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ABSTRACT

Context. The growing set of gravitational-wave sources is being used to measure the properties of the underlying astrophysical
populations of compact objects, black holes, and neutron stars. Most of the detected systems are black hole binaries. While much
has been learned about black holes by analyzing the latest LIGO-Virgo-KAGRA (LVK) catalog, GWTC-3, a measurement of the
astrophysical distribution of the black hole spin orientations remains elusive. This is usually probed by measuring the cosine of the
tilt angle (cos τ) between each black hole spin and the orbital angular momentum, with cos τ = +1 being perfect alignment.
Aims. The LVK Collaboration has modeled the cos τ distribution as a mixture of an isotropic component and a Gaussian component
with mean fixed at +1 and width measured from the data. We want to verify if the data require the existence of such a peak at
cos τ = +1.
Methods. We used various alternative models for the astrophysical tilt distribution and measured their parameters using the LVK
GWTC-3 catalog.
Results. We find that (a) augmenting the LVK model, such that the mean µ of the Gaussian is not fixed at +1, returns results that
strongly depend on priors. If we allow µ > +1, then the resulting astrophysical cos τ distribution peaks at +1 and looks linear, rather
than Gaussian. If we constrain −1 ≤ µ ≤ +1, the Gaussian component peaks at µ = 0.48+0.46

−0.99 (median and 90% symmetric credible
interval). Two other two-component mixture models yield cos τ distributions that either have a broad peak centered at 0.19+0.22

−0.18 or a
plateau that spans the range [−0.5,+1], without a clear peak at +1. (b) All of the models we considered agree as to there being no
excess of black hole tilts at around −1. (c) While yielding quite different posteriors, the models considered in this work have Bayesian
evidences that are the same within error bars.
Conclusions. We conclude that the current dataset is not sufficiently informative to draw any model-independent conclusions on the
astrophysical distribution of spin tilts, except that there is no excess of spins with negatively aligned tilts.
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1. Introduction

More than 90 binary black holes (BBHs) have been detected
in the data of the ground-based gravitational-wave detec-
tors LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015)
by the LIGO-Virgo-Kagra (LVK) collaboration and other
groups (Abbott et al. 2021b; Nitz et al. 2021; Olsen et al. 2022).
This dataset has been used to infer the properties of the underly-
ing population – or populations – of BBHs. Among the param-
eters of interest, the masses and spins of the black holes play a
prominent role since they can shed light on the binary formation
channels1 (e.g., Vitale et al. 2017; Farr et al. 2017; Zevin et al.
2017, 2021; Farr et al. 2018; Wong et al. 2021; Bouffanais et al.
2021).

1 Eccentricity is also a powerful indicator of a binary formation chan-
nel (Peters 1964; Hinder et al. 2008; Morscher et al. 2015; Samsing
2018; Rodriguez et al. 2018b,a; Gondán & Kocsis 2019; Zevin et al.
2017), but it is currently harder to measure due to the limited sensitivity
of ground-based detectors at frequencies below 20 Hz.

There currently exist a few approaches toward measuring the
population properties. The first is to use a functional form for a
reasonable population distribution, parameterized by some phe-
nomenological parameters. For example, the LVK parameterized
the primary mass distribution of the black holes as a mixture of a
power law distribution and a Gaussian component (Abbott et al.
2021e; Talbot & Thrane 2018; Fishbach & Holz 2017). This
model includes several hyperparameters (since they pertain to
the population as a whole, not to the individual events), which
are measured from the data: the slope of the power law, the min-
imum and maximum black hole mass (including a smoothing
parameter), the mean and standard deviation of the Gaussian
component, and the branching ratio between the power law and
Gaussian components. It is worth noting that not all parametric
models make equally strong assumptions: an example of a more
flexible parametrization is the beta distribution that the LVK has
used to describe the population distribution of black hole spin
magnitudes (Wysocki et al. 2019). Those more elastic models
might be more appropriate if one does not have strong obser-
vational or theoretical expectations about what the astrophysical

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.

L2, page 1 of 16

https://doi.org/10.1051/0004-6361/202245084
https://www.aanda.org
http://orcid.org/0000-0003-2700-0767
http://orcid.org/0000-0001-7616-7366
http://orcid.org/0000-0003-2053-5582
mailto:salvo@mit.edu
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


A&A 668, L2 (2022)

distribution of a parameter should look like, or simply if they
want to be more conservative. Just as Bayesian priors can sig-
nificantly affect the posterior when the likelihood does not have
a strong peak when analyzing individual compact binary coales-
cences, a hyper-model that is too strong could leave imprints on
the inferred hyperparameters.

A second approach is to use nonparametric models,
based on Gaussian processes, for example (Tiwari 2021;
Edelman et al. 2022; Rinaldi & Del Pozzo 2021; Mandel et al.
2017; Vitale et al. 2019). Those usually have many more free
parameters, which allows them to fit features in the data that
parameterized models might miss. However, their larger num-
ber of parameters implies they might need more sources to reach
a level of precision comparable to parametric models. Ideally,
when strong parametric models are used, one would like to check
that the results are not impacted by the model itself, and instead
reveal features that are genuinely present in the data. A possible
approach is to run multiple models (parametric and nonparamet-
ric) and verify that they agree to within statistical uncertainties.

Finally, recent work has focused on using the predictions
of numerical simulations as a model. This typically involves
applying machine learning (Wong et al. 2021) or density esti-
mation techniques (Zevin et al. 2017; Bouffanais et al. 2021) to
the binary parameter distributions’ output by rapid population
synthesis codes or N-body simulations. While this approach is
more astrophysically motivated, the population synthesis simu-
lations have their own uncertainties and assumptions and often
include so many free parameters, such that a complete explo-
ration of the model space is not possible with current computa-
tional techniques (e.g., Broekgaarden et al. 2021). The impact
of modeling on astrophysical inference of gravitational-wave
sources has already become apparent in recent months. Several
groups have investigated whether there is evidence for a fraction
of black hole spin magnitude to be vanishingly small, finding
results that depend on the model to a large extent (Callister et al.
2022; Galaudage et al. 2021; Tong et al. 2022; Roulet et al.
2021; Mould et al. 2022). We note that Callister et al. (2022)
also provide a comprehensive summary of the status of that
measurement.

In this Letter we focus on the inference of the population dis-
tribution of tilt angles for the black hole binaries in the latest
LVK catalog. This is the angle that each of the black hole spin
vectors forms with the orbital angular momentum at some refer-
ence frequency (following the LVK data release, we use 20 Hz
for the reference frequency2). In their latest catalog of BBHs, the
LVK collaboration characterized this distribution by using a mix-
ture model composed of an isotropic distribution plus a Gaus-
sian distribution that peaks at cos τ = 1 (i.e., when the spin vec-
tor and the angular momentum are aligned) with an unknown
width (Talbot & Thrane 2017; Abbott et al. 2021e). This model
reflects expectations from astrophysical binary modeling. Indeed,
numerical simulations suggest that binaries that formed in galac-
tic fields should have spins preferentially aligned with the angu-
lar momentum (e.g., Tutukov & Yungelson 1993; Kalogera 2000;
Belczynski et al. 2020; Zaldarriaga et al. 2018; Stevenson et al.
2017; Gerosa et al. 2018), whereas binaries that formed

2 For the BBHs detected in the second half of the third observing run
(O3b), the LVK has also released tilt posteriors evaluated at minus infin-
ity, i.e., at very large orbital separations (Mould & Gerosa 2022). We
ran the Isotropic + Betamodel of Sect. 3.2 on O3b sources only, and
found that the analyses with tilts calculated at 20 Hz and minus infinity
yield the same astrophysical cos τ distribution. We also find that using
O3b only sources the cos τ distribution moves toward the left, compared
to what is shown in Fig. 6, and peaks closer to 0.

dynamically (i.e., in globular or star clusters) should have ran-
domly oriented tilts (e.g., Portegies Zwart & McMillan 2002;
Rodriguez et al. 2015; Antonini & Rasio 2016; Rodriguez et al.
2019; Gerosa & Fishbach 2021).

While this is a reasonable model, we are interested in ver-
ifying whether it is actually supported by the available data,
or whether we are instead getting posteriors that are driven by
that model. Callister et al. (2022) and Tong et al. (2022) recently
considered alternative models for the tilt angles, but they focused
on whether there is a cutoff at negative cosine tilts (i.e., for
antialigned spins), and if that answer depends on the model for
the spin magnitude. On the other hand, we do not limit our inves-
tigation to the existence of negative tilts, but instead are inter-
ested in what–if anything–can be said about the tilt inference
that is not strongly dependent on the model being used. We have
considered different alternative models3 and verified that all of
them yield Bayesian evidences (and maximum log likelihood
values), which are comparable with the default model used by
the LVK. We have also included models that allow for a corre-
lation between cos τ and other parameters (binary mass, mass
ratio, or spin magnitude, in turn) and find that those too yield
similar evidences. Critically, all of these alternative – and equally
supported by the data – models yield noticeably different pos-
terior distributions for the tilt population relative to the default
LVK model. In particular, different models give different sup-
port to the existence and position of a feature at positive cos τ.
On the other hand, they all agree as to there being no excess
of systems with cos τ ' −1. We conclude that the current con-
straints on the distribution of tilt angles are significantly affected
by the model used, and that more sources (or weaker models)
are needed before any conclusions can be drawn about the astro-
physical distribution of BBH tilts.

2. Methods

We used hierarchical Bayesian analysis – extensively described
in Appendix A – to infer the astrophysical properties of the
BBHs reported in GWTC-3. To represent the astrophysical dis-
tribution of primary mass, mass ratio, redshift, and spin mag-
nitudes, we used the flagship models used by the LVK in
Abbott et al. (2021e). Namely, the primary mass distribution is
their “Power law + Peak” (Talbot & Thrane 2018); the mass
ratio is a power law (Fishbach & Holz 2020); the two spin mag-
nitudes are independently and identically distributed accord-
ing to a beta distribution (Wysocki et al. 2019); and the red-
shift is evolving with a power law (Fishbach et al. 2018). For
the (cosine4) tilt distributions, we considered several models of
increasing complexity.

3. Results

In Appendix B we report our results when we used, for the
tilt distribution, the “DEFAULT” spin model of Appendix B-2-
a of Abbott et al. (2021e) (referred to as LVK default in the
rest of the paper): this serves as a useful comparison for the
more complex models described in the reminder of this work.
In this section we reanalyze the GWTC-3 BBH with differ-
ent parameterized two-component mixture models for cos τ. We
report results for three-component models in Appendix C. It is

3 A public repository with the hyperposteriors used in this work is
available at https://doi.org/10.5281/zenodo.7305735.
4 Even though we only report results for the cosine of the tilt angle –
cos τ – we might occasionally refer to tilts only, to lighten the text.
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Fig. 1. Posterior for cos τ (top panel) and differential merger rate per
unit cos τ (bottom panel) obtained using the Isotropic + Gaussian
model when the mean of the Gaussian component is allowed to vary in
the range µ ∈ [−1, 1]. The two thin black dotted lines in the top panel
show the 90% CI obtained by drawing the model’s hyperparameters
from their priors. In both panels, the thin black lines represent individual
posterior draws, whereas the colored band shows the 90% CI. The thick
dashed line within the band is the median.

assumed that the cos τ distribution is not correlated to any other
of the astrophysical parameters. This assumption is revisited in
Appendix D.

3.1. Isotropic + Gaussian model

To check if the data require that the Gaussian component of the
LVK default mixture model peaks at cos τ = 1 (Appendix B),
we relaxed the assumption that the normal distribution must be
centered at +1, that is to say we treated the mean of the Gaussian
component µ as another model parameter:

p(cos τ1, cos τ2|µ, σ, g) =
1 − g

4
+ g

2∏
j

N(cos τ j, µ, σ). (1)

The prior for µ is uniform in the range [−1, 1] (Table G.2 reports
the priors for the hyperparameters of all models used in the
paper).

The top panel of Fig. 1 shows the resulting posterior for the
tilt angle. For the mean of the Gaussian component, we measured
µ = 0.48+0.46

−0.99 (unless otherwise stated, we quote the median and
90% symmetric credible interval). Some of the uncertainty in
this measurement is due to our choice to allow for large σ, since
Gaussians with large σ are rather flat and can be centered any-
where without significantly affecting the likelihood. If we restrict
the prior space to only allow for narrower Gaussians, then µ is
much more constrained. For example, if we only keep samples
with σ < 0.5 (σ < 1), then µ = 0.28+0.35

−0.31 (µ = 0.41+0.47
−0.36). This

can also be seen in a corner plot of the mean and standard devi-
ation of the Gaussian component (Fig. 2, dark green). The data
prefer positive means with standard deviations in the approxi-
mate range σ ∈ [0.25, 1.5]. Smaller values of σ are excluded,
as are Gaussians centered at negative values of µ, in other words
such that χeff – the mass-weighted projection of the total spin
along the angular momentum (Damour 2001) – would be nega-
tive. The bottom panel of Fig. 1 shows the posterior on the dif-
ferential merger rate per unit cos τ for the same model.

It is worth noting that the astrophysical cos τ posterior
changes entirely if the prior for µ is extended to allow for values
outside of the range [−1, 1]; whereas, the resulting population
model is, of course, still truncated and properly normalized in
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Fig. 2. Joint and marginal posteriors for the mean and standard deviation
of the Gaussian component for the Isotropic + Gaussian model,
as well as for the branching ratio g, when the mean of the Gaussian
component is allowed to vary in the range µ ∈ [−1, 1] (dark green) or
µ ∈ [−5, 5] (light green).
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Fig. 3. Same as Fig. 1, but for the Isotropic + Gaussian model,
when the mean of the Gaussian component is allowed to vary in the
range µ ∈ [−5, 5].

that domain. For example, Fig. 3 shows the posterior for the tilt
distribution obtained with a wider µ prior, uniform in the range
[−5, 5]. Here again it is the case that the distribution is consis-
tent with having a peak for aligned spins. A look at the joint
distribution of µ and σ, Fig. 2, reveals that the peak at µ = 1 is
not obtained because the Gaussian component peaks there, but
rather by truncating Gaussians that peak at µ > 1 and have large
standard deviations. This results in a much steeper shape for the
posterior near the cos τ = +1 edge than what could possibly be
obtained by forcing −1 ≤ µ ≤ 1. The only feature that seems
solid against model variations is the fact that there is no excess
of systems at negative cos τ.

We can better visualize what happens at the edges of the cos τ
domain – that is for values of tilts close to aligned (cos τ ' 1)
or antialigned (cos τ ' −1) – by plotting the ratio of the pos-
terior support for aligned spin versus antialigned spins. This is
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Fig. 4. Unnormalized histogram of Y(δ), the ratio between the proba-
bility of cos τ for cos τ ∈ [1 − δ, 1] and cos τ ∈ [−1,−1 + δ] for the
models of Sects. 3.1–3.3 for δ = 0.01. We also show the result for the
LVK default model (Appendix B) for comparison. The solid curves
were obtained by sampling the hyperposteriors. The dashed line reports
the same quantity, but drawing the model’s hyperparameters from their
priors. Values of Y > 1 imply more support for aligned than antialigned
spins.

equivalent to making a histogram of the ratio of the value that
the thin black curves in Fig. 3 take on the far right and far left
side. Specifically, for each of the posterior draws, we calculated
an asymmetry coefficient Y defined as

Y(δ) ≡
p(cos τ ∈ [1 − δ, 1])

p(cos τ ∈ [−1,−1 + δ])
(2)

and plotted the resulting histogram. When Y = 1, the cos τ dis-
tribution takes the same value at both of the edges; when Y > 1
(Y < 1), the cos τ distribution has more support for aligned
(antialigned) systems than for antialigned (aligned) ones. We
notice that the LVK default model excludes an a priori excess
of antialigned tilts, that is Y < 1. This is instead not true for the
other models we consider in this section. This is shown in the top
panel of Fig. 4, for δ = 0.01 (i.e., considering ∼8 degree widths
around ±L, where L is the angular momentum vector). We see
that the prior (dashed green curve) of Y for the Isotropic +
Gaussian model can extend to values smaller than 1, that is it
can produce more antialigned spins than aligned ones (readers
can compare this with the blue dashed curve and Appendix B).
In fact, we see that the prior for this asymmetry probe is much
less strong than in the default LVK defaultmodel as it does not
exclude Y < 1. As for the LVK default, the posterior of Y is
not inconsistent with 1. Values of Y smaller than 1 – that is an
excess of antialigned spins – are severely suppressed relative to
the prior, and so is a large excess of positive tilts. The posterior
for Y has a rather broad peak in the range ∼[1, 2], corresponding
to distributions that are consistent with being either isotropic or
having a mild excess of positive alignment. In Appendix F we
show similar plots for different values of δ.

In the top panel of Fig. 5, we show the marginalized pos-
teriors of the branching ratio for the isotropic component, i, of
the models described in this section, together with the reference
LVK defaultmodel. While small variations exist, they all have
support across the whole prior range, with a preference for small
values of i. By comparing Figs. 1, 3 and 5, one may be sur-
prised that the branching ratio posteriors for the two Isotropic
+ Gaussian runs are basically the same, and yet Fig. 1 seems to
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Fig. 5. Marginalized posterior for the branching ratio of the isotropic
component – i – for all of the uncorrelated two-component models
(Sects. 3.1–3.3). The figure is split into two panels to enhance clar-
ity. In both panels, we also report the posterior obtained with the LVK
default model (yellow dashed line) for comparison.

have a higher density of horizontal (i.e., isotropic) curves. This
happens because the Gaussian component becomes isotropic for
small means µ and large standard deviations σ. Comparing the
two distributions for µ in the top-left panel of Fig. 2, we see
that indeed the run where µ is constrained to [−1, 1] has more
support at small means µ, which, together with large standard
deviations σ, yield nearly horizontal posteriors in Fig. 1. To a
different extent, the same is true for the models described below:
there exist corners of the parameter space where the nonisotropic
component can in fact generate a flat distribution, and unless oth-
erwise said we do not a priori exclude that possibility.

3.2. Isotropic + Beta model

To allow for a more elastic model for the nonisotropic compo-
nent, we now replace the Gaussian component of the previous
section with a beta distribution. We have:

p(cos τ1, cos τ2|α, β, b) =
1 − b

4
+ b

2∏
j

B(cos τ j, α, β). (3)

We offset the input of the beta distribution and scaled its maxi-
mum value such that it spans the domain [−1, 1]. We stress that
we did not limit the range of α and β to nonsingular values, that
is we did allow them to be smaller than 1 (Table G.2). In turn,
this implies that we can get posteriors for cos τ that peak at the
edges of the range. The resulting posterior for cos τ is shown
in Fig. 6, which also shows, for comparison, the 90% credible
interval (CI) when drawing hyperparameters from their priors
(thin dashed lines). With this model, we recovered a broad peak
at small positive values of cos τ. One can convert the α and β
parameters of our rescaled beta distribution to the corresponding
mean as

µβ = −1 + 2
α

α + β
. (4)

We find µβ = 0.19+0.22
−0.18. While some of the posterior draws do

peak at +1, overall the upper edge of the 90% CI band does not
show a peak in that region. Compared to what has been seen
in the previous section, this model finds more support for for
antialigned tilts, with a median value that is at the lower edge
of the 90% CI for the Isotropic + Gaussian models. In the
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Fig. 6. Same as Fig. 1, but for the Isotropic + Beta model. It is
important to note the different scale for the y axis of the bottom panel
compared with similar figures for other models.

bottom panel of Fig. 4, we show in red the posterior (solid line)
and prior (dashed line) of the asymmetry coefficient Y defined
in Eq. (2). Also for this model, we observed that the posterior
disfavors configurations with an excess of antialigned black hole
tilts, relative to the prior. We noticed that for the Isotropic +
Beta model, values of Y > 1 do not necessarily represent a peak
at positive tilts (see Fig. 6), but only that negative tilts are even
more suppressed.

The marginalized posterior for the branching ratio of the
isotropic component is shown in the bottom panel of Fig. 5 (his-
togram with dotted hatches). We find that, unlike the Gaussian-
based models of Sect. 3.1 or the LVK default model, it does
feature a very broad peak in the middle of the range.

3.3. Isotropic + Tukey model

We concluded our exploration of two-component models with a
mixture of an isotropic distribution and a distribution based on
the Tukey window function. Mathematically,

p(cos τ1, cos τ2|t,Tx0,Tk,Tr) =
1 − t

4
+ t

2∏
j

T (cos τ j,Tx0,Tk,Tr), (5)

where the exact expression for the functional form of the win-
dow function and a few examples are given in Appendix E.
Figure 7 reports the resulting posterior distribution for cos τ,
together with the prior (dotted black lines). The 90% CI band
features a plateau that extends from cos τ ' −0.5 to +1.

In Fig. 8, we show the posterior distribution for the parame-
ters controlling the Tukey channel, together with the correspond-
ing branching ratio. The Tukey component is centered at Tx0,
whose fifth and 95th percentile are −0.37 and 0.94, respectively.
The marginal posterior for Tk prefers values close to 1.8, imply-
ing wider Tukey distributions. Smaller values of Tk are possible
only for small t, as is expected given that for small tthe data
cannot constrain the Tukey component, and the posterior must
then resemble the uniform prior, which includes small Tk. The
posteriors of these two parameters are correlated such that when
t is large, Tk is also large, meaning the resulting cos τ distribu-
tion more closely resembles an isotropic distribution. However,
when Tk gets larger than ∼2, then tis not constrained at all. This
happens because when Tk is that large, the Tukey component is
extremely close to an isotropic distribution, at which point the
whole model is isotropic, and the branching ratio stops being
a meaningful parameter. Finally, the posterior for Tr is wide,
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Fig. 7. Same as Fig. 1, but for the Isotropic + Tukey model. Indi-
vidual posterior draws are colored according to the corresponding value
of the branching ratio for the Tukey component, t.
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Fig. 8. Joint and marginal posteriors for the hyperparameters and
branching ratio of the Tukey component in the Isotropic + Tukey
model.

with a preference for larger values, implying a Tukey distribution
that ramps up and down smoothly rather than producing sharp
features.

Figure 8 also reveals that large values of Tk are responsible
for the near entirety of the support at Tx0 < 0, since a Tukey
that is basically a uniform distribution can be centered anywhere
without affecting the likelihood. If we restrict the analysis to
Tk ≤ 2 (Tk ≤ 1), we get can see that Tx0 is much better con-
strained to Tx0 = 0.46+0.44

−0.41 (Tx0 = 0.30+0.41
−0.27), which excludes

negative values at ∼90% credibility. The fact that our generous
hyperparameter priors allow for Tukey distributions that resem-
ble isotropic ones also explain the peak at Y = 1 in the bottom
panel of Fig. 4 (purple lines, solid for the posterior and dashed
for the prior). We find, once again, that the data do not exclude
that the cos τ distribution is in fact isotropic, and the only solid
conclusion one can make seems to be that there is no excess of
systems at cos τ ' −1, since p(Y) is heavily suppressed relative
to its prior for Y . 1.

L2, page 5 of 16



A&A 668, L2 (2022)

4. Conclusions

In this paper we have reanalyzed the LVK’s 69 BBHs of
GWTC-3, using different models for the astrophysical dis-
tribution of the black hole spin tilt angle, in other words
the angle the spin vector forms with the orbital angular
momentum at a reference frequency (20 Hz). Black hole spin
tilts can yield precious information about their astrophysi-
cal formation channels. It is usually expected that dynami-
cal formation of binaries results in an isotropic distribution
of the spin vectors (e.g., Portegies Zwart & McMillan 2002;
Rodriguez et al. 2015; Antonini & Rasio 2016; Rodriguez et al.
2019; Gerosa & Fishbach 2021). On the other hand, for black
hole binaries that formed in the field via isolated binary
evolution, it is expected that the spins are nearly aligned
with the angular momentum (e.g., Tutukov & Yungelson 1993;
Kalogera 2000; Belczynski et al. 2020; Zaldarriaga et al. 2018;
Stevenson et al. 2017; Gerosa et al. 2018), that is to say that tilts
are small, as the angular momenta of the progenitor stars are
aligned by star-star and star-disk interactions (Hut 1981; Packet
1981). Indeed, if the binary forms in the field, the only mech-
anism that could yield significant black hole tilts are asymme-
tries in the supernovae explosions that create the black holes.
These asymmetries can impart a natal kick large enough to
tilt the orbital plane (Katz 1975; Kalogera 2000; Hurley et al.
2002). However, the black hole natal kick distribution is
poorly understood both theoretically (e.g., Dominik et al. 2012;
Zevin et al. 2017; Mapelli & Giacobbo 2018; Repetto et al.
2012; Giacobbo & Mapelli 2020; Fragos et al. 2010) and
observationally (Brandt et al. 1995; Nelemans et al. 1999;
Mirabel et al. 2001, 2002; Wong et al. 2014).

These expectations explain why in their most recent cata-
log, the LVK has modeled the astrophysical tilt distribution as a
mixture of two components: an isotropic part and a Gaussian
distribution centered at cos τ = 1 and with a width that is
measured from the data. This is a rather strong model, as it
forces a Gaussian onto the data that must be centered at +1.
This might not be advisable because individual tilt measure-
ments are usually broad, which implies that the functional form
of the assumed astrophysical model can leave a discernible
imprint on the posterior. Given the rather large uncertainties
as to how much spin misalignment can be produced in each
channel, and the fact that the BBH population currently avail-
able might contain back holes that formed in different chan-
nels (Zevin et al. 2021; Wong et al. 2021; Bouffanais et al. 2021;
Franciolini & Pani 2022), it is legitimate to question whether the
data require that the cos τ distribution peaks at +1, as opposed to
just being consistent with it. We find that it does not.

We consider three two-component mixture models:
Isotropic + Gaussian, made of an isotropic component
and a Gaussian component whose mean is not fixed at +1, but
rather measured from the data; Isotropic + Beta, made of
an isotropic component and a (singular) beta component; and
Isotropic + Tukey, made of an isotropic component and a
distribution based on the Tukey window. We find that the only
model with a posterior that peaks at cos τ = 1 is the Isotropic
+ Gaussian, and only if we allow the mean of the Gaussian
to take values outside of the cos τ domain [−1, 1]: Fig. 2 shows
that in this case the Gaussian component peaks at µ > 1 and is
very broad, yielding a peak at +1 (Fig. 3). The other two models
yield either a posterior that peaks at cos τ ' 0.2 and no peak at
+1, or a plateau from cos τ ' −0.5 to +1. For all of the above
models, the data do not decisively rule out a fully isotropic
tilt distribution, but they are inconsistent with an excess of

systems with large and negative tilts. The models we considered
found features–in addition to an isotropic distribution–whose
exact shape depends on the model’s flexibility to a large extent.
Therefore, the fact that the LVK default model finds support
for a peak at cos τ = 1 can be explained because it can only
add support at cos τ = 1 when trying to match any population
features in addition to the isotropic distribution. Our results
agree with previous results for population models fitting the
distribution of χeff , which find only a small fraction of sources
with negative χeff , implying negative tilts (Roulet & Zaldarriaga
2019; Miller et al. 2020; Roulet et al. 2021; Callister et al.
2022). Indeed, if we recast our inferred distributions for cos τ
and spin magnitude to the resulting χeff distribution, we would
obtain results consistent with Abbott et al. (2021e). In the
appendices below, we report on other models. In Appendix C we
consider three three-component mixture models: Isotropic
+ 2 Gaussians, made of an isotropic component and two
Gaussian components; Isotropic + Gaussian + Beta,
made of an isotropic component a (nonsingular) beta component
and a Gaussian component; and Isotropic + Gaussian +
Tukey, made of an isotropic component, a distribution based
on the Tukey window and a Gaussian component. These more
elastic models are consistent with a broad plateau in the cos τ
posterior that extends from ∼ −0.5 to +1. Whether there are also
peaks or features at small positive cos τ and/or at +1 depends on
the exact model.

In Appendix D we augment some of the two-component
mixture models to allow for correlations between the tilt
angles and another of the binary parameters: component
masses, component spins, mass ratio, and total mass in
turn. One might expect some correlation as the mech-
anisms that can misalign the binary orbital plane or
the black hole spins are affected by the binary param-
eters (e.g., Janka & Mueller 1994; Burrows & Hayes 1996;
Fryer & Kusenko 2006; Gerosa & Fishbach 2021). To keep the
number of model parameters limited – consistent with the rel-
atively limited number of sources – we only consider linear
correlations, and only correlated the tilt distribution with one
other parameter at a time. However, even with these limitations,
we find that the current dataset cannot significantly constrain
eventual correlations. For all of the models considered in this
work, we report Bayesian evidences (Table G.1), which might
be used to calculate odd ratios. We find that – within sampling
and numerical uncertainties – all of the models are equally sup-
ported by the data.

We conclude that the current dataset is not yet large and
informative enough to prove that the astrophysical tilt distribu-
tion has features, nor that if features exist they manifest as an
excess of systems with nearly aligned spin vectors. On the con-
trary, most of the models we considered yield a broad peak in
the astrophysical cos τ distribution at small and positive values.
The only conclusion that is consistently found across all mod-
els is that there is no excess of systems with negative tilts, rela-
tive to what is expected in an isotropic distribution. Our results
agree with the literature (e.g., Callister et al. 2022; Tong et al.
2022; Abbott et al. 2021e; Mould et al. 2022) as to the lack of
an excess of cos τ ' −1, but disagree as to other details (e.g.,
whether there is a hard cutoff in the cos τ distribution at cos τ < 0
(cfr Callister et al. 2022)). The point of this work is to show that
those disagreements are to be expected, given the information in
the current dataset. The next observing run of LIGO, Virgo, and
KAGRA is scheduled to start in early 2023 (Abbott et al. 2018)
and should yield hundreds of BBH sources. Those may yield a
first firm measurement of the astrophysical distribution of the tilt
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angle, and possibly allow us to begin probing correlations with
other astrophysical parameters.

Acknowledgements. The authors would like to thank C. Adamcewicz, V.
Baibhav, T. Dent, S. Galaudage, C. Rodriguez and M. Zevin for useful com-
ments and discussion. We would in particular like to thank T. Callister and D.
Gerosa for many insightful comments and suggestions. We would like to thank
the anonymous A&A Referee, whose comments helped improve the manuscript.
S.V. is supported by NSF through the award PHY-2045740. S.B. is supported
by the NSF Graduate Research Fellowship under Grant No. DGE-1122374.
CT is supported by the MKI Kavli Fellowship. This material is based upon
work supported by NSF’s LIGO Laboratory which is a major facility fully
funded by the National Science Foundation. We used publicly-available pro-
grams Bilby (Ashton et al. 2019; Romero-Shaw et al. 2020), dynesty (Speagle
2020) and GWPopulation (Talbot et al. 2019). This paper carries LIGO docu-
ment number LIGO-P2200275.

References
Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, Class. Quant. Grav., 32, 074001
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018, Liv. Rev. Rel., 21, 3
Abbott, R., Abbott, T. D., Acernese, F., et al. 2020a, GWTC-2 Data Release:

Parameter Estimation Samples and Skymaps, https://dcc.ligo.org/
LIGO-P2000223/public

Abbott, R., Abbott, T. D., Acernese, F., et al. 2020b, Parameter estimation sample
release for GWTC-1, https://dcc.ligo.org/LIGO-P1800370/public

Abbott, R., Abbott, T. D., Acernese, F., et al. 2021a, GWTC-2.1: Deep Extended
Catalog of Compact Binary Coalescences Observed by LIGO and Virgo
During the First Half of the Third Observing Run - Parameter Estimation
Data Release

Abbott, R., Abbott, T. D., Acernese, F., et al. 2021b, ArXiv e-prints
[arXiv:2111.03606]

Abbott, R., Abbott, T. D., Acernese, F., et al. 2021c, GWTC-3: Compact Binary
Coalescences Observed by LIGO and Virgo During the Second Part of the
Third Observing Run - O3 search sensitivity estimates

Abbott, R., Abbott, T. D., Acernese, F., et al. 2021d, GWTC-3: Compact Binary
Coalescences Observed by LIGO and Virgo During the Second Part of the
Third Observing Run - Parameter Estimation Data Release

Abbott, R., Abbott, T. D., Acernese, F., et al. 2021e, ArXiv e-prints
[arXiv:2111.03634]

Acernese, F., Agathos, M., Agatsuma, K., et al. 2015, Class. Quant. Grav., 32,
024001

Adamcewicz, C., & Thrane, E. 2022, MNRAS, 517, 3928
Antonini, F., & Rasio, F. A. 2016, ApJ, 831, 187
Ashton, G., Huebner, M., Lasky, P. D., et al. 2019, ApJS, 241, 27
Belczynski, K., Klencki, J., Fields, C. E., et al. 2020, A&A, 636, A104
Biscoveanu, S., Isi, M., Vitale, S., & Varma, V. 2021, Phys. Rev. Lett., 126,

171103
Biscoveanu, S., Callister, T. A., Haster, C.-J., et al. 2022, ApJ, 932, L19
Bouffanais, Y., Mapelli, M., Santoliquido, F., et al. 2021, MNRAS, 507, 5224
Brandt, W. N., Podsiadlowski, P., & Sigurdsson, S. 1995, MNRAS, 277, L35
Broekgaarden, F. S., Berger, E., Stevenson, S., et al. 2021, MNRAS, 516, 5737
Burrows, A., & Hayes, J. 1996, Phys. Rev. Lett., 76, 352
Callister, T. A., Haster, C.-J., Ng, K. K. Y., Vitale, S., & Farr, W. M. 2021, ApJ,

922, L5
Callister, T. A., Miller, S. J., Chatziioannou, K., & Farr, W. M. 2022, ApJ, 937,

L13
Damour, T. 2001, Phys. Rev. D, 64, 124013
Dominik, M., Belczynski, K., Fryer, C., et al. 2012, ApJ, 759, 52
Edelman, B., Doctor, Z., Godfrey, J., & Farr, B. 2022, ApJ, 924, 101
Farr, W. M. 2019, Res. Notes Am. Astron. Soc., 3, 66
Farr, W. M., Stevenson, S., Coleman Miller, M., et al. 2017, Nature, 548, 426
Farr, B., Holz, D. E., & Farr, W. M. 2018, ApJ, 854, L9
Fishbach, M., & Holz, D. E. 2017, ApJ, 851, L25
Fishbach, M., & Holz, D. E. 2020, ApJ, 891, L27
Fishbach, M., Holz, D. E., & Farr, W. M. 2018, ApJ, 863, L41
Fragos, T., Tremmel, M., Rantsiou, E., & Belczynski, K. 2010, ApJ, 719, L79
Franciolini, G., & Pani, P. 2022, Phys. Rev. D, 105, 123024

Fryer, C. L., & Kusenko, A. 2006, ApJ, 163, 335
Galaudage, S., Talbot, C., Nagar, T., et al. 2021, ApJ, 921, L15
Gerosa, D., & Fishbach, M. 2021, Nat. Astron., 5, 8
Gerosa, D., Berti, E., O’Shaughnessy, R., et al. 2018, Phys. Rev. D, 98, 084036
Giacobbo, N., & Mapelli, M. 2020, ApJ, 891, 141
Golomb, J., & Talbot, C. 2022, ArXiv e-prints [arXiv:2210.12287]
Gondán, L., & Kocsis, B. 2019, ApJ, 871, 178
Hinder, I., Vaishnav, B., Herrmann, F., Shoemaker, D. M., & Laguna, P. 2008,

Phys. Rev. D, 77, 081502
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897
Hut, P. 1981, A&A, 99, 126
Janka, H. T., & Mueller, E. 1994, A&A, 290, 496
Kalogera, V. 2000, ApJ, 541, 319
Katz, J. I. 1975, Nature, 253, 698
Mandel, I., Farr, W. M., Colonna, A., et al. 2017, MNRAS, 465, 3254
Mandel, I., Farr, W. M., & Gair, J. R. 2019, MNRAS, 486, 1086
Mapelli, M., & Giacobbo, N. 2018, MNRAS, 479, 4391
Miller, S., Callister, T. A., & Farr, W. 2020, ApJ, 895, 128
Mirabel, I. F., Dhawan, V., Mignani, R. P., Rodrigues, I., & Guglielmetti, F. 2001,

Nature, 413, 139
Mirabel, I. F., Mignani, R., Rodrigues, I., et al. 2002, A&A, 395, 595
Morscher, M., Pattabiraman, B., Rodriguez, C., Rasio, F. A., & Umbreit, S. 2015,

ApJ, 800, 9
Mould, M., & Gerosa, D. 2022, Phys. Rev. D, 105, 024076
Mould, M., Gerosa, D., Broekgaarden, F. S., & Steinle, N. 2022, MNRAS, 517,

2738
Nelemans, G., Tauris, T. M., & van den Heuvel, E. P. J. 1999, A&A, 352, L87
Nitz, A. H., Kumar, S., Wang, Y.-F., et al. 2021, ApJ, submitted

[arXiv:2112.06878]
Olsen, S., Venumadhav, T., Mushkin, J., et al. 2022, Phys. Rev. D, 106, 043009
Packet, W. 1981, A&A, 102, 17
Peters, P. C. 1964, Phys. Rev., 136, B1224
Portegies Zwart, S. F., & McMillan, S. L. W. 2002, ApJ, 576, 899
Repetto, S., Davies, M. B., & Sigurdsson, S. 2012, MNRAS, 425, 2799
Rinaldi, S., & Del Pozzo, W. 2021, MNRAS, 509, 5454
Rodriguez, C. L., Morscher, M., Pattabiraman, B., et al. 2015, Phys. Rev. Lett.,

115, 051101; Erratum: 2016, 116, 029901
Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S., et al. 2018a, Phys. Rev. D,

98, 123005
Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S., & Rasio, F. A. 2018b, Phys.

Rev. Lett., 120, 151101
Rodriguez, C. L., Zevin, M., Amaro-Seoane, P., et al. 2019, Phys. Rev. D, 100,

043027
Romero-Shaw, I. M., Talbot, C., Biscoveanu, S., et al. 2020, MNRAS, 499,

3295
Roulet, J., & Zaldarriaga, M. 2019, MNRAS, 484, 4216
Roulet, J., Chia, H. S., Olsen, S., et al. 2021, Phys. Rev. D, 104, 083010
Safarzadeh, M., Farr, W. M., & Ramirez-Ruiz, E. 2020, ApJ, 894, 129
Samsing, J. 2018, Phys. Rev. D, 97, 103014
Speagle, J. S. 2020, MNRAS, 493, 3132
Stevenson, S., Vigna-Gómez, A., Mandel, I., et al. 2017, Nat. Commun., 8, 14906
Talbot, C., & Thrane, E. 2017, Phys. Rev. D, 96, 043030
Talbot, C., & Thrane, E. 2018, ApJ, 856, 173
Talbot, C., Smith, R., Thrane, E., & Poole, G. B. 2019, Phys. Rev. D, 100, 043030
Tiwari, V. 2021, Class. Quant. Grav., 38, 155007
Tong, H., Galaudage, S., & Thrane, E. 2022, Arxiv eprints[arXiv:2209.02206]
Tutukov, A. V., & Yungelson, L. R. 1993, MNRAS, 260, 675
Vitale, S., Lynch, R., Sturani, R., & Graff, P. 2017, Class. Quant. Grav., 34,

03LT01
Vitale, S., Farr, W. M., Ng, K., & Rodriguez, C. L. 2019, ApJ, 886, L1
Vitale, S., Gerosa, D., Farr, W. M., & Taylor, S. R. 2020, in Handbook of

Gravitational Wave Astronomy, eds. C. Bambi, S. Katsanevas, & K. D.
Kokkotas (Springer), Liv. Ref. Work, 45

Wong, T.-W., Valsecchi, F., Ansari, A., et al. 2014, ApJ, 790, 119
Wong, K. W. K., Breivik, K., Kremer, K., & Callister, T. 2021, Phys. Rev. D,

103, 083021
Wysocki, D., Lange, J., & O’Shaughnessy, R. 2019, Phys. Rev. D, 100, 043012
Zaldarriaga, M., Kushnir, D., & Kollmeier, J. A. 2018, MNRAS, 473, 4174
Zevin, M., Pankow, C., Rodriguez, C. L., et al. 2017, ApJ, 846, 82
Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021, ApJ, 910, 152

L2, page 7 of 16

http://linker.aanda.org/10.1051/0004-6361/202245084/1
http://linker.aanda.org/10.1051/0004-6361/202245084/2
http://linker.aanda.org/10.1051/0004-6361/202245084/3
http://linker.aanda.org/10.1051/0004-6361/202245084/3
https://dcc.ligo.org/LIGO-P2000223/public
https://dcc.ligo.org/LIGO-P2000223/public
http://linker.aanda.org/10.1051/0004-6361/202245084/4
http://linker.aanda.org/10.1051/0004-6361/202245084/4
https://dcc.ligo.org/LIGO-P1800370/public
http://linker.aanda.org/10.1051/0004-6361/202245084/5
http://linker.aanda.org/10.1051/0004-6361/202245084/5
http://linker.aanda.org/10.1051/0004-6361/202245084/5
http://linker.aanda.org/10.1051/0004-6361/202245084/5
https://arxiv.org/abs/2111.03606
http://linker.aanda.org/10.1051/0004-6361/202245084/7
http://linker.aanda.org/10.1051/0004-6361/202245084/7
http://linker.aanda.org/10.1051/0004-6361/202245084/7
http://linker.aanda.org/10.1051/0004-6361/202245084/8
http://linker.aanda.org/10.1051/0004-6361/202245084/8
http://linker.aanda.org/10.1051/0004-6361/202245084/8
https://arxiv.org/abs/2111.03634
http://linker.aanda.org/10.1051/0004-6361/202245084/10
http://linker.aanda.org/10.1051/0004-6361/202245084/10
http://linker.aanda.org/10.1051/0004-6361/202245084/11
http://linker.aanda.org/10.1051/0004-6361/202245084/12
http://linker.aanda.org/10.1051/0004-6361/202245084/13
http://linker.aanda.org/10.1051/0004-6361/202245084/14
http://linker.aanda.org/10.1051/0004-6361/202245084/15
http://linker.aanda.org/10.1051/0004-6361/202245084/15
http://linker.aanda.org/10.1051/0004-6361/202245084/16
http://linker.aanda.org/10.1051/0004-6361/202245084/17
http://linker.aanda.org/10.1051/0004-6361/202245084/18
http://linker.aanda.org/10.1051/0004-6361/202245084/19
http://linker.aanda.org/10.1051/0004-6361/202245084/20
http://linker.aanda.org/10.1051/0004-6361/202245084/21
http://linker.aanda.org/10.1051/0004-6361/202245084/21
http://linker.aanda.org/10.1051/0004-6361/202245084/22
http://linker.aanda.org/10.1051/0004-6361/202245084/22
http://linker.aanda.org/10.1051/0004-6361/202245084/23
http://linker.aanda.org/10.1051/0004-6361/202245084/24
http://linker.aanda.org/10.1051/0004-6361/202245084/25
http://linker.aanda.org/10.1051/0004-6361/202245084/26
http://linker.aanda.org/10.1051/0004-6361/202245084/27
http://linker.aanda.org/10.1051/0004-6361/202245084/28
http://linker.aanda.org/10.1051/0004-6361/202245084/29
http://linker.aanda.org/10.1051/0004-6361/202245084/30
http://linker.aanda.org/10.1051/0004-6361/202245084/31
http://linker.aanda.org/10.1051/0004-6361/202245084/32
http://linker.aanda.org/10.1051/0004-6361/202245084/33
http://linker.aanda.org/10.1051/0004-6361/202245084/34
http://linker.aanda.org/10.1051/0004-6361/202245084/35
http://linker.aanda.org/10.1051/0004-6361/202245084/36
http://linker.aanda.org/10.1051/0004-6361/202245084/37
http://linker.aanda.org/10.1051/0004-6361/202245084/38
https://arxiv.org/abs/2210.12287
http://linker.aanda.org/10.1051/0004-6361/202245084/40
http://linker.aanda.org/10.1051/0004-6361/202245084/41
http://linker.aanda.org/10.1051/0004-6361/202245084/42
http://linker.aanda.org/10.1051/0004-6361/202245084/43
http://linker.aanda.org/10.1051/0004-6361/202245084/44
http://linker.aanda.org/10.1051/0004-6361/202245084/45
http://linker.aanda.org/10.1051/0004-6361/202245084/46
http://linker.aanda.org/10.1051/0004-6361/202245084/47
http://linker.aanda.org/10.1051/0004-6361/202245084/48
http://linker.aanda.org/10.1051/0004-6361/202245084/49
http://linker.aanda.org/10.1051/0004-6361/202245084/50
http://linker.aanda.org/10.1051/0004-6361/202245084/51
http://linker.aanda.org/10.1051/0004-6361/202245084/52
http://linker.aanda.org/10.1051/0004-6361/202245084/53
http://linker.aanda.org/10.1051/0004-6361/202245084/54
http://linker.aanda.org/10.1051/0004-6361/202245084/55
http://linker.aanda.org/10.1051/0004-6361/202245084/55
http://linker.aanda.org/10.1051/0004-6361/202245084/56
https://arxiv.org/abs/2112.06878
http://linker.aanda.org/10.1051/0004-6361/202245084/58
http://linker.aanda.org/10.1051/0004-6361/202245084/59
http://linker.aanda.org/10.1051/0004-6361/202245084/60
http://linker.aanda.org/10.1051/0004-6361/202245084/61
http://linker.aanda.org/10.1051/0004-6361/202245084/62
http://linker.aanda.org/10.1051/0004-6361/202245084/63
http://linker.aanda.org/10.1051/0004-6361/202245084/64
http://linker.aanda.org/10.1051/0004-6361/202245084/64
http://linker.aanda.org/10.1051/0004-6361/202245084/65
http://linker.aanda.org/10.1051/0004-6361/202245084/65
http://linker.aanda.org/10.1051/0004-6361/202245084/66
http://linker.aanda.org/10.1051/0004-6361/202245084/66
http://linker.aanda.org/10.1051/0004-6361/202245084/67
http://linker.aanda.org/10.1051/0004-6361/202245084/67
http://linker.aanda.org/10.1051/0004-6361/202245084/68
http://linker.aanda.org/10.1051/0004-6361/202245084/68
http://linker.aanda.org/10.1051/0004-6361/202245084/69
http://linker.aanda.org/10.1051/0004-6361/202245084/70
http://linker.aanda.org/10.1051/0004-6361/202245084/71
http://linker.aanda.org/10.1051/0004-6361/202245084/72
http://linker.aanda.org/10.1051/0004-6361/202245084/73
http://linker.aanda.org/10.1051/0004-6361/202245084/74
http://linker.aanda.org/10.1051/0004-6361/202245084/75
http://linker.aanda.org/10.1051/0004-6361/202245084/76
http://linker.aanda.org/10.1051/0004-6361/202245084/77
http://linker.aanda.org/10.1051/0004-6361/202245084/78
https://arxiv.org/abs/2209.02206
http://linker.aanda.org/10.1051/0004-6361/202245084/80
http://linker.aanda.org/10.1051/0004-6361/202245084/81
http://linker.aanda.org/10.1051/0004-6361/202245084/81
http://linker.aanda.org/10.1051/0004-6361/202245084/82
http://linker.aanda.org/10.1051/0004-6361/202245084/83
http://linker.aanda.org/10.1051/0004-6361/202245084/84
http://linker.aanda.org/10.1051/0004-6361/202245084/85
http://linker.aanda.org/10.1051/0004-6361/202245084/85
http://linker.aanda.org/10.1051/0004-6361/202245084/86
http://linker.aanda.org/10.1051/0004-6361/202245084/87
http://linker.aanda.org/10.1051/0004-6361/202245084/88
http://linker.aanda.org/10.1051/0004-6361/202245084/89


A&A 668, L2 (2022)

Appendix A: Hierarchical inference

We aim to measure the hyperparameters λ that control the dis-
tribution of single-event parameters θ (the black hole masses,
spins, redshifts, etc.) given the dataset D consisting of the 69
GWTC-3 BBHs with a false alarm ratio smaller than 1 per
year—D ≡ {di, i = 1 . . . 69}—reported by the LVK collabora-
tion (Abbott et al. 2021e). The posterior for λ can be written
as follows (Mandel et al. 2019; Fishbach et al. 2018; Vitale et al.
2020):

p(λ|D) ∝ π(λ)
69∏
i=1

p(di|λ)
α(λ)

,

where we have analytically marginalized over the overall merger
rate, which is not relevant for our inference. The function α(λ)
represents the detection efficiency, that is to say the fraction
of BBHs that are detectable, given the population parameters
λ; π(λ) is the prior for the population hyperparameters, and
p(di|λ) is the likelihood of the stretch of data containing the i-
th BBH. This allowed us to account for selection effects and
infer the properties of the underlying, rather than the observed,
population.

Using Bayes’ theorem and marginalizing over the single-
event parameters, the single-event likelihood can be written as

p(di|λ) =

∫
dθp(di|θ)π(θ|λ) ∝

∫
dθ

p(θ|di,HPE)π(θ|λ)
π(θ|HPE)

, (A.1)

where p(θ|di,HPE) is the posterior distribution for the binary
parameters θ of the i-th source. The population hyperparam-
eters λ are typically inferred using a hierarchical process that
first involves obtaining posteriors for θ for each individual event
under a noninformative prior, π(θ|HPE). The hypothesisHPE rep-
resents the settings that were used during this individual-event
parameter estimation step. The last term, π(θ|λ), is the popula-
tion prior, that is to say our model for how the parameters θ are
distributed in the population, given the hyperparameters.

The integral in Eq. A.1 can be approximated as a discrete
sum∫

dθp(di|θ)π(θ|λ) ' Nsamples
−1

Nsamples∑
k

π(θk
i |λ)

π(θk
i |HPE)

,

where the Nsamples samples are drawn from the posterior dis-
tribution of the i-th event. We used the posterior samples of
the 69 BBHs reported in GWTC-3, as released in Abbott et al.
(2020b,a, 2021a,d). For the sources reported in GWTC-1, we
used the samples labeled IMRPhenomPv2_posterior in the
data release; for GWTC-2 we used PublicationSamples; for
GWTC-2.1 we used PrecessingSpinIMRHM; and for GWTC-
3 we use C01:Mixed. To sample the hyperposterior, we
used the dynesty (Speagle 2020) sampler available with the
GWPopulation package (Talbot et al. 2019).

The detection efficiency α(λ) can also be calculated
through an approximated sum starting from a large col-
lection of simulated BBHs for which the signal-to-noise
ratio (or another detection statistic) is recorded, as described
in Farr (2019) and Abbott et al. (2021e). We used the
endo3_bbhpop-LIGO-T2100113-v12-
1238166018-15843600.hdf5 sensitivity file released by the
LVK (Abbott et al. 2021c) to calculate α(λ), using a false alarm
threshold of one per year to identify detectable sources, consis-
tently with Abbott et al. (2021e).

Appendix B: Reference tilt model

Here, we compare our results against the LVK’s model (LVK
default) of Abbott et al. (2021e): a mixture between an
isotropic component and Gaussian distribution with µ = 1 and
an unknown standard deviation,

p(cos τ1, cos τ2|σ, g) =
1 − g

4
+ g

2∏
j

N(cos τ j, µ = 1, σ). (B.1)

The Gaussian component was truncated and normalized in the
range [−1, 1]. The two hyperparameters of LVK default are
thus the branching ratio gof the Gaussian component and its
standard deviation σ; they are the same for both black holes.
We notice that in Talbot & Thrane (2017), the two normal dis-
tributions can assume different values of σ. However, since in
general the spins of the least massive objects are measured with
extremely large uncertainty, there is no reason to expect that
imposing the same distribution on both tilts would introduce
biases.

In Fig. B.1 we show the resulting inference on the cos τ,
which—modulo differences in sampling settings—is directly
comparable to what is presented by the LVK in Abbott et al.
(2021e) (their Fig. 15). The colored area shows the 90% CI,
the thick dashed line is the median, and the dim lines represent
individual draws from the posterior. The two dashed lines rep-
resent the edges of the 90% CI obtained by sampling the hyper-
parameters from their priors. It is worth noticing that the LVK
default model excludes, a priori, the possibility of an excess
of tilts relative to isotropy (i.e., a posterior larger than 0.5) at
negative values, as well as a dearth of tilts relative to isotropy
for cos τ & 0.45. Just as Abbott et al. (2021e), we find that the
posterior is not entirely inconsistent with a fully isotropic tilt
distribution, while preferring an excess of positive alignment.
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Fig. B.1. Posterior for cos τ (top panel) and differential merger rate per
unit cos τ (bottom panel) obtained using the reference LVK default
model. The two thin black dotted lines in the top panel show the 90%
CI obtained by drawing the model’s hyperparameters from their priors.
In both panels, the thin black lines represent individual posterior draws,
whereas the colored band shows the 90% CI. The thick dashed line
within the band is the median.

This is shown in the top panel of Fig. 4, where the solid blue
line was obtained using samples from the hyperparameters’ pos-
terior whereas the dashed blue line was obtained by sampling
their priors. The fact that there is a hard cutoff at Y = 1 (the finite
bin size causes the curves to extend to values slightly smaller
than one) is just a symptom of the fact that the LVK default
model excludes, a priori, an excess of negative tilts and a dearth
at positive tilts, as mentioned above.
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The curve is consistent with Y = 1, that is to say isotropic
posteriors are perfectly consistent with the data, even though it
should be appreciated that the model prefers that region a pri-
ori. The level of consistency can also be assessed with Figure 5,
which reports, with dashed blue lines, the marginalized posterior
on the branching ratio of the isotropic component (as opposed
to the Gaussian component, to allow for direct comparisons with
other models). While broad, it favors small values for the fraction
of sources in the isotropic component, though fully isotropic dis-
tributions (i = 1) are not excluded. The other curves in the figure
are discussed in the main body. For all of our models, Tab. G.1
reports the Bayesian evidence, maximum log likelihood, and
the number of parameters for the cos τ model, as a differential
relative to the default LVK model. That table also includes a
fully isotropic model (Isotropic, with p(cos τ1, cos τ2) = 1/4),
which we include as a useful reference. The Isotropic model
performs the worst, though not at the point that it can be ruled
out with high confidence.

Appendix C: Three-component models

The results presented in Sec. 3 show that, depending on the exact
model being used, the tilt distribution seems to show either a
peak at +1, a peak at a smaller positive value of cos τ, or a broad
plateau for positive cos τ. As this might suggest that two peaks,
or features, are present in the data, in this Appendix we con-
sider models that are comprised of an isotropic component, plus
two other components. To explore the effect of the model on the
resulting posterior, we consider different functional forms.

C.1. Isotropic + Gaussian + Beta model

We used a mixture model with an isotropic component, a beta
distribution component, and a Gaussian component,

p(cos τ1, cos τ2|g, b, µ, σ, α, β) =
1 − g − b

4
+

+b

2∏
j

B(cos τ j, α, β) + g

2∏
j

N(cos τ j, µ, σ). (C.1)

In order to reduce degeneracy between the Gaussian and
the beta components, we set the uniform prior for the mean
of the Gaussian component to µ ∼ U(0.9, 5); meanwhile, we
restricted the prior of the beta parameters to nonsingular values,
α, β ∼ U(1, 20). In practice, this reduces the possibility that the
two components can both create peaks in the same region of the
cos τ domain, which would increase degeneracy and hence make
sampling more inefficient.

The resulting cos τ posterior is shown in Fig. C.1. The indi-
vidual posterior draws are colored according to their value of
g; we stress that small (large) gdoes not necessarily imply large
(small) bsince the isotropic fraction i ≡ 1 − g − b needs not be
zero. The 90% CI shows traces of the two features we encoun-
tered previously, namely a peak at +1 and one at smaller pos-
itive values of cos τ. As with all of the other models explored
in this paper (and, to our knowledge, in the literature), we find
that the data exclude an excess of black holes with cos τ ' −1.
The corner plot in Fig. C.2 shows the three branching ratios for
this model. The prior for gand bwas uniform in the plane, with
the constraint that g + b ≤ 1; we show the resulting marginal
priors as dotted black lines in the diagonal panels. This model
prefers small values of bcoupled with large values of g, as shown
in the top-left off-diagonal panel. There is little posterior sup-
port for even moderate values of b: the 95th percentile for the
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Fig. C.1. Same as Fig. 7, but for the Isotropic + Gaussian + Beta
model. Individual posterior draws are colored according to the branch-
ing ratio of the Gaussian component, g. It is important to note the dif-
ferent scale for the y axis of the bottom panel compared with similar
figures for other models.
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Fig. C.2. Joint and marginal posteriors for the branching ratios of all
channels for the Isotropic + Gaussian + Beta model. The thin
dashed lines in the diagonal plots are the corresponding priors.

marginal posterior p(b) is 0.50. As already visible in Fig. C.1,
the beta component peaks at small positive values of cos τ: we
find µβ = 0.15+0.39

−0.45.

C.2. Isotropic + 2 Gaussians model

Next, we used a mixture model, with an isotropic component,
and two Gaussian distributions. Here too, to avoid perfect degen-
eracy, we somewhat restricted the allowed range of the Gaussian
means. The Gaussian on the right (index “R”) has a mean that
can only vary in the range [0.9, 5]. The prior for the Gaussian
one on the left (index “L”) spans the range [−1, 1]; however, we
set to 0 the likelihood for samples for which µL < [A, B], where A
and B are hyperparameters of the model. In practice, this implies
that the Gaussian on the left is truncated (and hence normalized)
in the range [A, B] and has a mean in the same range, for each
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Fig. C.3. Same as Fig. 7, but for the Isotropic + 2 Gaussians
model, when the left Gaussian component is truncated in the range
[A, B], with A and B model’s hyperparameters. Individual posterior
draws are colored according to the branching ratio of the rightmost
Gaussian component. It is important to note the different scale for the y
axis of the bottom panel compared with similar figures for other models.

sample. Mathematically,

p(cos τ1, cos τ2|gL, gR, µL, σL, µR, σR, A, B) =
1 − gL − gR

4

+gL

2∏
j

N[A,B](cos τ j, µL, σL) + gR

2∏
j

N(cos τ j, µR, σR). (C.2)

We explicitly added hyperparameters for the domain of the
left Gaussian in order to verify if the data prefer solutions that do
not add posterior support to the antialigned (cos τ & −1) region
(cfr. Callister et al. 2022). The resulting posterior for cos τ is
shown in Fig. C.3, where the individual posterior draws are col-
ored according to the branching ratio of the right Gaussian – gR.
The 90% CI again shows two features: a rather broad peak for a
small positive value of cos τ and a second peak at +1.

We note that the data are informative for the parameters A
and B (Fig. C.4). While their priors are uniform, the posteri-
ors for both A and B show clear peaks. For A, we measured
A = −0.49+0.42

−0.40, which notably excludes −1 at 90% credibility.
Meanwhile, the posterior for B rails against +1. The standard
deviation for the left Gaussian, σL, is large (the 5th percentile
of p(σL|d) is 0.46), which implies that even though function-
ally speaking this component of our model is a Gaussian, the
data seem to prefer very wide Gaussians, resembling pieces of
segments. The mean of the left Gaussian prefers small positive
values, µL = 0.13+0.52

−0.59, and shows no obvious correlation with
σL.

Figure C.5 shows the branching ratios for the two Gaussian
and the isotropic component i ≡ 1 − gR − gL, together with the
corresponding priors (dashed lines). The measurement is not pre-
cise, and only small departures from the priors are apparent. In
particular, for both gR and gL, the posteriors yield a wide peak at
∼ 0.5, whereas ipeaks at 0 more than the prior.

We stress that the posterior on cos τ we obtained for this
model is heavily impacted by the fact that the left Gaussian is
truncated in a range, whose position is measured from the data.
If instead we set −A = B = 1, that is to say if we extend (and
normalize) the left Gaussian to the full cos τ range, we would
obtain a radically different posterior (Fig. C.6). The branching
ratio for the left Gaussian component in this case does not show
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Fig. C.4. Joint and marginal posteriors for the hyperparameters and
branching ratio associated with the left Gaussian of the Isotropic +
2 Gaussians model.
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Fig. C.5. Same as Fig. C.2, but for the Isotropic + 2 Gaussians
model.

significant differences relative to the prior. While some of the
posterior draws show prominent peaks for small positive values
of cos τ, those are not frequent enough to create a visible peak in
the 90% CI band, as was instead the case in Fig. C.3.

Given that the only difference between the models behind
Fig. C.6 and Fig. C.3 is the truncation of the left Gaussian’s
domain, it is tempting to think that the tails of the left Gaussian—
if free to extend all the way to cos τ = −1—would give too much
posterior weight in that region, which is not supported by the
data. This explanation is also consistent with the fact that our
model of Sec. C.1 does find the peak, since a beta distribution
can produce tails that are less wide than a Gaussian.
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Fig. C.6. Same as Fig. C.3, but without truncating the left Gaussian (i.e.,
with −A = B = 1). Individual posterior draws are colored according to
the branching ratio of the rightmost Gaussian component. It is important
to note the different scale for the y axis of the bottom panel compared
with similar figures for other models.
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Fig. C.7. Same as Fig. C.2, but for the Isotropic + Gaussian +
Tukey model.

C.3. Isotropic + Gaussian + Tukey model

To end our exploration of three-component models, we modified
the model of the previous section and replaced the left Gaussian
with a distribution based on the Tukey window function. Mathe-
matically,

p(cos τ1, cos τ2|t, g,Tx0,Tk,Tr, µ, σ) =
1 − t − g

4

+t

2∏
j

T (cos τ j,Tx0,Tk,Tr) + g

2∏
j

N(cos τ j, µ, σ) . (C.3)

The priors for all of the hyperparameters are uniform, with the
exception of the branching ratios tand g, which are jointly uni-
form in the triangle t + g ≤ 1.

Figure C.7 shows the posteriors for the branching ratios,
including that of the isotropic component i ≡ 1 − t − g. As for
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Fig. C.8. Joint and marginal posteriors for the hyperparameters
and branching ratio of the Tukey component of the Isotropic +
Gaussian + Tukey model.
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Fig. C.9. Same as Fig. 7, but for the Isotropic + Gaussian +
Tukey model. Individual posterior draws are colored according to the
branching ratio of the Gaussian component. It is important to note the
different scale for the y axis of the bottom panel compared with similar
figures for other models.

the Isotropic + 2 Gaussians model, the branching ratios
are not measured with precision. The data prefer smaller val-
ues of tand iand moderate values of g. Comparing Fig. C.8
with the corresponding plot for the Isotropic + Tukey run
(Fig. 8), we find qualitatively consistent results. In particu-
lar, Tx0 mostly has support at positive values, except when
Tk can take large values or when tis small. Using the full
posterior, we find Tx0 = 0.34+0.58

−1.1 , while restricting to sam-
ples with Tk ≤ 2 (Tk ≤ 1) yields Tx0 = 0.37+0.53

−0.81 (Tx0 =

0.26+0.54
−0.52), which is consistent with the simpler two-component

model.
Similarly, we find that the posterior for cos τ mainly differs

from that of Fig. 7 because of some additional – but not large
– support at cos τ = 1, due to the contribution of the Gaussian
component.
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Appendix D: Correlated mixture models

In this Appendix we revisit some of the models presented in
the main body of the paper, and we extend them to allow
for the possibility that the hyperparameters governing the
population-level cos τ distribution are correlated with some of
the astrophysical binary parameters. Previous works have con-
sidered correlations between the effective aligned spin, χeff ,
and the BBH masses and redshifts (Safarzadeh et al. 2020;
Callister et al. 2021; Franciolini & Pani 2022; Biscoveanu et al.
2022; Adamcewicz & Thrane 2022), but not a direct correlation
between the tilts and these other intrinsic parameters. Given that
the number of BBH sources is still relatively small, we only con-
sidered a subset of two-component models in order to keep the
number of hyperparameters limited. For some of the correlated
models, the distributions for the two tilt angles are not assumed
to be identical (this happens when each tilt is allowed to be cor-
related with the corresponding component mass or spin magni-
tude): we only report the distribution for the tilt of a primary (i.e.,
most massive) black hole, as it is usually best measured.

D.1. Isotropic + correlated Gaussian model

We first allowed for the possibility that the mean and standard
deviation of the Gaussian component might be correlated with
other astrophysical parameters – κ, described below – since those
should be related to the details of the supernovae explosions that
would have tilted the orbit (e.g., Gerosa et al. 2018). We min-
imally modified the Isotropic + Gaussian model to allow
the mean and standard deviation to linearly vary with the param-
eter that is correlated to the spin tilt. This introduces another set
of hyperparameters, which control the linear part of the mean
and standard deviation:

p(cos τ1, cos τ2|µa, µb, σa, σb, g, κ1, κ2) =
1 − g

4

+g

2∏
j

N(cos τ j, µ(κ j), σ(κ j)), (D.1)

where µ(κ) = µa + κ
N µb and σ(κ) = σa + κ

Nσb.
It is important to notice that even though we could have

also allowed for correlations in the branching ratio g, we
decided not to, as that parameter is already very poorly mea-
sured (cfr. Fig 5). Similarly, and following Callister et al. (2021)
and Biscoveanu et al. (2021), we only considered linear correla-
tions. As more sources are detected, both of these assumptions
might be trivially relaxed. The constant N was chosen to guar-
antee that the coefficient of µb, σb is always smaller than 1. We
explored the following possible correlations:

– Component masses, κ1 = m1, κ2 = m2 N = 100 M�
– Component spins, κ1 = χ1, κ2 = χ2,N = 1
– Mass ratio, κ1 = κ2 = q,N = 1
– Total mass, κ1 = κ2 = mtot,N = 200 M�

We found that we cannot constrain, in any significant way,
the parameters that enact the correlations (i.e., µb and σb), for
which we recovered posteriors which highly resemble the corre-
sponding priors. This is shown in Fig. D.1, where we report the
parameters of the Gaussian component for the analysis where
they are correlated with the component masses. The dashed hor-
izontal lines in the diagonal panels represent the corresponding
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Fig. D.1. Joint and marginal posteriors for the Gaussian parameters
obtained in the analysis where they are correlated with the component
masses. Dashed lines in the diagonal panels represent the priors. While
µa and σa resemble the corresponding posterior in the Isotropic +
Gaussian model (Fig. 2), the terms that enact the correlation, µb and
σb, are nearly unconstrained.
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Fig. D.2. Posterior of the standard deviation of the Gaussian compo-
nent for the Isotropic + correlated Gaussian model, when we
allowed for correlation with the component masses, as a function of the
primary mass m1. The thin black lines are individual posterior draws, the
colored band is the 90% CI, and the thick dashed line is the median. The
two horizontal think dotted lines enclose the 90% CI for the Isotropic
+ Gaussian model, which does not allow for correlations. Finally, the
two thin blue dashed lines enclose the 90% CI obtained sampling the
prior.

priors. Especially for the standard deviation term σb, no infor-
mation is gained relative to the prior. Because we restricted the
prior on σb to non-negative values (see Tab. G.2) to ensure that
the width of the Gaussian does not become negative for any val-
ues of κ, this implies that the overall standard deviation for the
Gaussian component can only increase with the mass (Fig. D.2).
However, as made clear by comparing the 90% CI band with the
extent of the 90% CI obtained with prior draws, the increase of
σ is entirely prior-driven.
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Fig. D.3. Joint and marginal posteriors for the beta parameters obtained
in the analysis where they are correlated with the mass ratio. Dashed
lines in the diagonal panels represent the priors.
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Fig. D.4. Same as D.2, but for the β parameter of the Isotropic +
correlated Beta model, when correlated with the mass ratio q.

D.2. Isotropic + correlated Beta model

Finally, we augmented the Isotropic + Beta model of
Sec. 3.2 to allow for correlations in the parameters that control
the beta component:

p(cos τ1, cos τ2|αa, αb, βa, βb, κ1, κ2, b) =
1 − b

4

+b

2∏
j

B(cos τ j, α(κ j), β(κ j)), (D.2)
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Fig. D.5. Conditional posteriors for cos τ1 for the Isotropic +
correlated Betamodel, when cos τ is correlated with the mass ratio.
Colored bands show the 90% CI posterior for cos τ1 conditional on
a fixed value of the mass ratio; yellow dashed lines enclose the 90%
CI obtained sampling the correlated parameter from its inferred astro-
physical distribution; and black dashed lines enclose the 90% CI of the
Isotropic + Betamodel, which does not allow for correlations. The
increased support at +1 as q decreases is mostly prior-driven.

with α(κ) = αa + κ
Nαb and β(κ) = βa + κ

N βb.
We considered the same possible correlations (i.e., values

of κ and N) described in the previous section. As for the pre-
vious correlated model, we restricted the priors for αb and βb
to the non-negative domain to ensure that the overall α and
β parameters of the beta distribution do not become negative,
enforcing that only positive correlations can exist between the
cos τ distribution and κ. For this model, we found that the cur-
rent dataset cannot significantly constrain the correlation param-
eters, even though we did not exactly recover the priors. For
example, in Fig. D.3 we show the posterior and priors (thin
dashed lines) for the parameters of the beta distribution when
we allowed correlations with the mass ratio q. The parame-
ters that enact the correlation, αb and βb, have wide posteriors,
which, however, are not as similar as their prior as σb was for
the Isotropic + correlated Gaussian models (Fig. D.1).
Figure D.4 shows that the main impact of the measurement, rel-
ative to the prior, is to exclude large values of β. However, it
is still the case that the overall trend in the 90% CI of the beta
parameters are prior dominated. Just as for the Isotropic +
correlated Gaussian models, this results in more support at
cos τ ' +1 for small masses, mass ratios, or spins. Functionally,
this happens because the parameters controlling the beta compo-
nent take smaller values at small values of the correlated param-
eter, and that moves the peak toward the edge of the domain (for
example Fig. D.5 for correlations with the mass ratio). How-
ever, just as for the Isotropic + correlated Gaussian
model, these trends are mostly a result of the prior and of the
model.
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Appendix E: Tukey window

We implemented the Tukey window used in Eq. 5 as

T (x,Tx0,Tk,Tr) ∝



0, x < max(−1,Tx0 − Tk)
1
2

{
1 + cos

[
π

TkTr
(x − Tx0 + Tk − TkTr)

]}
, max(−1,Tx0 − Tk) ≤ x < Tx0 − Tk(1 − Tr)

1, Tx0 − Tk(1 − Tr) ≤ x < Tx0 + Tk(1 − Tr)
1
2

{
1 + cos

[
π

TkTr
(x − Tx0 − Tk − TkTr)

]}
, Tx0 + Tk(1 − Tr) ≤ x ≤ min(+1,Tx0 + Tk)

0, x > min(+1,Tx0 + Tk)

. (E.1)

This represents a Tukey window that is symmetric around
Tx0 and whose domain is 2Tk wide. The parameter Tr controls
the shape of the window (Tr = 0 gives a rectangular window,
while Tr = 1 gives a cosine). The distribution was then trun-
cated and normalized in the range [−1, 1]. Figure E.1 shows four
examples. Since the width, the shape, and the position can all be
varied, this model is quite elastic and can latch onto both broad
and narrow features. We highlight that in the default setting, we
allowed the uniform prior of Tk to go up to 4 (Tab G.2). This

implies that just as for the Isotropic + Gaussian model,
there are parts of the parameter space where the nonisotropic
component can be made very similar to, or indistinguishable
from, the isotropic component. In this case, that happens when
Tk is large and Tr is small. This distribution can also produce
curves that ramp up from zero to a plateau, with various degrees
of smoothness: the thick green line in Fig. E.1 is an example
and—if t were zero—would produce a cos τ distribution similar
to the second row in Fig. 5 of Callister et al. (2022).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

(x
,T
x0

,T
k,
T r

)

Tx0 = 0.5, Tk= Tr= 1.0
Tx0 = 0.0, Tk= 0.5, Tr= 0.2
Tx0 = 0.0, Tk= 1, Tr= 0.5
Tx0 = 0.8, Tk= 1.3, Tr= 0.1

Fig. E.1. Four examples of the distribution in Eq. E.1.
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Appendix F: Asymmetry Y(δ) for various values of δ
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Fig. F.1. Same as Fig. 4, but for various values of δ.
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Appendix G: Tables

Table G.1 reports, for all models (including those discussed later
in other appendices), the number of spin parameters, the natural
log of the Bayesian evidence, and the natural log of the maxi-
mum likelihood point. All quantities are expressed as deltas rel-
ative to the reference LVK default model. Table G.2 lists the
priors used for the hyperparameters of all models.

Table G.1. Bayesian evidence, maximum log likelihood value, and
number of parameters for the cos τ models (relative to the reference
LVK model of Eq. B.1).

Run lnEvidence lnMaxL # spin pars

Isotropic −0.8 −3.2 -2
LVK default ref ref ref
Isotropic + Gaussian µ ∈ [−1, 1] −0.3 −0.4 +1
Isotropic + Gaussian µ ∈ [−5, 5] −0.4 −0.2 +1
Isotropic + Beta +0.4 +0.4 +1
Isotropic + Tukey −0.2 +0.7 +2
Isotropic + correlated Gaussian (m) −0.4 −0.6 +3
Isotropic + correlated Gaussian (q) −0.5 −0.1 +3
Isotropic + correlated Gaussian (χ) −0.6 −0.4 +3
Isotropic + correlated Gaussian (Mtot) −0.7 −0.1 +3
Isotropic + correlated Beta (m) −0.4 +0.0 +3
Isotropic + correlated Beta (q) −0.1 −0.3 +3
Isotropic + correlated Beta (χ) +0.3 −0.6 +3
Isotropic + correlated Beta (Mtot) −0.3 −0.7 +3
Isotropic + Gaussian + Beta +0.3 −0.6 +4
Isotropic + 2 Gaussians (−A = B = 1) −0.1 −0.3 +4
Isotropic + Gaussian + Tukey +0.1 +0.3 +5
Isotropic + 2 Gaussians +0.6 +0.2 +6

Notes:With our settings, the evidences carry a statistical uncertainty of
±0.15. Additional uncertainties in the log likelihood – and hence evi-
dence – arise from the numerical evaluation of the integral in Eq. A.1.
Golomb & Talbot (2022) estimate this extra uncertainty to be roughly
∆ logL± 1 when using the publicly released LVK injection sets to esti-
mate selection effects. We also note that nested sampling algorithms do
not aim to find the highest likelihood point, so it is possible that for
nested models (e.g., LVK default and Isotropic + Gaussian) the
broader model finds a slightly lower maximum likelihood point. Given
these uncertainties, the only reliable – yet unsurprising – conclusions
one may draw is that a purely isotropic model yields the worst match to
the data.

Table G.2. Priors used for the hyperparameters of the tilt models. All
variables are dimensionless.

LVK default - Eq. B.1

σ U (0.1,4)
g U(0,1)

Isotropic + Gaussian - Eq. 1
µ U(-5,5) orU(-1,1)
σ U (0.1,4)
g U(0,1)

Isotropic + Beta - Eq. 3
α U(0.05,5)
β U(0.05,5)
b U(0,1)

Isotropic + Tukey - Eq. 5
Tx0 U(-1,1)
Tr U(0.01,1)
Tk U(0.1,4)
t U(0,1)
Isotropic + Gaussian + Beta - Eq. C.1

α U(1,20)
β U(1,20)
µ U(0.9,5)
σ U (0.1,5)
g,b U(0,1), g + b ≤ 1

Isotropic + 2 Gaussians - Eq. C.2
µL U(-1,1), A < µL < B
σL U (0.1,4)
µR U(0.9,5)
σR U (0.1,5)
A U(-1,0.1)
B U(0.2,0.9)
gL,gR U(0,1), gL + gR ≤ 1
Isotropic + Gaussian + Tukey - Eq. C.3

Tx0 U(-1,1)
Tr U(0.01,1)
Tk U(0.1,4)
µR U(0.9,5)
σR U (0.1,5)
g,t U(0,1), g + t ≤ 1
Isotropic + correlated Gaussian - Eq. D.1
µa U(-5,5)
µb U(-5,5)
σa U (0.1,4)
σb U (0,10)
g U(0,1)
Isotropic + correlated Beta - Eq. D.2

αa U(0.05,5)
αb U(0,10)
βa U(0.05,5)
βb U(0,10)
b U(0,1)
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