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Abstract 18 

We employ a recently developed quantum mechanical approach (QM-CR), based on complexity 19 

reduction of Density Functional Theory calculations, to characterize the interactions of the 20 

SARS-CoV-2 spike Receptor Binding Domain (RBD) with ACE2 host receptors and antibodies. 21 

QM-CR operates via ab initio identification of individual amino acid residues contributions to 22 

chemical binding and leads to the identification of the impact of point mutations. Here, we 23 

especially focus on the E484K mutation of the viral spike protein. We find that spike residue 484 24 

hinders the spike's binding to the human ACE2 receptor (hACE2). In contrast, the same residue 25 

is beneficial in binding to the bat receptor Rhinolophus macrotis ACE2 (macACE2). In 26 

agreement with empirical evidence, QM-CR shows that the E484K mutation allows the spike to 27 

evade categories of neutralizing antibodies like C121 and C144. The simulation also shows how 28 

the Delta variant spike binds more strongly to hACE2 compared to the original Wuhan strain, 29 

and predicts that a E484K mutation can further improve its binding. Broad agreement between 30 

the QM-CR predictions and experimental evidence supports the notion that ab initio modeling 31 

has now reached the maturity to handle large intermolecular interactions central to biological 32 

processes.  33 
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Significance Statement 34 

The threat of emerging pathogens, exemplified by the rapid spread of SARS-CoV-2, has 35 

motivated investigations into how pathogens may evolve. In surveying possible evolutionary 36 

trajectories, wet-bench screens can only sample a small fraction of possibilities because of 37 

practical limitations. Mechanistic modeling can partially overcome these limitations by offering: 38 

(1) flexibility of in silico sampling and (2) insights about underlying interaction mechanisms. 39 

Here, we employ a complexity reduction quantum mechanical (QM-CR) approach to describes 40 

the intermolecular interactions at the amino acid level. Through this approach, we uncover 41 

residues critical to spike-receptor and spike-antibody interactions. We find broad agreement 42 

between the QM-CR predictions and experimental evidence, showcasing the ability of ab initio 43 

modeling to capture biologically-relevant intermolecular interactions. 44 

Introduction 45 

Since SARS-CoV-2 infected the human host, several variants have arisen [1] with distinct 46 

changes in the viral spike protein, particularly in the Receptor Binding Domain (RBD). Two 47 

trends have been prevalent in the spike evolution: i) selection towards improved binding to host 48 

cells [2]; and ii) selection towards evasion of neutralizing antibodies (nAbs) [3–6]. Anticipating 49 

the evolutionary trajectory of viruses is a long-established relevant topic in the scientific 50 

community [7]. Presently, the main approach in this direction is high-throughput in vitro 51 

screening of mutants (e.g. [8, 9]); however, such an approach does not directly identify the 52 

mechanisms that make a given mutation more, or less, beneficial. In this work, we show how the 53 

recent developments in ab initio modeling can complement experimental results and offer 54 

detailed mechanistic insights. 55 

Traditionally, full QM models of intermolecular interactions are only employed for small 56 

molecules of about a hundred atoms [10, 11]; larger molecules have proven computationally 57 

challenging for full QM investigations. Nevertheless, in silico approaches alternative to full QM 58 

have been successful. Molecular docking [12–14], relying on geometrical constraints to assess 59 

intermolecular interactions, has been used to survey small-molecule candidates in drug discovery 60 

[15]. Force-fields (FFs) have also been successful [16, 17], whenever previous adequate 61 

parameterization is available [18]. Hybrid quantum mechanics/molecular mechanics (QM/MM) 62 

methods are also common in describing enzyme-substrate systems [19], and have been 63 

successfully applied to SARS-CoV-2 [20, 21, 30, 22–29]. QM/MM uses quantum mechanical 64 

(QM) simulations for a small portion of the system (tens of atoms) [31], leaving the remaining 65 

regions to be modeled with a less computationally demanding MM simulation, driven by FFs. 66 



   
 

   
 

To mechanistically characterize SARS-CoV-2 spike-receptor and spike-nAb interactions, we 67 

apply a recently developed approach for large scale electronic structure calculations: Complexity 68 

Reduction in Density Functional Theory calculations [32, 33], hereafter called QM-CR. QM-CR 69 

differs from previous approaches in requiring no targeted parameterization or prior knowledge 70 

about the nature or sites of interactions, and it is based on full QM calculations on the entire 71 

system. QM-CR leverages recent progress in computational chemistry [32, 34] to handle tens of 72 

thousands of atoms in a single simulation. This enables us to capture and investigate biological 73 

processes involving several hundreds of amino acids, including the SARS-CoV-2 spike 74 

interactions. Recent efforts on SARS-CoV-2 have generated structural and biochemical data that 75 

can be used to validate QM-CR predictions. In particular, the high level of detail from recent 76 

contributions gives us new insight to complement experimental data or analysis based on 77 

regression models [35–38].  78 

Importantly, QM-CR can reveal the mechanisms behind intermolecular binding by decomposing 79 

interactions into chemical/short-ranged (which imply a shared electron) versus electrostatic/long-80 

ranged (which do not involve shared electrons). We define as "hotspots" amino acids with a 81 

significant chemical contribution to the intermolecular interactions. To further investigate the 82 

contribution of individual amino acids, single point mutations can be introduced into a protein's 83 

(e.g., the spike) primary structure. We employ the BigDFT computer program [39], based on an 84 

ab initio Density Functional Theory approach on a set of fully atomistic 3D structural models, to 85 

simulate intermolecular interactions of interest with a computational cost manageable on modern 86 

supercomputers.  87 

In this work, we focus our analysis on the E484K mutation for three main reasons. First, our 88 

analysis identifies residue E484 as the main interface weak link in the interaction of the SARS-89 

CoV-2 Wuhan strain with the human receptor ACE2 (hACE2); conversely the same residue is 90 

beneficial to binding the bat Rhinolophus macrotis’ ACE2 (macACE2). Second, we show that an 91 

E484K mutation alone can disrupt the neutralizing effect of specific antibodies. In addition, we 92 

also highlight the strong modular character of the E484K mutation and show that, if imposed on 93 

existing SARS-CoV-2 variants such as Delta, it can enhance binding to hACE2, potentially 94 

identifying future viral evolutionary trajectories. Finally, we argue that ab initio models are now 95 

at the point of providing mechanistic insights on molecular interactions central to biological 96 

processes. 97 

Results 98 

We focus our analysis on the impact of the E484K mutation on antibody evasion and cellular 99 



   
 

   
 

receptor binding. Prior experimental and computational data have shown that spike variants, 100 

presenting the E484K mutation in the RBD, can evade antibodies C144 and C121 [38, 40]. 101 

E484K is also a typical signature mutation of the RBD of the Gamma and Beta variants. We test 102 

our QM model as an agnostic predictor to explain the interaction of the viral spike (the original 103 

Wuhan version or the E484K-mutated one) with host receptors and nAbs. 104 

QM-CR underscores hotspots of spike-hACE2 interactions 105 

We examine the interaction between the WT spike RBD and hACE2 as its native substrate. In 106 

this analysis, we calculate the overall effect of each amino acid residue on its respective 107 

interactor, either on the spike side or on the hACE2 side; the contribution to the binding energy 108 

can either be attractive/stabilizing or repulsive/de-stabilizing (Fig 1).  109 

We use Fragment Bond Order (FBO) [32], calculated using the electronic structure of the system 110 

in proximity of a given residue, as a measure of the strength of the interaction in the proximity of 111 

the interface between the two interacting molecules (Table 1). In Fig 1, we have highlighted 112 

residues with large FBO as well as those close to the geometric interface. Residues with both 113 

large FBO and interface proximity are determined as major contributors to the intermolecular 114 

interactions. This analysis reveals the contribution of each residue to the overall binding 115 

performance, highlighting which amino acids facilitate or hinder binding, and how. In the 116 

following sections, we use FBO to draw an interaction network of the interface to detail the 117 

chemical interactions among residues, and their stabilizing or destabilizing role. Details of the 118 

procedure are provided in the supplementary information ("Details of the fragmentation 119 

procedure"). As an alternative visualization, the contribution of each amino acid residue to the 120 

binding can also be highlighted over the 3D physical arrangement of the two molecules (Fig S1).  121 

 122 

QM-CR identifies the spike E484 residue as the weak link in the binding to the 123 

host receptor hACE2 124 

FBO values pinpoint the hotspots of the RBD-hACE2 system (Fig 2). On the hACE2 side (Fig 2, 125 

panel a), Q24, T27, D30, K31, H34, E35, E37, D38, Y41, Q42, Y83, and K353 stand out, in 126 

agreement with known data [41]. On the spike side (Fig 2, panel b), a more diverse layout 127 

emerges, on and off the interface, with several residues displaying repulsion. However, residue 128 

E484 shows the unique trait of being simultaneously repulsive and at the interface with hACE2, 129 

via a short-range interaction with the K31 residue (Figs 2 and S6). Since the chemical interaction 130 

is intrinsically attractive, the overall repulsive interaction indicates that another residue in the 131 

vicinity cancels the chemical attraction with an electrostatic repulsion. Overall, in the Wuhan 132 



   
 

   
 

type structure, E484 destabilizes the binding to hACE2. From this analysis, we conclude that the 133 

Wuhan spike RBD harbors a sub-optimal residue at the 484 position for hACE2 binding.  134 

To further investigate the impact of E484, we test the model on the available 3D crystal structure 135 

of the human homologous ACE2 receptor in Rhinolophus macrotis, a host species with a more 136 

adapted SARS-CoV-2 interaction [41]. In this simulation (Fig 2 panels a and b, second rows), the 137 

E484 residue is instrumental to the binding by being strongly attractive to the R. macrotis ACE2 138 

(macACE2). Notably, in both hACE2 and macACE2, the interactor with E484 is the ACE2 139 

residue K31. This means that the macACE2 sequence has residues, proximal to the K31 hotspot, 140 

that exert an attractive electrostatic force on E484. A closer inspection of the two sequences 141 

reveals that this attractive force comes from the K35 residue, which in hACE2 is replaced by 142 

Glutamic Acid. Thus, the model highlights a stark contrast between human and bat receptors. 143 

We further confirmed the role of E484 by introducing the E484K mutation into the viral spike 144 

and then assessing the interaction with hACE2 (Fig S2). The E484K mutation improves the 145 

spike-hACE2 binding energy by about 32% (Fig S2, bottom right histograms), switching the 146 

main hACE2 interacting residue from K31 to E35. Such an interaction, driven by electrostatics, 147 

represents a net improvement of the Wuhan-hACE2 network. Conversely, the same mutation 148 

does not affect the spike binding energy to macACE2 in the same position, where the bat 149 

receptor hosts a lysine. In other terms, for macACE2, K484 clearly does not engage K35, and 150 

would actually disappear from the interface (Fig S2). The resulting interaction network is 151 

rearranged, and the interface binding energy is not improved by the mutation. Therefore, the 152 

model shows a more functional interaction between macACE2 and Wuhan RBD, possibly the 153 

result of a longer adaptation by SARS-CoV-2 to R. macrotis, compared to the human receptor. In 154 

the hACE2 interaction, the E484 spike residue belongs to a sub-optimal sector of the chemical 155 

interface, suggesting that other RBD adaptations in this sector are likely to improve the binding. 156 

 157 

QM-CR shows how nAb C121 loses binding to the E484K mutated spike 158 

We identify the hotspots between the Wuhan spike RBD and C121 nAbs (Figs 4 and S1) (see 159 

results for C144 nAb in Fig S3). Residue E484 is the main spike interactor with C121 nAb. 160 

Other relevant sites are residues K444, Y449, F486, Y489, and Q493. On the C121 side, residues 161 

Y33, S55, and S75 are pivotal for the Wuhan spike binding. The model estimates that among all 162 

the residues contributing to the interaction, the individual contribution of E484 amounts to 163 

around 50% of the total. The interaction network (Fig 4) shows E484's binding to residues Y33 164 

and S55 of C121. Once the E484K mutation is imposed, we observe a rearrangement of the 165 



   
 

   
 

interaction network, and a substantially lower binding energy, between the spike and the 166 

antibody. Specifically, E484K reduces the connectivity at the 484 residue in the interaction 167 

network, and modifies the interactions on the C121 side towards decreased stability. Only the 168 

S52 residue is stabilized by the mutation, but not to the point of compensating for the loss of 169 

attraction at other residues. Overall, once the mutation is applied, we observe a substantial 170 

decrease of about 25% of the total binding energy, largely because of reduced short-range 171 

interactions. The model concludes, with no a priori information other than the experimental 172 

crystal structure, that the E484 residue is the essential actor in the binding by nAb C121, and that 173 

a targeted point mutation will substantially affect said binding. The analysis of C144 nAb shows 174 

comparable results. Moreover, C144 undergoes a substantial rearrangement of its interaction 175 

network in response to the mutation, arguably a consequence of the original higher connectivity 176 

of the residue E484 in the binding, compared to the C121 case: five C144 residues are involved 177 

(Y51, S52, G53, G54 and S55) compared to two C121 residues (Y33 and S55) (Fig S3). 178 

Interestingly, the importance of E484 also appeared in previous a work in which E484 mutants 179 

arise under the selective pressure of nAbs [42].  180 

 181 

QM-CR predicts that the E484K mutation strengthens the binding of the Delta 182 

spike to hACE2 183 

Starting from the Wuhan strain crystal structure, we generate a virtual crystal structure to 184 

represent Delta (B.1.617.2) in conjunction with hACE2 by substituting its characterizing RBD 185 

mutations (L452R and T478K) into the Wuhan spike crystal structure. Such residue mutations 186 

belong to an off-interface sector of the RBD (see Fig 1). Our simulations identify the same FBO 187 

interface residues found for the Wuhan strain. However, differently from the other tested 188 

interaction networks, a substantial contribution to the overall binding energy of Delta to hACE2 189 

comes from off-interface residues via their long-range electrostatic effect on their counterparts, 190 

highlighting the relevance of including residues beyond the interface region, in the analysis of 191 

binding. 192 

Furthermore, when testing the binding of the Delta-hACE2 system after introducing the E484K 193 

mutation, the simulation shows that E484K is compatible with the Delta variant and further 194 

strengthens the overall binding to hACE2. This in silico-generated variant, solely based on 195 

theoretical grounds, displays a stronger binding to hACE2 than either E484K or Delta variants 196 

individually (Fig 5). 197 

 198 



   
 

   
 

Discussion 199 

Recently developed Complexity Reduction tools in Density Functional Theory calculations have 200 

allowed full QM simulations of systems with several thousands of atoms. These advances have 201 

bridged the gap that had so far hindered full QM ab initio modeling of larger molecules that are 202 

often of interest in biology. A computational approach that can capture biologically relevant 203 

intermolecular interactions, such as protein-protein interactions, has untapped potential for better 204 

mechanistic understanding of biological phenomena at a molecular level. 205 

In this work, we use the BigDFT code to implement an ab initio QM simulation of the electronic 206 

properties of a given set of atoms as large as a full protein-protein system. Through this model, 207 

we decompose the interaction between two biological macro-molecules, spike RBD and 208 

receptor/antibody, into the individual energetic contributions of each of the amino acid residues 209 

involved. Additionally, the model characterizes the nature of these contributions into two main 210 

categories: (1) short-range/chemical and (2) long-range/electrostatic. Ultimately, we infer a 211 

network of interactions with amino acid residues of the two interacting molecules as nodes, and 212 

the inter-residue binding strength as edges. This interaction network is based on the electronic 213 

structure of the protein-protein system.  214 

We focus on the viral spike interaction with ACE2 as its natural receptor, and with nAbs C121 215 

and C144. We demonstrate that a QM model, assessing the interactions among the residues of an 216 

intermolecular biological system, enables mechanistic insight into how SARS-CoV-2 interacts 217 

with its host. The QM-CR model identifies the E484 residue as the only interface element 218 

hindering the binding between the Wuhan strain and hACE2, making it the most evident weak 219 

link of the Wuhan spike binding to the human host. The E484K mutation is shown by the model 220 

as a direct solution to this hindrance by improving binding to hACE2, and presumably 221 

constituting an evolutionary advantage, as supported by its emergence among several successful 222 

variants. Interestingly, QM-CR also shows that the E484 residue stabilizes the interaction 223 

between the Wuhan viral spike and the bat receptor macACE2 from Rhinolophus macrotis. We 224 

interpret this as an indication that the Wuhan strain is better adapted to a bat-like ACE2, and the 225 

rise of changes at E484 constitutes an adaptation specific to the human host.  226 

In agreement with known data, QM-CR predicts loss of interaction between the SARS-CoV-2 227 

spike and nAbs C121 and C144, once the E484K mutation is imposed on the spike of the Wuhan 228 

strain. The RBD residue E484 emerges as the main and fundamental spike fragment enabling the 229 

binding event, and therefore neutralization. These data suggest that nAbs challenging the spike at 230 

E484—the very residue that most hinders hACE2 interaction—provide an ulterior selective 231 



   
 

   
 

pressure for the virus to find alternatives to the original phenotype, at this position. 232 

By analyzing the competition between short- and long-range interaction contributions, we have 233 

shown that, compared to the Wuhan strain, the charge-shift E484K mutation substantially 234 

increased (by about 30%) the binding energy to hACE2. On the RBD side, the model also 235 

highlights how the effect of E484K is focused on the 484 position, with limited off-target 236 

repercussions for the spike’s binding (Fig 3). We argue that this trait qualifies the E484K 237 

mutation as highly “RBD-modular" and readily achievable in an already well-adapted spike 238 

structure. The contribution of E484K to the binding is largely long-range/electrostatic, therefore 239 

less dependent on a specific steric conformation. Our simulations are motivated by the available 240 

empirical data in identifying the E484K mutation as a particularly likely evolutionary outcome, 241 

based on increased SARS-CoV-2 infectivity and antibody evasion. We thus examined the 242 

potential impact of the E484K mutation on spike-hACE2 binding in the background of the Delta 243 

variant. Our model suggests that E484K affects spike-hACE2 and spike-nAb binding in a 244 

modular fashion. Thus, if acquired by the Delta strain, E484K further increases binding, possibly 245 

contributing to increased infectivity. We acknowledge that infectivity is a multi-factor process of 246 

which receptor binding is only one among multiple actors. 247 

Our investigation is focused on characterizing individual amino acid contributions to the 248 

different performance of alternative spike structures in binding hACE2, especially to assess the 249 

hypothetical relevance of present and future single point mutations imposed on available crystal 250 

structures. Binding to ACE2 is the first step for SARS-CoV-2 infection, and is therefore central 251 

to the overall fitness of a given viral variant. In the context of viral evolution towards improved 252 

human ACE2 binding, we intend to identify the structural traits that represent the objects of 253 

selection; when compared to the closest experimental dataset available [9], the quantities we 254 

compute provide QM simulations which largely align with empirical results (Fig S4). 255 

The QM-CR approach is performed on all-atom in silico structures as inputs. In this context, we 256 

have applied the QM-CR method to crystal structures available in the PDB database, as well as 257 

variations of them, whenever crystalized structures are unavailable. Our analysis does not take 258 

into account conformational changes (which recent work has shown take place on the order of 259 

microseconds for spike-hACE2 interactions [43, 44]; conformational changes would require 260 

applying QM-CR to a population of structures coming from, for instance, subsampled MD 261 

trajectories [45]. Furthermore, due to the nature of the QM-CR analysis and the use of a single 262 

frame, interaction energies do not account for entropic effects or rearrangement (electronic or 263 

nuclear) after disassociation. Interactions have also been partitioned into per-amino-acid 264 

contributions, which introduces some error terms, however this can be controlled using measures 265 



   
 

   
 

provided by the QM-CR methodology (see Supporting Information, “details of fragmentation 266 

procedure”). For this study, i.e. the case of E484K, the model’s predictions align with available 267 

empirical data even when using the initial virtual crystal structures. In this specific case, this may 268 

be due to the long-range impact of E484K as a charge-shift mutation. Moreover, in the vicinity 269 

of the interface, the QM-CR approach produces an interaction network, which at the very least 270 

encodes the first-order effects that a mutation can induce in the chemical bonds of the interface. 271 

The crystal structures employed for the Delta spike variant are not associated to an experimental 272 

result. They are virtual approximations, obtained via local energy minimization. The 273 

approximation assumes that no major structural changes from the reference Wuhan spike occur 274 

when single point mutations are introduced. In the supplementary information, we show 275 

evidence that such an approximation is reasonable, at least for the combination of mutations 276 

characterizing the Beta variant RBD: E484K, N501Y, and K417N. We employ a well-277 

established DFT approximation, PBE+D3, which provides reliable information on coarse-278 

grained quantities and trends [32, 46], and simulates structures in their relaxed positions [47]. 279 

Overall, we deem our method to be a balanced compromise between accuracy and modeling 280 

complexity. 281 

The maturity of large-scale quantum mechanical calculations represents a unique opportunity to 282 

employ full QM approaches to uncover the interaction mechanisms. Such mechanisms are 283 

presently inaccessible to other, more conventional computational approaches. We also show that 284 

an ab initio modeling in QM-CR provides insights useful for comparison with experimental data, 285 

supporting its capability to offer predictive power for intermolecular interactions of biological 286 

relevance. Finally, we argue that QM-CR can be correlated to high throughput calculations of 287 

libraries of mutated structures aimed at identifying potential antibody escape routes for SARS-288 

CoV-2 and, being unbiased and agnostic, can be readily applied to other biological systems. 289 

Methods 290 

Computational approach 291 

We perform a full Quantum Mechanical (QM) model, as implemented in the BigDFT computer 292 

program suite [48]. The approach employs the formalism of Daubechies wavelets to express the 293 

electronic structure of the assemblies in the framework of the Kohn-Sham (KS) formalism of 294 

Density Functional Theory (DFT) [39]. The electronic structure is expressed, by both the density 295 

matrix and the Hamiltonian operator, in an underlying basis set of support functions—a set of 296 

localized functions adapted to the chemical environment of the system. Such functions are 297 

expressed in Daubechies wavelets, typically using one to four support functions per atom as the 298 



   
 

   
 

basis set. The electronic density matrices, as well as the Hamiltonian expressed in the BigDFT 299 

basis set, are analyzed to provide quantum observables of the systems. The code provides 300 

efficient and accurate QM results for full systems of large sizes, delivering excellent 301 

performance on massively parallel supercomputers. In the present study, we employ the PBE 302 

approximation corrected by dispersion D3 correction terms [49] and Hartwigsen-Goedecker-303 

Hutter (HGH) pseudopotentials [50]. The CheSS library [51] has been employed to calculate the 304 

system’s density matrix. A comparison of the inclusion of an implicit solvent, with respect to gas 305 

phase calculations shows that interaction energies at interface residues are only marginally 306 

affected by the presence of the solvent (Fig S5). 307 

Each calculation includes approximately 12,000 atoms and requires about 2 h of wall-time on 32 308 

compute nodes of the IRENE-Rome supercomputer, at the TGCC Supercomputing center in 309 

Saclay (Paris, France). A similar approach has been previously used, in conjunction with the 310 

other atomistic techniques described in the introduction, to investigate the interaction patterns of 311 

the SARS-CoV-2 main protease with natural peptidic substrates, and to design peptide inhibitors 312 

tested in vitro [45]. 313 

Procedure 314 

Starting from a representative 3D model of the molecules as our input, we calculate the system’s 315 

electronic structure, from which we extract various quantities. We draw a contact network to 316 

identify relevant chemical interactions among the spike RBD and the various interactors 317 

considered in this study. The strength of the inter-residue interaction is quantified by the 318 

Fragment Bond Order (FBO) [52], calculated using the electronic structure of the system in 319 

proximity of a given residue. Such an approach has been previously described in detail [39, 53] 320 

and is summarized in Table 1.  321 

We use the FBO to identify the interface residues, defined as the amino acids of the counter-322 

ligand that have a non-negligible value, above a set threshold of the FBO, with the ligand. In 323 

contrast to a simple geometrical indicator like the RBD-ligand distance, the FBO provides a 324 

metric that enables a non-empirical identification of steric hot-spot interactions. We here identify 325 

as chemical hot-spot interface residues the amino acids which exhibit a FBO value with the 326 

ligand larger than 7×10-3. Such threshold is obtained comparing the hydrogen bonding 327 

interaction network of the SARS-CoV-2 main protease to its natural peptidic substrates, derived 328 

from traditional FF analysis and the equivalent FBO network [32].  329 

Once the chemical connection among amino acids is identified, we assign to each residue its 330 

contribution to the binding interaction between the two subsystems. We calculate these 331 



   
 

   
 

interaction terms from the output of the DFT code and interpret them as two parts. First, a long-332 

range electrostatic attraction/repulsion term, defined from the electron distributions of each of 333 

the fragments (even when far apart, two fragments may still interact). The remaining term, which 334 

can only be attractive, is provided by the chemical binding between the fragments, and is non-335 

zero only if the electronic clouds of the fragments superimpose (short-range). This term is 336 

correlated with the FBO strength, and we identify it as the chemical interaction. 337 

By including long-range electrostatic terms, the decomposition enables us to single out relevant 338 

residues not necessarily residing at the interface. In this way, the model provides an ab initio 339 

representation of the RBD-ligand interactions as the final output. 340 

Crystal structures and generation of mutant virtual structures 341 

Crystallographic structures are obtained from the RCSB database [54] using PDB entries 6M0J 342 

(hACE2), 7K8X (nAb C121), 7K90 (nAb C144), and 7C8J (macACE2). Protonation of 343 

histidines and other titratable residues is assigned a pH of 7, based on the PDBFixer tool in 344 

OpenMM [55, 56]. 345 

Virtual structures are generated by imposing point mutations on the original structure. Structure 346 

relaxations are performed by optimizing the crystal geometry with the OpenMM package using 347 

the AMBER FF14SB force field [57]. While such optimized structures do not represent the full 348 

panorama of conformations that might exist at a finite temperature, the resulting structures are 349 

interpreted as one plausible representative among the possible conformations of the system. To 350 

further verify this statement, we compared the difference in the interaction pattern obtained from 351 

the experimental crystal structure of the Beta variant in conjunction with hACE2 (PDB 7VX4), 352 

to the same quantity from the combined action of each point-mutation characterizing the Beta 353 

RBD (E484K, N501Y and K417N), applied on virtual crystals derived from WT-RBD (6M0J). 354 

We verify (see Supplementary Information) that the interaction difference on the RBD of the two 355 

real crystals corresponds to the overall sum of the contributions of each of the point mutations. 356 

This fact, on the one hand, confirms the modular impact of each point mutation to the overall 357 

binding, on the other hand, suggests that the impact due to conformational rearrangements is of 358 

higher order, for this variant. 359 
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Figure Captions 531 

 532 

Fig 1. Mechanistic characterization of the binding between Wuhan strain’s spike and hACE2. Data 533 
are plotted on the sequence of hACE2 (panel a) and the spike RBD (panel b). Letters represent single 534 
amino acid residues; yellow bars indicate interface residues, identified with the FBO threshold. “FBO” is 535 
the Fragment Bond Order values, and “Distance” is the distance of a residue to the nearest atom of its 536 
ligand. “Interaction” is the chemical/electrostatic force shown as attractive (blue) or repulsive (red), with 537 
darker colors indicating stronger effects.  538 

 539 

Fig 2. Mechanistic characterization of Wuhan and mutated (E484K) spike binding to hACE2. Data 540 
are plotted on hACE2 (panel a) and on the Wuhan spike (panel b) primary structure bound to the Wuhan 541 
spike (WT) and the mutated one (E484K). Amino acids are represented by the corresponding letters and 542 
numbered on the histogram's horizontal axis. Interface residues are highlighted by yellow bars and their 543 
overall effect on the other molecule is indicated by red (repulsive) or blue (attractive) tiles. Histograms 544 
underneath the sequences show the relative change in binding energy of the E484K mutated variant 545 
relative to the Wuhan strain, with positive and negative values indicating weaker and stronger binding, 546 
respectively. Bottom right histograms represent the overall binding energy of hACE2 with the Wuhan 547 
spike versus the mutated one, partitioned into chemical and electrostatic contributions. Interaction 548 
networks (Wuhan spike-hACE2 to the right, and mutated spike-hACE2 to the left), including FBO-549 
interface residues and their coordinated interactors are shown (panel c). Squares depict spike residues and 550 
circles depict hACE2 residues, with red color for repulsive and blue color for attractive energy. Yellow 551 
outlines highlight interface residues. Bonds are purple when intermolecular or black when intramolecular. 552 

 553 

Fig 3. Mechanistic characterization of the Wuhan spike binding to the human ACE2 (hACE2) and 554 
R. macrotis ACE2 (macACE2). Data are plotted on the ACE2 primary structure (a), and on the Wuhan 555 
spike RBD (b), when binding to the human (hACE2) and the bat (macACE2) receptor. Amino acid 556 
residues are labeled with letters and numbered. Interface residues are highlighted with a yellow bar, red 557 
tiles are repulsive residues, and blue tiles are attractive residues; see the rest of the figure for energy 558 
scales. The interaction networks (bottom) represent the hACE2-spike system on the left, and macACE2-559 
spike on the right; circles are ACE2 residues, squares are spike residues. Interface residues are 560 
highlighted with a yellow bar, red tiles are repulsive residues, and blue tiles are attractive residues. Bonds 561 
are purple when intermolecular or black when intramolecular, and their thickness represents the strength 562 
of the FBO between residues. 563 

 564 

Fig 4. Mechanistic characterization of C121 binding to the Wuhan strain spike protein, and 565 
energetic changes as a result of the E484K spike mutation. Data are plotted on the spike primary 566 
structure (panel a) and on C121's Heavy-Chain (panel b) considering the different bindings via the Wuhan 567 
spike (WT) and the mutated one (E484K). Amino acids are represented by letters and numbered on the 568 
histogram's horizontal axis. Histograms underneath the sequences represent the relative change in binding 569 
energy of the second row relative to the first one (Wuhan strain). The bottom right histograms represent 570 
the overall binding energy of C121 with the Wuhan spike (left) and the mutated one (right) and its 571 
characterization as chemical or electrostatic. The row above each sequence shows the chemical or 572 



   
 

   
 

electrostatic forces as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.  573 

Fig 4 (cont.). Interaction networks with C121 nAbs are shown (panel c). Network nodes are represented 574 
in red (repulsive) or blue (attractive) based on their effect on their counterparts. Residues at the binding 575 
interface are highlighted by a yellow outline. Bonds are plotted as purple when intermolecular or black 576 
when intramolecular and their thickness is related to the strength of the FBO between residues. 577 

 578 

Fig 5. Mechanistic characterization of spike-hACE2 binding suggests that Delta+E484K spike has 579 
stronger hACE2 binding than the Delta variant. Data are plotted on hACE2 (panel a) primary 580 
structure bound to the Wuhan spike (WT), Delta spike (δ), and Delta + 484K spike (δ + 484K). Amino 581 
acids are represented by the corresponding letters and numbered on the histogram's horizontal axis. 582 
Interface residues are highlighted by yellow bars and their overall effect on the other molecule is 583 
indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to the one employed in 584 
the other figures). Histograms underneath the sequences show the relative change in binding energy 585 
(green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Data are plotted on the viral 586 
spike (panel b) primary structure bound to the Wuhan spike (WT), Delta spike (δ), and Delta + 484K 587 
spike (δ + 484K). Amino acids are represented by the corresponding letters and numbered on the 588 
histogram's horizontal axis. Interface residues are highlighted by yellow bars and their overall effect on 589 
the other molecule is indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to 590 
the one employed in the other figures). Histograms underneath the sequences show the relative change in 591 
binding energy (green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Bar plots on 592 
the bottom right represent the overall binding energy of hACE2 with the Wuhan, Delta, and Delta+E484K 593 
strains, partitioned into chemical or electrostatic contributions. 594 
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Table 1. Prospectus of the main concepts and quantities constituting the model. All the elements here 596 
discussed are general and therefore applicable, without previous parameterization, to any given set of 597 
atoms for which atomistic structural representations are available. 598 

Electron Density  

 

The distribution of electrons in a given molecular system. The electron density 

determines the nature and strength of the chemical bonds between interacting 

molecules. Such an “electron cloud" is the main emerging property of the 

underlying atomic structure in defining the chemical characteristics of a molecule. 

 

Fragment The modular elements into which the electron cloud can be partitioned, for 

example, an amino acid. The model partitions the electron cloud into physically 

consistent regions and/or verifies the consistency of a pre-defined partitioning; 

every such region is defined as a fragment. 

 

Fragment Bond 

Order (FBO) 

 

The descriptor of the inter-fragment interactions. FBO is the main quantity used in 

the model to represent the connection pattern of the fragments of interacting 

molecules.  

 

Fragment 

Interactions 

From the results of the model and the features of the fragments it is then possible 

to calculate the interaction strength between any two fragments. Such interaction 

has both a chemical/short-range term that is always attractive, and an 

electrostatic/long-range term that can be attractive or repulsive. 

 

Final Output At the end of the simulation, BigDFT provides a simple representation of the 

strength of interaction between fragments of the two molecules. The model can 

describe the energy and nature of the acting chemical bonds. This enables a 

mechanistic explanation and/or prediction of how specific amino acid substitutions 

or deletions, in spikes or nAbs, impact the interactions with their hACE2 substrate 

or the viral spike, respectively. 

 

Hardware 

Requirements 

 

The model requires massively parallel calculations via high performance 

computing. On a modern supercomputer, hundreds of simulations can be 

performed in a time frame of one hour. 
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