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ABSTRACT

The global network of interferometric gravitational wave (GW) observatories (LIGO, Virgo, KAGRA) has detected and
characterized nearly 100 mergers of binary compact objects. However, many more real GWs are lurking sub-threshold, which
need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical
phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence)
results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we
show how one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants
by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a
specific class with a well-characterized effective population (blip glitches). We also calculate posteriors on the probability of
each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical

events in the catalogue, finding it to be consistent with the actual number of events included.

Key words: black hole mergers — gravitational waves —methods: data analysis —methods: statistical.

1 INTRODUCTION

Since the first direct detection of gravitational waves (GWs) from
the merger of two stellar mass black holes (Abbott et al. 2016), the
LIGO-Virgo-KAGRA (LVK) network has observed a large popula-
tion of these stellar mass binary black holes (BBHs) (Abbott et al.
2019a, 2021; The LIGO Scientific Collaboration et al. 2021). With so
many detections comes the ability to characterize the population of
BBHs, and shed light on the dominant formation channels of stellar
mass BBH mergers. While there is no theoretical consensus on the
dominant formation channel, there are many proposals.

For instance, isolated binary evolution through a common envelope
phase (Smarr & Blandford 1976; Van Den Heuvel 1976; Tutukov &
Yungelson 1993; Ivanova et al. 2013), stable mass transfer (Van
Den Heuvel, Portegies Zwart & de Mink 2017), dynamical many-
body interactions in dense stellar environments (e.g. globular clus-
ters, Kulkarni, Hut & McMillan 1993; Sigurdsson & Hernquist 1993;
Portegies Zwart & McMillan 2000), chemically homogeneous stellar
evolution (Mandel & de Mink 2016; Marchant et al. 2016), dynamical
triples assisted by the Kozai-Lidov mechanism (Antonini, Toonen &
Hamers 2017; Silsbee & Tremaine 2017), or primordial BBH systems
(Bird et al. 2016; Ali-Haimoud, Kovetz & Kamionkowski 2017)
have been proposed. Traces of these different formation channels
are imprinted in the population, distinguishing the relative rates and
constraining the sub-population distributions (Mapelli 2021; Zevin
et al. 2021; Mandel & Broekgaarden 2022). As more GWs are
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detected, the different astrophysical formation channels will begin to
reveal themselves.

However, one is never sure of the origin of a potential GW
detection. GWs are detected using search pipelines, which vary in
their methodology, but in general scan the LVK data stream for
matches to a GW template within some template bank dense over the
expected source parameters (Allen 2005; Usman et al. 2016; Messick
etal. 2017; Nitz et al. 2017; Hanna et al. 2020). This provides a point
estimate on the source parameters with the best match template. If
this best match passes some significance threshold, it is called a
trigger.

GW interferometers are plagued by transient noise fluctuations
(known as glitches), whose morphology occasionally mimics real
events (Zevin et al. 2017; Cabero et al. 2019; Akutsu et al. 2021;
Davis et al. 2021; Soni et al. 2021; Ashton et al. 2022; Acernese et al.
2022a, b). Most pipelines estimate the false alarm rate (FAR) of a trig-
ger by time-sliding the data of different interferometers by more than
the light-travel time between them. Any coincident triggers therefore
cannot be caused by a GW propagating at the speed of light, and are
deemed false alarms. By varying the time-slide and counting the total
number of false alarms, pipelines can accurately estimate the FAR of
a trigger. Comparing the FAR to the expected astrophysical rate of
the trigger, search pipelines estimate the probability of astrophysical
origin, or pasyo. In order to calculate the expected astrophysical rate of
the trigger, pipelines must assume a model for the underlying astro-
physical source population (The LIGO Scientific Collaboration et al.
2021).

To mitigate contamination from glitches, it is standard to use
only the most significant events. Because p,qy, estimates assume a
population, it is unusual to use pipeline calculated pagy, as a threshold
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for population inference. Instead, a common threshold is FAR <1
yr~!, yet even with this high threshold, one expects e.g. 4.6 false
alarms in the catalogue used by Abbott et al. (2023b) under the
assumption that the search pipelines produce events independently
(Allen 2005; Usman et al. 2016; Messick et al. 2017; Nitz et al. 2017,
Hanna et al. 2020; Abbott et al. 2023b). Therefore, one must tune the
FAR threshold to minimize the systematic uncertainty of including
more false alarms in the catalogue, and the statistical uncertainty of
including fewer events.

There are also a plethora of sub-threshold (FAR > lyr~!) astro-
physical events which contain information about the population of
gravitational-wave sources in the Universe, especially in some of the
more poorly measured regions of parameter space, where glitches are
responsible for reduced search sensitivity. Sub-threshold mergers of
binary neutron stars (BNS), neutron star black holes (NSBH), or
stellar mass BBHs can improve known constraints on the population
of these as GW progenitors. Indeed, there are many more events
with lower significance; the rate of GW events scales with SNR,
assuming a constant merger rate in a Euclidean volume (Schutz
2011; Chen & Holz 2014). Though these lower significance events
also encode less information about the progenitor, events as low
as SNR~6—7 can have well-measured chirp masses (Huang et al.
2018).

Moreover, certain kinds of theoretical GW events may pass this
FAR threshold only rarely, with the majority falling deep into the
sub-threshold range. For instance, subsolar-mass compact objects are
predicted by certain modifications to the standard model of particle
physics or ACDM (Shandera, Jeong & Grasshorn Gebhardt 2018;
Nitz & Wang 2021; Abbott et al. 2022a). Though no direct detections
have been made of a sub-solar mass merger (Abbott et al. 2019b;
Nitz & Wang 2021), it is possible there are some lurking within the
large set of sub-threshold candidates; because of their low masses,
the signal-to-noise ratio (SNR) and significance of the GW will be
much lower.

Glitches in GW interferometers are commonly studied by mod-
elling the data as some parametric and deterministic function plus
a stationary and stochastic noise process (Cornish & Littenberg
2015; Merritt et al. 2021; Tolley et al. 2023; Udall & Davis
2023). This is preferable to modelling glitches as some general
non-stationary noisy time series, where the statistical properties
are unclear. A glitch model then requires a parametric function,
called the glitch waveform, for the deterministic part of the sig-
nal. Since significant false alarms will mimic real GWs, it is
sensible to use a GW model for the glitch waveform. In this
paper, we follow this prescription, modelling glitches with a GW
waveform.

A more general glitch model distinguishes GWs from terrestrial
glitches by signal coherence. Real GWs must be coherent between
multiple detectors and the waveforms should be consistent with the
same progenitor parameters, while the same is not true for coincident
false alarms (Veitch & Vecchio 2010). Glitches may therefore be
modelled as an independent GW waveform in each detector, relaxing
this coherence requirement. This is justified as a worst-case scenario,
where a background event is distinguished from an astrophysical one
based purely on the signal coherence. This glitch model has been used
to calculate the probability an event is astrophysical (Isi et al. 2018;
Ashton, Thrane & Smith 2019; Pratten & Vecchio 2021), and to rule
out marginal candidates (e.g. Ashton & Thrane 2020; Vajpeyi et al.
2022). The most general glitch models make no physical assumptions
about the source and model glitches as a superposition of wavelets
(Cornish & Littenberg 2015).
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Whatever the waveform assumed for the glitches, a population
would then be given by probability distributions on their parameters.
Indeed, it is possible to study the population of glitches and astro-
physical events simultaneously, allowing for each event to belong to
either class. Previous work approached this problem from different
perspectives. Farr et al. (2015) showed how to infer the rates of
astrophysical and background populations when the shapes of the
populations are known, but the identity of each event (i.e. which
population it originates from) is unknown. Gaebel et al. (2019) show
that it is indeed possible to do joint inference on an astrophysical
and a glitch population, but leave a study with real GW data for a
future analysis. Galaudage, Talbot & Thrane (2020) and Roulet et al.
(2020) analyse real GW data, and fold in pipeline information—
in particular, p,y,o estimates, to build a glitch population model.
However, this carries a fixed background event rate estimate by each
search pipeline, rather than inferring the rate of events from the
background population in a Bayesian manner.

In this paper, we present a general method to simultaneously
model the population of background non-astrophysical triggers and
the population of astrophysical objects, in a fully Bayesian manner.
We use a population of short glitches (‘blips’) as identified by
the GRAVITYSPY algorithm (Zevin et al. 2017) to contaminate the
catalogue of astrophysical signals. While this is done for com-
putational expedience, the method can be used for any type of
non-astrophysical transients, as long as one can characterize their
‘usual’ properties. Similarly. while we focus on the population
of BBHs, the method may be used to study any population of
foreground events contaminated with undesirable background events.
In Section 2, we briefly review Bayesian parameter estimation of
GW sources and population inference. Then, we discuss how this
picture is complicated when one allows for the possibility that the
data set is contaminated by glitches. In Section 2.4, we discuss
our glitch population parametrization and constrain the population
hyperparameters using a large representative sample. In Section 3,
we contaminate a catalogue of GWs with glitches, and show how
our method consistently models and removes the bias due to the
contaminants. Finally, in Section 4, we summarize and discuss future
work.

2 METHODS

2.1 Parameter estimation

Consider a stretch of LVK frequency domain data d, which is a sum
of noise n and waveform signal 4(0)

d = h(®) +n, ey

where 6 represents the unknown parameters of the GW source.
Approximating the noise as stationary and Gaussian, the likelihood
can be written

d; —h;0)?
log £(d|0) = — Z (ZAfM

J

+ log(27 @,-)) :

J
(€5

where d; and h; represent the jth frequency component of the data and
waveform, respectively, & is the power-spectral-density, and Af'is
the frequency spacing (Whittle 1951). With this likelihood, a model
for the waveform h(6) given some GW parameters, and priors for the
GW parameters, one can then sample from the posterior of the GW
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parameters (Veitch et al. 2015; Thrane & Talbot 2019; Christensen &
Meyer 2022).

The above process also can apply to glitches, thinking of them as
a deterministic signal buried in stochastic noise. Modelling glitches
under some parameterization (e.g. a sine-Gaussian), one can perform
parameter estimation exactly as above for the glitch parameters,
which we denote . Indeed, while glitches are usually ruled out
by search pipelines by e.g. x? discriminators (Allen 2005), there
can be cases where glitches are mistaken for astrophysical GWs.
Because population inferences generally assume that all events in
the catalogue are truly astrophysical, a contaminant glitch in the
catalogue will bias the inference. We want to relax this assump-
tion, and jointly infer the population of astrophysical events and
glitches.

2.2 Population inference without glitches

Before we discuss simultaneous inference of the astrophysical and
glitch populations, we review the general GW population inference
problem. Given posterior samples from a set of data time-series
{di}1<i <Nevems» ON€ can write the likelihood for a population model.
In general, a population model describes the rate of mergers within a
small interval of GW parameter space [0, 6 + df]. However, the rate
is typically assumed to be a Poisson process, and we can instead write
down a probability density pa(0|A), irrespective of the overall rate.
Here, A are called the hyper-parameters; a finite list of parameters,
which vary the shape of the population distribution (e.g. the mean
and variance of a Gaussian, the power index to a power-law, and so
on). We give the subscript A to refer to ‘astrophysical’. This is in
contrast to G for ‘glitch’, which we will use later in this paper.

Assuming a Poisson process for the events and marginalizing over
the overall rate R with an uninformative (uniform in log R) prior, one
obtains the hierarchical likelihood

Noews 146 £(d;10) pa(6] A)

L{di}|A) o 1} ) 3)
and the selection function
a(A) = /dQPdet,A@)PA(@IA) 4

is the fraction of events, which are detectable in the population with
hyper-parameters A (for a derivation of the likelihood see Mandel,
Farr & Gair 2019; Vitale et al. 2020). The quantity pge, 4(6) is the
probability of detecting an astrophysical event with parameters 6,
given by

Paera(0) = / L(d|6)dd 5)
{deDlp(d)> pinr}

the integral over all possible data realizations, which exceed the
detection threshold p(d) > pu, (i.e. FAR < 1 yrfl; as in Abbott et al.
2023b).

In practice, the integrals in equations (3) and (4) are estimated
with Monte Carlo estimators. In particular,

N,
Z(di) =~ pa6;|IA
[aocaopaein ~ 20y LA . ®
samp 7( j| PE) 0,~p(6ld;)
where 6; are samples from the ith event posterior,
Z(d) = /d9ﬁ(df|9)ﬂ(9|7‘lpﬁ) @)
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is the evidence and 7 (0|Hpg) is the sampling prior used for the
parameter estimation. As for the selection function,

Naet

1 pa(¥;lA)
Ndraw j=1 pdraw(ej)

a(A) ~ ; ®

9/’ ~ Pdraw (0)

where Ny, events are drawn from some fiducial distribution pg;ay (0),
data drawn from the conditioned likelihood £(d|6) with a suitable
power-spectral-density choice, and then search pipelines run to
recover Ny of the total events (for details see e.g. Tiwari 2018;
Farr 2019).

2.3 Population inference with glitches

The above procedure assumes every event, which passes the threshold
is a real GW. This assumption can be relaxed by simultaneously
fitting the glitch population. Suppose the glitch waveform is given by
parameters V¥, and we obtain posteriors on p(¥|d;) for each event in
the catalogue, as well as posteriors on p(6|d;) for the GW parameters.
With equation (79) in Vitale et al. (2020) and a relative rate  of GWs
versus a GW-like glitches, one can marginalize over the total rate with
a uniform in log R prior to generalize equation (3).

L{di}|Aa, Ag, 1)

NI—I n [dOL(d;|0)pa@|As)+ (1 —n) [ dyL(di|y)pe(¥|Ag)
naa(Aa) + (1 —nag(Ac)

)

i=1
&)

where A4 and Ag refer to the astrophysical and glitch hyper-
parameters, pg(¥ | Ag) is the population model for the glitch wave-
form parameters, and ax(Ay) is the selection function for the X
subpopulation:

ax(Ax) = /dﬁpdct,x(O)px(Qle), (10)

Pdet, ¢ 18 analogous to the pge 4 We defined above, but we want to
allow for the possibility that the detection criterion p(d) > pu is
different for glitches. In reality, the same detection criterion must be
used for all events for a catalogue, but for reasons we will describe
below, we must use a different detection criterion for glitches in this
study.

The mixing fraction 7 represents the relative rate of all GWs from
all GW-like sources (astrophysical and glitches), whether they are
detected or not. It is useful to define a detectable mixing fraction:

naa(Ay)
noa(Aa) + (1 — pag(Ag)’
which is the fraction of detectable events which are GWs. In this

case, and a bit of algebra, the likelihood of equation (9) can be recast
as

‘C({dt}lAA? A67 T]) x

NH 7 [ dOLd;10)paBIA )
Pl OlA(AA)

(1 =7) [ dy L) pe(¥|Ac)
+ )
aGg(Ag)

which is the form of the likelihood we will use in the sampling.
So far we have assumed glitches and GWs will be characterized
with different parameters, 6 and . However, glitches which can
contaminate a GW catalogue will necessarily be well-modelled by a
GW waveform. For this proof-of-principle analysis, we thus model
the waveform of a glitch as a GW (we set v — 0). Furthermore,

n= an

12)
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Figure 1. A time—frequency spectrogram of a GRAVITYSPY-identified blip
glitch in LIGO-Hanford. This blip occurred on 2019 August 28 at UTC
16:56:49. Due to their short duration, blip glitches can be mistaken for high
mass BBHs.

we only model the population in the intrinsic GW parameters; this
will be explained further in Section 2.4. This simplifies the analysis:
we do not need pieces of evidence and posterior samples for every
event under both the glitch and GW hypotheses—both analyses are
the same. Indeed, under these assumptions the analysis reduces to
a GW population inference with a mixture population; equation (9)
becomes equation (3) with

POIA) = npa(@|Aas) + (A —n)pc@lAc), (13)
and a selection function
a(A) > naa(Ag) + (1 —nag(Ag). (14)

Equation (13) treats the glitch population as an additional ‘astrophys-
ical’ population, albeit occupying a different region of parameter
space from the population of true astrophysical BBHs.

There is one additional caveat. In the LVK population analysis of
Abbott et al. (2023b), events included in the catalogue are selected by
their FAR (<1 yr~'), and so we would like to also select glitches by
their FAR to match Abbott et al. (2023b). However, this requires us to
calculate FARs for many injections from a fiducial glitch population.
Running search pipelines to calculate FARs of injected glitches may
be necessary for a future study, however for this proof-of-principle
paper it is simply too expensive. Instead, we select glitches for
inclusion with a cheaper threshold, the SNR. We can then estimate
ag(Ag) with a reweighted Monte Carlo estimator using a custom
set of injections, and estimate a4 (A4) with the injection set already
provided in LVK (2021).

2.4 Characterizing the glitch population

In the citizen-science project GRAVITYSPY, glitches are classified
according to their time frequency spectrograms (Zevin et al. 2017;
Glanzer et al. 2023). For instance, blip glitches are short bursts of
excess power, with a time frequency spectrogram morphology shown
in Fig. 1.

In fact, blip glitches are more likely to contaminate a GW
catalogue, since they can mimic high mass BBHs (Cabero et al.
2019). For this reason, we restrict this first study to blip glitches,
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though the formalism can be extended to any glitch class, or even
combination of classes. This would require a new population model
and A for each additional class, plus a mixing fraction.

In order to understand various populations of glitches, Ashton et al.
(2022) analysed a set of 1000 GRAVITYSPY identified blip glitches
with the IMRPhenomPv2GW waveform (Hannam et al. 2014; Bohé
et al. 2016; Husa et al. 2016; Khan et al. 2016). Since blip glitches
are not due to any astrophysical process, they are usually present
in a single detector, with multiple detector coincidences occurring
randomly. As single detector triggers, only information about the
intrinsic parameters (masses and spins) may be extracted. Therefore
Ashton et al. (2022) provides posterior samples only over the intrinsic
parameters and the redshift.

With the posterior samples in hand, Ashton et al. (2022) fit a
population model in the detector frame chirp mass, mass ratio,
and primary spin (see their Figs 2—4). Qualitatively, the population
of GRAVITYSPY blip glitches shows different features from the
population of BBHs (extreme mass ratios, spins, and low redshifts,
inconsistent with e.g. Abbott et al. 2023b). We will use this to our
advantage to separate the populations.

We slightly modify the population model of Ashton et al. (2022).
Instead of modelling the primary spin magnitude, we model in the
effective spin parameter:

aj cos b + qa, cos 6,
1+g¢

where a; and a, are the spin magnitudes of the primary and secondary
BHs in Kerr units, ¢ = my/m, is the mass ratio (where 0 < g < 1 by
convention), and 6, and 9, are the spin tilts measured from the orbital
angular momentum. x . is the spin parameter, which occurs at lowest
order in the waveform, and is measured better than individual spins
(Racine 2008; Piirrer, Hannam & Ohme 2016; Vitale et al. 2017; Ng
et al. 2018).

We model the glitch population in the detector-frame chirp
mass, mass ratio, effective spin parameter, and redshift: 6 =
(M dets 4 Xett, 7). In particular, we use a skewed Gaussian (equation
(16)) for both the detector-frame chirp mass M. g and the redshift z
with hyper-parameters p,,, 0, Kk, and ,, o, and «,, respectively

p(xm,a,x):%(““)cb(:«"‘“), (16)

o o

Xeff = , (15)

where ¢ and & are the standard Gaussian and Gaussian integral,
respectively. We model x.i and g with a correlated mixture model
of two two-dimensional Gaussians in the x.¢—q plane with hyper-
parameters denoted Xq , for brevity

pqx(‘L Xeffliqx) = Nl’)q,x¢(fl[‘]s Xeff])(p(gl[q’ Xeft])
+ Nao(1 — 1. 0)@ (f2lq, Xerr]) & (820q, Xerr])

)‘qx = (Mq,l~ﬂq,2y My, 15 My,2,0g.1,0¢.2,0y,1,

05,2, 0q.5> Mg, x) (17)
where
— Mg, 0, off — Hy,i) sin(6
fl[q’ Xeff] — (q /-Lq, )COS( q,)() + (X ff /-L)(, )SlIl( q,x) (18)
Ogq.i
(g — 1q.0) 8100, ) + (Xerr — Hy.i) €OS(0y,5)
gilg. o) = A S A B (19)
q,l

and N, and N, are normalization coefficients, numerically calculated
because x.r and g are required to be positive. Equation (18)
describes a pair of two dimensional Gaussians with branching
fraction n,, , parametrized by the variances along the eigenvectors
of the covariance matrix (o, ; and o} ), and the angle they are
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Figure 2. The posterior population distribution of the population inference
on the glitch population alone, using all 1000 blip posteriors from Ashton
et al. (2022). Contours show the 1-5¢ regions.

‘tilted” by (8, ,, assumed to be the same for both Gaussians). The
glitch population model for is the product of the M. 4o, z, and
q—Xeir models, and Ag is the union of their hyper-parameters.
We chose to leave precession unmodelled in the population by
projecting the six-dimensional spin population on to the effective
aligned spin parameter. However, a future study could examine
how the populations further separate including the spin precession
parameter and correlations therein, or in the full six-dimensional spin
space.

We are now ready to measure the population of blip glitches with
our model, as is done in Ashton et al. (2022). By using all 1000
posteriors from Ashton et al. (2022) we obtain tight constraints on
the glitch population alone. This is a critical step of our analysis. We
must measure the population of glitches well to optimally separate
it from the population of GWs. Fortunately, we have access to the
unbiased population of blip glitches before any selection criteria
are enforced.! We may assume the 1000 glitches from Ashton et al.
(2022) are arepresentative sample. The constraints we measure in this
step inform the boundaries of the priors we use during simultaneous
inference. We show the posterior population distribution (PPD) in
Fig. 2.

As for the astrophysical population parametrization, we use the
power-law plus peak model of Talbot & Thrane (2018), Abbott et al.
(2023b), and the redshift model of Fishbach, Holz & Farr (2018).
We modify the spin distribution model by modelling x.¢ with a
Gaussian, following Roulet & Zaldarriaga (2019), Miller, Callister &
Farr (2020), and Callister et al. (2021). This gives us the set of A4
and A, which will be inferred together with the detectable mixing
fraction 7 in our joint analysis.

I'Note there is a cut on these GRAVITYSPY glitches with SNR > 8, and another
given they are GRAVITYSPY identified. We can still treat this as the unbiased
population with no changes to our analysis. In a real analysis, one would still
have access to an unbiased sample of the population of glitches.

MNRAS 523, 5972-5984 (2023)

2.5 Simultenous inference and selection effects

We model the selection effects of glitches in entirely the same way
we model the selection effects of GWs. We emphasize that selection
effects depend on the data alone. If we believe glitches have data
well-modelled by a GW plus Gaussian noise, then the probability of
detecting a glitch is well-approximated by the probability of detecting
a GW with the corresponding parameters.

We also define p,uo, i(A) for each event in the catalogue, a
population dependent quantity,

nL(di|Ay)

nL(d;|Ap) + (1 — ) L(di|Ag)
(20)

pastro,i(A) = P(aStf0|di, A) =

This comes directly from Bayes’ Theorem. It is perhaps more
intuitive to use 77 instead of 1, however, in that case the likelihood
terms must each acquire a 1/ f dOpger, xpx(0] Ax) term, and it reduces
again to equation (20). This folds in the dependence on source
parameters and uncertainty in the population hyper-parameters, and
s0 in general p,qy, 1S a posterior, based on the posterior on A. Search
pipelines output a point-estimate of this quantity for each event, using
the point estimate on the progenitor parameters with the matched
template, a fixed underlying astrophysical population, and a direct
calculation of the glitch-rate term with the FAR. Farr et al. (2015)
and Kapadia et al. (2020) define similar quantities.

3 RESULTS

We contaminate the catalogue of 69 BBH events (with FAR < 1
yr~!) analysed in Abbott et al. (2023b) with blip posteriors obtained
from Ashton et al. (2022). Note the posteriors in Abbott et al. (2023b)
are sampled used state-of-the-art waveforms including higher order
modes, while Ashton et al. (2022) uses the rapid IMRPhenomPv2,
a waveform approximant including only the dominant (I, m) = (2, 2)
mode (Hannam et al. 2014; Bohé et al. 2016; Husa et al. 2016; Khan
et al. 2016). Indeed, blip posteriors converge on unequal mass ratios
(g ~ 0.1), where higher order modes become significant. While this
will bias the glitch population model, this paper is intended to be a
proof of concept and so we use the posterior samples as provided.

We inject Nyjip = [0, 1, 2,..., 19, 20] contaminant posteriors from
Ashton et al. (2022) into the set of 69 BBH posteriors analysed
in Abbott et al. (2023b). We then sample the hyper-posterior of
A using the nested sampler DYNESTY (Speagle 2020; Koposov
et al. 2022) and the code GWPOPULATION (Talbot et al. 2019). We
must cut regions of parameter space above the total variance of
the hierarchical likelihood-estimator. Without handling variance the
sampler can converge on regions of parameter space with poor Monte
Carlo estimates, and thereby bias the posterior sampling from the
true posterior (Golomb & Talbot 2022). We do this as well as cut
out regions with poorly behaved selection function estimates, as
described in Farr (2019) and Essick & Farr (2022).

We describe several methods of quantifying the bias (or lack
thereof) of performing the simultaneous inference.

3.1 The detectable mixing fraction

For each catalogue and its inference, we obtain a posterior on the
detectable mixing fraction 7. We plot these posteriors as violin
plots in Fig. 3. The dashed-black line is the true mixing fraction
in our catalogue, given by the number of BBHs divided by the total
number of events. Note the posteriors peak at the dashed line, i.e. it
is recovering the correct number of contaminants.
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Figure 3. The violins show the inferred detectable mixing fraction 7 for each
run. The x-axis indexes the number of injected blips and each violin refers to
a different inference. The black-dashed line is the injected mixing fraction,
given by 1—Nplips/Nevents. Notice the inference recovers the injected mixing
fraction well. We compare against the optimal posterior, which would be
inferred with perfect knowledge on which events are BBHs and are glitches.
We show the 1-30 and median of this optimal posterior in black (see the
Appendix and equation (Al)).

While the results here suggest the sampling is correctly recovering
the blips, there is a caveat. The quantity 7 represents a statement on
the underlying relative rates, it is not the fraction of BBHs in the
catalogue. In other words, this is not a like to like comparison. We
want to understand what our inference predicts are the number of
BBHs and blips in our catalogue.

For instance, suppose we may unambiguously identify which
events are BBHs and which are blips solely using the event pa-
rameters. That is, the populations are disjoint to the point that every
event posterior overlaps with only one of the astrophysical or glitch
populations. It turns out that 77 does not converge on a delta function:
it will have some width due to Poisson rate uncertainty. Rather, it
converges on an analytic optimal posterior, which we calculate by
assuming the populations are so disjoint that every event posterior
uniquely determines which population the event originates from.
Details on this calculation are in the Appendix.

From this theoretical optimal posterior, we can calculate the
median and 1-30 levels, which we show as a function of the number
of added contaminants (x-axis) in Fig. 3. Note how similar the
measured posteriors on 7 are to the optimal posterior given perfect
knowledge on which events are BBHs and glitches. The populations
of blip glitches and BBHs are nearly disjoint; this suggests the
inference can uncover, which events are in which population much
more precisely than the 77 posteriors naively indicate.

3.2 Inferred number of contaminants and BBHs

Calculating pagyo> (i.€. equation (20)) for each event in each run, we
notice that the posteriors on each event tends to be sharply peaked,
e.g. GW150914 peaks at paso(A) — 1, the blips peak at p,gro(A) —
0.We show posteriors on 1—pagro = pplip for two example events
in Fig. 4, GW151226 and GW200302. GW200302 is the event
with the highest probability of being a blip, see the Appendix for
details. Note as the number of injected blips increases, the pyip
increases for GW200302. This is because the 7 posterior converges
on lower mixing fractions; lowering the odds that any given event is

2We emphasize that statements made in this paper about pgro should be
understood as the probability of the event not being a blip, rather than
the probability of the event being astrophysical in origin. This is rather
cumbersome to write, so we continue with the abuse of notation in pugro-
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Figure 4. Calculated 1—paswo = polip for two events, GW200302 and
GW151226, in each inference. GW200302 consistently had the lowest pagiro
of all the BBH events, while we selected GW151226 to be a representative
event for the standard BBH in the catalogue. Note a subtle trend for decreasing
Pastro as the number of injected blips increased.

astrophysical. This is much more apparent in GW200302, where pyip
is mostly dominated by these odds. GW 151226 is a representative
event for what most BBH p, posteriors look like. In fact, many
posteriors are even more extreme than GW151226; logio(puiip) —
—oo for many events, see Table A1 in the Appendix for the full event
list.

Most paswo posteriors are sharply peaked, nearly delta functions.
Translating this into a calculation on the number of BBHs and blips
in the catalogue, this suggests that the inferred number of BBHs
and blips in the catalogue is also sharply peaked. Indeed, using the
Dastro, i defined in equation (20) we may calculate the probability that
exactly k of Neyens are astrophysical. Since each data realization is
independent, the p,«ro, ; Of each event will be statistically independent.
The probability that exactly k of Neyenss total events in the catalogue
are BBHs is then

k Nevents
pk(A) = Z H paslro,y(j)(A) H - paslro,y(j)(A) s
Y €Lk, Nevents) | j=1 Jj=k+1

@n

where I'(k, Neyents) 18 the set of k-combinations of Neyeys (it contains
Nevents choose k elements), a subset of the set of permutations of
Nevents- Thinking of permutations as one-to-one and on to functions
from the set {1...., Nevenss } to itself, k-combinations are permutations
where two permutations y; and y, are equivalent if there is the set
equality y,({1,.., k}) = y2({1,.., k}). Informally, the probability that
exactly k of Neyens are BBHs is the probability a specific set of k events
are BBHs and the others are glitches, summed over all the possible
sets of k events. Note that if all p,y., ; are the same, equation (21)
reduces to the binomial distribution as expected. However, equation
(21) is much too computationally expensive to evaluate directly.
We use a trick with symmetric polynomials to vastly simplify the
calculation, see the appendix for details. We also note that Galaudage
et al. (2020) consider the sum of the p,sro, ;- This is the expectation
value over k of equation (21), which is also discussed in further detail
in the Appendix.

After contaminating the catalogue of 69 BBHs passing the LVK se-
lection criteria (Abbott et al. 2023b) with 0-20 independently drawn
random blips, and running 21 inferences on the hyper-parameters A
on the 21 variably contaminated catalogues, we calculate equation
(21) for each A sample. We show an example in Fig. 5, the run with
20 contaminant blips. In this run and in most runs, the probability
for exactly 69 BBHs in the catalogue rails against 1, while for some
other runs it can be more uncertain. Variability between runs is due
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Figure 5. The probability of having k events, which are astrophysical in
the catalogue. The horizontal axis is the number of events in the catalogue,
and the vertical axis represents the pi(A) probability of there being exactly
k astrophysical events in the catalogue. Since the probability for exactly
69 BBHs rails against 1, we show an inset zoom on the peo(A) violin. The
uncertainty in the value of the probability px(A) comes from the uncertainty in
the population parameters A. This particular run was with 69 BBHs injected
and 20 contaminant blips injected.
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Figure 6. In the top panel, we show violins for the inferred posterior
probabilities of the catalogue not having 69 BBHs in it; 1—pgo(A). The
vertical axis shows the logarithm of the probability, and the horizontal axis is
the number of injected blips in the catalogue. In the bottom panel, we show
the posterior probabilities of the catalogue having some number of BBHs
which is not 68, 69, or 70; 1 —pgg(A) — peo(A) — p70(A). Note the increase
in the probabilities as the number of injected blips increases; this is due to
higher odds that any given event is a blip (lower 7). The dip at exactly 20
injected blips is because those 20 contaminants happen to be easily resolvable
from the GW population, and so pgo(A) peaks strongly at 1.

to the differences in how ‘BBH-like’ the blip contaminants are, and
how well they fit into the blip population model.

We also show posteriors on the probabilities of having exactly 69
BBHs in the catalogue. Specifically, since many of the probabilities
rail against 1, we show the logarithm of the negation: the log
probability of not having 69 BBHs in the catalogue, shown in the
top panel of Fig. 6. As the number of contaminants increases, the
resolving power drops, meaning the probability becomes more spread
out between ~68 and 70. Furthermore, the odds any given event is a
BBH drops, as the mixing fraction between BBHs and blips becomes
more blip-favoured. That said, up to 20 injected blips we observe
significant probabilities of exactly 69 BBHs in the catalogue, and
near unity probabilities of 68 or 69 or 70 BBHs in the catalogue
(Fig. 6).

While there is some variation in the probabilities, this method
consistently recovers the correct number of injected contaminants,
so long as the populations are sufficiently dissimilar. Itis not clear that
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Figure 7. The inferred astrophysical mass distribution. In green we show
the control run, with no contaminants injected and no glitch model included.
We also show the runs with with the glitch model included and injected
contaminants; we show runs with 10 and 20 blips included. The solid line
is the PPD and the dashed lines show the upper and lower limits on the 90
per cent credible region. The inferred distributions appear consistent.

the correctly recovering the number of contaminants prevents slight
biases from arising in the population inference, especially given there
is some small variability in the inferred number of contaminants in
the catalogue.

3.3 Biases in the BBH population

While the correct number of blips is recovered in each run, we want
to be sure that no biases are introduced in the inferred astrophysical
distributions. For example, we show inferred distributions of the
primary masses for a control run and with 10 and 20 injected blips in
Fig. 7. Qualitatively speaking, they appear to be essentially identical.
The control run is a population inference on the catalogue of 69 BBHs
in Abbott et al. (2023b), using the same astrophysical population
model parametrization described in Section 2.4.

We quantify any differences by calculating the Jensen—Shannon
(JS) divergence between the inferred distributions of a control
population inference and the inferred astrophysical sub-populations
from contaminated catalogues. The JS divergences show no trends,
with a median consistently at ~0.09—0.1 bits. We show the JS
divergences in the middle column of Table A3 in the Appendix,
and in the first row we show the JS divergences between two draws
from the control hyperparameters.

3.4 Biases from unmodelled blip contaminants

Some glitches appear significantly more astrophysical than others.
For the run with 20 blips injected and the 69 BBH mergers, we plot
the posteriors on the effective ‘BBH’ parameters of the glitches, and
population-averaged pasio Values overlaid on the blip PPD, see Fig. 8.

There are some general patterns, most notably that extreme
Xetf S€ems to be the strongest predictor of low p,gr, and if the
primary mass m; falls above the maximum mass cutoff m,, in the
astrophysical model, the pagy, 1S zero. We show a table of the median
and 90 per cent credible region parameters of each blip, along with
the SNR and p,yo in Table A2 in the Appendix.

We want to understand the kind of biases, which are induced by
including blips into the population, without controlling for those
contaminants with a glitch model. Of the run with 20 injected blips
and 69 GWs, we select the blips, which could most plausibly be
astrophysical, i.e. they have the highest p,s. We selected the blip
with the highest p,so (the top row in Table A2), and the 10 blips with
the highest p,gro (the top 10 rows in Table A2), and contaminated

€20z AINf £z uo Josn saueiqr 1IN Ad 862502./2.6S/V/€ZS/P0IMe/SeIuL/WOD dNo"olwapede/:sdny Wwolj papeojumoq



Inferring population of GWs in presence of noise

--10.0

--12.5

>
S
|09 10Pastro

--17.5

--20.0

[-22.5

S N >
SR q,b‘Q NN AN NN N 0%9%@@%@“
Z

ma q Xeff

Figure 8. We show the 20 posteriors on the blip effective BBH parameters
injected, and their corresponding mean pysiro, labelled in the figure by the
colour of the posterior points. See the colourbar on the right. Note some
general patterns: very low x.g values and very high masses correspond to
low pastro Values. Note also that all the blip pagiro values are still very low, less
than 10~%.
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Figure 9. The inferred mass distribution for a control run compared to the
inferred mass distribution when 1 and 10 astrophysically plausible blips are
included into the catalogue, without controlling for their bias with a glitch
model. Note the increased support at high mass, and the broadening of the
Gaussian peak. The low mass end of the distribution is much less affected.

the catalogue of 69 BBH mergers passing the LVK selection criteria
(Abbott et al. 2023b) with these 1 and 10 blips. We then sample from
the population hyper-posterior without any glitch model.

In order to prevent population hyper-parameters from railing
against prior ranges, we extended the prior range of my,y significantly
(the maximum cutoff mass parameter in the model of Talbot & Thrane
2018) to allow values up to 500 Mg,.

All the inferred distributions are biased. For instance, we show the
inferred primary mass distribution for the control run, and for 1 and
10 contaminants, see Fig. 9.

We compute the JS divergences for these inferred distributions,
compared to the control distribution. We show them in the right-
hand column of Table A3 in the Appendix.

4 CONCLUSION AND FUTURE WORK

In this article, we presented a method for inference of a population
of GW sources, which is contaminated by non-astrophysical events.

5979

‘We contaminated the catalogue of 69 BBHs of Abbott et al. (2023b)
with an increasing number of single-interferometer blip glitches from
Ashton et al. (2022). We showed how to generalize a population
inference to not only infer the shape parameters of a GW population,
but to simultaneously infer the population of the glitch background
events. We tested this method, and showed that it in practice identifies
and removes systematic biases from population inference. As GW
astronomy matures, interesting results may reveal themselves only
on the level of populations, and satisfactory statistical significance
may require delving into sub-threshold events.

As a proof of principle analysis, we chose only to consider the
blip glitch class from GRAVITYSPY, since Ashton et al. (2022) had
already produced parameter estimation samples for these. We caution
that the method we presented here will only be robust to blip glitch
contamination; we leave it to a future study to do a full simultaneous
analysis with a model for an extended population of glitches.

There is another caveat, in the appropriate estimation of the
selection effects. In an end-to-end analysis, the detection criterion
is the same for glitches and GWs, and so must be estimated
consistently. The current most common method requires a massive
set of simulated GWs from a population similar to the population of
astrophysical GWs into detector noise, and re-weighting for different
population hyper-parameters (LIGO Scientific Collaboration, Virgo
Collaboration & KAGRA Collaboration 2021; Abbott et al. 2023b).
The set of glitches comes from regions of parameter space poorly
sampled by the injection set, and so to properly estimate the selection
effects, one needs an auxiliary suite of injections over the appropriate
regions of parameter space. This is a significant computational
expense, although it is regularly done by the LVK collaboration
to estimate the selection effects of astrophysical GWs.

Though it is a challenge, there are many applications for a method
to simultaneously infer the population of astrophysical GWs and
non-astrophysical glitches. The most immediate application would
be to lower the threshold for including a trigger into the catalogue,
e.g. select on FAR <2yr~!, or FAR <5yr~!. There are real GW
events lurking below the FAR < lyr~' threshold, and these can
aid in constraining the population. This would require an accurate
model for the glitches that actually pass the threshold, rather than
using our fiducial blip glitch model, and while conceptually similar
to this work, the full treatment would also require running end-to-end
search pipelines on injections from the glitch population. We leave
this to a future study. There are other useful applications as well.
Some GWs occur while only a single detector is online (Callister
et al. 2017; Nitz et al. 2020; Cabourn Davies & Harry 2022). These
single detector events often cannot enter a catalogue for population
inference, and so they cannot be used for constraining the population.
Our approach of modelling the intrinsic population of glitches is
a step towards the use of single detector triggers in population
analyses.

This method can also help characterize triggers found in searches
for exotic objects. As an example, BBHs beyond the upper mass gap
remain elusive (Ezquiaga & Holz 2021). The search sensitivity for
these objects is reduced by the presence of short duration glitches
much like blip glitches (Cabero et al. 2019), and so a joint analysis
of a population of these background glitches and the astrophysical
‘beyond-the-gap’ BBHs would measure tighter constraints on their
rates. As another example, an analogous procedure is conceivable
for continuous wave (CW) sources. One may be able to characterize
the population of CWs and the ‘glitches’ associated, which are due
to monochromatic coherent power between detectors (Abbott et al.
2020, 2022b, c; Cieslar et al. 2021). This may benefit a search for
CWs or population level characterization of CW sources.
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For analyses like the one presented, it is critical to have both
an accurate waveform model for glitches and an accurate glitch
population model. In this paper, we model glitches with a GW
waveform, however, it may be useful to use alternative glitch
waveforms. One option is to use non-coherent GW waveforms to
model the glitches, where the signal in each interferometer is fit with
independent GW waveforms (Veitch & Vecchio 2010). One can also
use non-GW waveform models, such as GLITSCHEN (Merritt et al.
2021) or BAYESWAVE (Cornish & Littenberg 2015). In cases where
the glitch waveform model is different from the GW waveform,
equation (9) must be used in its more general form. Second, we must
have an appropriate model for the glitch population, and using as
accurate as possible a model will be crucial. For example, if one
continues to use a coherent GW waveform, one could fold in the
analysis information about extrinsic parameters, e.g. the fact that the
population of glitches is not expected to be isotropic (Payne et al.
2020; Vitale, Biscoveanu & Talbot 2022; Essick et al. 2023). We plan
to explore both these avenues in a future work.
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APPENDIX A

Event information

We show upper bounds on the calculated p,q, for each GW event
when we included 20 contaminant blips in Table A1. We also show
upper bounds on each p,go, given by the 90 per cent and 99 per cent
upper bounds. In Table A2, we show the parameters of the 20 blips
that contaminate the catalogue in the run with 20 blips. Note we use
a random set of blips for each catalogue, e.g. the 19 contaminants
for the run with 19 blips are not a subset of the 20 contaminants for
the run with 20 blips.

Optimal detectable mixing fraction posterior

Consider the scenario where the populations are disjoint such that
every event posterior uniquely determines which population the event
originates from. The event parameters tell us with no ambiguity
whether an event is a glitch or a GW. Therefore, we want to
infer the relative rate of detectable events given we detected Neyens,
with k£ unambiguous astrophysical events, and the rest unambiguous
glitches. This is a common problem in Bayesian inference and it
admits an analytical posterior, given by equation (A1). This is the
best the inference could possibly constrain 77, and so it is a useful
benchmark to compare to.

ﬁk(l _ ﬁ)Nevems—k
B(k + 17 Nevems -k + 1)’

p() = (AL)
which assumes a uniform prior in 77 from O to 1, and the denominator
is a normalization.

—— Blip Population PPD
—— GW200302 Posterior
——— GW200302 Scaled Likelihood

q

950, 0, 0,9, 0,059, 0,

Xeff

RN NN NN
QTR T OT O OV N ¥
Xeff z

my q

Figure Al. A corner plot with the primary mass, mass ratio, effective
aligned spin, and redshift posterior of GW200302 overlaid on the population
predictive distribution of the blip population. The posterior on GW200302
is shown in blue, with the first 40 contours and sample points. The blip
population predictive distribution is in black contours, showing the first
7o. Since it is not the posterior overlap but the likelihood overlap which
contributes to the pp1ip, We include the posterior reweighted by the inverse of
the prior. This highlights the regions of high overlap for the glitch likelihood
term.
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Table Al. Inferred 1—paso = poiip for each event in the catalogue of Abbott et al. (2023b), calculated from the run with 20 injected blips. We show the
upper bounds on the inferred py;p at both 90 per cent and 99 per cent credence. Note GW200302 has pylip S 7.2 per cent, the highest non-astrophysical
probability event, and the event GW190503_185404 has the second highest pyjip < 7.0 per cent.

90 per cent upper 99 per cent upper

Event bound bound Event 90 per cent upper bound 99 per cent upper bound
GW150914 0 0 GW190731.140936 6.7 x 10716 2.3 x 10713
GW151012 3.1 x 1074 6.1 x 1074 GW190803_022701 23 x 10710 6.8 x 1077
GW151226 1.2 x 1073 59 x 1073 GW190805_211137 0 0
GW170104 1.3 x 107 4.8 x 1076 GW190828_063405 0 0

GW 170608 73 x 1078 44 x 1077 GW190828_065509 3.7 x 107 34 %1078
GW151226 9.7 x 1074 29 x 1073 GW190910_112807 0 0

GW 170809 2.6 x 10710 44 x 107° GW 190915235702 2.3 x 10711 3.6 x 10710
GW170814 0 0 GW190924_021846 8.7 x 1078 1.1 x 107°
GW170818 0 5.1 x 10713 GW190925_232845 1.7 x 1077 8.6 x 1077
GW170823 1.6 x 1077 9.0 x 1077 GW190929_012149 1.3 x 1077 1.6 x 107
GW190408_181802 0 0 GW190930.133541 8.2 x 1071 8.4 x 10710
GW190412 7.2 x 1073 2.8 x 1074 GW191103_012549 1.8 x 1078 1.6 x 1077
GW190413.052954 1.8 x 107 33 x 1078 GW191105_143521 42 x 107 32 x 1078
GW190413.134308 32 x 10714 1.7 x 10712 GW191109_010717 6.0 x 1073 4.6 x 1074
GW190421.213856 1.9 x 10710 4.0 x107° GW191127.050227 1.8 x 10~* 7.7 x 107%
GW190503_185404 4.0 x 1072 7.0 x 1072 GW191129_134029 1.6 x 1071 2.3 x 10710
GW190512.180714 2.0x 1071 14 x 10713 GW191204_171526 0 0
GW190513.205428 40 x 10713 2.8 x 10711 GW191215.223052 0 2.2 x 10716
GW190517.055101 1.1 x 1078 3.6 x 1077 GW191216_213338 32 x 1076 1.8 x 1073
GW190519_153544 0 0 GW191222_033537 3.6 x 10711 1.1 x107°
GW190521 5.6 x 10710 49 x 10714 GW191230.180458 3.4 x 1077 43 % 10°°
GW190521.074359 0 0 GW200112_155838 0 0
GW190527.092055 1.8 x 107 2.1 x 1078 GW200128_022011 22 x 10710 2.0 x 10714
GW190602.175927 1.8 x 10710 1.2 x 1078 GW200129_065458 48 x 107 47 x 1078
GW190620.030421 2.4 x 10712 1.8 x 10710 GW200202_154313 1.9 x 1077 1.1 x 107°
GW190630.185205 0 0 GW200208_130117 2.0 x 1077 1.7 x 107
GW190701.203306 4.8 x 10712 1.6 x 10710 GW200209_085452 7.7 x 1072 1.1 x 1077
GW190706_222641 23 x 1071 5.4 x 10713 GW200216_220804 4.1 x 1077 2.3 x 107°
GW190707.093326 4.6 x 1071 4.8 x 10710 GW200219_094415 1.3 x 10712 1.1 x 10710
GW190708_232457 0 6.7 x 10716 GW200224 222234 1.2 x 10°° 54 % 107°
GW190719.215514 7.5 x 10712 2.3 x 10710 GW200225_060421 47 x 1078 3.7 x 1077
GW190720.000836 1.4 x 10710 14 x 107° GW200302_015811 4.1 x 1072 7.2 x 1072
GW190725.174728 2.3 x 107 8.5 x 1070 GW200311_115853 49 x 1074 14 x 1073
GW 190727060333 0 0 GW200316_215756 1.6 x 1078 1.2 x 1077

GW190728.064510 48 x 10712 74 x 1071

In fact, we can see how this arises directly from equation (12). If
the population models for the glitches and the BBHs are completely
disjoint for all event posteriors, then in each term in the product of
equation (12), either the glitch term f dy L(d;|V)pc(¥|Ag) or the
astrophysical term f dOL(d;|0)pa(0]A 4) will vanish. The likelihood
then factorizes:

LUdi} Ay Mg, ) o (1 =)o

ﬁ [ dOLW;10)pa@1Ax) "5 [ dy L1V pe(¥|Ac)
P as(Ay) ag(Ag)

s
i=k+1

(A2)

and so the inference may proceed independently for the astrophysical
hyper-parameters A4, the glitch hyper-parameters Ag, and the
detectable mixing fraction 7. This matches the intuitive result
that independent populations may be characterized independently.
Pulling out the 77 term in the likelihood and normalizing with a
uniform prior between 0 and 1, we recover equation (Al).

In general, the glitch and BBH populations are not completely
disjoint and the glitch/astrophysical terms in the product in equation
(12) do not vanish. With the additional uncertainty in the ‘identity’
of each event in the catalogue, the posterior on 77 will broaden. The
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degree of broadening tells us how close the inferences are coming
towards knowing there are exactly kK BBHS of Neyens total events.

GW200302

GW200302 has the largest support for 1 — — — pagwo = poiip- TO
understand this, we show the corner plot overlay of the GW200302
posterior and the blip population predictive distribution in Fig. Al.
Note the tails of the GW200302 posterior overlaps with the blip
population distribution; this is why the p,g, for GW200302 is
relatively low.

Further, it is not the posterior ‘overlap’ which is taken into the
population likelihood, but the event likelihood ‘overlap’. The tails of
the posterior in x . and in mass ratio g—the samples, which happen
to fall neatly into the blip population—are therefore weighted much
more highly, since the sampling prior there is much lower. Indeed,
the x . posterior is essentially the recovered y i sampling prior. This
drives up the glitch population term in equation (20), and therefore
lowers the p,gro. This is expected: if there are poor constraints on
the source parameters, we must be more agnostic about the event’s
origin based on the parameters alone.

€20z AINf £z uo Josn saueiqr 1IN Ad 862502./2.6S/V/€ZS/P0IMe/SeIuL/WOD dNo"olwapede/:sdny Wwolj papeojumoq



Inferring population of GWs in presence of noise

5983

Table A2. Median and 90 per cent credible intervals for the GW effective parameters of the 20 blip contaminants for the 20 injection run, organized by the

median pygro. The SNR is the optimal SNR.

Number my q X eff b4 SNR Median pygiro Pastro S per cent Pastro 95 per cent
1 49.9+1%0 0.2810:93 —0.647028 0121007 10.97}7 1.0 x 1073 52 % 107° 2.0 x 1073
2 31.27134! 0.3 ~0.581023 0.13790¢ 8.621 5 5.8 x 107° 2.7 x 107° 1.4 x 1073
3 65.1158, 0.11%52, 0.19%042 00587905, 154717 83 x 1077 3.9 x 1078 1.1x 1073
4 66.6755 0.12+0:0! 038700,  0.03170007 27.5%18 42 x 1078 3.0 x 107! 5.9 x 107°
5 56.4158 0267003 —0.627383  0.09375:933 13.07}7 13 x 1078 1.0 x 10710 2.7 x 1077
6 116.0758  0.09475075 0.157)2) 0.16159 10.57}7 5.6 x 1077 35 %1071 1.1x 1073
7 51.4+340 0.287002  _0.677007  0.08210:932 14.5717 2.9 x 1077 4.8 x 10715 2.6 x 1078
8 76.8732 0287001 —0.54701)  0.13700! 15.57}7 1.1 x 10710 1.8 x 10718 52 x 1078
9 45.9713 0.3179¢1 —0.75%00%  0.05175018 21.2%}% 3.0 x 10712 2.7 x 1072 1.2 x 10710
10 61.1732 025700 —0.517000  0.083109% 14.8717 34 x 10718 1.1 x 10720 6.9 x 107°
11 69.4152 0.271:03 —0.727508  0.0797003° 20.6%17 9.7 x 10716 2.5 x 1073 2.5 x 10712
12 71.9+29 0.07473003 0.441001  0.0377390 36.0t17 2.0 x 10716 1.0 x 10710
13 69.811 0.07379%01 0.44709 0.03870017 26.7+16 2.9 x 10717 2.9 x 10711
14 4371113 0.3759 —0.6710%  0.08475:919 15.1+17 83 x 10721 8.0 x 10732 3.7 x 1071
15 57.3%4 0287000 —077%05y 01170 14.3%17 52 x 1072 6.3 x 10732 22 x 1071
16 52,9412 0.29+0:93 0775485 0.08810:0% 14.2517 7.2 x 10722 4.0 x 1073 47 x 10716
17 45.1124 0201002 0717307 0.04170:9 17.9717 3.0 x 10726 2.2 x 107# 53 x 10718
18 56.312% 0.3759 —0.9%04 0.07+202 19.317 2.2 x 10736 6.8 x 10700 9.0 x 1072
19 403117 0.37100%  —0.947007  0.03979013 229418 4.1 % 107% 2.0 x 10777 7.3 x 107
20 262.0131 0.06739 0.317901 0.1759 19.9717 0 0 0

JS divergences

We show the JS divergences measured between the inferred astro-
physical sub-populations of each run, where we included the glitch
model to account for the injected contaminants. We also show the JS
divergence for 1 and 10 injected blips where we did not include the
glitch model.

Calculating the inferred number of events in the catalogue

In equation (21), we show an expression for the probability on the
number of events in the catalogue, depending on the population
hyper-parameters A. However, this expression is a sum of O(10%°)
terms, and as such is not computationally feasible to evaluate.
Fortunately, there is a much more efficient method to complete the
sum.

The sum has a largest term, which we can easily find by first
ordering the list of p,eo,; from largest to smallest. This term then
corresponds to the identity k-combination, denoted yo = I. We
notate this term by p©@ = Hf:l PDastro.i H;V:“ﬂ‘](l — Pasiro.i)- Because
many of the p,q, posteriors have non-negligible posterior width, this
term does not completely dominate the entire sum, however, we can
express all the other k-combinations in the sum in terms of this p©.
In particular, we can think of each y € I'(k, Neyens) in terms of the
number 7 of events, which must be exchanged from the astrophysical
bin to the glitch bin in order to match y (. Because we are summing
unique k-combinations, the probability associated with the family
of k-combinations which are r events different from y is given by

1-p 1—-
) _ (0) astro, 1 pastro,k)
p =D "¢ ( s eees
PDastrok

Pastro, 1
Pastro,k+1 Pastro, N
X e, ( sy ety , (A3)
1— Pastro,k+1 1 — Pastro, Nevens

where the e, is the rth symmetric polynomial. Symmetric polynomi-
als are defined such that every term has degree r and every r combi-
nation of the variables appears once in the sum, e.g. e>(x, y, z) =xy +
xz + yz. Note how symmetric polynomials naturally capture the idea
of summing over unique sets. The first polynomial term is the sum
over all unique sets of size r sending events from the astrophysical
bin to the glitch bin. The second polynomial term is similar, sending
all unique sets of size r from the glitch bin to the astrophysical bin.
Their product, then, is the sum over all combinations of unique set
exchanges of size r between the astrophysical and glitch bin.

This is nice, but it is not helpful unless one can rapidly evaluate the
symmetric polynomials. It turns out that one can easily find the rth
symmetric polynomial recursively from the previous »—1 symmetric
polynomials, using Newton and Girard’s Theorem:

rer(xXi, X)) = Y (=1 e (1, X)) i1 X)), (AD)

j=1

where the f;(xq, ..., x,) = xlj + ...+ x,{ are computationally trivial
to evaluate. With this in hand, we can rapidly evaluate equation (21)
as

min(k, Nevents —k)
pr(A) = P (AS)

r=0
If one wishes to calculate the k-expectation over the py(A)

Nevents

(Pe(A)e = D kpi(A), (A6)

k=0

it is simple enough to evaluate given all the p;(A ), however, it is clear
that this should also equal the sum of the p,gro, i, thinking of the pasro, i
as independent Bernoulli trials. We can show they are equivalent by
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Table A3. JS divergences in units of bits (base-2 logarithm) between the
inferred distributions of a control run and the astrophysical sub-population of
the simultaneous fitting runs. In the middle column are the runs, which include
a glitch model, but in the right-hand column we show runs, which do not have
a glitch model and so contaminants must be fitted with the astrophysical
population. In the control row, we show the JS divergence posterior from two
random samples from the hyper-parameter posterior in the control run. Note
the consistency between each run in the middle column, in particular, the lack
of any sort of (increasing) trend. In the right-hand column, notice that the JS
divergences increase as expected.

Nbtip JS w/o glitch model (bits) JS w/o glitch model (bits)

+0.123
Control 0.097%( 063

0.088+0:119 -
0.09175.12 0.10470. 133
0.090 050 -
0.09010:17 -
0.0887 (057 -
0.093+0:119 -
0.09279421 -
0.09175.428 -
0.09470028 -
0.09013.416 -
0.093% 059 0.4067 113
0.088+0:113 -
0.09075. %2 -
0.08870120 -
0.0900:120 -
0.091% G450 -
0.095% %421 -
0.09779420 -
0.09110:128 -
0.0897041 -
0.09015.41 -

+0.123
0.0977( 063

O 0 N N R WD = O

D m = s s e s e e e e
S O X 9N R WD = O
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writing down a generating polynomial for p;(A)

Nevents Nevents
> pn) = I [xpuswoi + (1 = paswo)] - (A7)
k=0 i=1

Evaluating the polynomial for x = 1 shows the p;(A) are indeed
normalized, and evaluating the first derivative at x = 1 shows the
k-expectation is equal to the sum of the p,gyo, i

One may be tempted to use the k-expectation as it has continuous
support, however, we caution that using only the k-expectation can
be somewhat misleading. For some population inferences, there was
very little support for 69 GW events in the k-expectation posterior,
while there was a reasonable probability for having exactly 69 GW
events in the catalogue. These are different statistical statements and
should not be mistaken for one another.

This kind of calculation can in principle be done for any population
inference with a mixing fraction. That said, our populations are nearly
disjoint and as such the posterior width on 7 is dominated by Poisson
uncertainty, not uncertainty on which events in the catalogue should
belong to which sub-populations. For other population inferences
with mixing fractions, the events may not be as easy to differentiate
into sub-populations, and the uncertainty on the mixing fraction

will have a larger contribution from this uncertainty. The p;(A) will
have broader support and will more closely mimic the (appropriately

rescaled) detectable mixing fraction posterior.
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