

1 **Probing the mutational landscape of the SARS-CoV-2 spike**
2 **protein via quantum mechanical modeling of crystallographic**
3 **structures**

5 Marco Zaccaria¹¶, Luigi Genovese²¶*, William Dawson³, Viviana Cristiglio⁴, Takahito
6 Nakajima³, Welkin Johnson¹, Michael Farzan⁴, and Babak Momeni¹*

7 ¹ Department of Biology, Boston College, Chestnut Hill MA, United States

9 ² Université Grenoble Alpes, CEA, INAC-MEM, L_Sim, Grenoble, France

10 ³ RIKEN Center for Computational Science, Kobe, Japan

11 ⁴ Institute Laue Langevin, Grenoble, France

12 ⁵ Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter FL, United States

14 * Corresponding authors; luigi.genovese@cea.fr and momeni@bc.edu

15 ¶Equal contribution

18 **Abstract**

19 We employ a recently developed quantum mechanical approach (QM-CR), based on complexity
20 reduction of Density Functional Theory calculations, to characterize the interactions of the
21 SARS-CoV-2 spike Receptor Binding Domain (RBD) with ACE2 host receptors and antibodies.
22 QM-CR operates via *ab initio* identification of individual amino acid residues contributions to
23 chemical binding and leads to the identification of the impact of point mutations. Here, we
24 especially focus on the E484K mutation of the viral spike protein. We find that spike residue 484
25 hinders the spike's binding to the human ACE2 receptor (hACE2). In contrast, the same residue
26 is beneficial in binding to the bat receptor *Rhinolophus macrotis* ACE2 (macACE2). In
27 agreement with empirical evidence, QM-CR shows that the E484K mutation allows the spike to
28 evade categories of neutralizing antibodies like C121 and C144. The simulation also shows how
29 the Delta variant spike binds more strongly to hACE2 compared to the original Wuhan strain,
30 and predicts that a E484K mutation can further improve its binding. Broad agreement between
31 the QM-CR predictions and experimental evidence supports the notion that *ab initio* modeling
32 has now reached the maturity to handle large intermolecular interactions central to biological
33 processes.

34 **Significance Statement**

35 The threat of emerging pathogens, exemplified by the rapid spread of SARS-CoV-2, has
36 motivated investigations into how pathogens may evolve. In surveying possible evolutionary
37 trajectories, wet-bench screens can only sample a small fraction of possibilities because of
38 practical limitations. Mechanistic modeling can partially overcome these limitations by offering:
39 (1) flexibility of *in silico* sampling and (2) insights about underlying interaction mechanisms.
40 Here, we employ a complexity reduction quantum mechanical (QM-CR) approach to describes
41 the intermolecular interactions at the amino acid level. Through this approach, we uncover
42 residues critical to spike-receptor and spike-antibody interactions. We find broad agreement
43 between the QM-CR predictions and experimental evidence, showcasing the ability of *ab initio*
44 modeling to capture biologically-relevant intermolecular interactions.

45 **Introduction**

46 Since SARS-CoV-2 infected the human host, several variants have arisen [1] with distinct
47 changes in the viral spike protein, particularly in the Receptor Binding Domain (RBD). Two
48 trends have been prevalent in the spike evolution: i) selection towards improved binding to host
49 cells [2]; and ii) selection towards evasion of neutralizing antibodies (nAbs) [3–6]. Anticipating
50 the evolutionary trajectory of viruses is a long-established relevant topic in the scientific
51 community [7]. Presently, the main approach in this direction is high-throughput *in vitro*
52 screening of mutants (e.g. [8, 9]); however, such an approach does not directly identify the
53 mechanisms that make a given mutation more, or less, beneficial. In this work, we show how the
54 recent developments in *ab initio* modeling can complement experimental results and offer
55 detailed mechanistic insights.

56 Traditionally, full QM models of intermolecular interactions are only employed for small
57 molecules of about a hundred atoms [10, 11]; larger molecules have proven computationally
58 challenging for full QM investigations. Nevertheless, *in silico* approaches alternative to full QM
59 have been successful. Molecular docking [12–14], relying on geometrical constraints to assess
60 intermolecular interactions, has been used to survey small-molecule candidates in drug discovery
61 [15]. Force-fields (FFs) have also been successful [16, 17], whenever previous adequate
62 parameterization is available [18]. Hybrid quantum mechanics/molecular mechanics (QM/MM)
63 methods are also common in describing enzyme-substrate systems [19], and have been
64 successfully applied to SARS-CoV-2 [20, 21, 30, 22–29]. QM/MM uses quantum mechanical
65 (QM) simulations for a small portion of the system (tens of atoms) [31], leaving the remaining
66 regions to be modeled with a less computationally demanding MM simulation, driven by FFs.

67 To mechanistically characterize SARS-CoV-2 spike-receptor and spike-nAb interactions, we
68 apply a recently developed approach for large scale electronic structure calculations: Complexity
69 Reduction in Density Functional Theory calculations [32, 33], hereafter called QM-CR. QM-CR
70 differs from previous approaches in requiring no targeted parameterization or prior knowledge
71 about the nature or sites of interactions, and it is based on full QM calculations on the entire
72 system. QM-CR leverages recent progress in computational chemistry [32, 34] to handle tens of
73 thousands of atoms in a single simulation. This enables us to capture and investigate biological
74 processes involving several hundreds of amino acids, including the SARS-CoV-2 spike
75 interactions. Recent efforts on SARS-CoV-2 have generated structural and biochemical data that
76 can be used to validate QM-CR predictions. In particular, the high level of detail from recent
77 contributions gives us new insight to complement experimental data or analysis based on
78 regression models [35–38].

79 Importantly, QM-CR can reveal the mechanisms behind intermolecular binding by decomposing
80 interactions into chemical/short-ranged (which imply a shared electron) versus electrostatic/long-
81 ranged (which do not involve shared electrons). We define as "hotspots" amino acids with a
82 significant chemical contribution to the intermolecular interactions. To further investigate the
83 contribution of individual amino acids, single point mutations can be introduced into a protein's
84 (e.g., the spike) primary structure. We employ the BigDFT computer program [39], based on an
85 *ab initio* Density Functional Theory approach on a set of fully atomistic 3D structural models, to
86 simulate intermolecular interactions of interest with a computational cost manageable on modern
87 supercomputers.

88 In this work, we focus our analysis on the E484K mutation for three main reasons. First, our
89 analysis identifies residue E484 as the main interface weak link in the interaction of the SARS-
90 CoV-2 Wuhan strain with the human receptor ACE2 (hACE2); conversely the same residue is
91 beneficial to binding the bat *Rhinolophus macrotis*' ACE2 (macACE2). Second, we show that an
92 E484K mutation alone can disrupt the neutralizing effect of specific antibodies. In addition, we
93 also highlight the strong modular character of the E484K mutation and show that, if imposed on
94 existing SARS-CoV-2 variants such as Delta, it can enhance binding to hACE2, potentially
95 identifying future viral evolutionary trajectories. Finally, we argue that *ab initio* models are now
96 at the point of providing mechanistic insights on molecular interactions central to biological
97 processes.

98 **Results**

99 We focus our analysis on the impact of the E484K mutation on antibody evasion and cellular

100 receptor binding. Prior experimental and computational data have shown that spike variants,
101 presenting the E484K mutation in the RBD, can evade antibodies C144 and C121 [38, 40].
102 E484K is also a typical signature mutation of the RBD of the Gamma and Beta variants. We test
103 our QM model as an agnostic predictor to explain the interaction of the viral spike (the original
104 Wuhan version or the E484K-mutated one) with host receptors and nAbs.

105 ***QM-CR underscores hotspots of spike-hACE2 interactions***

106 We examine the interaction between the WT spike RBD and hACE2 as its native substrate. In
107 this analysis, we calculate the overall effect of each amino acid residue on its respective
108 interactor, either on the spike side or on the hACE2 side; the contribution to the binding energy
109 can either be attractive/stabilizing or repulsive/de-stabilizing (Fig 1).

110 We use Fragment Bond Order (FBO) [32], calculated using the electronic structure of the system
111 in proximity of a given residue, as a measure of the strength of the interaction in the proximity of
112 the interface between the two interacting molecules (Table 1). In Fig 1, we have highlighted
113 residues with large FBO as well as those close to the geometric interface. Residues with both
114 large FBO and interface proximity are determined as major contributors to the intermolecular
115 interactions. This analysis reveals the contribution of each residue to the overall binding
116 performance, highlighting which amino acids facilitate or hinder binding, and how. In the
117 following sections, we use FBO to draw an interaction network of the interface to detail the
118 chemical interactions among residues, and their stabilizing or destabilizing role. Details of the
119 procedure are provided in the supplementary information ("Details of the fragmentation
120 procedure"). As an alternative visualization, the contribution of each amino acid residue to the
121 binding can also be highlighted over the 3D physical arrangement of the two molecules (Fig S1).

122

123 ***QM-CR identifies the spike E484 residue as the weak link in the binding to the***
124 ***host receptor hACE2***

125 FBO values pinpoint the hotspots of the RBD-hACE2 system (Fig 2). On the hACE2 side (Fig 2,
126 panel a), Q24, T27, D30, K31, H34, E35, E37, D38, Y41, Q42, Y83, and K353 stand out, in
127 agreement with known data [41]. On the spike side (Fig 2, panel b), a more diverse layout
128 emerges, on and off the interface, with several residues displaying repulsion. However, residue
129 E484 shows the unique trait of being simultaneously repulsive *and* at the interface with hACE2,
130 via a short-range interaction with the K31 residue (Figs 2 and S6). Since the chemical interaction
131 is intrinsically attractive, the overall repulsive interaction indicates that another residue in the
132 vicinity cancels the chemical attraction with an electrostatic repulsion. Overall, in the Wuhan

133 type structure, E484 destabilizes the binding to hACE2. From this analysis, we conclude that the
134 Wuhan spike RBD harbors a sub-optimal residue at the 484 position for hACE2 binding.

135 To further investigate the impact of E484, we test the model on the available 3D crystal structure
136 of the human homologous ACE2 receptor in *Rhinolophus macrotis*, a host species with a more
137 adapted SARS-CoV-2 interaction [41]. In this simulation (Fig 2 panels a and b, second rows), the
138 E484 residue is instrumental to the binding by being strongly attractive to the *R. macrotis* ACE2
139 (macACE2). Notably, in both hACE2 and macACE2, the interactor with E484 is the ACE2
140 residue K31. This means that the macACE2 sequence has residues, proximal to the K31 hotspot,
141 that exert an attractive electrostatic force on E484. A closer inspection of the two sequences
142 reveals that this attractive force comes from the K35 residue, which in hACE2 is replaced by
143 Glutamic Acid. Thus, the model highlights a stark contrast between human and bat receptors.

144 We further confirmed the role of E484 by introducing the E484K mutation into the viral spike
145 and then assessing the interaction with hACE2 (Fig S2). The E484K mutation improves the
146 spike-hACE2 binding energy by about 32% (Fig S2, bottom right histograms), switching the
147 main hACE2 interacting residue from K31 to E35. Such an interaction, driven by electrostatics,
148 represents a net improvement of the Wuhan-hACE2 network. Conversely, the same mutation
149 does not affect the spike binding energy to macACE2 in the same position, where the bat
150 receptor hosts a lysine. In other terms, for macACE2, K484 clearly does not engage K35, and
151 would actually disappear from the interface (Fig S2). The resulting interaction network is
152 rearranged, and the interface binding energy is not improved by the mutation. Therefore, the
153 model shows a more functional interaction between macACE2 and Wuhan RBD, possibly the
154 result of a longer adaptation by SARS-CoV-2 to *R. macrotis*, compared to the human receptor. In
155 the hACE2 interaction, the E484 spike residue belongs to a sub-optimal sector of the chemical
156 interface, suggesting that other RBD adaptations in this sector are likely to improve the binding.

157

158 ***QM-CR shows how nAb C121 loses binding to the E484K mutated spike***

159 We identify the hotspots between the Wuhan spike RBD and C121 nAbs (Figs 4 and S1) (see
160 results for C144 nAb in Fig S3). Residue E484 is the main spike interactor with C121 nAb.
161 Other relevant sites are residues K444, Y449, F486, Y489, and Q493. On the C121 side, residues
162 Y33, S55, and S75 are pivotal for the Wuhan spike binding. The model estimates that among all
163 the residues contributing to the interaction, the individual contribution of E484 amounts to
164 around 50% of the total. The interaction network (Fig 4) shows E484's binding to residues Y33
165 and S55 of C121. Once the E484K mutation is imposed, we observe a rearrangement of the

166 interaction network, and a substantially lower binding energy, between the spike and the
167 antibody. Specifically, E484K reduces the connectivity at the 484 residue in the interaction
168 network, and modifies the interactions on the C121 side towards decreased stability. Only the
169 S52 residue is stabilized by the mutation, but not to the point of compensating for the loss of
170 attraction at other residues. Overall, once the mutation is applied, we observe a substantial
171 decrease of about 25% of the total binding energy, largely because of reduced short-range
172 interactions. The model concludes, with no *a priori* information other than the experimental
173 crystal structure, that the E484 residue is the essential actor in the binding by nAb C121, and that
174 a targeted point mutation will substantially affect said binding. The analysis of C144 nAb shows
175 comparable results. Moreover, C144 undergoes a substantial rearrangement of its interaction
176 network in response to the mutation, arguably a consequence of the original higher connectivity
177 of the residue E484 in the binding, compared to the C121 case: five C144 residues are involved
178 (Y51, S52, G53, G54 and S55) compared to two C121 residues (Y33 and S55) (Fig S3).
179 Interestingly, the importance of E484 also appeared in previous a work in which E484 mutants
180 arise under the selective pressure of nAbs [42].

181

182 ***QM-CR predicts that the E484K mutation strengthens the binding of the Delta***
183 ***spike to hACE2***

184 Starting from the Wuhan strain crystal structure, we generate a virtual crystal structure to
185 represent Delta (B.1.617.2) in conjunction with hACE2 by substituting its characterizing RBD
186 mutations (L452R and T478K) into the Wuhan spike crystal structure. Such residue mutations
187 belong to an off-interface sector of the RBD (see Fig 1). Our simulations identify the same FBO
188 interface residues found for the Wuhan strain. However, differently from the other tested
189 interaction networks, a substantial contribution to the overall binding energy of Delta to hACE2
190 comes from off-interface residues via their long-range electrostatic effect on their counterparts,
191 highlighting the relevance of including residues beyond the interface region, in the analysis of
192 binding.

193 Furthermore, when testing the binding of the Delta-hACE2 system after introducing the E484K
194 mutation, the simulation shows that E484K is compatible with the Delta variant and further
195 strengthens the overall binding to hACE2. This *in silico*-generated variant, solely based on
196 theoretical grounds, displays a stronger binding to hACE2 than either E484K or Delta variants
197 individually (Fig 5).

198

199 **Discussion**

200 Recently developed Complexity Reduction tools in Density Functional Theory calculations have
201 allowed full QM simulations of systems with several thousands of atoms. These advances have
202 bridged the gap that had so far hindered full QM *ab initio* modeling of larger molecules that are
203 often of interest in biology. A computational approach that can capture biologically relevant
204 intermolecular interactions, such as protein-protein interactions, has untapped potential for better
205 mechanistic understanding of biological phenomena at a molecular level.

206 In this work, we use the BigDFT code to implement an *ab initio* QM simulation of the electronic
207 properties of a given set of atoms as large as a full protein-protein system. Through this model,
208 we decompose the interaction between two biological macro-molecules, spike RBD and
209 receptor/antibody, into the individual energetic contributions of each of the amino acid residues
210 involved. Additionally, the model characterizes the nature of these contributions into two main
211 categories: (1) short-range/chemical and (2) long-range/electrostatic. Ultimately, we infer a
212 network of interactions with amino acid residues of the two interacting molecules as nodes, and
213 the inter-residue binding strength as edges. This interaction network is based on the electronic
214 structure of the protein-protein system.

215 We focus on the viral spike interaction with ACE2 as its natural receptor, and with nAbs C121
216 and C144. We demonstrate that a QM model, assessing the interactions among the residues of an
217 intermolecular biological system, enables mechanistic insight into how SARS-CoV-2 interacts
218 with its host. The QM-CR model identifies the E484 residue as the only interface element
219 hindering the binding between the Wuhan strain and hACE2, making it the most evident weak
220 link of the Wuhan spike binding to the human host. The E484K mutation is shown by the model
221 as a direct solution to this hindrance by improving binding to hACE2, and presumably
222 constituting an evolutionary advantage, as supported by its emergence among several successful
223 variants. Interestingly, QM-CR also shows that the E484 residue stabilizes the interaction
224 between the Wuhan viral spike and the bat receptor macACE2 from *Rhinolophus macrotis*. We
225 interpret this as an indication that the Wuhan strain is better adapted to a bat-like ACE2, and the
226 rise of changes at E484 constitutes an adaptation specific to the human host.

227 In agreement with known data, QM-CR predicts loss of interaction between the SARS-CoV-2
228 spike and nAbs C121 and C144, once the E484K mutation is imposed on the spike of the Wuhan
229 strain. The RBD residue E484 emerges as the main and fundamental spike fragment enabling the
230 binding event, and therefore neutralization. These data suggest that nAbs challenging the spike at
231 E484—the very residue that most hinders hACE2 interaction—provide an ulterior selective

232 pressure for the virus to find alternatives to the original phenotype, at this position.

233 By analyzing the competition between short- and long-range interaction contributions, we have
234 shown that, compared to the Wuhan strain, the charge-shift E484K mutation substantially
235 increased (by about 30%) the binding energy to hACE2. On the RBD side, the model also
236 highlights how the effect of E484K is focused on the 484 position, with limited off-target
237 repercussions for the spike's binding (Fig 3). We argue that this trait qualifies the E484K
238 mutation as highly "RBD-modular" and readily achievable in an already well-adapted spike
239 structure. The contribution of E484K to the binding is largely long-range/electrostatic, therefore
240 less dependent on a specific steric conformation. Our simulations are motivated by the available
241 empirical data in identifying the E484K mutation as a particularly likely evolutionary outcome,
242 based on increased SARS-CoV-2 infectivity and antibody evasion. We thus examined the
243 potential impact of the E484K mutation on spike-hACE2 binding in the background of the Delta
244 variant. Our model suggests that E484K affects spike-hACE2 and spike-nAb binding in a
245 modular fashion. Thus, if acquired by the Delta strain, E484K further increases binding, possibly
246 contributing to increased infectivity. We acknowledge that infectivity is a multi-factor process of
247 which receptor binding is only one among multiple actors.

248 Our investigation is focused on characterizing individual amino acid contributions to the
249 different performance of alternative spike structures in binding hACE2, especially to assess the
250 hypothetical relevance of present and future single point mutations imposed on available crystal
251 structures. Binding to ACE2 is the first step for SARS-CoV-2 infection, and is therefore central
252 to the overall fitness of a given viral variant. In the context of viral evolution towards improved
253 human ACE2 binding, we intend to identify the structural traits that represent the objects of
254 selection; when compared to the closest experimental dataset available [9], the quantities we
255 compute provide QM simulations which largely align with empirical results (Fig S4).

256 The QM-CR approach is performed on all-atom *in silico* structures as inputs. In this context, we
257 have applied the QM-CR method to crystal structures available in the PDB database, as well as
258 variations of them, whenever crystalized structures are unavailable. Our analysis does not take
259 into account conformational changes (which recent work has shown take place on the order of
260 microseconds for spike-hACE2 interactions [43, 44]; conformational changes would require
261 applying QM-CR to a population of structures coming from, for instance, subsampled MD
262 trajectories [45]. Furthermore, due to the nature of the QM-CR analysis and the use of a single
263 frame, interaction energies do not account for entropic effects or rearrangement (electronic or
264 nuclear) after disassociation. Interactions have also been partitioned into per-amino-acid
265 contributions, which introduces some error terms, however this can be controlled using measures

266 provided by the QM-CR methodology (see Supporting Information, “details of fragmentation
267 procedure”). For this study, *i.e.* the case of E484K, the model’s predictions align with available
268 empirical data even when using the initial virtual crystal structures. In this specific case, this may
269 be due to the long-range impact of E484K as a charge-shift mutation. Moreover, in the vicinity
270 of the interface, the QM-CR approach produces an interaction network, which at the very least
271 encodes the first-order effects that a mutation can induce in the chemical bonds of the interface.

272 The crystal structures employed for the Delta spike variant are not associated to an experimental
273 result. They are virtual approximations, obtained via local energy minimization. The
274 approximation assumes that no major structural changes from the reference Wuhan spike occur
275 when single point mutations are introduced. In the supplementary information, we show
276 evidence that such an approximation is reasonable, at least for the combination of mutations
277 characterizing the Beta variant RBD: E484K, N501Y, and K417N. We employ a well-
278 established DFT approximation, PBE+D3, which provides reliable information on coarse-
279 grained quantities and trends [32, 46], and simulates structures in their relaxed positions [47].
280 Overall, we deem our method to be a balanced compromise between accuracy and modeling
281 complexity.

282 The maturity of large-scale quantum mechanical calculations represents a unique opportunity to
283 employ full QM approaches to uncover the interaction mechanisms. Such mechanisms are
284 presently inaccessible to other, more conventional computational approaches. We also show that
285 an *ab initio* modeling in QM-CR provides insights useful for comparison with experimental data,
286 supporting its capability to offer predictive power for intermolecular interactions of biological
287 relevance. Finally, we argue that QM-CR can be correlated to high throughput calculations of
288 libraries of mutated structures aimed at identifying potential antibody escape routes for SARS-
289 CoV-2 and, being unbiased and agnostic, can be readily applied to other biological systems.

290 **Methods**

291 ***Computational approach***

292 We perform a full Quantum Mechanical (QM) model, as implemented in the BigDFT computer
293 program suite [48]. The approach employs the formalism of Daubechies wavelets to express the
294 electronic structure of the assemblies in the framework of the Kohn-Sham (KS) formalism of
295 Density Functional Theory (DFT) [39]. The electronic structure is expressed, by both the density
296 matrix and the Hamiltonian operator, in an underlying basis set of support functions—a set of
297 localized functions adapted to the chemical environment of the system. Such functions are
298 expressed in Daubechies wavelets, typically using one to four support functions per atom as the

299 basis set. The electronic density matrices, as well as the Hamiltonian expressed in the BigDFT
300 basis set, are analyzed to provide quantum observables of the systems. The code provides
301 efficient and accurate QM results for full systems of large sizes, delivering excellent
302 performance on massively parallel supercomputers. In the present study, we employ the PBE
303 approximation corrected by dispersion D3 correction terms [49] and Hartwigsen-Goedecker-
304 Hutter (IGH) pseudopotentials [50]. The CheSS library [51] has been employed to calculate the
305 system's density matrix. A comparison of the inclusion of an implicit solvent, with respect to gas
306 phase calculations shows that interaction energies at interface residues are only marginally
307 affected by the presence of the solvent (Fig S5).

308 Each calculation includes approximately 12,000 atoms and requires about 2 h of wall-time on 32
309 compute nodes of the IRENE-Rome supercomputer, at the TGCC Supercomputing center in
310 Saclay (Paris, France). A similar approach has been previously used, in conjunction with the
311 other atomistic techniques described in the introduction, to investigate the interaction patterns of
312 the SARS-CoV-2 main protease with natural peptidic substrates, and to design peptide inhibitors
313 tested *in vitro* [45].

314 **Procedure**

315 Starting from a representative 3D model of the molecules as our input, we calculate the system's
316 electronic structure, from which we extract various quantities. We draw a contact network to
317 identify relevant chemical interactions among the spike RBD and the various interactors
318 considered in this study. The strength of the inter-residue interaction is quantified by the
319 Fragment Bond Order (FBO) [52], calculated using the electronic structure of the system in
320 proximity of a given residue. Such an approach has been previously described in detail [39, 53]
321 and is summarized in Table 1.

322 We use the FBO to identify the interface residues, defined as the amino acids of the counter-
323 ligand that have a non-negligible value, above a set threshold of the FBO, with the ligand. In
324 contrast to a simple geometrical indicator like the RBD-ligand distance, the FBO provides a
325 metric that enables a non-empirical identification of steric hot-spot interactions. We here identify
326 as chemical hot-spot interface residues the amino acids which exhibit a FBO value with the
327 ligand larger than 7×10^{-3} . Such threshold is obtained comparing the hydrogen bonding
328 interaction network of the SARS-CoV-2 main protease to its natural peptidic substrates, derived
329 from traditional FF analysis and the equivalent FBO network [32].

330 Once the chemical connection among amino acids is identified, we assign to each residue its
331 contribution to the binding interaction between the two subsystems. We calculate these

332 interaction terms from the output of the DFT code and interpret them as two parts. First, a long-
333 range electrostatic attraction/repulsion term, defined from the electron distributions of each of
334 the fragments (even when far apart, two fragments may still interact). The remaining term, which
335 can only be attractive, is provided by the chemical binding between the fragments, and is non-
336 zero only if the electronic clouds of the fragments superimpose (short-range). This term is
337 correlated with the FBO strength, and we identify it as the chemical interaction.

338 By including long-range electrostatic terms, the decomposition enables us to single out relevant
339 residues not necessarily residing at the interface. In this way, the model provides an *ab initio*
340 representation of the RBD-ligand interactions as the final output.

341 ***Crystal structures and generation of mutant virtual structures***

342 Crystallographic structures are obtained from the RCSB database [54] using PDB entries 6M0J
343 (hACE2), 7K8X (nAb C121), 7K90 (nAb C144), and 7C8J (macACE2). Protonation of
344 histidines and other titratable residues is assigned a pH of 7, based on the PDBFixer tool in
345 OpenMM [55, 56].

346 Virtual structures are generated by imposing point mutations on the original structure. Structure
347 relaxations are performed by optimizing the crystal geometry with the OpenMM package using
348 the AMBER FF14SB force field [57]. While such optimized structures do not represent the full
349 panorama of conformations that might exist at a finite temperature, the resulting structures are
350 interpreted as one plausible representative among the possible conformations of the system. To
351 further verify this statement, we compared the difference in the interaction pattern obtained from
352 the experimental crystal structure of the Beta variant in conjunction with hACE2 (PDB 7VX4),
353 to the same quantity from the combined action of each point-mutation characterizing the Beta
354 RBD (E484K, N501Y and K417N), applied on virtual crystals derived from WT-RBD (6M0J).
355 We verify (see Supplementary Information) that the interaction difference on the RBD of the two
356 real crystals corresponds to the overall sum of the contributions of each of the point mutations.
357 This fact, on the one hand, confirms the modular impact of each point mutation to the overall
358 binding, on the other hand, suggests that the impact due to conformational rearrangements is of
359 higher order, for this variant.

360 **Acknowledgments**

361 We acknowledge useful discussions with Michel Masella, Lorenzo Fontolan, and Brigitte
362 Lawhorn. LG also acknowledges support from the MaX EU Center of Excellence, and from
363 French National Computing Resources (projects spe0011 and gen12049). BM and MZ were

364 supported by an Ignite grant from Boston College and by an Award for Excellence in Biomedical
365 Research from the Smith Family Foundation. This work used computational resources of the
366 supercomputer Fugaku provided by RIKEN through the HPCI System Research Project (Project
367 ID: hp200179).

368 **Data Availability**

369 All data is included in the manuscript and/or supporting information.

370 **Author Contributions**

371 Conceptualization: MZ, LG, MF, WJ, BM.

372 Formal analysis: LG, WD, VC.

373 Funding acquisition: LG, TN, BM, WD.

374 Investigation: MZ, LG, MF, WJ, BM.

375 Methodology: MZ, LG, WD.

376 Software: LG, WD, VC.

377 Supervision: MF, WJ, BM.

378 Writing – original draft: MZ, LG, BM.

379 Writing – review and editing: MZ, LG, MF, WD, BM.

380 **References**

- 381 1. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, et al. Structural and
382 Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. *Cell* 2020; **183**: 739-
383 751.e8.
- 384 2. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated
385 transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. *Science (80-)* 2021; **372**:
386 eabg3055.
- 387 3. Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, et al. The antigenic
388 anatomy of SARS-CoV-2 receptor binding domain. *Cell* 2021; **184**: 2183-2200.e22.
- 389 4. Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated
390 immunity. *Cell* 2021; **184**: 1171-1187.e20.
- 392 5. Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Alshammary H, Amoako AA, et al. SARS-CoV-2
393 spike E484K mutation reduces antibody neutralisation. *The Lancet Microbe* 2021; **2**: e283–e284.
- 394 6. Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, et al. Prospective
395 mapping of viral mutations that escape antibodies used to treat COVID-19. *Science (80-)* 2021;
396 **371**: 850–854.
- 397 7. Luo R, Delaunay-Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants:
398 anticipation of viral evolution and what needs to be done. *Environ Microbiol* 2021; **23**: 2339–

399 2363.

400 8. Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM, Kranz DM, et al. Engineering human
401 ACE2 to optimize binding to the spike protein of SARS coronavirus 2. *Science (80-)* 2020; **369**:
402 1261–1265.

403 9. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. Deep Mutational
404 Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2
405 Binding. *Cell* 2020; **182**: 1295-1310.e20.

406 10. Schneider G. Virtual screening: an endless staircase? *Nat Rev Drug Discov* 2010 94 2010; **9**: 273–
407 276.

408 11. Gorgulla C, Boeszoermenyi A, Wang Z-F, Fischer PD, Coote PW, Padmanabha Das KM, et al. An
409 open-source drug discovery platform enables ultra-large virtual screens. *Nature* 2020; **580**: 663–
410 668.

411 12. Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. *Annu Rev Biophys
412 Biomol Struct* 2003; **32**: 335–373.

413 13. Guedes IA, de Magalhães CS, Dardenne LE. Receptor-ligand molecular docking. *Biophys Rev* .
414 2014. Springer. , **6**: 75–87

415 14. Pagadala NS, Syed K, Tuszyński J. Software for molecular docking: a review. *Biophys Rev* . 2017.
416 Springer Verlag. , **9**: 91–102

417 15. Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular Docking: A Powerful Approach for
418 Structure-Based Drug Discovery. *Curr Comput Aided-Drug Des* 2012; **7**: 146–157.

419 16. Dauber-Osguthorpe P, Hagler AT. Biomolecular force fields: where have we been, where are we
420 now, where do we need to go and how do we get there? *J Comput Aided Mol Des* 2019; **33**: 133–
421 203.

422 17. Schlick T, Portillo-Ledesma S. Biomolecular modeling thrives in the age of technology. *Nat
423 Comput Sci* 2021 15 2021; **1**: 321–331.

424 18. van der Spoel D. Systematic design of biomolecular force fields. *Curr Opin Struct Biol* 2021; **67**:
425 18–24.

426 19. Senn HM, Thiel W. QM/MM methods for biomolecular systems. *Angew Chemie - Int Ed* 2009;
427 **48**: 1198–1229.

428 20. Bai C, Warshel A. Critical Differences between the Binding Features of the Spike Proteins of
429 SARS-CoV-2 and SARS-CoV. *J Phys Chem B* 2020; **124**: 5907–5912.

430 21. Casalino L, Dommer AC, Gaieb Z, Barros EP, Sztain T, Ahn SH, et al. AI-driven multiscale
431 simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. *Int J High Perform Comput
432 Appl* 2021; **35**: 432–451.

433 22. Toor HG, Banerjee DI, Lipsa Rath S, Darji SA. Computational drug re-purposing targeting the
434 spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19. *Eur J
435 Pharmacol* 2021; **890**: 173720.

436 23. Ling R, Dai Y, Huang B, Huang W, Yu J, Lu X, et al. In silico design of antiviral peptides
437 targeting the spike protein of SARS-CoV-2. *Peptides* 2020; **130**: 170328.

438 24. Teruel N, Mailhot O, Najmanovich RJ. Modelling conformational state dynamics and its role on
439 infection for SARS-CoV-2 Spike protein variants. *PLOS Comput Biol* 2021; **17**: e1009286.

440 25. Ching WY, Adhikari P, Jawad B, Podgornik R. Ultra-large-scale ab initio quantum chemical
441 computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus. *Comput
442 Struct Biotechnol J* 2021; **19**: 1288–1301.

443 26. Adhikari P, Li N, Shin M, Steinmetz NF, Twarock R, Podgornik R, et al. Intra- and intermolecular
444 atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein:
445 implication for ACE2 receptor binding. *Phys Chem Chem Phys* 2020; **22**: 18272–18283.

446 27. Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their
447 effects on the complex of SARS-CoV2 spike protein and human ACE2. *Sci Reports* 2020 101
448 2020; **10**: 1–15.

449 28. Isaac-Lam MF. Molecular modeling of the interaction of ligands with ACE2–SARS-CoV-2 spike
450 protein complex. *Silico Pharmacol* 2021 91 2021; **9**: 1–16.

451 29. Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, et al. Molecular
452 Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and
453 Simulation Approaches. *J Proteome Res* 2020; **19**: 4291–4315.

454 30. Qiao Z, Zhang H, Ji HF, Chen Q. Computational View toward the Inhibition of SARS-CoV-2
455 Spike Glycoprotein and the 3CL Protease. *Computation* 2020; **8**: 53.

456 31. Kulik HJ, Zhang J, Klinman JP, Martínez TJ. How large should the QM region be in QM/MM
457 calculations? the case of catechol O-methyltransferase. *J Phys Chem B* 2016; **120**: 11381–11394.

458 32. Dawson W, Mohr S, Ratcliff LE, Nakajima T, Genovese L. Complexity Reduction in Density
459 Functional Theory Calculations of Large Systems: System Partitioning and Fragment Embedding.
460 *J Chem Theory Comput* 2020; **16**: 2952–2964.

461 33. Mohr S, Masella M, Ratcliff LE, Genovese L. Complexity Reduction in Large Quantum Systems:
462 Fragment Identification and Population Analysis via a Local Optimized Minimal Basis. *J Chem
463 Theory Comput* 2017; **13**: 4079–4088.

464 34. Ratcliff LE, Mohr S, Huhs G, Deutsch T, Masella M, Genovese L. Challenges in large scale
465 quantum mechanical calculations. *Wiley Interdiscip Rev Comput Mol Sci* 2017; **7**: e1290.

466 35. Laffeber C, de Koning K, Kanaar R, Lebbink JHG. Experimental Evidence for Enhanced Receptor
467 Binding by Rapidly Spreading SARS-CoV-2 Variants. *J Mol Biol* 2021; **433**.

468 36. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-
469 2 variants, spike mutations and immune escape. *Nat Rev Microbiol* 2021 197 2021; **19**: 409–424.

470 37. Rawat P, Jemimah S, Ponnuswamy PK, Gromiha MM. Why are ACE2 binding coronavirus strains
471 SARS-CoV/SARS-CoV-2 wild and NL63 mild? *Proteins* 2021; **89**: 389–398.

472 38. Sharma D, Rawat P, Janakiraman V, Gromiha MM. Elucidating important structural features for
473 the binding affinity of spike - SARS-CoV-2 neutralizing antibody complexes. *Proteins Struct
474 Funct Bioinforma* 2022; **90**: 824–834.

475 39. Ratcliff LE, Dawson W, Fisicaro G, Caliste D, Mohr S, Degomme A, et al. Flexibilities of
476 wavelets as a computational basis set for large-scale electronic structure calculations. *J Chem Phys*
477 2020; **152**: 194110.

478 40. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, et al. Escape from
479 neutralizing antibodies 1 by SARS-CoV-2 spike protein variants. *Elife* 2020; **9**: 1.

480 41. Mou H, Quinlan BD, Peng H, Liu G, Guo Y, Peng S, et al. Mutations derived from horseshoe bat
481 ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. *PLoS Pathog* 2021; **17**.

482 42. Andreano E, Piccini G, Licastro D, Casalino L, Johnson N V., Paciello I, et al. SARS-CoV-2
483 escape from a highly neutralizing COVID-19 convalescent plasma. *Proc Natl Acad Sci U S A*
484 2021; **118**.

485 43. Spinello A, Saltalamacchia A, Magistrato A. Is the Rigidity of SARS-CoV-2 Spike Receptor-
486 Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations. *J*
487 *Phys Chem Lett* 2020; **11**: 4785–4790.

488 44. Spinello A, Saltalamacchia A, Borišek J, Magistrato A. Allosteric Cross-Talk among Spike's
489 Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an
490 Effective Hijacking of Human Cell Receptor. *J Phys Chem Lett* 2021; **12**: 5987–5993.

491 45. Chan HTH, Moesser MA, Walters RK, Malla TR, Twidale RM, John T, et al. Discovery of SARS-
492 CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding. *Chem Sci* 2021; **12**:
493 13686–13703.

494 46. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. *Phys Rev*
495 *Lett* 1996; **77**: 3865–3868.

496 47. Gundelach L, Fox T, Tautermann CS, Skylaris CK. Protein–ligand free energies of binding from
497 full-protein DFT calculations: convergence and choice of exchange–correlation functional. *Phys*
498 *Chem Chem Phys* 2021; **23**: 9381–9393.

499 48. Mohr S, Ratcliff LE, Genovese L, Caliste D, Boulanger P, Goedecker S, et al. Accurate and
500 efficient linear scaling DFT calculations with universal applicability. *Phys Chem Chem Phys* 2015;
501 **17**: 31360–31370.

502 49. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of
503 density functional dispersion correction (DFT-D) for the 94 elements H–Pu. *J Chem Phys* 2010;
504 **132**: 154104.

505 50. Willand A, Kvashnin YO, Genovese L, Vázquez-Mayagoitia Á, Deb AK, Sadeghi A, et al. Norm-
506 conserving pseudopotentials with chemical accuracy compared to all-electron calculations. *J Chem*
507 *Phys* 2013; **138**.

508 51. Mohr S, Dawson W, Wagner M, Caliste D, Nakajima T, Genovese L. Efficient Computation of
509 Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library. *J*
510 *Chem Theory Comput* 2017; **13**: 4684–4698.

511 52. Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. Density functional
512 theory calculations of large systems: Interplay between fragments, observables, and computational
513 complexity. *Wiley Interdiscip Rev Comput Mol Sci* 2021; e1574.

514 53. Mohr S, Ratcliff LE, Boulanger P, Genovese L, Caliste D, Deutsch T, et al. Daubechies wavelets
515 for linear scaling density functional theory. *J Chem Phys* 2014; **140**.

516 54. RCSB PDB. <https://www.rcsb.org/>. Accessed 23 Oct 2021.

517 55. OpenMM. <https://openmm.org/>. Accessed 23 Oct 2021.

518 56. GitHub - openmm/pdbfixer: PDBFixer fixes problems in PDB files.
519 <https://github.com/openmm/pdbfixer>. Accessed 27 Nov 2021.

520 57. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB:
521 Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. *J Chem*
522 *Theory Comput* 2015; **11**: 3696–3713.

523 58. Siebenmorgen T, Zacharias M. Computational prediction of protein–protein binding affinities.

524 *Wiley Interdiscip Rev Comput Mol Sci* 2020; **10**: e1448.

525 59. GISAID - Initiative. <https://www.gisaid.org/>. Accessed 27 Nov 2021.

526 60. Dawson W, Mohr S, Ratcliff LE, Nakajima T, Genovese L. Complexity Reduction in Density
527 Functional Theory Calculations of Large Systems: System Partitioning and Fragment Embedding.
528 2019; 1–13.

529

530

531 **Figure Captions**

532

533 **Fig 1. Mechanistic characterization of the binding between Wuhan strain's spike and hACE2.** Data
534 are plotted on the sequence of hACE2 (panel a) and the spike RBD (panel b). Letters represent single
535 amino acid residues; yellow bars indicate interface residues, identified with the FBO threshold. “FBO” is
536 the Fragment Bond Order values, and “Distance” is the distance of a residue to the nearest atom of its
537 ligand. “Interaction” is the chemical/electrostatic force shown as attractive (blue) or repulsive (red), with
538 darker colors indicating stronger effects.

539

540 **Fig 2. Mechanistic characterization of Wuhan and mutated (E484K) spike binding to hACE2.** Data
541 are plotted on hACE2 (panel a) and on the Wuhan spike (panel b) primary structure bound to the Wuhan
542 spike (WT) and the mutated one (E484K). Amino acids are represented by the corresponding letters and
543 numbered on the histogram's horizontal axis. Interface residues are highlighted by yellow bars and their
544 overall effect on the other molecule is indicated by red (repulsive) or blue (attractive) tiles. Histograms
545 underneath the sequences show the relative change in binding energy of the E484K mutated variant
546 relative to the Wuhan strain, with positive and negative values indicating weaker and stronger binding,
547 respectively. Bottom right histograms represent the overall binding energy of hACE2 with the Wuhan
548 spike versus the mutated one, partitioned into chemical and electrostatic contributions. Interaction
549 networks (Wuhan spike-hACE2 to the right, and mutated spike-hACE2 to the left), including FBO-
550 interface residues and their coordinated interactors are shown (panel c). Squares depict spike residues and
551 circles depict hACE2 residues, with red color for repulsive and blue color for attractive energy. Yellow
552 outlines highlight interface residues. Bonds are purple when intermolecular or black when intramolecular.

553

554 **Fig 3. Mechanistic characterization of the Wuhan spike binding to the human ACE2 (hACE2) and**
555 ***R. macrotis* ACE2 (macACE2).** Data are plotted on the ACE2 primary structure (a), and on the Wuhan
556 spike RBD (b), when binding to the human (hACE2) and the bat (macACE2) receptor. Amino acid
557 residues are labeled with letters and numbered. Interface residues are highlighted with a yellow bar, red
558 tiles are repulsive residues, and blue tiles are attractive residues; see the rest of the figure for energy
559 scales. The interaction networks (bottom) represent the hACE2-spike system on the left, and macACE2-
560 spike on the right; circles are ACE2 residues, squares are spike residues. Interface residues are
561 highlighted with a yellow bar, red tiles are repulsive residues, and blue tiles are attractive residues. Bonds
562 are purple when intermolecular or black when intramolecular, and their thickness represents the strength
563 of the FBO between residues.

564

565 **Fig 4. Mechanistic characterization of C121 binding to the Wuhan strain spike protein, and**
566 **energetic changes as a result of the E484K spike mutation.** Data are plotted on the spike primary
567 structure (panel a) and on C121's Heavy-Chain (panel b) considering the different bindings via the Wuhan
568 spike (WT) and the mutated one (E484K). Amino acids are represented by letters and numbered on the
569 histogram's horizontal axis. Histograms underneath the sequences represent the relative change in binding
570 energy of the second row relative to the first one (Wuhan strain). The bottom right histograms represent
571 the overall binding energy of C121 with the Wuhan spike (left) and the mutated one (right) and its
572 characterization as chemical or electrostatic. The row above each sequence shows the chemical or

573 electrostatic forces as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.

574 **Fig 4 (cont.).** Interaction networks with C121 nAbs are shown (panel c). Network nodes are represented
575 in red (repulsive) or blue (attractive) based on their effect on their counterparts. Residues at the binding
576 interface are highlighted by a yellow outline. Bonds are plotted as purple when intermolecular or black
577 when intramolecular and their thickness is related to the strength of the FBO between residues.

578

579 **Fig 5. Mechanistic characterization of spike-hACE2 binding suggests that Delta+E484K spike has**
580 **stronger hACE2 binding than the Delta variant.** Data are plotted on hACE2 (panel a) primary
581 structure bound to the Wuhan spike (WT), Delta spike (δ), and Delta + 484K spike ($\delta + 484K$). Amino
582 acids are represented by the corresponding letters and numbered on the histogram's horizontal axis.
583 Interface residues are highlighted by yellow bars and their overall effect on the other molecule is
584 indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to the one employed in
585 the other figures). Histograms underneath the sequences show the relative change in binding energy
586 (green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Data are plotted on the viral
587 spike (panel b) primary structure bound to the Wuhan spike (WT), Delta spike (δ), and Delta + 484K
588 spike ($\delta + 484K$). Amino acids are represented by the corresponding letters and numbered on the
589 histogram's horizontal axis. Interface residues are highlighted by yellow bars and their overall effect on
590 the other molecule is indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to
591 the one employed in the other figures). Histograms underneath the sequences show the relative change in
592 binding energy (green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Bar plots on
593 the bottom right represent the overall binding energy of hACE2 with the Wuhan, Delta, and Delta+E484K
594 strains, partitioned into chemical or electrostatic contributions.

595

596 **Table 1. Prospectus of the main concepts and quantities constituting the model.** All the elements here
 597 discussed are general and therefore applicable, without previous parameterization, to any given set of
 598 atoms for which atomistic structural representations are available.

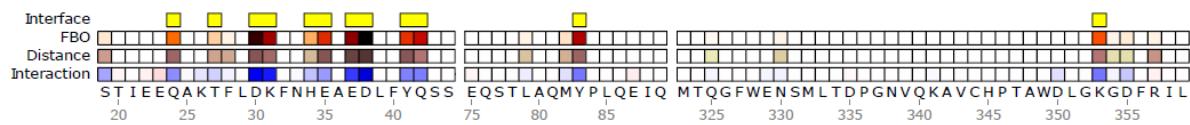
Electron Density	The distribution of electrons in a given molecular system. The electron density determines the nature and strength of the chemical bonds between interacting molecules. Such an "electron cloud" is the main emerging property of the underlying atomic structure in defining the chemical characteristics of a molecule.
Fragment	The modular elements into which the electron cloud can be partitioned, for example, an amino acid. The model partitions the electron cloud into physically consistent regions and/or verifies the consistency of a pre-defined partitioning; every such region is defined as a fragment.
Fragment Bond Order (FBO)	The descriptor of the inter-fragment interactions. FBO is the main quantity used in the model to represent the connection pattern of the fragments of interacting molecules.
Fragment Interactions	From the results of the model and the features of the fragments it is then possible to calculate the interaction strength between any two fragments. Such interaction has both a chemical/short-range term that is always attractive, and an electrostatic/long-range term that can be attractive or repulsive.
Final Output	At the end of the simulation, BigDFT provides a simple representation of the strength of interaction between fragments of the two molecules. The model can describe the energy and nature of the acting chemical bonds. This enables a mechanistic explanation and/or prediction of how specific amino acid substitutions or deletions, in spikes or nAbs, impact the interactions with their hACE2 substrate or the viral spike, respectively.
Hardware Requirements	The model requires massively parallel calculations via high performance computing. On a modern supercomputer, hundreds of simulations can be performed in a time frame of one hour.

599

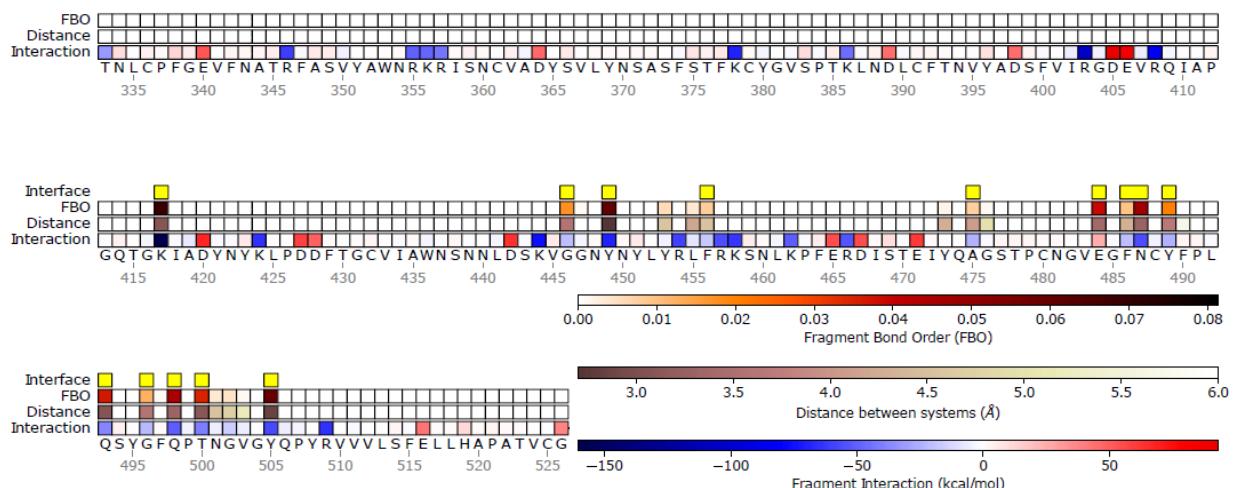
600

601 Figure 1

a) hACE2 @ RBD WT

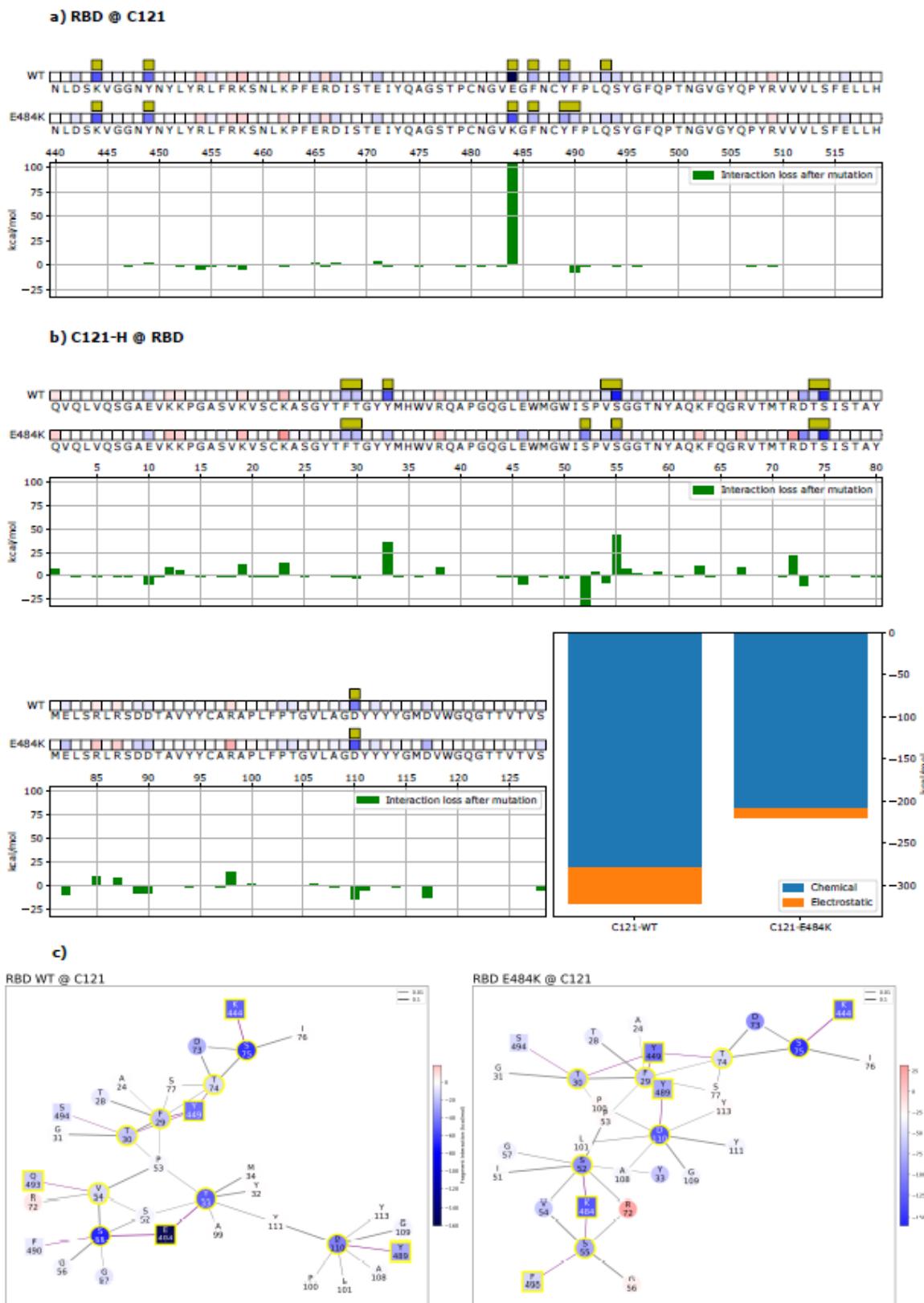


b) RBD WT @ hACE2

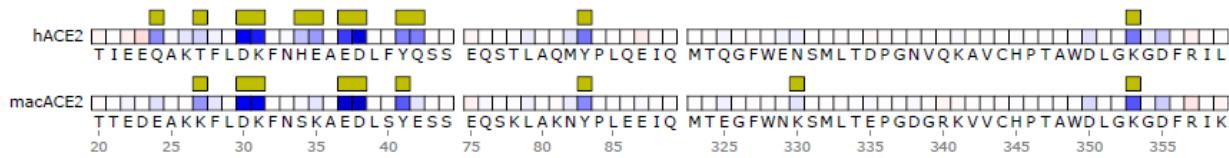


602

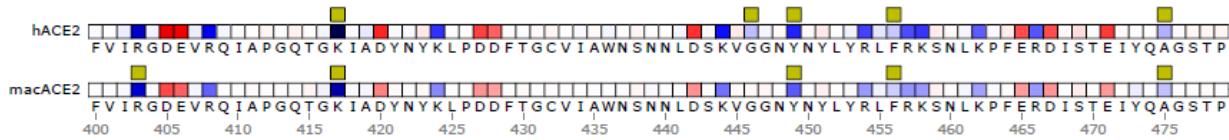
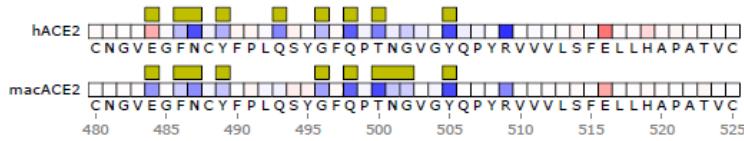
603 Figure 2



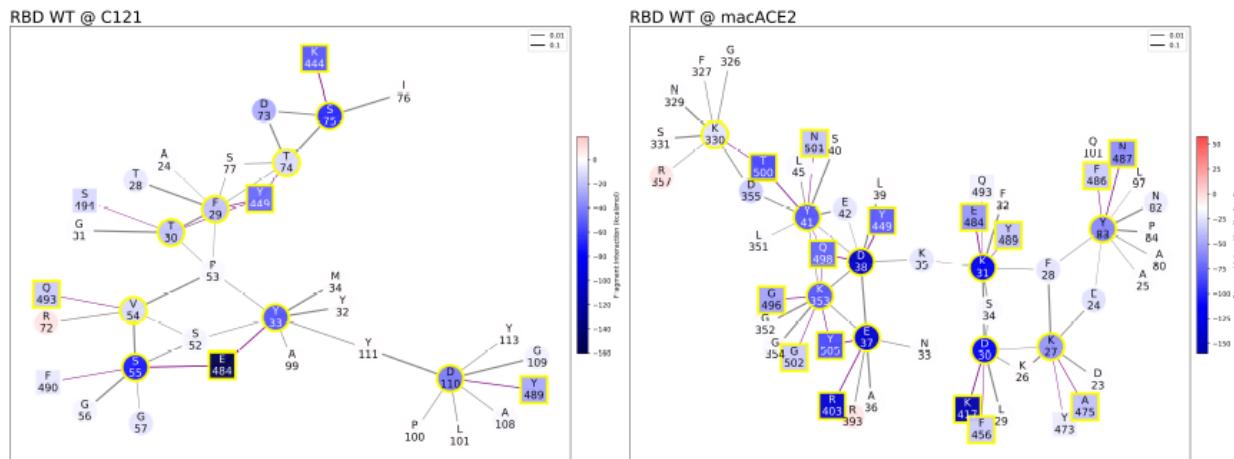
a) ACE2 @ RBD WT



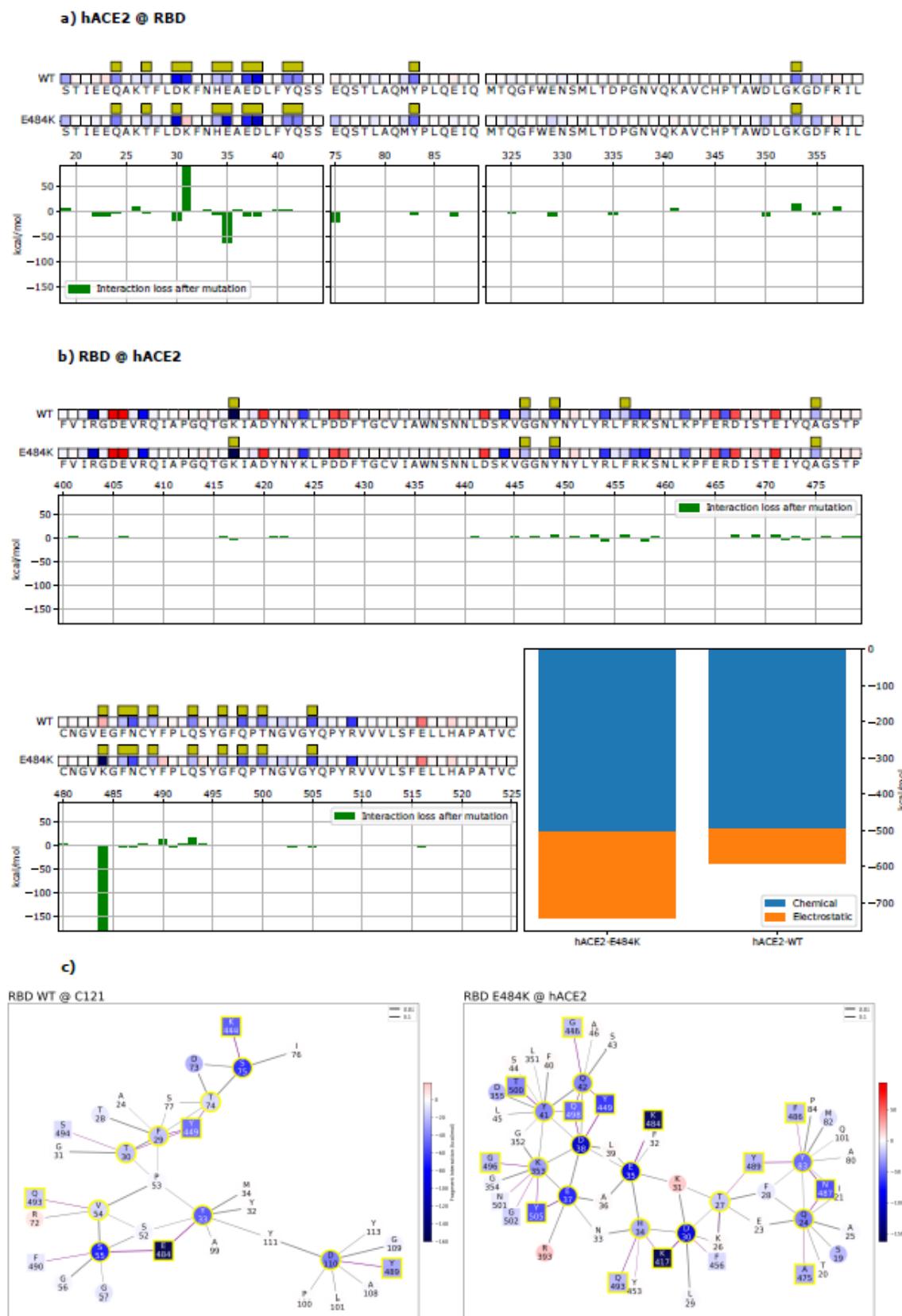
b) RBD WT @ ACE2



c)



609 Figure 4



611 Figure 5

