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A B S T R A C T 

The global network of interferometric gra vitational wa ve (GW) observatories (LIGO, Virgo, KAGRA) has detected and 

characterized nearly 100 mergers of binary compact objects. Ho we v er, man y more real GWs are lurking sub-threshold, which 

need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical 
phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence) 
results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we 
sho w ho w one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants 
by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a 
specific class with a well-characterized ef fecti ve population (blip glitches). We also calculate posteriors on the probability of 
each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical 
events in the catalogue, finding it to be consistent with the actual number of events included. 

Key words: black hole mergers – gra vitational wa ves – methods: data analysis – methods: statistical. 
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 INTRODUCTION  

ince the first direct detection of gravitational waves (GWs) from
he merger of two stellar mass black holes (Abbott et al. 2016 ), the
IGO–Virgo–KAGRA (LVK) network has observed a large popula-

ion of these stellar mass binary black holes (BBHs) (Abbott et al.
019a , 2021 ; The LIGO Scientific Collaboration et al. 2021 ). With so
any detections comes the ability to characterize the population of
BHs, and shed light on the dominant formation channels of stellar
ass BBH mergers. While there is no theoretical consensus on the

ominant formation channel, there are many proposals. 
For instance, isolated binary evolution through a common envelope

hase (Smarr & Blandford 1976 ; Van Den Heuvel 1976 ; Tutukov &
ungelson 1993 ; Iv anov a et al. 2013 ), stable mass transfer (Van
en Heuv el, Porte gies Zwart & de Mink 2017 ), dynamical man y-
ody interactions in dense stellar environments (e.g. globular clus-
ers, Kulkarni, Hut & McMillan 1993 ; Sigurdsson & Hernquist 1993 ;
ortegies Zwart & McMillan 2000 ), chemically homogeneous stellar
volution (Mandel & de Mink 2016 ; Marchant et al. 2016 ), dynamical
riples assisted by the Kozai–Lidov mechanism (Antonini, Toonen &
amers 2017 ; Silsbee & Tremaine 2017 ), or primordial BBH systems

Bird et al. 2016 ; Ali-Ha ̈ımoud, Ko v etz & Kamionkowski 2017 )
ave been proposed. Traces of these different formation channels
re imprinted in the population, distinguishing the relative rates and
onstraining the sub-population distributions (Mapelli 2021 ; Zevin
t al. 2021 ; Mandel & Broekgaarden 2022 ). As more GWs are
 E-mail: jack.heinzel@gmail.com 
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etected, the different astrophysical formation channels will begin to
ev eal themselv es. 

Ho we ver, one is never sure of the origin of a potential GW
etection. GWs are detected using search pipelines, which vary in
heir methodology, but in general scan the LVK data stream for
atches to a GW template within some template bank dense o v er the

xpected source parameters (Allen 2005 ; Usman et al. 2016 ; Messick
t al. 2017 ; Nitz et al. 2017 ; Hanna et al. 2020 ). This provides a point
stimate on the source parameters with the best match template. If
his best match passes some significance threshold, it is called a
rigger. 

GW interferometers are plagued by transient noise fluctuations
known as glitches), whose morphology occasionally mimics real
 vents (Ze vin et al. 2017 ; Cabero et al. 2019 ; Akutsu et al. 2021 ;
avis et al. 2021 ; Soni et al. 2021 ; Ashton et al. 2022 ; Acernese et al.
022a , b ). Most pipelines estimate the false alarm rate (FAR) of a trig-
er by time-sliding the data of different interferometers by more than
he light-travel time between them. Any coincident triggers therefore
annot be caused by a GW propagating at the speed of light, and are
eemed false alarms. By varying the time-slide and counting the total
umber of false alarms, pipelines can accurately estimate the FAR of
 trigger. Comparing the FAR to the expected astrophysical rate of
he trigger, search pipelines estimate the probability of astrophysical
rigin, or p astro . In order to calculate the expected astrophysical rate of
he trigger, pipelines must assume a model for the underlying astro-
hysical source population (The LIGO Scientific Collaboration et al.
021 ). 
To mitigate contamination from glitches, it is standard to use

nly the most significant events. Because p astro estimates assume a
opulation, it is unusual to use pipeline calculated p astro as a threshold
© 2023 The Author(s) 
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or population inference. Instead, a common threshold is FAR < 1 
r −1 , yet even with this high threshold, one expects e.g. 4.6 false
larms in the catalogue used by Abbott et al. ( 2023b ) under the
ssumption that the search pipelines produce events independently 
Allen 2005 ; Usman et al. 2016 ; Messick et al. 2017 ; Nitz et al. 2017 ;
anna et al. 2020 ; Abbott et al. 2023b ). Therefore, one must tune the
AR threshold to minimize the systematic uncertainty of including 
ore false alarms in the catalogue, and the statistical uncertainty of

ncluding fewer events. 
There are also a plethora of sub-threshold (FAR > 1yr −1 ) astro-

hysical events which contain information about the population of 
ra vitational-wa ve sources in the Universe, especially in some of the
ore poorly measured regions of parameter space, where glitches are 

esponsible for reduced search sensitivity. Sub-threshold mergers of 
inary neutron stars (BNS), neutron star black holes (NSBH), or 
tellar mass BBHs can impro v e known constraints on the population
f these as GW progenitors. Indeed, there are many more events 
ith lower significance; the rate of GW events scales with SNR 

−4 ,
ssuming a constant merger rate in a Euclidean volume (Schutz 
011 ; Chen & Holz 2014 ). Though these lower significance events
lso encode less information about the progenitor, events as low 

s SNR ∼6 −7 can have well-measured chirp masses (Huang et al.
018 ). 
Moreo v er, certain kinds of theoretical GW events may pass this

AR threshold only rarely, with the majority falling deep into the 
ub-threshold range. For instance, subsolar-mass compact objects are 
redicted by certain modifications to the standard model of particle 
hysics or � CDM (Shandera, Jeong & Grasshorn Gebhardt 2018 ; 
itz & Wang 2021 ; Abbott et al. 2022a ). Though no direct detections
ave been made of a sub-solar mass merger (Abbott et al. 2019b ;
itz & Wang 2021 ), it is possible there are some lurking within the

arge set of sub-threshold candidates; because of their low masses, 
he signal-to-noise ratio (SNR) and significance of the GW will be 
uch lower. 
Glitches in GW interferometers are commonly studied by mod- 

lling the data as some parametric and deterministic function plus 
 stationary and stochastic noise process (Cornish & Littenberg 
015 ; Merritt et al. 2021 ; Tolley et al. 2023 ; Udall & Davis
023 ). This is preferable to modelling glitches as some general 
on-stationary noisy time series, where the statistical properties 
re unclear. A glitch model then requires a parametric function, 
alled the glitch waveform, for the deterministic part of the sig-
al. Since significant false alarms will mimic real GWs, it is
ensible to use a GW model for the glitch waveform. In this
aper, we follow this prescription, modelling glitches with a GW 

aveform. 
A more general glitch model distinguishes GWs from terrestrial 

litches by signal coherence. Real GWs must be coherent between 
ultiple detectors and the waveforms should be consistent with the 

ame progenitor parameters, while the same is not true for coincident 
alse alarms (Veitch & Vecchio 2010 ). Glitches may therefore be 
odelled as an independent GW waveform in each detector, relaxing 

his coherence requirement. This is justified as a worst-case scenario, 
here a background event is distinguished from an astrophysical one 
ased purely on the signal coherence. This glitch model has been used 
o calculate the probability an event is astrophysical (Isi et al. 2018 ;
shton, Thrane & Smith 2019 ; Pratten & Vecchio 2021 ), and to rule
ut marginal candidates (e.g. Ashton & Thrane 2020 ; Vajpeyi et al.
022 ). The most general glitch models make no physical assumptions 
bout the source and model glitches as a superposition of wavelets 
Cornish & Littenberg 2015 ). 
Whatev er the wav eform assumed for the glitches, a population
ould then be given by probability distributions on their parameters. 

ndeed, it is possible to study the population of glitches and astro-
hysical e vents simultaneously, allo wing for each e vent to belong to
ither class. Previous work approached this problem from different 
erspectiv es. F arr et al. ( 2015 ) sho wed ho w to infer the rates of
strophysical and background populations when the shapes of the 
opulations are known, but the identity of each event (i.e. which
opulation it originates from) is unknown. Gaebel et al. ( 2019 ) show
hat it is indeed possible to do joint inference on an astrophysical
nd a glitch population, but leave a study with real GW data for a
uture analysis. Galaudage, Talbot & Thrane ( 2020 ) and Roulet et al.
 2020 ) analyse real GW data, and fold in pipeline information—
n particular, p astro estimates, to build a glitch population model. 
o we ver, this carries a fixed background event rate estimate by each

earch pipeline, rather than inferring the rate of events from the
ackground population in a Bayesian manner. 
In this paper, we present a general method to simultaneously 
odel the population of background non-astrophysical triggers and 

he population of astrophysical objects, in a fully Bayesian manner. 
e use a population of short glitches (‘blips’) as identified by

he GRAVITYSPY algorithm (Zevin et al. 2017 ) to contaminate the
atalogue of astrophysical signals. While this is done for com- 
utational expedience, the method can be used for any type of
on-astrophysical transients, as long as one can characterize their 
usual’ properties. Similarly. while we focus on the population 
f BBHs, the method may be used to study any population of
ore ground ev ents contaminated with undesirable background ev ents. 
n Section 2 , we briefly re vie w Bayesian parameter estimation of
W sources and population inference. Then, we discuss how this 
icture is complicated when one allows for the possibility that the
ata set is contaminated by glitches. In Section 2.4 , we discuss
ur glitch population parametrization and constrain the population 
yperparameters using a large representative sample. In Section 3 , 
e contaminate a catalogue of GWs with glitches, and show how
ur method consistently models and remo v es the bias due to the
ontaminants. Finally, in Section 4 , we summarize and discuss future
ork. 

 METHODS  

.1 Parameter estimation 

onsider a stretch of LVK frequency domain data d , which is a sum
f noise n and waveform signal h ( θ ) 

 = h ( θ ) + n, (1) 

here θ represents the unknown parameters of the GW source. 
pproximating the noise as stationary and Gaussian, the likelihood 

an be written 

log L ( d| θ ) = −
∑ 

j 

(
2 �f 

| d j − h j ( θ ) | 2 
P j 

+ log (2 πP j ) 

)
, 

(2) 

here d j and h j represent the j th frequency component of the data and
av eform, respectiv ely , P j is the power-spectral-density , and � f is

he frequency spacing (Whittle 1951 ). With this likelihood, a model
or the waveform h ( θ ) given some GW parameters, and priors for the
W parameters, one can then sample from the posterior of the GW
MNRAS 523, 5972–5984 (2023) 
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arameters (Veitch et al. 2015 ; Thrane & Talbot 2019 ; Christensen &
eyer 2022 ). 
The abo v e process also can apply to glitches, thinking of them as

 deterministic signal buried in stochastic noise. Modelling glitches
nder some parameterization (e.g. a sine-Gaussian), one can perform
arameter estimation exactly as above for the glitch parameters,
hich we denote ψ . Indeed, while glitches are usually ruled out
y search pipelines by e.g. χ2 discriminators (Allen 2005 ), there
an be cases where glitches are mistaken for astrophysical GWs.
ecause population inferences generally assume that all events in

he catalogue are truly astrophysical, a contaminant glitch in the
atalogue will bias the inference. We want to relax this assump-
ion, and jointly infer the population of astrophysical events and
litches. 

.2 Population inference without glitches 

efore we discuss simultaneous inference of the astrophysical and
litch populations, we re vie w the general GW population inference
roblem. Given posterior samples from a set of data time-series
 d i } 1 ≤i≤N events , one can write the likelihood for a population model.
n general, a population model describes the rate of mergers within a
mall interval of GW parameter space [ θ , θ + d θ ]. Ho we ver, the rate
s typically assumed to be a Poisson process, and we can instead write
own a probability density p A ( θ | � ), irrespective of the o v erall rate.
ere, � are called the hyper-parameters; a finite list of parameters,
hich vary the shape of the population distribution (e.g. the mean

nd variance of a Gaussian, the power index to a power-law, and so
n). We give the subscript A to refer to ‘astrophysical’. This is in
ontrast to G for ‘glitch’, which we will use later in this paper. 

Assuming a Poisson process for the events and marginalizing over
he o v erall rate R with an uninformativ e (uniform in log R ) prior, one
btains the hierarchical likelihood 

 ( { d i }| � ) ∝ 

N events ∏ 

i= 1 

∫ 
dθL ( d i | θ ) p A ( θ | � ) 

α( � ) 
(3) 

nd the selection function 

( � ) = 

∫ 
dθp det ,A ( θ ) p A ( θ | � ) (4) 

s the fraction of events, which are detectable in the population with
yper-parameters � (for a deri v ation of the likelihood see Mandel,
arr & Gair 2019 ; Vitale et al. 2020 ). The quantity p det, A ( θ ) is the
robability of detecting an astrophysical event with parameters θ ,
iven by 

 det ,A ( θ ) = 

∫ 
{ d ∈ D| ρ( d ) >ρthr } 

L ( d | θ )d d (5) 

he integral over all possible data realizations, which exceed the
etection threshold ρ( d ) > ρ thr (i.e. FAR < 1 yr −1 ; as in Abbott et al.
023b ). 
In practice, the integrals in equations ( 3 ) and ( 4 ) are estimated

ith Monte Carlo estimators. In particular, 

∫ 
dθL ( d i | θ ) p A ( θ | � ) ∼ Z( d i ) 

N samp 

N samp ∑ 

j= 1 

p A ( θj | � ) 

π ( θj | H PE ) 

∣∣∣∣
θj ∼p( θ | d i ) 

, (6) 

here θ j are samples from the i th event posterior, 

( d i ) = 

∫ 
dθL ( d i | θ ) π ( θ | H PE ) (7) 
NRAS 523, 5972–5984 (2023) 
s the evidence and π ( θ | H PE ) is the sampling prior used for the
arameter estimation. As for the selection function, 

( � ) ∼ 1 

N draw 

N det ∑ 

j= 1 

p A ( θj | � ) 

p draw ( θj ) 

∣∣∣∣
θj ∼p draw ( θ ) 

, (8) 

here N draw events are drawn from some fiducial distribution p draw ( θ ),
ata drawn from the conditioned likelihood L ( d| θ ) with a suitable
ower-spectral-density choice, and then search pipelines run to
eco v er N det of the total events (for details see e.g. Tiwari 2018 ;
arr 2019 ). 

.3 Population inference with glitches 

he abo v e procedure assumes ev ery ev ent, which passes the threshold
s a real GW. This assumption can be relaxed by simultaneously
tting the glitch population. Suppose the glitch waveform is given by
arameters ψ , and we obtain posteriors on p ( ψ | d i ) for each event in
he catalogue, as well as posteriors on p ( θ | d i ) for the GW parameters.

ith equation (79) in Vitale et al. ( 2020 ) and a relative rate η of GWs
ersus a GW-like glitches, one can marginalize over the total rate with
 uniform in log R prior to generalize equation ( 3 ). 

L ( { d i }| � A , � G , η) ∝ 

N events ∏ 

i= 1 

η
∫ 

dθL ( d i | θ ) p A ( θ | � A ) + (1 − η) 
∫ 

dψ L ( d i | ψ ) p G ( ψ | � G ) 

ηαA ( � A ) + (1 − η) αG ( � G ) 
, 

(9) 

here � A and � G refer to the astrophysical and glitch hyper-
arameters, p G ( ψ | � G ) is the population model for the glitch wave-
orm parameters, and αX ( � X ) is the selection function for the X
ubpopulation: 

X ( � X ) = 

∫ 
dθp det ,X ( θ ) p X ( θ | � X ) , (10) 

 det, G is analogous to the p det, A we defined abo v e, but we want to
llow for the possibility that the detection criterion ρ( d ) > ρ thr is
ifferent for glitches. In reality, the same detection criterion must be
sed for all events for a catalogue, but for reasons we will describe
elow, we must use a different detection criterion for glitches in this
tudy. 

The mixing fraction η represents the relative rate of all GWs from
ll GW-like sources (astrophysical and glitches), whether they are
etected or not. It is useful to define a detectable mixing fraction: 

= 

ηαA ( � A ) 

ηαA ( � A ) + (1 − η) αG ( � G ) 
, (11) 

hich is the fraction of detectable events which are GWs. In this
ase, and a bit of algebra, the likelihood of equation ( 9 ) can be recast
s 

L ( { d i }| � A , � G , η) ∝ 

N events ∏ 

i= 1 

η
∫ 

dθL ( d i | θ ) p A ( θ | � A ) 

αA ( � A ) 

+ 

(1 − η) 
∫ 

dψ L ( d i | ψ ) p G ( ψ | � G ) 

αG ( � G ) 
, (12) 

hich is the form of the likelihood we will use in the sampling. 
So far we have assumed glitches and GWs will be characterized

ith different parameters, θ and ψ . However, glitches which can
ontaminate a GW catalogue will necessarily be well-modelled by a
W wav eform. F or this proof-of-principle analysis, we thus model

he waveform of a glitch as a GW (we set ψ → θ ). Furthermore,
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Figure 1. A time–frequency spectrogram of a GRAVITYSPY -identified blip 
glitch in LIGO-Hanford. This blip occurred on 2019 August 28 at UTC 

16:56:49. Due to their short duration, blip glitches can be mistaken for high 
mass BBHs. 
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e only model the population in the intrinsic GW parameters; this
ill be explained further in Section 2.4 . This simplifies the analysis:
e do not need pieces of evidence and posterior samples for every

vent under both the glitch and GW hypotheses—both analyses are 
he same. Indeed, under these assumptions the analysis reduces to 
 GW population inference with a mixture population; equation ( 9 )
ecomes equation ( 3 ) with 

( θ | � ) → ηp A ( θ | � A ) + (1 − η) p G ( θ | � G ) , (13) 

nd a selection function 

( � ) → ηαA ( � A ) + (1 − η) αG ( � G ) . (14) 

quation ( 13 ) treats the glitch population as an additional ‘astrophys-
cal’ population, albeit occupying a different region of parameter 
pace from the population of true astrophysical BBHs. 

There is one additional caveat. In the LVK population analysis of
bbott et al. ( 2023b ), events included in the catalogue are selected by

heir FAR ( < 1 yr −1 ), and so we would like to also select glitches by
heir FAR to match Abbott et al. ( 2023b ). Ho we ver, this requires us to
alculate FARs for many injections from a fiducial glitch population. 
unning search pipelines to calculate FARs of injected glitches may 
e necessary for a future study, ho we ver for this proof-of-principle
aper it is simply too e xpensiv e. Instead, we select glitches for
nclusion with a cheaper threshold, the SNR. We can then estimate 
G ( � G ) with a reweighted Monte Carlo estimator using a custom
et of injections, and estimate αA ( � A ) with the injection set already
rovided in LVK (2021). 

.4 Characterizing the glitch population 

n the citizen-science project GRAVITYSPY , glitches are classified 
ccording to their time frequency spectrograms (Zevin et al. 2017 ; 
lanzer et al. 2023 ). For instance, blip glitches are short bursts of

xcess power, with a time frequency spectrogram morphology shown 
n Fig. 1 . 

In fact, blip glitches are more likely to contaminate a GW 

atalogue, since they can mimic high mass BBHs (Cabero et al. 
019 ). For this reason, we restrict this first study to blip glitches,
hough the formalism can be extended to any glitch class, or even
ombination of classes. This would require a new population model 
nd � G for each additional class, plus a mixing fraction. 

In order to understand various populations of glitches, Ashton et al. 
 2022 ) analysed a set of 1000 GRAVITYSPY identified blip glitches
ith the IMRPhenomPv2 GW waveform (Hannam et al. 2014 ; Boh ́e

t al. 2016 ; Husa et al. 2016 ; Khan et al. 2016 ). Since blip glitches
re not due to any astrophysical process, they are usually present
n a single detector, with multiple detector coincidences occurring 
andomly. As single detector triggers, only information about the 
ntrinsic parameters (masses and spins) may be extracted. Therefore 
shton et al. ( 2022 ) provides posterior samples only over the intrinsic
arameters and the redshift. 
With the posterior samples in hand, Ashton et al. ( 2022 ) fit a

opulation model in the detector frame chirp mass, mass ratio, 
nd primary spin (see their Figs 2–4). Qualitatively, the population 
f GRAVITYSPY blip glitches shows different features from the 
opulation of BBHs (extreme mass ratios, spins, and low redshifts, 
nconsistent with e.g. Abbott et al. 2023b ). We will use this to our
dvantage to separate the populations. 

We slightly modify the population model of Ashton et al. ( 2022 ).
nstead of modelling the primary spin magnitude, we model in the
f fecti ve spin parameter: 

eff = 

a 1 cos θ1 + qa 2 cos θ2 

1 + q 
, (15) 

here a 1 and a 2 are the spin magnitudes of the primary and secondary
Hs in Kerr units, q = m 2 / m 1 is the mass ratio (where 0 < q < 1 by
onvention), and θ1 and θ2 are the spin tilts measured from the orbital
ngular momentum. χ eff is the spin parameter, which occurs at lowest 
rder in the waveform, and is measured better than individual spins
Racine 2008 ; P ̈urrer, Hannam & Ohme 2016 ; Vitale et al. 2017 ; Ng
t al. 2018 ). 

We model the glitch population in the detector-frame chirp 
ass, mass ratio, ef fecti ve spin parameter, and redshift: θ =

 M c , det , q, χeff , z). In particular, we use a skewed Gaussian (equation
 16 )) for both the detector-frame chirp mass M c , det and the redshift z
ith hyper-parameters μm , σm , κm and μz , σ z , and κz , respectively 

( x| μ, σ, κ) = 

2 

σ
φ

(
x − μ

σ

)
� 

(
κ

x − μ

σ

)
, (16) 

here φ and � are the standard Gaussian and Gaussian integral, 
espectively. We model χ eff and q with a correlated mixture model 
f two two-dimensional Gaussians in the χ eff −q plane with hyper- 
arameters denoted � λqχ for brevity 

 qχ ( q, χeff | � λqχ ) = N 1 ηq,χφ ( f 1 [ q, χeff ] ) φ ( g 1 [ q, χeff ] ) 

+ N 2 (1 − ηq,χ ) φ ( f 2 [ q, χeff ] ) φ ( g 2 [ q, χeff ] ) 
� λqχ = ( μq, 1 .μq, 2 , μχ, 1 , μχ, 2 , σq, 1 , σq, 2 , σχ, 1 , 

σχ, 2 , θq,χ , ηq,χ ) (17) 

here 

 i [ q, χeff ] = 

( q − μq,i ) cos ( θq,χ ) + ( χeff − μχ,i ) sin ( θq,χ ) 

σq,i 

(18) 

 i [ q, χeff ] = 

( q − μq,i ) sin ( θq,χ ) + ( χeff − μχ,i ) cos ( θq,χ ) 

σq,i 

, (19) 

nd N 1 and N 2 are normalization coefficients, numerically calculated 
ecause χ eff and q are required to be positive. Equation ( 18 )
escribes a pair of two dimensional Gaussians with branching 
raction ηq , χ , parametrized by the variances along the eigenvectors 
f the covariance matrix ( σ 2 

q,i and σ 2 
χ,i ), and the angle they are
MNRAS 523, 5972–5984 (2023) 
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Figure 2. The posterior population distribution of the population inference 
on the glitch population alone, using all 1000 blip posteriors from Ashton 
et al. ( 2022 ). Contours show the 1–5 σ regions. 
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tilted’ by ( θq , χ , assumed to be the same for both Gaussians). The
litch population model for is the product of the M c , det , z, and
 −χ eff models, and � G is the union of their hyper-parameters.
e chose to leave precession unmodelled in the population by

rojecting the six-dimensional spin population on to the ef fecti ve
ligned spin parameter. Ho we v er, a future study could e xamine
ow the populations further separate including the spin precession
arameter and correlations therein, or in the full six-dimensional spin
pace. 

We are now ready to measure the population of blip glitches with
ur model, as is done in Ashton et al. ( 2022 ). By using all 1000
osteriors from Ashton et al. ( 2022 ) we obtain tight constraints on
he glitch population alone. This is a critical step of our analysis. We

ust measure the population of glitches well to optimally separate
t from the population of GWs. Fortunately, we have access to the
nbiased population of blip glitches before any selection criteria
re enforced. 1 We may assume the 1000 glitches from Ashton et al.
 2022 ) are a representative sample. The constraints we measure in this
tep inform the boundaries of the priors we use during simultaneous
nference. We show the posterior population distribution (PPD) in
ig. 2 . 
As for the astrophysical population parametrization, we use the

ower-law plus peak model of Talbot & Thrane ( 2018 ), Abbott et al.
 2023b ), and the redshift model of Fishbach, Holz & Farr ( 2018 ).

e modify the spin distribution model by modelling χ eff with a
aussian, following Roulet & Zaldarriaga ( 2019 ), Miller, Callister &
arr ( 2020 ), and Callister et al. ( 2021 ). This gives us the set of � A 

nd � G , which will be inferred together with the detectable mixing
raction η in our joint analysis. 
NRAS 523, 5972–5984 (2023) 

 Note there is a cut on these GRAVITYSPY glitches with SNR > 8, and another 
iv en the y are GRAVITYSPY identified. We can still treat this as the unbiased 
opulation with no changes to our analysis. In a real analysis, one would still 
ave access to an unbiased sample of the population of glitches. 
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.5 Simultenous inference and selection effects 

e model the selection effects of glitches in entirely the same way
e model the selection effects of GWs. We emphasize that selection

ffects depend on the data alone. If we believe glitches have data
ell-modelled by a GW plus Gaussian noise, then the probability of
etecting a glitch is well-approximated by the probability of detecting
 GW with the corresponding parameters. 

We also define p astro, i ( � ) for each event in the catalogue, a
opulation dependent quantity, 

 astro ,i ( � ) = p( astro | d i , � ) = 

ηL ( d i | � A ) 

ηL ( d i | � A ) + (1 − η) L ( d i | � G ) 
. 

(20) 

his comes directly from Bayes’ Theorem. It is perhaps more
ntuitive to use η instead of η, however, in that case the likelihood
erms must each acquire a 1/ 

∫ 
d θp det, X p X ( θ | � X ) term, and it reduces

gain to equation ( 20 ). This folds in the dependence on source
arameters and uncertainty in the population hyper-parameters, and
o in general p astro is a posterior, based on the posterior on � . Search
ipelines output a point-estimate of this quantity for each event, using
he point estimate on the progenitor parameters with the matched
emplate, a fixed underlying astrophysical population, and a direct
alculation of the glitch-rate term with the FAR. Farr et al. ( 2015 )
nd Kapadia et al. ( 2020 ) define similar quantities. 

 RESULTS  

e contaminate the catalogue of 69 BBH events (with FAR < 1
r −1 ) analysed in Abbott et al. ( 2023b ) with blip posteriors obtained
rom Ashton et al. ( 2022 ). Note the posteriors in Abbott et al. ( 2023b )
re sampled used state-of-the-art waveforms including higher order
odes, while Ashton et al. ( 2022 ) uses the rapid IMRPhenomPv2 ,
 waveform approximant including only the dominant ( l , m ) = (2, 2)
ode (Hannam et al. 2014 ; Boh ́e et al. 2016 ; Husa et al. 2016 ; Khan

t al. 2016 ). Indeed, blip posteriors converge on unequal mass ratios
 q ∼ 0.1), where higher order modes become significant. While this
ill bias the glitch population model, this paper is intended to be a
roof of concept and so we use the posterior samples as provided. 
We inject N blip = [0, 1, 2,..., 19, 20] contaminant posteriors from

shton et al. ( 2022 ) into the set of 69 BBH posteriors analysed
n Abbott et al. ( 2023b ). We then sample the hyper-posterior of
 using the nested sampler DYNESTY (Speagle 2020 ; Koposov

t al. 2022 ) and the code GWPOPULATION (Talbot et al. 2019 ). We
ust cut regions of parameter space abo v e the total variance of

he hierarchical likelihood-estimator. Without handling variance the
ampler can converge on regions of parameter space with poor Monte
arlo estimates, and thereby bias the posterior sampling from the

rue posterior (Golomb & Talbot 2022 ). We do this as well as cut
ut regions with poorly behaved selection function estimates, as
escribed in Farr ( 2019 ) and Essick & Farr ( 2022 ). 
We describe several methods of quantifying the bias (or lack

hereof) of performing the simultaneous inference. 

.1 The detectable mixing fraction 

or each catalogue and its inference, we obtain a posterior on the
etectable mixing fraction η. We plot these posteriors as violin
lots in Fig. 3 . The dashed-black line is the true mixing fraction
n our catalogue, given by the number of BBHs divided by the total
umber of events. Note the posteriors peak at the dashed line, i.e. it
s reco v ering the correct number of contaminants. 



Inferring population of GWs in presence of noise 5977 

Figure 3. The violins show the inferred detectable mixing fraction η for each 
run. The x -axis inde x es the number of injected blips and each violin refers to 
a different inference. The black-dashed line is the injected mixing fraction, 
given by 1 −N blips / N events . Notice the inference recovers the injected mixing 
fraction well. We compare against the optimal posterior, which would be 
inferred with perfect knowledge on which events are BBHs and are glitches. 
We show the 1–3 σ and median of this optimal posterior in black (see the 
Appendix and equation ( A1 )). 
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Figure 4. Calculated 1 −p astro = p blip for two events, GW200302 and 
GW151226, in each inference. GW200302 consistently had the lowest p astro 

of all the BBH events, while we selected GW151226 to be a representative 
event for the standard BBH in the catalogue. Note a subtle trend for decreasing 
p astro as the number of injected blips increased. 
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While the results here suggest the sampling is correctly reco v ering
he blips, there is a caveat. The quantity η represents a statement on
he underlying relative rates, it is not the fraction of BBHs in the
atalogue. In other words, this is not a like to like comparison. We
ant to understand what our inference predicts are the number of
BHs and blips in our catalogue. 
For instance, suppose we may unambiguously identify which 

vents are BBHs and which are blips solely using the event pa-
ameters. That is, the populations are disjoint to the point that every
vent posterior overlaps with only one of the astrophysical or glitch 
opulations. It turns out that η does not converge on a delta function:
t will have some width due to Poisson rate uncertainty. Rather, it
onverges on an analytic optimal posterior, which we calculate by 
ssuming the populations are so disjoint that e very e vent posterior
niquely determines which population the event originates from. 
etails on this calculation are in the Appendix. 
From this theoretical optimal posterior, we can calculate the 
edian and 1–3 σ levels, which we show as a function of the number

f added contaminants ( x -axis) in Fig. 3 . Note how similar the
easured posteriors on η are to the optimal posterior given perfect 

nowledge on which events are BBHs and glitches. The populations 
f blip glitches and BBHs are nearly disjoint; this suggests the 
nference can unco v er, which ev ents are in which population much

ore precisely than the η posteriors naively indicate. 

.2 Inferred number of contaminants and BBHs 

alculating p astro 
2 (i.e. equation ( 20 )) for each event in each run, we

otice that the posteriors on each event tends to be sharply peaked,
.g. GW150914 peaks at p astro ( � ) → 1, the blips peak at p astro ( � ) →
.We show posteriors on 1 −p astro = p blip for two example events
n Fig. 4 , GW151226 and GW200302. GW200302 is the event 
ith the highest probability of being a blip, see the Appendix for
etails. Note as the number of injected blips increases, the p blip 

ncreases for GW200302. This is because the η posterior converges 
n lower mixing fractions; lowering the odds that any given event is
 We emphasize that statements made in this paper about p astro should be 
nderstood as the probability of the event not being a blip, rather than 
he probability of the event being astrophysical in origin. This is rather 
umbersome to write, so we continue with the abuse of notation in p astro . 

r
o
(  

2  

f  

o  
strophysical. This is much more apparent in GW200302, where p blip 

s mostly dominated by these odds. GW151226 is a representative 
vent for what most BBH p astro posteriors look like. In fact, many
osteriors are even more extreme than GW151226; log 10 ( p blip ) →
∞ for many events, see Table A1 in the Appendix for the full event

ist. 
Most p astro posteriors are sharply peaked, nearly delta functions. 

ranslating this into a calculation on the number of BBHs and blips
n the catalogue, this suggests that the inferred number of BBHs
nd blips in the catalogue is also sharply peaked. Indeed, using the
 astro, i defined in equation ( 20 ) we may calculate the probability that
xactly k of N events are astrophysical. Since each data realization is
ndependent, the p astro, i of each event will be statistically independent. 
he probability that exactly k of N events total events in the catalogue
re BBHs is then 

 k ( � ) = 

∑ 

γ∈ � ( k ,N events ) 

⎡ 

⎣ 

k ∏ 

j= 1 

p astro ,γ ( j ) ( � ) 
N events ∏ 

j= k+ 1 

1 − p astro ,γ ( j ) ( � ) 

⎤ 

⎦ , 

(21) 

here �( k , N events ) is the set of k -combinations of N events (it contains
 events choose k elements), a subset of the set of permutations of
 events . Thinking of permutations as one-to-one and on to functions

rom the set { 1,..., N events } to itself, k -combinations are permutations
here two permutations γ 1 and γ 2 are equi v alent if there is the set

quality γ 1 ( { 1,.., k } ) = γ 2 ( { 1,.., k } ). Informally, the probability that
xactly k of N events are BBHs is the probability a specific set of k events
re BBHs and the others are glitches, summed o v er all the possible
ets of k events. Note that if all p astro, i are the same, equation ( 21 )
educes to the binomial distribution as expected. Ho we ver, equation
 21 ) is much too computationally e xpensiv e to e v aluate directly.

e use a trick with symmetric polynomials to vastly simplify the
alculation, see the appendix for details. We also note that Galaudage 
t al. ( 2020 ) consider the sum of the p astro, i . This is the expectation
alue o v er k of equation ( 21 ), which is also discussed in further detail
n the Appendix. 

After contaminating the catalogue of 69 BBHs passing the LVK se-
ection criteria (Abbott et al. 2023b ) with 0–20 independently drawn
andom blips, and running 21 inferences on the hyper-parameters � 

n the 21 variably contaminated catalogues, we calculate equation 
 21 ) for each � sample. We show an example in Fig. 5 , the run with
0 contaminant blips. In this run and in most runs, the probability
or exactly 69 BBHs in the catalogue rails against 1, while for some
ther runs it can be more uncertain. Variability between runs is due
MNRAS 523, 5972–5984 (2023) 



5978 J. Heinzel et al. 

M

Figure 5. The probability of having k events, which are astrophysical in 
the catalogue. The horizontal axis is the number of events in the catalogue, 
and the vertical axis represents the p k ( � ) probability of there being exactly 
k astrophysical events in the catalogue. Since the probability for exactly 
69 BBHs rails against 1, we show an inset zoom on the p 69 ( � ) violin. The 
uncertainty in the value of the probability p k ( � ) comes from the uncertainty in 
the population parameters � . This particular run was with 69 BBHs injected 
and 20 contaminant blips injected. 

Figure 6. In the top panel, we show violins for the inferred posterior 
probabilities of the catalogue not having 69 BBHs in it; 1 −p 69 ( � ). The 
vertical axis shows the logarithm of the probability, and the horizontal axis is 
the number of injected blips in the catalogue. In the bottom panel, we show 

the posterior probabilities of the catalogue having some number of BBHs 
which is not 68, 69, or 70; 1 −p 68 ( � ) − p 69 ( � ) − p 70 ( � ). Note the increase 
in the probabilities as the number of injected blips increases; this is due to 
higher odds that any given event is a blip (lower η). The dip at exactly 20 
injected blips is because those 20 contaminants happen to be easily resolvable 
from the GW population, and so p 69 ( � ) peaks strongly at 1. 
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Figure 7. The inferred astrophysical mass distribution. In green we show 

the control run, with no contaminants injected and no glitch model included. 
We also show the runs with with the glitch model included and injected 
contaminants; we show runs with 10 and 20 blips included. The solid line 
is the PPD and the dashed lines show the upper and lower limits on the 90 
per cent credible region. The inferred distributions appear consistent. 
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o the differences in how ‘BBH-like’ the blip contaminants are, and
ow well they fit into the blip population model. 
We also show posteriors on the probabilities of having exactly 69

BHs in the catalogue. Specifically, since many of the probabilities
ail against 1, we show the logarithm of the negation: the log 10 

robability of not having 69 BBHs in the catalogue, shown in the
op panel of Fig. 6 . As the number of contaminants increases, the
esolving power drops, meaning the probability becomes more spread
ut between ∼68 and 70. Furthermore, the odds any gi ven e vent is a
BH drops, as the mixing fraction between BBHs and blips becomes
ore blip-fa v oured. That said, up to 20 injected blips we observe

ignificant probabilities of exactly 69 BBHs in the catalogue, and
ear unity probabilities of 68 or 69 or 70 BBHs in the catalogue
Fig. 6 ). 

While there is some variation in the probabilities, this method
onsistently reco v ers the correct number of injected contaminants,
o long as the populations are sufficiently dissimilar. It is not clear that
NRAS 523, 5972–5984 (2023) 
he correctly reco v ering the number of contaminants prevents slight
iases from arising in the population inference, especially given there
s some small variability in the inferred number of contaminants in
he catalogue. 

.3 Biases in the BBH population 

hile the correct number of blips is reco v ered in each run, we want
o be sure that no biases are introduced in the inferred astrophysical
istributions. F or e xample, we show inferred distributions of the
rimary masses for a control run and with 10 and 20 injected blips in
ig. 7 . Qualitativ ely speaking, the y appear to be essentially identical.
he control run is a population inference on the catalogue of 69 BBHs

n Abbott et al. ( 2023b ), using the same astrophysical population
odel parametrization described in Section 2.4 . 
We quantify any differences by calculating the Jensen–Shannon

JS) divergence between the inferred distributions of a control
opulation inference and the inferred astrophysical sub-populations
rom contaminated catalogues. The JS di vergences sho w no trends,
ith a median consistently at ∼0.09 −0.1 bits. We show the JS
ivergences in the middle column of Table A3 in the Appendix,
nd in the first row we show the JS divergences between two draws
rom the control hyperparameters. 

.4 Biases from unmodelled blip contaminants 

ome glitches appear significantly more astrophysical than others.
or the run with 20 blips injected and the 69 BBH mergers, we plot

he posteriors on the ef fecti ve ‘BBH’ parameters of the glitches, and
opulation-averaged p astro values overlaid on the blip PPD, see Fig. 8 .
There are some general patterns, most notably that extreme

eff seems to be the strongest predictor of low p astro , and if the
rimary mass m 1 falls abo v e the maximum mass cutoff m max in the
strophysical model, the p astro is zero. We show a table of the median
nd 90 per cent credible region parameters of each blip, along with
he SNR and p astro in Table A2 in the Appendix. 

We want to understand the kind of biases, which are induced by
ncluding blips into the population, without controlling for those
ontaminants with a glitch model. Of the run with 20 injected blips
nd 69 GWs, we select the blips, which could most plausibly be
strophysical, i.e. the y hav e the highest p astro . We selected the blip
ith the highest p astro (the top row in Table A2 ), and the 10 blips with

he highest p astro (the top 10 rows in Table A2 ), and contaminated



Inferring population of GWs in presence of noise 5979 

Figure 8. We show the 20 posteriors on the blip ef fecti ve BBH parameters 
injected, and their corresponding mean p astro , labelled in the figure by the 
colour of the posterior points. See the colourbar on the right. Note some 
general patterns: very low χ eff values and very high masses correspond to 
lo w p astro v alues. Note also that all the blip p astro v alues are still very lo w, less 
than 10 −4 . 

Figure 9. The inferred mass distribution for a control run compared to the 
inferred mass distribution when 1 and 10 astrophysically plausible blips are 
included into the catalogue, without controlling for their bias with a glitch 
model. Note the increased support at high mass, and the broadening of the 
Gaussian peak. The low mass end of the distribution is much less affected. 
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he catalogue of 69 BBH mergers passing the LVK selection criteria 
Abbott et al. 2023b ) with these 1 and 10 blips. We then sample from
he population hyper-posterior without any glitch model. 

In order to prevent population hyper-parameters from railing 
gainst prior ranges, we extended the prior range of m max significantly 
the maximum cutoff mass parameter in the model of Talbot & Thrane
018 ) to allow values up to 500 M 	. 
All the inferred distributions are biased. For instance, we show the 

nferred primary mass distribution for the control run, and for 1 and
0 contaminants, see Fig. 9 . 
We compute the JS divergences for these inferred distributions, 

ompared to the control distribution. We show them in the right-
and column of Table A3 in the Appendix. 

 CONCLUSION  AND  FUTURE  WORK  

n this article, we presented a method for inference of a population
f GW sources, which is contaminated by non-astrophysical events. 
e contaminated the catalogue of 69 BBHs of Abbott et al. ( 2023b )
ith an increasing number of single-interferometer blip glitches from 

shton et al. ( 2022 ). We showed how to generalize a population
nference to not only infer the shape parameters of a GW population,
ut to simultaneously infer the population of the glitch background 
vents. We tested this method, and showed that it in practice identifies
nd remo v es systematic biases from population inference. As GW
stronomy matures, interesting results may reveal themselves only 
n the level of populations, and satisfactory statistical significance 
ay require delving into sub-threshold events. 
As a proof of principle analysis, we chose only to consider the

lip glitch class from GRAVITYSPY , since Ashton et al. ( 2022 ) had
lready produced parameter estimation samples for these. We caution 
hat the method we presented here will only be robust to blip glitch
ontamination; we leave it to a future study to do a full simultaneous
nalysis with a model for an extended population of glitches. 

There is another caveat, in the appropriate estimation of the 
election effects. In an end-to-end analysis, the detection criterion 
s the same for glitches and GWs, and so must be estimated
onsistently. The current most common method requires a massive 
et of simulated GWs from a population similar to the population of
strophysical GWs into detector noise, and re-weighting for different 
opulation hyper-parameters (LIGO Scientific Collaboration, Virgo 
ollaboration & KAGRA Collaboration 2021 ; Abbott et al. 2023b ).
he set of glitches comes from regions of parameter space poorly
ampled by the injection set, and so to properly estimate the selection
ffects, one needs an auxiliary suite of injections o v er the appropriate
egions of parameter space. This is a significant computational 
xpense, although it is regularly done by the LVK collaboration 
o estimate the selection effects of astrophysical GWs. 

Though it is a challenge, there are many applications for a method
o simultaneously infer the population of astrophysical GWs and 
on-astrophysical glitches. The most immediate application would 
e to lower the threshold for including a trigger into the catalogue,
.g. select on FAR < 2yr −1 , or FAR < 5yr −1 . There are real GW
 vents lurking belo w the FAR < 1yr −1 threshold, and these can
id in constraining the population. This would require an accurate 
odel for the glitches that actually pass the threshold, rather than

sing our fiducial blip glitch model, and while conceptually similar 
o this work, the full treatment would also require running end-to-end
earch pipelines on injections from the glitch population. We leave 
his to a future study. There are other useful applications as well.
ome GWs occur while only a single detector is online (Callister
t al. 2017 ; Nitz et al. 2020 ; Cabourn Davies & Harry 2022 ). These
ingle detector events often cannot enter a catalogue for population 
nference, and so they cannot be used for constraining the population.
ur approach of modelling the intrinsic population of glitches is 
 step towards the use of single detector triggers in population
nalyses. 

This method can also help characterize triggers found in searches 
or exotic objects. As an example, BBHs beyond the upper mass gap
emain elusive (Ezquiaga & Holz 2021 ). The search sensitivity for
hese objects is reduced by the presence of short duration glitches
uch like blip glitches (Cabero et al. 2019 ), and so a joint analysis

f a population of these background glitches and the astrophysical 
beyond-the-gap’ BBHs would measure tighter constraints on their 
ates. As another example, an analogous procedure is concei v able 
or continuous wave (CW) sources. One may be able to characterize 
he population of CWs and the ‘glitches’ associated, which are due
o monochromatic coherent power between detectors (Abbott et al. 
020 , 2022b , c ; Cie ́slar et al. 2021 ). This may benefit a search for
Ws or population level characterization of CW sources. 
MNRAS 523, 5972–5984 (2023) 
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For analyses like the one presented, it is critical to have both
n accurate waveform model for glitches and an accurate glitch
opulation model. In this paper, we model glitches with a GW
aveform, ho we ver, it may be useful to use alternative glitch
aveforms. One option is to use non-coherent GW waveforms to
odel the glitches, where the signal in each interferometer is fit with

ndependent GW waveforms (Veitch & Vecchio 2010 ). One can also
se non-GW waveform models, such as GLITSCHEN (Merritt et al.
021 ) or BAYESWAVE (Cornish & Littenberg 2015 ). In cases where
he glitch waveform model is different from the GW waveform,
quation ( 9 ) must be used in its more general form. Second, we must
ave an appropriate model for the glitch population, and using as
ccurate as possible a model will be crucial. For example, if one
ontinues to use a coherent GW waveform, one could fold in the
nalysis information about extrinsic parameters, e.g. the fact that the
opulation of glitches is not expected to be isotropic (Payne et al.
020 ; Vitale, Bisco v eanu & Talbot 2022 ; Essick et al. 2023 ). We plan
o explore both these avenues in a future work. 
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Figure A1. A corner plot with the primary mass, mass ratio, ef fecti ve 
aligned spin, and redshift posterior of GW200302 o v erlaid on the population 
predictive distribution of the blip population. The posterior on GW200302 
is shown in blue, with the first 4 σ contours and sample points. The blip 
population predictive distribution is in black contours, showing the first 
7 σ . Since it is not the posterior o v erlap but the likelihood o v erlap which 
contributes to the p blip , we include the posterior reweighted by the inverse of 
the prior. This highlights the regions of high overlap for the glitch likelihood 
term. 
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PPENDIX  A  

vent information 

e show upper bounds on the calculated p astro for each GW event
hen we included 20 contaminant blips in T able A1 . W e also show
pper bounds on each p astro , given by the 90 per cent and 99 per cent
pper bounds. In Table A2 , we show the parameters of the 20 blips
hat contaminate the catalogue in the run with 20 blips. Note we use
 random set of blips for each catalogue, e.g. the 19 contaminants
or the run with 19 blips are not a subset of the 20 contaminants for
he run with 20 blips. 

ptimal detectable mixing fraction posterior 

onsider the scenario where the populations are disjoint such that 
 very e vent posterior uniquely determines which population the event 
riginates from. The event parameters tell us with no ambiguity 
hether an event is a glitch or a GW. Therefore, we want to

nfer the relative rate of detectable e vents gi ven we detected N events ,
ith k unambiguous astrophysical events, and the rest unambiguous 
litches. This is a common problem in Bayesian inference and it
dmits an analytical posterior, given by equation ( A1 ). This is the
est the inference could possibly constrain η, and so it is a useful
enchmark to compare to. 

( η) = 

ηk (1 − η) N events −k 

B( k + 1 , N events − k + 1) 
, (A1) 

hich assumes a uniform prior in η from 0 to 1, and the denominator
s a normalization. 
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Table A1. Inferred 1 −p astro = p blip for each event in the catalogue of Abbott et al. ( 2023b ), calculated from the run with 20 injected blips. We show the 
upper bounds on the inferred p blip at both 90 per cent and 99 per cent credence. Note GW200302 has p blip � 7 . 2 per cent, the highest non-astrophysical 
probability event, and the event GW190503 185404 has the second highest p blip � 7 . 0 per cent. 

Event 
90 per cent upper 

bound 
99 per cent upper 

bound Event 90 per cent upper bound 99 per cent upper bound 

GW150914 0 0 GW190731 140936 6.7 × 10 −16 2.3 × 10 −13 

GW151012 3.1 × 10 −4 6.1 × 10 −4 GW190803 022701 2.3 × 10 −10 6.8 × 10 −9 

GW151226 1.2 × 10 −5 5.9 × 10 −5 GW190805 211137 0 0 
GW170104 1.3 × 10 −6 4.8 × 10 −6 GW190828 063405 0 0 
GW170608 7.3 × 10 −8 4.4 × 10 −7 GW190828 065509 3.7 × 10 −9 3.4 × 10 −8 

GW151226 9.7 × 10 −4 2.9 × 10 −3 GW190910 112807 0 0 
GW170809 2.6 × 10 −10 4.4 × 10 −9 GW190915 235702 2.3 × 10 −11 3.6 × 10 −10 

GW170814 0 0 GW190924 021846 8.7 × 10 −8 1.1 × 10 −6 

GW170818 0 5.1 × 10 −15 GW190925 232845 1.7 × 10 −7 8.6 × 10 −7 

GW170823 1.6 × 10 −7 9.0 × 10 −7 GW190929 012149 1.3 × 10 −7 1.6 × 10 −6 

GW190408 181802 0 0 GW190930 133541 8.2 × 10 −11 8.4 × 10 −10 

GW190412 7.2 × 10 −5 2.8 × 10 −4 GW191103 012549 1.8 × 10 −8 1.6 × 10 −7 

GW190413 052954 1.8 × 10 −9 3.3 × 10 −8 GW191105 143521 4.2 × 10 −9 3.2 × 10 −8 

GW190413 134308 3.2 × 10 −14 1.7 × 10 −12 GW191109 010717 6.0 × 10 −5 4.6 × 10 −4 

GW190421 213856 1.9 × 10 −10 4.0 × 10 −9 GW191127 050227 1.8 × 10 −4 7.7 × 10 −4 

GW190503 185404 4.0 × 10 −2 7.0 × 10 −2 GW191129 134029 1.6 × 10 −11 2.3 × 10 −10 

GW190512 180714 2.0 × 10 −15 1.4 × 10 −13 GW191204 171526 0 0 
GW190513 205428 4.0 × 10 −13 2.8 × 10 −11 GW191215 223052 0 2.2 × 10 −16 

GW190517 055101 1.1 × 10 −8 3.6 × 10 −7 GW191216 213338 3.2 × 10 −6 1.8 × 10 −5 

GW190519 153544 0 0 GW191222 033537 3.6 × 10 −11 1.1 × 10 −9 

GW190521 5.6 × 10 −16 4.9 × 10 −14 GW191230 180458 3.4 × 10 −7 4.3 × 10 −6 

GW190521 074359 0 0 GW200112 155838 0 0 
GW190527 092055 1.8 × 10 −9 2.1 × 10 −8 GW200128 022011 2.2 × 10 −16 2.0 × 10 −14 

GW190602 175927 1.8 × 10 −10 1.2 × 10 −8 GW200129 065458 4.8 × 10 −9 4.7 × 10 −8 

GW190620 030421 2.4 × 10 −12 1.8 × 10 −10 GW200202 154313 1.9 × 10 −7 1.1 × 10 −6 

GW190630 185205 0 0 GW200208 130117 2.0 × 10 −7 1.7 × 10 −6 

GW190701 203306 4.8 × 10 −12 1.6 × 10 −10 GW200209 085452 7.7 × 10 −9 1.1 × 10 −7 

GW190706 222641 2.3 × 10 −15 5.4 × 10 −13 GW200216 220804 4.1 × 10 −7 2.3 × 10 −6 

GW190707 093326 4.6 × 10 −11 4.8 × 10 −10 GW200219 094415 1.3 × 10 −12 1.1 × 10 −10 

GW190708 232457 0 6.7 × 10 −16 GW200224 222234 1.2 × 10 −6 5.4 × 10 −6 

GW190719 215514 7.5 × 10 −12 2.3 × 10 −10 GW200225 060421 4.7 × 10 −8 3.7 × 10 −7 

GW190720 000836 1.4 × 10 −10 1.4 × 10 −9 GW200302 015811 4.1 × 10 −2 7.2 × 10 −2 

GW190725 174728 2.3 × 10 −6 8.5 × 10 −6 GW200311 115853 4.9 × 10 −4 1.4 × 10 −3 

GW190727 060333 0 0 GW200316 215756 1.6 × 10 −8 1.2 × 10 −7 

GW190728 064510 4.8 × 10 −12 7.4 × 10 −11 

 

t  

d  

e  

a  

t

a  

h  

d  

t  

P  

u
 

d  

(  

o  

d  

t

G

G  

u  

p  

N  

p  

r
 

p  

t  

t  

m  

t  

d  

l  

t  

o

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/4/5972/7205298 by M
IT Libraries user on 27 July 2023
In fact, we can see how this arises directly from equation ( 12 ). If
he population models for the glitches and the BBHs are completely
isjoint for all event posteriors, then in each term in the product of
quation ( 12 ), either the glitch term 

∫ 
dψ L ( d i | ψ ) p G ( ψ | � G ) or the

strophysical term 

∫ 
dθL ( d i | θ ) p A ( θ | � A ) will vanish. The likelihood

hen factorizes: 

L ( { d i }| � A , � G , η) ∝ ηk (1 − η) N events −k 

k ∏ 

i= 1 

∫ 
dθL ( d i | θ ) p A ( θ | � A ) 

αA ( � A ) 

N events ∏ 

i= k+ 1 

∫ 
dψ L ( d i | ψ ) p G ( ψ | � G ) 

αG ( � G ) 
, 

(A2) 

nd so the inference may proceed independently for the astrophysical
yper-parameters � A , the glitch hyper-parameters � G , and the
etectable mixing fraction η. This matches the intuitive result
hat independent populations may be characterized independently.
ulling out the η term in the likelihood and normalizing with a
niform prior between 0 and 1, we reco v er equation ( A1 ). 
In general, the glitch and BBH populations are not completely

isjoint and the glitch/astrophysical terms in the product in equation
 12 ) do not vanish. With the additional uncertainty in the ‘identity’
f each event in the catalogue, the posterior on η will broaden. The
NRAS 523, 5972–5984 (2023) 
egree of broadening tells us how close the inferences are coming
o wards kno wing there are exactly k BBHs of N events total e vents. 

W200302 

W200302 has the largest support for 1 − − − p astro = p blip . To
nderstand this, we show the corner plot o v erlay of the GW200302
osterior and the blip population predictive distribution in Fig. A1 .
ote the tails of the GW200302 posterior o v erlaps with the blip
opulation distribution; this is why the p astro for GW200302 is
elati vely lo w. 

Further, it is not the posterior ‘o v erlap’ which is taken into the
opulation likelihood, but the event likelihood ‘o v erlap’. The tails of
he posterior in χ eff and in mass ratio q —the samples, which happen
o fall neatly into the blip population—are therefore weighted much

ore highly, since the sampling prior there is much lower. Indeed,
he χ eff posterior is essentially the reco v ered χ eff sampling prior. This
rives up the glitch population term in equation ( 20 ), and therefore
owers the p astro . This is expected: if there are poor constraints on
he source parameters, we must be more agnostic about the event’s
rigin based on the parameters alone. 
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Table A2. Median and 90 per cent credible intervals for the GW ef fecti ve parameters of the 20 blip contaminants for the 20 injection run, organized by the 
median p astro . The SNR is the optimal SNR. 

Number m 1 q χ eff z SNR Median p astro p astro 5 per cent p astro 95 per cent 

1 49 . 9 + 12 . 0 
−5 . 5 0 . 28 + 0 . 05 

−0 . 05 −0 . 64 + 0 . 28 
−0 . 09 0 . 12 + 0 . 07 

−0 . 06 10 . 9 + 1 . 7 −1 . 8 1.0 × 10 −5 5.2 × 10 −6 2.0 × 10 −5 

2 31 . 2 + 12 . 1 
−4 . 1 0 . 3 + 0 . 1 −0 . 1 −0 . 58 + 0 . 23 

−0 . 22 0 . 13 + 0 . 06 
−0 . 04 8 . 62 + 1 . 83 

−1 . 89 5.8 × 10 −6 2.7 × 10 −6 1.4 × 10 −5 

3 65 . 1 + 5 . 6 −19 . 3 0 . 11 + 0 . 2 −0 . 02 0 . 19 + 0 . 12 
−0 . 95 0 . 058 + 0 . 01 

−0 . 008 15 . 4 + 1 . 7 −1 . 7 8.3 × 10 −7 3.9 × 10 −8 1.1 × 10 −5 

4 66 . 6 + 0 . 8 −2 . 0 0 . 12 + 0 . 01 
−0 . 0 0 . 38 + 0 . 0 −0 . 02 0 . 031 + 0 . 007 

−0 . 006 27 . 5 + 1 . 6 −1 . 7 4.2 × 10 −8 3.1 × 10 −11 5.9 × 10 −6 

5 56 . 4 + 4 . 8 −3 . 5 0 . 26 + 0 . 03 
−0 . 04 −0 . 62 + 0 . 13 

−0 . 07 0 . 093 + 0 . 033 
−0 . 029 13 . 0 + 1 . 7 −1 . 7 1.3 × 10 −8 1.0 × 10 −10 2.7 × 10 −7 

6 116 . 0 + 9 . 8 −40 . 5 0 . 094 + 0 . 175 
−0 . 013 0 . 15 + 0 . 21 

−0 . 73 0 . 16 + 0 . 07 
−0 . 05 10 . 5 + 1 . 7 −1 . 8 5.6 × 10 −9 3.5 × 10 −13 1.1 × 10 −5 

7 51 . 4 + 21 . 0 
−2 . 9 0 . 28 + 0 . 02 

−0 . 03 −0 . 67 + 0 . 17 
−0 . 06 0 . 082 + 0 . 052 

−0 . 031 14 . 5 + 1 . 7 −1 . 8 2.9 × 10 −9 4.8 × 10 −15 2.6 × 10 −8 

8 76 . 8 + 5 . 2 −4 . 7 0 . 28 + 0 . 04 
−0 . 04 −0 . 54 + 0 . 11 

−0 . 12 0 . 13 + 0 . 04 
−0 . 05 15 . 5 + 1 . 7 −1 . 7 1.1 × 10 −10 1.8 × 10 −18 5.2 × 10 −8 

9 45 . 9 + 4 . 4 −1 . 7 0 . 31 + 0 . 01 
−0 . 01 −0 . 75 + 0 . 03 

−0 . 04 0 . 051 + 0 . 016 
−0 . 017 21 . 2 + 1 . 6 −1 . 7 3.0 × 10 −12 2.7 × 10 −25 1.2 × 10 −10 

10 61 . 1 + 4 . 8 −7 . 4 0 . 25 + 0 . 05 
−0 . 04 −0 . 51 + 0 . 11 

−0 . 28 0 . 083 + 0 . 025 
−0 . 029 14 . 8 + 1 . 7 −1 . 7 3.4 × 10 −13 1.1 × 10 −20 6.9 × 10 −9 

11 69 . 4 + 5 . 3 −7 . 0 0 . 27 + 0 . 03 
−0 . 03 −0 . 72 + 0 . 16 

−0 . 08 0 . 079 + 0 . 016 
−0 . 03 20 . 6 + 1 . 7 −1 . 6 9.7 × 10 −16 2.5 × 10 −23 2.5 × 10 −12 

12 71 . 9 + 2 . 9 −1 . 4 0 . 074 + 0 . 003 
−0 . 003 0 . 44 + 0 . 01 

−0 . 01 0 . 037 + 0 . 005 
−0 . 008 36 . 0 + 1 . 7 −1 . 7 2.0 × 10 −16 0 1.0 × 10 −10 

13 69 . 8 + 1 . 2 −1 . 3 0 . 073 + 0 . 001 
−0 . 002 0 . 44 + 0 . 0 −0 . 0 0 . 038 + 0 . 017 

−0 . 011 26 . 7 + 1 . 6 −1 . 7 2.9 × 10 −17 0 2.9 × 10 −11 

14 43 . 7 + 11 . 8 
−2 . 1 0 . 3 + 0 . 0 −0 . 0 −0 . 67 + 0 . 06 

−0 . 11 0 . 084 + 0 . 019 
−0 . 019 15 . 1 + 1 . 7 −1 . 7 8.3 × 10 −21 8.0 × 10 −32 3.7 × 10 −15 

15 57 . 3 + 6 . 1 −4 . 4 0 . 28 + 0 . 04 
−0 . 04 −0 . 77 + 0 . 15 

−0 . 08 0 . 11 + 0 . 03 
−0 . 04 14 . 3 + 1 . 7 −1 . 7 5.2 × 10 −21 6.3 × 10 −32 2.2 × 10 −15 

16 52 . 9 + 11 . 2 
−6 . 8 0 . 29 + 0 . 03 

−0 . 03 −0 . 77 + 0 . 13 
−0 . 09 0 . 088 + 0 . 045 

−0 . 041 14 . 2 + 1 . 7 −1 . 7 7.2 × 10 −22 4.0 × 10 −33 4.7 × 10 −16 

17 45 . 1 + 2 . 4 −1 . 9 0 . 29 + 0 . 02 
−0 . 02 −0 . 71 + 0 . 07 

−0 . 06 0 . 041 + 0 . 023 
−0 . 013 17 . 9 + 1 . 7 −1 . 7 3.0 × 10 −26 2.2 × 10 −42 5.3 × 10 −18 

18 56 . 3 + 2 . 6 −2 . 3 0 . 3 + 0 . 0 −0 . 0 −0 . 9 + 0 . 1 −0 . 0 0 . 07 + 0 . 02 
−0 . 03 19 . 3 + 1 . 7 −1 . 7 2.2 × 10 −36 6.8 × 10 −60 9.0 × 10 −25 

19 40 . 3 + 1 . 7 −1 . 5 0 . 37 + 0 . 02 
−0 . 03 −0 . 94 + 0 . 05 

−0 . 03 0 . 039 + 0 . 014 
−0 . 012 22 . 9 + 1 . 6 −1 . 7 4.1 × 10 −45 2.0 × 10 −77 7.3 × 10 −29 

20 262 . 0 + 5 . 7 −5 . 5 0 . 06 + 0 . 0 −0 . 0 0 . 31 + 0 . 01 
−0 . 01 0 . 1 + 0 . 0 −0 . 0 19 . 9 + 1 . 7 −1 . 7 0 0 0 
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S di v er gences 

e show the JS divergences measured between the inferred astro- 
hysical sub-populations of each run, where we included the glitch 
odel to account for the injected contaminants. We also show the JS

ivergence for 1 and 10 injected blips where we did not include the
litch model. 

alculating the inferred number of events in the catalogue 

n equation ( 21 ), we show an expression for the probability on the
umber of events in the catalogue, depending on the population 
yper-parameters � . Ho we v er, this e xpression is a sum of O(10 20 )
erms, and as such is not computationally feasible to e v aluate.
ortunately, there is a much more efficient method to complete the 
um. 

The sum has a largest term, which we can easily find by first
rdering the list of p astro, i from largest to smallest. This term then
orresponds to the identity k -combination, denoted γ 0 = I . We 
otate this term by p 

(0) = 

∏ k 

i= 1 p astro ,i 
∏ N events 

i= k+ 1 (1 − p astro ,i ). Because 
any of the p astro posteriors have non-negligible posterior width, this 

erm does not completely dominate the entire sum, ho we ver, we can
xpress all the other k -combinations in the sum in terms of this p (0) .
n particular, we can think of each γ ∈ �( k , N events ) in terms of the
umber r of events, which must be exchanged from the astrophysical 
in to the glitch bin in order to match γ 0 . Because we are summing
nique k -combinations, the probability associated with the family 
f k -combinations which are r events different from γ 0 is given by 

 
( r) = p 

(0) e r 

(
1 − p astro , 1 

p astro , 1 
, ..., 

1 − p astro ,k 

p astro ,k 

)

× e r 

(
p astro ,k+ 1 

1 − p astro ,k+ 1 
, ..., 

p astro ,N events 

1 − p astro ,N 

)
, (A3) 
events 
here the e r is the r th symmetric polynomial. Symmetric polynomi-
ls are defined such that every term has degree r and every r combi-
ation of the variables appears once in the sum, e.g. e 2 ( x , y , z) = xy +
z + yz . Note how symmetric polynomials naturally capture the idea
f summing o v er unique sets. The first polynomial term is the sum
 v er all unique sets of size r sending events from the astrophysical
in to the glitch bin. The second polynomial term is similar, sending
ll unique sets of size r from the glitch bin to the astrophysical bin.
heir product, then, is the sum o v er all combinations of unique set
xchanges of size r between the astrophysical and glitch bin. 

This is nice, but it is not helpful unless one can rapidly e v aluate the
ymmetric polynomials. It turns out that one can easily find the r th
ymmetric polynomial recursively from the previous r −1 symmetric 
olynomials, using Newton and Girard’s Theorem: 

e r ( x 1 , ..., x n ) = 

r ∑ 

j= 1 

( −1) j−1 e r−j ( x 1 , ..., x n ) f j ( x 1 , ..., x n ) , (A4) 

here the f j ( x 1 , ..., x n ) = x 
j 

1 + ... + x j n are computationally trivial
o e v aluate. With this in hand, we can rapidly e v aluate equation ( 21 )
s 

 k ( � ) = 

min ( k ,N events −k ) ∑ 

r= 0 

p 
( r) . (A5) 

f one wishes to calculate the k -expectation over the p k ( � ) 

 p k ( � ) 〉 k = 

N events ∑ 

k= 0 

kp k ( � ) , (A6) 

t is simple enough to e v aluate gi ven all the p k ( � ), ho we ver, it is clear
hat this should also equal the sum of the p astro, i , thinking of the p astro, i 

s independent Bernoulli trials. We can show they are equivalent by
MNRAS 523, 5972–5984 (2023) 
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Table A3. JS divergences in units of bits (base-2 logarithm) between the 
inferred distributions of a control run and the astrophysical sub-population of 
the simultaneous fitting runs. In the middle column are the runs, which include 
a glitch model, but in the right-hand column we show runs, which do not have 
a glitch model and so contaminants must be fitted with the astrophysical 
population. In the control row, we show the JS divergence posterior from two 
random samples from the hyper-parameter posterior in the control run. Note 
the consistency between each run in the middle column, in particular, the lack 
of any sort of (increasing) trend. In the right-hand column, notice that the JS 
divergences increase as expected. 

N blip JS w/o glitch model (bits) JS w/o glitch model (bits) 

Control 0 . 097 + 0 . 123 
−0 . 063 0 . 097 + 0 . 123 

−0 . 063 

0 0 . 088 + 0 . 119 
−0 . 057 –

1 0 . 091 + 0 . 117 
−0 . 058 0 . 104 + 0 . 133 

−0 . 065 

2 0 . 090 + 0 . 119 
−0 . 059 –

3 0 . 090 + 0 . 117 
−0 . 059 –

4 0 . 088 + 0 . 118 
−0 . 057 –

5 0 . 093 + 0 . 119 
−0 . 059 –

6 0 . 092 + 0 . 121 
−0 . 060 –

7 0 . 091 + 0 . 126 
−0 . 059 –

8 0 . 094 + 0 . 126 
−0 . 059 –

9 0 . 090 + 0 . 116 
−0 . 057 –

10 0 . 093 + 0 . 118 
−0 . 059 0 . 406 + 0 . 188 

−0 . 132 

11 0 . 088 + 0 . 113 
−0 . 056 –

12 0 . 090 + 0 . 119 
−0 . 057 –

13 0 . 088 + 0 . 120 
−0 . 056 –

14 0 . 090 + 0 . 120 
−0 . 058 –

15 0 . 091 + 0 . 117 
−0 . 059 –

16 0 . 095 + 0 . 121 
−0 . 060 –

17 0 . 097 + 0 . 120 
−0 . 062 –

18 0 . 091 + 0 . 126 
−0 . 057 –

19 0 . 089 + 0 . 115 
−0 . 056 –

20 0 . 090 + 0 . 119 
−0 . 057 –
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N events ∑ 

k= 0 

x k p k ( � ) = 

N events ∏ 

i= 1 

[
xp astro ,i + (1 − p astro ,i ) 

]
. (A7) 

valuating the polynomial for x = 1 shows the p k ( � ) are indeed
ormalized, and e v aluating the first deri v ati ve at x = 1 shows the
 -expectation is equal to the sum of the p astro, i . 

One may be tempted to use the k -expectation as it has continuous
upport, ho we ver, we caution that using only the k -expectation can
e somewhat misleading. For some population inferences, there was
ery little support for 69 GW events in the k -expectation posterior,
hile there was a reasonable probability for having exactly 69 GW

vents in the catalogue. These are different statistical statements and
hould not be mistaken for one another. 

This kind of calculation can in principle be done for any population
nference with a mixing fraction. That said, our populations are nearly
isjoint and as such the posterior width on η is dominated by Poisson
ncertainty, not uncertainty on which events in the catalogue should
elong to which sub-populations. For other population inferences
ith mixing fractions, the events may not be as easy to differentiate

nto sub-populations, and the uncertainty on the mixing fraction
ill have a larger contribution from this uncertainty. The p k ( � ) will
ave broader support and will more closely mimic the (appropriately
escaled) detectable mixing fraction posterior. 
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