2dΩ +

∫
Ω

g(x, t)TdΩ

+

∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA.

(57)
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Then we finally attain the equation (18) as follows,

2R
dR

dt
=

∫
Ω

T · ∂T
∂t
dΩ

+
R2(t)

E(t)

[
−α
∫

Ω

|∇T |2dΩ +

∫
Ω

g(x, t)TdΩ

+

∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA

]
−
∫

Ω

[
−M(u0, T ) + α∇2T + g(x, t) +

R2(t)

E(t)
(M(u0, T )−N(u, T ))

]
TdΩ

+

[
1− R2(t)

E(t)

](∣∣∣∣∫
Ω

g(x, t)TdΩ

∣∣∣∣+

∣∣∣∣∫
∂Ωd

[
αn · ∇T − 1

2
(n · u)Td

]
TddA

+

∫
∂Ωn

[
αgc(x, t)−

1

2
(n · u)T

]
TdA

∣∣∣∣) .
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