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Abstract

We employ a recently developed quantum mechanical approach (QM-CR), based on complexity
reduction of Density Functional Theory calculations, to characterize the interactions of the
SARS-CoV-2 spike Receptor Binding Domain (RBD) with ACE2 host receptors and antibodies.
QM-CR operates via ab initio identification of individual amino acid residues contributions to
chemical binding and leads to the identification of the impact of point mutations. Here, we
especially focus on the E484K mutation of the viral spike protein. We find that spike residue 484
hinders the spike's binding to the human ACE2 receptor (hACE2). In contrast, the same residue
is beneficial in binding to the bat receptor Rhinolophus macrotis ACE2 (macACE2). In
agreement with empirical evidence, QM-CR shows that the E484K mutation allows the spike to
evade categories of neutralizing antibodies like C121 and C144. The simulation also shows how
the Delta variant spike binds more strongly to hACE2 compared to the original Wuhan strain,
and predicts that a E484K mutation can further improve its binding. Broad agreement between
the QM-CR predictions and experimental evidence supports the notion that ab initio modeling
has now reached the maturity to handle large intermolecular interactions central to biological

processes.
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Significance Statement
The threat of emerging pathogens, exemplified by the rapid spread of SARS-CoV-2, has

motivated investigations into how pathogens may evolve. In surveying possible evolutionary
trajectories, wet-bench screens can only sample a small fraction of possibilities because of
practical limitations. Mechanistic modeling can partially overcome these limitations by offering:
(1) flexibility of in silico sampling and (2) insights about underlying interaction mechanisms.
Here, we employ a complexity reduction quantum mechanical (QM-CR) approach to describes
the intermolecular interactions at the amino acid level. Through this approach, we uncover
residues critical to spike-receptor and spike-antibody interactions. We find broad agreement
between the QM-CR predictions and experimental evidence, showcasing the ability of ab initio

modeling to capture biologically-relevant intermolecular interactions.

Introduction

Since SARS-CoV-2 infected the human host, several variants have arisen [1] with distinct
changes in the viral spike protein, particularly in the Receptor Binding Domain (RBD). Two
trends have been prevalent in the spike evolution: i) selection towards improved binding to host
cells [2]; and i1) selection towards evasion of neutralizing antibodies (nAbs) [3—6]. Anticipating
the evolutionary trajectory of viruses is a long-established relevant topic in the scientific
community [7]. Presently, the main approach in this direction is high-throughput in vitro
screening of mutants (e.g. [8, 9]); however, such an approach does not directly identify the
mechanisms that make a given mutation more, or less, beneficial. In this work, we show how the
recent developments in ab initio modeling can complement experimental results and offer

detailed mechanistic insights.

Traditionally, full QM models of intermolecular interactions are only employed for small
molecules of about a hundred atoms [10, 11]; larger molecules have proven computationally
challenging for full QM investigations. Nevertheless, in silico approaches alternative to full QM
have been successful. Molecular docking [12—-14], relying on geometrical constraints to assess
intermolecular interactions, has been used to survey small-molecule candidates in drug discovery
[15]. Force-fields (FFs) have also been successful [16, 17], whenever previous adequate
parameterization is available [18]. Hybrid quantum mechanics/molecular mechanics (QM/MM)
methods are also common in describing enzyme-substrate systems [19], and have been
successfully applied to SARS-CoV-2 [20, 21, 30, 22-29]. QM/MM uses quantum mechanical
(QM) simulations for a small portion of the system (tens of atoms) [31], leaving the remaining

regions to be modeled with a less computationally demanding MM simulation, driven by FFs.
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To mechanistically characterize SARS-CoV-2 spike-receptor and spike-nAb interactions, we
apply a recently developed approach for large scale electronic structure calculations: Complexity
Reduction in Density Functional Theory calculations [32, 33], hereafter called QM-CR. QM-CR
differs from previous approaches in requiring no targeted parameterization or prior knowledge
about the nature or sites of interactions, and it is based on full QM calculations on the entire
system. QM-CR leverages recent progress in computational chemistry [32, 34] to handle tens of
thousands of atoms in a single simulation. This enables us to capture and investigate biological
processes involving several hundreds of amino acids, including the SARS-CoV-2 spike
interactions. Recent efforts on SARS-CoV-2 have generated structural and biochemical data that
can be used to validate QM-CR predictions. In particular, the high level of detail from recent
contributions gives us new insight to complement experimental data or analysis based on

regression models [35-38].

Importantly, QM-CR can reveal the mechanisms behind intermolecular binding by decomposing
interactions into chemical/short-ranged (which imply a shared electron) versus electrostatic/long-
ranged (which do not involve shared electrons). We define as "hotspots" amino acids with a
significant chemical contribution to the intermolecular interactions. To further investigate the
contribution of individual amino acids, single point mutations can be introduced into a protein's
(e.g., the spike) primary structure. We employ the BigDFT computer program [39], based on an
ab initio Density Functional Theory approach on a set of fully atomistic 3D structural models, to
simulate intermolecular interactions of interest with a computational cost manageable on modern

supercomputers.

In this work, we focus our analysis on the E484K mutation for three main reasons. First, our
analysis identifies residue E484 as the main interface weak link in the interaction of the SARS-
CoV-2 Wuhan strain with the human receptor ACE2 (hACE2); conversely the same residue is
beneficial to binding the bat Rhinolophus macrotis’ ACE2 (macACE2). Second, we show that an
E484K mutation alone can disrupt the neutralizing effect of specific antibodies. In addition, we
also highlight the strong modular character of the E484K mutation and show that, if imposed on
existing SARS-CoV-2 variants such as Delta, it can enhance binding to hACE2, potentially
identifying future viral evolutionary trajectories. Finally, we argue that ab initio models are now
at the point of providing mechanistic insights on molecular interactions central to biological

processes.

Results

We focus our analysis on the impact of the E484K mutation on antibody evasion and cellular
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receptor binding. Prior experimental and computational data have shown that spike variants,
presenting the E484K mutation in the RBD, can evade antibodies C144 and C121 [38, 40].
E484K is also a typical signature mutation of the RBD of the Gamma and Beta variants. We test
our QM model as an agnostic predictor to explain the interaction of the viral spike (the original

Wuhan version or the E484K-mutated one) with host receptors and nAbs.

OM-CR underscores hotspots of spike-hACE?2 interactions

We examine the interaction between the WT spike RBD and hACE2 as its native substrate. In
this analysis, we calculate the overall effect of each amino acid residue on its respective
interactor, either on the spike side or on the hACE2 side; the contribution to the binding energy

can either be attractive/stabilizing or repulsive/de-stabilizing (Fig 1).

We use Fragment Bond Order (FBO) [32], calculated using the electronic structure of the system
in proximity of a given residue, as a measure of the strength of the interaction in the proximity of
the interface between the two interacting molecules (Table 1). In Fig 1, we have highlighted
residues with large FBO as well as those close to the geometric interface. Residues with both
large FBO and interface proximity are determined as major contributors to the intermolecular
interactions. This analysis reveals the contribution of each residue to the overall binding
performance, highlighting which amino acids facilitate or hinder binding, and how. In the
following sections, we use FBO to draw an interaction network of the interface to detail the
chemical interactions among residues, and their stabilizing or destabilizing role. Details of the
procedure are provided in the supplementary information ("Details of the fragmentation
procedure"). As an alternative visualization, the contribution of each amino acid residue to the

binding can also be highlighted over the 3D physical arrangement of the two molecules (Fig S1).

OM-CR identifies the spike E484 residue as the weak link in the binding to the
host receptor hACE2

FBO values pinpoint the hotspots of the RBD-hACE2 system (Fig 2). On the hACE2 side (Fig 2,
panel a), Q24, T27, D30, K31, H34, E35, E37, D38, Y41, Q42, Y83, and K353 stand out, in
agreement with known data [41]. On the spike side (Fig 2, panel b), a more diverse layout
emerges, on and off the interface, with several residues displaying repulsion. However, residue
E484 shows the unique trait of being simultaneously repulsive and at the interface with hACE2,
via a short-range interaction with the K31 residue (Figs 2 and S6). Since the chemical interaction
is intrinsically attractive, the overall repulsive interaction indicates that another residue in the

vicinity cancels the chemical attraction with an electrostatic repulsion. Overall, in the Wuhan
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type structure, E484 destabilizes the binding to hACE2. From this analysis, we conclude that the
Wuhan spike RBD harbors a sub-optimal residue at the 484 position for hACE2 binding.

To further investigate the impact of E484, we test the model on the available 3D crystal structure
of the human homologous ACE2 receptor in Rhinolophus macrotis, a host species with a more
adapted SARS-CoV-2 interaction [41]. In this simulation (Fig 2 panels a and b, second rows), the
E484 residue is instrumental to the binding by being strongly attractive to the R. macrotis ACE2
(macACE2). Notably, in both hACE2 and macACE2, the interactor with E484 is the ACE2
residue K31. This means that the macACE2 sequence has residues, proximal to the K31 hotspot,
that exert an attractive electrostatic force on E484. A closer inspection of the two sequences
reveals that this attractive force comes from the K35 residue, which in hACE?2 is replaced by

Glutamic Acid. Thus, the model highlights a stark contrast between human and bat receptors.

We further confirmed the role of E484 by introducing the E484K mutation into the viral spike
and then assessing the interaction with hACE2 (Fig S2). The E484K mutation improves the
spike-hACE2 binding energy by about 32% (Fig S2, bottom right histograms), switching the
main hACE2 interacting residue from K31 to E35. Such an interaction, driven by electrostatics,
represents a net improvement of the Wuhan-hACE2 network. Conversely, the same mutation
does not affect the spike binding energy to macACE2 in the same position, where the bat
receptor hosts a lysine. In other terms, for macACE2, K484 clearly does not engage K35, and
would actually disappear from the interface (Fig S2). The resulting interaction network is
rearranged, and the interface binding energy is not improved by the mutation. Therefore, the
model shows a more functional interaction between macACE2 and Wuhan RBD, possibly the
result of a longer adaptation by SARS-CoV-2 to R. macrotis, compared to the human receptor. In
the hACE2 interaction, the E484 spike residue belongs to a sub-optimal sector of the chemical

interface, suggesting that other RBD adaptations in this sector are likely to improve the binding.

OM-CR shows how nAb C121 loses binding to the E484K mutated spike

We identify the hotspots between the Wuhan spike RBD and C121 nAbs (Figs 4 and S1) (see
results for C144 nAb in Fig S3). Residue E484 is the main spike interactor with C121 nAb.
Other relevant sites are residues K444, Y449, F486, Y489, and Q493. On the C121 side, residues
Y33, S55, and S75 are pivotal for the Wuhan spike binding. The model estimates that among all
the residues contributing to the interaction, the individual contribution of E484 amounts to
around 50% of the total. The interaction network (Fig 4) shows E484's binding to residues Y33

and S55 of C121. Once the E484K mutation is imposed, we observe a rearrangement of the
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interaction network, and a substantially lower binding energy, between the spike and the
antibody. Specifically, E484K reduces the connectivity at the 484 residue in the interaction
network, and modifies the interactions on the C121 side towards decreased stability. Only the
S52 residue is stabilized by the mutation, but not to the point of compensating for the loss of
attraction at other residues. Overall, once the mutation is applied, we observe a substantial
decrease of about 25% of the total binding energy, largely because of reduced short-range
interactions. The model concludes, with no a priori information other than the experimental
crystal structure, that the E484 residue is the essential actor in the binding by nAb C121, and that
a targeted point mutation will substantially affect said binding. The analysis of C144 nAb shows
comparable results. Moreover, C144 undergoes a substantial rearrangement of its interaction
network in response to the mutation, arguably a consequence of the original higher connectivity
of the residue E484 in the binding, compared to the C121 case: five C144 residues are involved
(Y51, S52, G53, G54 and S55) compared to two C121 residues (Y33 and S55) (Fig S3).
Interestingly, the importance of E484 also appeared in previous a work in which E484 mutants

arise under the selective pressure of nAbs [42].

OM-CR predicts that the E484K mutation strengthens the binding of the Delta
spike to hACE?2

Starting from the Wuhan strain crystal structure, we generate a virtual crystal structure to
represent Delta (B.1.617.2) in conjunction with hACE2 by substituting its characterizing RBD
mutations (L452R and T478K) into the Wuhan spike crystal structure. Such residue mutations
belong to an off-interface sector of the RBD (see Fig 1). Our simulations identify the same FBO
interface residues found for the Wuhan strain. However, differently from the other tested
interaction networks, a substantial contribution to the overall binding energy of Delta to hACE2
comes from off-interface residues via their long-range electrostatic effect on their counterparts,
highlighting the relevance of including residues beyond the interface region, in the analysis of

binding.

Furthermore, when testing the binding of the Delta-hACE2 system after introducing the E484K
mutation, the simulation shows that E484K is compatible with the Delta variant and further
strengthens the overall binding to hACE2. This in silico-generated variant, solely based on
theoretical grounds, displays a stronger binding to hACE2 than either E484K or Delta variants
individually (Fig 5).
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Discussion

Recently developed Complexity Reduction tools in Density Functional Theory calculations have
allowed full QM simulations of systems with several thousands of atoms. These advances have
bridged the gap that had so far hindered full QM ab initio modeling of larger molecules that are
often of interest in biology. A computational approach that can capture biologically relevant
intermolecular interactions, such as protein-protein interactions, has untapped potential for better

mechanistic understanding of biological phenomena at a molecular level.

In this work, we use the BigDFT code to implement an ab initio QM simulation of the electronic
properties of a given set of atoms as large as a full protein-protein system. Through this model,
we decompose the interaction between two biological macro-molecules, spike RBD and
receptor/antibody, into the individual energetic contributions of each of the amino acid residues
involved. Additionally, the model characterizes the nature of these contributions into two main
categories: (1) short-range/chemical and (2) long-range/electrostatic. Ultimately, we infer a
network of interactions with amino acid residues of the two interacting molecules as nodes, and
the inter-residue binding strength as edges. This interaction network is based on the electronic

structure of the protein-protein system.

We focus on the viral spike interaction with ACE2 as its natural receptor, and with nAbs C121
and C144. We demonstrate that a QM model, assessing the interactions among the residues of an
intermolecular biological system, enables mechanistic insight into how SARS-CoV-2 interacts
with its host. The QM-CR model identifies the E484 residue as the only interface element
hindering the binding between the Wuhan strain and hACE2, making it the most evident weak
link of the Wuhan spike binding to the human host. The E484K mutation is shown by the model
as a direct solution to this hindrance by improving binding to hACE2, and presumably
constituting an evolutionary advantage, as supported by its emergence among several successful
variants. Interestingly, QM-CR also shows that the E484 residue stabilizes the interaction
between the Wuhan viral spike and the bat receptor macACE2 from Rhinolophus macrotis. We
interpret this as an indication that the Wuhan strain is better adapted to a bat-like ACE2, and the

rise of changes at E484 constitutes an adaptation specific to the human host.

In agreement with known data, QM-CR predicts loss of interaction between the SARS-CoV-2

spike and nAbs C121 and C144, once the E484K mutation is imposed on the spike of the Wuhan
strain. The RBD residue E484 emerges as the main and fundamental spike fragment enabling the
binding event, and therefore neutralization. These data suggest that nAbs challenging the spike at

E484—the very residue that most hinders hACE2 interaction—provide an ulterior selective



232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255

256
257
258
259
260
261
262
263
264
265

pressure for the virus to find alternatives to the original phenotype, at this position.

By analyzing the competition between short- and long-range interaction contributions, we have
shown that, compared to the Wuhan strain, the charge-shift E484K mutation substantially
increased (by about 30%) the binding energy to hACE2. On the RBD side, the model also
highlights how the effect of E484K is focused on the 484 position, with limited off-target
repercussions for the spike’s binding (Fig 3). We argue that this trait qualifies the E484K
mutation as highly “RBD-modular" and readily achievable in an already well-adapted spike
structure. The contribution of E484K to the binding is largely long-range/electrostatic, therefore
less dependent on a specific steric conformation. Our simulations are motivated by the available
empirical data in identifying the E484K mutation as a particularly likely evolutionary outcome,
based on increased SARS-CoV-2 infectivity and antibody evasion. We thus examined the
potential impact of the E484K mutation on spike-hACE2 binding in the background of the Delta
variant. Our model suggests that E484K affects spike-hACE2 and spike-nAb binding in a
modular fashion. Thus, if acquired by the Delta strain, E484K further increases binding, possibly
contributing to increased infectivity. We acknowledge that infectivity is a multi-factor process of

which receptor binding is only one among multiple actors.

Our investigation is focused on characterizing individual amino acid contributions to the
different performance of alternative spike structures in binding hACE2, especially to assess the
hypothetical relevance of present and future single point mutations imposed on available crystal
structures. Binding to ACE2 is the first step for SARS-CoV-2 infection, and is therefore central
to the overall fitness of a given viral variant. In the context of viral evolution towards improved
human ACE2 binding, we intend to identify the structural traits that represent the objects of
selection; when compared to the closest experimental dataset available [9], the quantities we

compute provide QM simulations which largely align with empirical results (Fig S4).

The QM-CR approach is performed on all-atom in silico structures as inputs. In this context, we
have applied the QM-CR method to crystal structures available in the PDB database, as well as
variations of them, whenever crystalized structures are unavailable. Our analysis does not take
into account conformational changes (which recent work has shown take place on the order of
microseconds for spike-hACE2 interactions [43, 44]; conformational changes would require
applying QM-CR to a population of structures coming from, for instance, subsampled MD
trajectories [45]. Furthermore, due to the nature of the QM-CR analysis and the use of a single
frame, interaction energies do not account for entropic effects or rearrangement (electronic or
nuclear) after disassociation. Interactions have also been partitioned into per-amino-acid

contributions, which introduces some error terms, however this can be controlled using measures
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provided by the QM-CR methodology (see Supporting Information, “details of fragmentation
procedure”). For this study, i.e. the case of E484K, the model’s predictions align with available
empirical data even when using the initial virtual crystal structures. In this specific case, this may
be due to the long-range impact of E484K as a charge-shift mutation. Moreover, in the vicinity
of the interface, the QM-CR approach produces an interaction network, which at the very least
encodes the first-order effects that a mutation can induce in the chemical bonds of the interface.

The crystal structures employed for the Delta spike variant are not associated to an experimental
result. They are virtual approximations, obtained via local energy minimization. The
approximation assumes that no major structural changes from the reference Wuhan spike occur
when single point mutations are introduced. In the supplementary information, we show
evidence that such an approximation is reasonable, at least for the combination of mutations
characterizing the Beta variant RBD: E484K, N501Y, and K417N. We employ a well-
established DFT approximation, PBE+D3, which provides reliable information on coarse-
grained quantities and trends [32, 46], and simulates structures in their relaxed positions [47].
Overall, we deem our method to be a balanced compromise between accuracy and modeling

complexity.

The maturity of large-scale quantum mechanical calculations represents a unique opportunity to
employ full QM approaches to uncover the interaction mechanisms. Such mechanisms are
presently inaccessible to other, more conventional computational approaches. We also show that
an ab initio modeling in QM-CR provides insights useful for comparison with experimental data,
supporting its capability to offer predictive power for intermolecular interactions of biological
relevance. Finally, we argue that QM-CR can be correlated to high throughput calculations of
libraries of mutated structures aimed at identifying potential antibody escape routes for SARS-

CoV-2 and, being unbiased and agnostic, can be readily applied to other biological systems.

Methods
Computational approach

We perform a full Quantum Mechanical (QM) model, as implemented in the BigDFT computer
program suite [48]. The approach employs the formalism of Daubechies wavelets to express the
electronic structure of the assemblies in the framework of the Kohn-Sham (KS) formalism of
Density Functional Theory (DFT) [39]. The electronic structure is expressed, by both the density
matrix and the Hamiltonian operator, in an underlying basis set of support functions—a set of
localized functions adapted to the chemical environment of the system. Such functions are

expressed in Daubechies wavelets, typically using one to four support functions per atom as the
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basis set. The electronic density matrices, as well as the Hamiltonian expressed in the BigDFT
basis set, are analyzed to provide quantum observables of the systems. The code provides
efficient and accurate QM results for full systems of large sizes, delivering excellent
performance on massively parallel supercomputers. In the present study, we employ the PBE
approximation corrected by dispersion D3 correction terms [49] and Hartwigsen-Goedecker-
Hutter (HGH) pseudopotentials [50]. The CheSS library [51] has been employed to calculate the
system’s density matrix. A comparison of the inclusion of an implicit solvent, with respect to gas
phase calculations shows that interaction energies at interface residues are only marginally

affected by the presence of the solvent (Fig S5).

Each calculation includes approximately 12,000 atoms and requires about 2 h of wall-time on 32
compute nodes of the IRENE-Rome supercomputer, at the TGCC Supercomputing center in
Saclay (Paris, France). A similar approach has been previously used, in conjunction with the
other atomistic techniques described in the introduction, to investigate the interaction patterns of
the SARS-CoV-2 main protease with natural peptidic substrates, and to design peptide inhibitors
tested in vitro [45].

Procedure

Starting from a representative 3D model of the molecules as our input, we calculate the system’s
electronic structure, from which we extract various quantities. We draw a contact network to
identify relevant chemical interactions among the spike RBD and the various interactors
considered in this study. The strength of the inter-residue interaction is quantified by the
Fragment Bond Order (FBO) [52], calculated using the electronic structure of the system in
proximity of a given residue. Such an approach has been previously described in detail [39, 53]

and is summarized in Table 1.

We use the FBO to identify the interface residues, defined as the amino acids of the counter-
ligand that have a non-negligible value, above a set threshold of the FBO, with the ligand. In
contrast to a simple geometrical indicator like the RBD-ligand distance, the FBO provides a
metric that enables a non-empirical identification of steric hot-spot interactions. We here identify
as chemical hot-spot interface residues the amino acids which exhibit a FBO value with the
ligand larger than 7x107. Such threshold is obtained comparing the hydrogen bonding
interaction network of the SARS-CoV-2 main protease to its natural peptidic substrates, derived

from traditional FF analysis and the equivalent FBO network [32].

Once the chemical connection among amino acids is identified, we assign to each residue its

contribution to the binding interaction between the two subsystems. We calculate these



332
333
334
335
336
337

338
339
340

341

342
343
344
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359

360

361
362
363

interaction terms from the output of the DFT code and interpret them as two parts. First, a long-
range electrostatic attraction/repulsion term, defined from the electron distributions of each of
the fragments (even when far apart, two fragments may still interact). The remaining term, which
can only be attractive, is provided by the chemical binding between the fragments, and is non-
zero only if the electronic clouds of the fragments superimpose (short-range). This term is
correlated with the FBO strength, and we identify it as the chemical interaction.

By including long-range electrostatic terms, the decomposition enables us to single out relevant
residues not necessarily residing at the interface. In this way, the model provides an ab initio

representation of the RBD-ligand interactions as the final output.

Crystal structures and generation of mutant virtual structures

Crystallographic structures are obtained from the RCSB database [54] using PDB entries 6M0J
(hACE2), 7K8X (nAb C121), 7K90 (nAb C144), and 7C8J (macACE2). Protonation of
histidines and other titratable residues is assigned a pH of 7, based on the PDBFixer tool in
OpenMM [55, 56].

Virtual structures are generated by imposing point mutations on the original structure. Structure
relaxations are performed by optimizing the crystal geometry with the OpenMM package using
the AMBER FF14SB force field [57]. While such optimized structures do not represent the full
panorama of conformations that might exist at a finite temperature, the resulting structures are
interpreted as one plausible representative among the possible conformations of the system. To
further verify this statement, we compared the difference in the interaction pattern obtained from
the experimental crystal structure of the Beta variant in conjunction with hACE2 (PDB 7VX4),
to the same quantity from the combined action of each point-mutation characterizing the Beta
RBD (E484K, N501Y and K417N), applied on virtual crystals derived from WT-RBD (6MO01J).
We verify (see Supplementary Information) that the interaction difference on the RBD of the two
real crystals corresponds to the overall sum of the contributions of each of the point mutations.
This fact, on the one hand, confirms the modular impact of each point mutation to the overall
binding, on the other hand, suggests that the impact due to conformational rearrangements is of

higher order, for this variant.
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Figure Captions

Fig 1. Mechanistic characterization of the binding between Wuhan strain’s spike and hACE2. Data
are plotted on the sequence of hACE2 (panel a) and the spike RBD (panel b). Letters represent single
amino acid residues; yellow bars indicate interface residues, identified with the FBO threshold. “FBO” is
the Fragment Bond Order values, and “Distance” is the distance of a residue to the nearest atom of its
ligand. “Interaction” is the chemical/electrostatic force shown as attractive (blue) or repulsive (red), with
darker colors indicating stronger effects.

Fig 2. Mechanistic characterization of Wuhan and mutated (E484K) spike binding to hACE2. Data
are plotted on hACE2 (panel a) and on the Wuhan spike (panel b) primary structure bound to the Wuhan
spike (WT) and the mutated one (E484K). Amino acids are represented by the corresponding letters and
numbered on the histogram's horizontal axis. Interface residues are highlighted by yellow bars and their
overall effect on the other molecule is indicated by red (repulsive) or blue (attractive) tiles. Histograms
underneath the sequences show the relative change in binding energy of the E484K mutated variant
relative to the Wuhan strain, with positive and negative values indicating weaker and stronger binding,
respectively. Bottom right histograms represent the overall binding energy of hACE2 with the Wuhan
spike versus the mutated one, partitioned into chemical and electrostatic contributions. Interaction
networks (Wuhan spike-hACE2 to the right, and mutated spike-hACE2 to the left), including FBO-
interface residues and their coordinated interactors are shown (panel ¢). Squares depict spike residues and
circles depict hACE2 residues, with red color for repulsive and blue color for attractive energy. Yellow
outlines highlight interface residues. Bonds are purple when intermolecular or black when intramolecular.

Fig 3. Mechanistic characterization of the Wuhan spike binding to the human ACE2 (hACE2) and
R. macrotis ACE2 (macACE2). Data are plotted on the ACE2 primary structure (a), and on the Wuhan
spike RBD (b), when binding to the human (hACE2) and the bat (macACE2) receptor. Amino acid
residues are labeled with letters and numbered. Interface residues are highlighted with a yellow bar, red
tiles are repulsive residues, and blue tiles are attractive residues; see the rest of the figure for energy
scales. The interaction networks (bottom) represent the hACE2-spike system on the left, and macACE2-
spike on the right; circles are ACE2 residues, squares are spike residues. Interface residues are
highlighted with a yellow bar, red tiles are repulsive residues, and blue tiles are attractive residues. Bonds
are purple when intermolecular or black when intramolecular, and their thickness represents the strength
of the FBO between residues.

Fig 4. Mechanistic characterization of C121 binding to the Wuhan strain spike protein, and
energetic changes as a result of the E484K spike mutation. Data are plotted on the spike primary
structure (panel a) and on C121's Heavy-Chain (panel b) considering the different bindings via the Wuhan
spike (WT) and the mutated one (E484K). Amino acids are represented by letters and numbered on the
histogram's horizontal axis. Histograms underneath the sequences represent the relative change in binding
energy of the second row relative to the first one (Wuhan strain). The bottom right histograms represent
the overall binding energy of C121 with the Wuhan spike (left) and the mutated one (right) and its
characterization as chemical or electrostatic. The row above each sequence shows the chemical or
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electrostatic forces as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.

Fig 4 (cont.). Interaction networks with C121 nAbs are shown (panel ¢). Network nodes are represented
in red (repulsive) or blue (attractive) based on their effect on their counterparts. Residues at the binding
interface are highlighted by a yellow outline. Bonds are plotted as purple when intermolecular or black
when intramolecular and their thickness is related to the strength of the FBO between residues.

Fig 5. Mechanistic characterization of spike-hACE?2 binding suggests that Delta+E484K spike has
stronger hACE2 binding than the Delta variant. Data are plotted on hACE2 (panel a) primary
structure bound to the Wuhan spike (WT), Delta spike (3), and Delta + 484K spike (8 + 484K). Amino
acids are represented by the corresponding letters and numbered on the histogram's horizontal axis.
Interface residues are highlighted by yellow bars and their overall effect on the other molecule is
indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to the one employed in
the other figures). Histograms underneath the sequences show the relative change in binding energy
(green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Data are plotted on the viral
spike (panel b) primary structure bound to the Wuhan spike (WT), Delta spike (6), and Delta + 484K
spike (0 + 484K). Amino acids are represented by the corresponding letters and numbered on the
histogram's horizontal axis. Interface residues are highlighted by yellow bars and their overall effect on
the other molecule is indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to
the one employed in the other figures). Histograms underneath the sequences show the relative change in
binding energy (green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Bar plots on
the bottom right represent the overall binding energy of hACE2 with the Wuhan, Delta, and Delta+E484K
strains, partitioned into chemical or electrostatic contributions.



596  Table 1. Prospectus of the main concepts and quantities constituting the model. All the elements here
597  discussed are general and therefore applicable, without previous parameterization, to any given set of
598  atoms for which atomistic structural representations are available.

Electron Density | The distribution of electrons in a given molecular system. The electron density
determines the nature and strength of the chemical bonds between interacting
molecules. Such an “electron cloud" is the main emerging property of the
underlying atomic structure in defining the chemical characteristics of a molecule.

Fragment The modular elements into which the electron cloud can be partitioned, for
example, an amino acid. The model partitions the electron cloud into physically
consistent regions and/or verifies the consistency of a pre-defined partitioning;
every such region is defined as a fragment.

Fragment Bond | The descriptor of the inter-fragment interactions. FBO is the main quantity used in

Order (FBO) the model to represent the connection pattern of the fragments of interacting
molecules.

Fragment From the results of the model and the features of the fragments it is then possible

Interactions to calculate the interaction strength between any two fragments. Such interaction

has both a chemical/short-range term that is always attractive, and an
electrostatic/long-range term that can be attractive or repulsive.

Final Output At the end of the simulation, BigDFT provides a simple representation of the
strength of interaction between fragments of the two molecules. The model can
describe the energy and nature of the acting chemical bonds. This enables a
mechanistic explanation and/or prediction of how specific amino acid substitutions
or deletions, in spikes or nAbs, impact the interactions with their hACE2 substrate
or the viral spike, respectively.

Hardware The model requires massively parallel calculations via high performance
Requirements computing. On a modern supercomputer, hundreds of simulations can be
performed in a time frame of one hour.
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a) hACE2 @ RBD
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