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Abstract—Thermal limitations play a significant role in modern
integrated chips (ICs) design and performance. 3D integrated
chip (3DIC) makes the thermal problem even worse due to a high
density of transistors and heat dissipation bottlenecks within the
stack-up. These issues exacerbate the need for quick thermal solu-
tions throughout the design flow. This paper presents a generative
approach for modeling the power to heat dissipation for a 3DIC.
This approach focuses on a single layer in a stack and shows
that, given the power map, the model can generate the resultant
heat for the bulk. It shows two approaches, one straightforward
approach where the model only uses the power map and the
other where it learns the additional parameters through random
vectors. The first approach recovers the temperature maps with
1.2 C° or a root-mean-squared error (RMSE) of 0.31 over the
images with pixel values ranging from −1 to 1. The second
approach performs better, with the RMSE decreasing to 0.082 in
a 0 to 1 range. For any result, the model inference takes less than
100 millisecond for any given power map. These results show that
the generative approach has speed advantages over traditional
solvers while enabling results with reasonable accuracy for 3DIC,
opening the door for thermally aware floorplanning.

Index Terms—3DIC, thermal, generative, GAN, hybrid-
bonding

I. INTRODUCTION

With higher transistor densities in today’s ICs coupled with
higher operating frequencies, thermal issues are increasingly
challenging. Without considering thermal implications, devices
can experience failures such as electromigration and dielectric
breakdown [1]. Furthermore, ICs have narrower interconnects,
leading to increased resistivity with an increase in temperature
and thus causing more significant IR drops and RC delays [1].

3DICs primarily aim to reduce area and latency. Stacking
the processor and memory on top of each other can overcome
the traditional memory wall, and the 3D equivalent of a
regular IC requires a smaller footprint. However, stacking
multiple high-density dies on top of each other leads to heat
generation that can result in performance issues [2]. 3DICs,
unlike regular chips or 2.5D chips, have limited air cooling,
intensifying the heating issues [1]. The presence of multiple
active layers in the stack inhibits thermal dissipation from the
source to the heat sink.

Fast thermal predictors are necessary throughout the design
process, from initial architectural design to floorplanning.

Access to a simulator that can scale for any power map
and floorplan is powerful and can enable thermally efficient
designs. This paper presents an approach using generative
adversarial networks (GANs) to enable the prediction of heat
maps for any given power maps for a 3D stack. The predicted
power maps are accurate and show an RMSE 0.082 in a range
of 0 to 1 over the test set.

The rest of the paper is organized as follows. Section II
reviews prior work with machine learning (ML)-based ap-
proaches to heat prediction and the necessary background. Sec-
tion III presents the proposed approach, and Section IV
describes the dataset. Then Section V presents the findings
using the dataset, and Section VI concludes the paper and
presents future directions.

II. BACKGROUND

This section details the prior work that uses ML-based
approaches to model the heat of an IC and a discussion on
GANs. For a comprehensive evaluation of traditional methods
such as finite element, finite difference, and transform-based
solutions, we refer the reader to [1].

A. Prior Work

With advances in ML algorithms and computing, there
has been a renewed push to study problems that enable
quick analysis of chips. There is a clear divide between the
approaches practitioners use in two groups, those incorporating
the physics of the systems they aim to model, and those
treating it like a black box.

Raissi et al. [3] introduce physics-informed neural networks
(PINNs) which aim to solve supervised learning tasks that
follow the laws of physics through general nonlinear par-
tial differential equations (PDEs). The networks themselves
require a small training set and act as universal estimators
while successfully encoding the physics in the model [3]. He
and Pathak [4] build on the vanilla PINN [3] by adding an
autoencoder for encoding different terms of the heat equation
and an image gradient network to minimize the PDE residuals.
The image gradient model reuses the encoder model and then
trains to solve the heat equation. In such a scenario, the neural
network does not need the solution data for the PDE as it aims
to minimize the PDE residuals. Ranade et al. [5] build on979-8- 979-8-3503-1137-2/23/$31.00 ©2023 IEEE
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Fig. 1: U-Net generator with an input power map and an output heat map. The discriminator takes in power map and either
the ground-truth or generated heat map to determine if the combination is real.

the work by [4] by using an unsupervised, low-dimensional
approach for solving PDEs and generalizing across a wide
range of conditions. They further the method by integrating it
with a ML solver approach for chip simulations from power
maps to temperature maps [6]. In this approach, however,
they use heat transfer coeffecients (HTCs) which implicitly
act as the boundary conditions for the device in question.
Lastly, Kumar et al. [7] use an ML model that trains on system
parameters to predict the thermal response at a given time step.
This thermal response then combines with their multi-scale
decay surface model to enable the prediction of the steady-
state or transient thermal profile for the chip. They demonstrate
this on both a regular IC and a 3DIC.

In contrast, numerous black box methods aim to solve the
power to heat task. Sadiqbatcha et al. [8] propose an approach
that determines the heat sources based on a thermal power
map. Then for each location, they use a neural network with
long short-term memory (LSTM) units with 80 performance
metrics of the multi-core chip to predict the temperature at
each heat source for 500 seconds. Jin et al. [9] use GANs to
estimate the thermal map for a multi-core commercial chip
using measurements from a thermal camera. They use 170
Intel Performance Counter Monitor (PCM) metrics, 9 of which
have temperature information, across 8 benchmarks to evaluate
the performance. These works focus on post-silicon and thus
have limited applications to our aim. Wen et al. [10] propose
an approach that uses a deep neural network (DNN) to learn
to predict the temperature rise at any location on the chip
given the Theta-JA environment and detailed power map. The
method traverses the chip, tile by tile, predicting temperature
change for each tile. It then combines the temperature change
with a finite element method (FEM) from a coarse grid to
give a highly detailed solution. They apply this to a 3DIC
problem; however, their training set has over a million sam-
ples. Chhabria et al. [11] present an encoder-decoder network
that converts a power map to a temperature map for a power
delivery network (PDN) with skip connections between the

blocks known as a U-Net. They look at LSTM-based networks
for transient voltage (IR) drop analysis. The neural network
performs a domain translation task and uses layout density,
power maps, and distance to power pads as context to complete
the job on hand. The U-Net network is a baseline against
which everyone compares their advancements. Lastly, Stipsitz
and Sanchis-Alepuz [12] perform a proof of concept study
that aims to use convolutional neural networks (CNNs) to
predict the temperature map for a given 3D circuit. Though
not necessarily a 3DIC; however, their data collection con-
tains randomized system generations with components placed
randomly on a PCB and the corresponding FEM result.

PINN-based approaches primarily target regular ICs and
combine multiple different techniques to predict the thermal
performance of the ICs. Further, prior work using black box
models targets regular ICs, and generative approaches are for
post-silicon solutions. This work uses a generative approach
to modeling the thermal performance of 3DICs for any power
map during the design phase. The approach incorporates
different boundary conditions within a single model.

B. Generative Adversarial Network

GANs are generative models that learn to synthesize sam-
ples by playing a min-max game. The GAN has two models, a
generator, G, that generates new samples and a discriminator,
D, that has to determine whether the sample is from the
dataset. The generator learns about the underlying dataset
through the two models trying to play this game. This setup
is shown in Eq. 1.

LGAN(G,D) =Ey [logD(y)]

+Ez [log(1−D(G(z)))] .
(1)

The generator aims to minimize the loss function, whereas
the discriminator tries to maximize it. The z is the random
noise from which the generator creates new images, and y is
a sample from the dataset.
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A conditional GAN (cGAN) allows a degree to control
over the GAN in that the generated samples depend on some
conditioning parameter x. The generator combines the con-
ditional parameter with the random latent vector to generate
samples. The discriminator then discerns whether samples are
from the dataset or not. However, the discriminator does not
need the conditioning parameter, but including it improves the
model performance [13]. The additional conditioning param-
eter changes Eq. 1 to the following.

LcGAN(G,D) =Ex,y [logD(y|x)]
+Ex,z [log(1−D(G(z|x)))] .

(2)

Further, computing an additional loss term over samples
ensures the model recovers an appropriate image.

III. PROPOSED APPROACH

The U-Net by Isola et al. [13] forms the basis of our gener-
ator. The U-Net is a convolutional model that has an encoder
and decoder phases. The encoder passes the information to
the decoder phase at the same image resolution. The skip
connections preserve the input features during reconstruction
while ensuring the model does not suffer from vanishing gradi-
ents. The encoder in the generator has downsampling blocks
made of Convolutions, batch normalization, and LeakReLU
activations. The decoder, which upsamples from the output
power map from a latent vector, has ConvTranspose, Batch
Normalization, and Dropout. In the baseline experiment, we
do not add noise explicitly and use dropout in the network to
simulate the effect of the random noise.

The discriminator model is a modified PatchGAN that
outputs a matrix of 3-by-3 true/false classification rather than
a single binary decison. The PatchGAN’s result feeds back to
the generator and guides it to update regions the discriminator
classified as from the generator. As mentioned, including the
conditioning power map improves the ability of the model.
Unlike the original implementation of the PatchGAN, we
construct the PatchGAN to generate a 3×3 output. The model
contains a downsampling block similar to the decoder and
Convolutional layer at the output with sigmoid activations to
enable the classification over the different patches.

Fig. 1 shows the generator taking in a power map and out-
putting a heat map. The power map feeds into the discriminator
along with either the generated or ground-truth heat map.

IV. DATASET CREATION

To use a reference chip, we use the 3D stack by Nigussie et
al. [14] and Fig. 2 shows the corresponding stackup. We retain
the original layout data and the setup configuration for thermal
analysis consistent for the data collection. The remaining setup
configuration contains a thermal interface material (TIM) layer
at the top of the stack with 40C° ambient with a HTC of
107W/mm2K. The HTC for the sides and bottom of the stack
are 33 and 200, respectively [14]. The stackup contains 0-
height power map layers for both front end of line (FEOL)
layers. We used the Siemens EDA® Project Sahara thermal
analysis prototype software to obtain the dataset.

Fig. 2: 3DIC stack for which the data is collected.

We split the total area into a 19 × 19 grid in the power
map layers. We then use latin hypercube sampling (LHS) to
determine the power at each grid location. The power at each
grid position is between [1, 10] W/mm2 to simulate a random
load at that particular location. To reduce the complexity of
the problem, we fix the power map for the top FEOL and
extract a heat map of resolution 25×25 at the different layers
in the chip stack. Fig. 3a and Fig. 3b show a power map
and the corresponding heat map for the bulk the bottom chip,
respectively.

(a) Power map (b) Simulated heat map

Fig. 3: The applied power map on the bottom FEOL and the
simulated heat map on the bottom BULK.

After the data collection, the preprocessing flow ensures that
all the data is in the correct format. The preprocessing varies
for each experiment, and the following section covers it on an
experimental basis.

V. EXPERIMENTAL RESULTS

This section presents result using cGANs to model the
thermal profile of the chip for any given power map. In this
evaluation, we limit the cGAN to output only the heat map
for the BULK or the FEOL. The approach can extend to the
SUB and back end of line (BEOL) if they are included in the
training.

Fig. 4: Baseline thermal result using cGAN. The results show
that generated results are good and hard to distinguish visually.
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First, we examine the baseline configuration with the U-
Net and PatchGAN. It takes a raw power map and rescales
it such that the pixel values are between [0, 1]. For the
output heat maps, the preprocessing flow resizes the image
to 24 × 24 to ensure a smooth upsampling and then rescales
the temperatures within [−1, 1]. Fig. 4 shows the result for a
sample power map from the test dataset. The leftmost is the
power map going into the model, the center is the ground-truth
heat map from the tool, and last is the generated heat map from
the cGAN. As is apparent from the image, the generated heat
map and the ground-truth heat map are identical. Looking at
the RMSE over the entire test set, we find it to be 0.31 in the
[−1, 1] range. The error translates to a 1.2C° variation on the
whole test set, with the worst error being 3.2C°, which trends
RMSE higher.

The second set of results looks at the previous case and uses
histogram equalization to show the features prominently for
each heat map and ensures the pixel intensities are uniformly
distributed between [0, 1] [15]. Fig. 5 shows the original and
histogram-equalized heat maps with more prominent features.
In addition to the histogram equalization, we include a unique
random vector for each sample, enabling the model to learn the
relevant boundary conditions. Further, we take a log10 of the
power map to highlight regions with high power and rescale
it to [0, 1].

Fig. 5: Histogram equalization of heat map.
Fig. 6 shows that the generated heat and power maps

are almost identical, with differences occurring around the
boundary of the central heat spot. It is also apparent that both
have hot spot locations at the same positions. Due to the off-
the-shelf implementation of histogram equalization from the
skimage package being a one-way transformation, there is no
way to report the relative temperature error. The RMSE over
the images reduces to 0.089, indicating that the cGAN embeds
meaning into the random space.

Fig. 6: Thermal results using histogram equalization.

VI. CONCLUSION

This paper shows the ability of cGAN to model the power
to heat mapping for 3DIC. It demonstrates that the cGANs

can recover a good result using the proposed method, with
the baseline result having a 1.2C° variation over the test set.
However, by including a random vector, the model performs
better and recovers a heat map with accurate heat spot loca-
tions with an RMSE of 0.089, which is similar to prior work.

There are many possible directions for future work. One
is to combine the other parameters, such as layout den-
sities/congestion location of through silicon vias. Another
avenue of possible exploration is to condition on stackup order
to determine their impact on the thermal performance.
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