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Abstract

The need for staged design optimization for multidisciplinary systems with strong, cross-

system links and complex systems has been acknowledged in various contexts. This is prominent

in fields where decisions between subsystems are dependant, as well as in cases where tactical

decisions need to be made in uncertain environments. The flexibility gained by incorporating

evolutionary design options has been analyzed by discretizing the time-variant uncertainties into

scenarios and considering the flexible decision variables in each scenario separately. However,

these problems use existing information at the decision time step. This paper presents a Dy-

namic Multi-Staged Design (DMSD) framework to solve problems that dynamically incorporate

updated system information and reformulate the problem to account for the updated parame-

ters. The importance of considering staged decisions is studied, and the benefit of the model is

evaluated in cases where the stochasticity of the parameters decreases with time. The impact of

considering staged deployment for highly stochastic, large-scale systems is investigated through

a numerical case study as well as a case study for the IEEE-30 bus system. The case studies

presented in this paper investigate multi-disciplinary design problems for large-scale complex

systems as well as operational planning for highly stochastic systems. The importance of consid-

ering staged deployment for multi-disciplinary systems that have decreasing variability of their

parameters with time is highlighted and demonstrated through the results of a numerical and

realistic case studies.
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1 Introduction

With the increasing complexity and scale of complex, engineered systems, there is a need for a

robust framework for adapting to extraneous factors that cannot be accounted for in the planning

stage. Currently, most systems anticipate the environmental conditions through stochastic methods

that can predict and account for the uncertainty in the system. Then, a system can be designed

with specifications that have a higher probability of meeting those conditions. However, a new

avenue of research studies the optimal reaction to the realization of uncertain design parameters.

Staged deployment is a means of establishing flexibility in the deployment of complex systems [1].

It refers to deploying a project gradually, where the initial deployment is conservative to avoid large

initial costs [2]. This method allows policy and decision makers to increase their captured demand

in stages depending on the actual realization. Staged deployment optimization is mostly popular

in the aerospace industry [2, 3], however, studies are also common in the automotive industry [4],

medical industry [5] and other fields.

The popularity of staged deployment optimization is due to it being an economical option

for planning the development and enhancing the flexibility of the system as well as mitigating

potential risks against unknown, future events. In addition to the long service life of such systems,

these factors motivate the development of resilient and cost-effective complex engineered systems,

especially those that consist of a growing number of interacting subsystems [6–8]. Given the

dynamic nature of future operating and environmental changes on system performance over time,

as well as the fast-paced nature of technology evolution, traditional methods for system design and

deployment all at once could involve significant technical and financial risks [9]. Therefore, designing

systems over time while considering the evolving nature of the future and subsequently deploying the

system in progressive stages has been shown as an effective solution in mitigating the risks [10,11].

For example, for the development of critical infrastructure systems for a developing region (e.g.,

hydroelectric power plants and water distribution systems), considering temporal demand variations

and future community growth, the design and deployment cannot be done all at once. Instead,

the system development with coupled subsystems that evolve together over time must be done

through a series of design stages where the design and system deployments at previous stages

constrain decisions at later stages. There is an imperative need for an effective complex system

design framework and techniques that can take into account the design and staged deployment of

interdependent subsystems while simultaneously considering time-variant uncertainty and future

extreme events.

Long-term decision making is very difficult with stochastic problems. Not only are there random

variables that need to be accounted for, but with non-stationary processes, accurate projections

for changes in distributions can be very difficult to obtain and even impossible in most cases.

Therefore, the integrity of long-term decisions cannot be guaranteed. In order to mitigate the
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high uncertainty embedded in long-term decision making, staged deployment is used to make more

frequent decisions for shorter planning horizons. Staged deployment allows more reliable decisions

to be made; however, there is a higher cost associated with making more frequent decisions which

also needs to be factored in. For example, the cost of building a factory with a capacity of 50,000

units will be less than the cost of building a factory with a 10,000-unit capacity and then expanding

the capacity to 50,000 units. Additionally, the cost of changing the design variable might be higher

per unit than for advanced decisions. Moreover, in some systems, the decision implementation

lead time could lead to prolonged disturbances in system operations and, in some cases, lead to a

complete stop of operations.

In the literature, increasing complexity and multi-disciplinary characteristics of complex sys-

tems design have become a challenge for engineers, and different tools have been proposed for

optimization of decomposition using a design structure matrix (DSM) or its variants [12]. In

the multi-disciplinary design optimization (MDO) context, effective system decomposition has led

to efficient optimization of otherwise intractable large-scale design problems as covered in the

following papers [13, 14].Various partitioning techniques have been developed for optimal MDO

problem decomposition [15–17], and different iterative and parallelizable multi-level optimization

MDO coordination methods have been proposed to utilize the decomposed structure for an efficient

system- and subsystem-level optimization. Examples of multi-level optimization include bi-level in-

tegrated system synthesis [18], collaborative optimization (CO) [19], and analytical target cascading

(ATC) [20]. Computational experiments have been used to compare their performance [21,22]. Un-

certainties have been considered in MDO, leading to uncertainty-based MDO methods [23]. While

considering the uncertainties in system design optimization, the reliability-based design optimiza-

tion (RBDO) problem and further the reliability-based robust design optimization problem [24]

have been investigated in the literature.

Different formulations have been studied using not only traditional stochastic optimization but

also robust optimization and reliability-based optimization. The uncertainty propagation across the

subsystems has often been handled using Monte Carlo simulation and Taylor series approximation,

among many other methods [25]. For complex systems, where the number of uncertainty sources is

more than manageable, screening methods have been used to narrow them down to a small number

for computational reduction. Sensitivity analysis methods have also been used to evaluate the

effects of uncertainties, or for design sequencing. However, existing uncertainty MDO methods are

useful for identifying a single design that performs well with random variables or parameters, but

their static nature makes them ineffective or inapplicable for identifying dynamic deployment plans

in response to time-variant uncertainties. Also, the existing screening methods to narrow down the

sources of uncertainties for computational efficiency will exclude sufficiently flexible deployment

solutions that respond to a variety of uncertainties. There is a great need for strategic methods

to co-optimize the dynamic decisions in response to the time-variant uncertainties while managing

the computational complexity.

The needs of staged deployment, which share a similar concept with service-phase evolution,

have been identified and studied extensively in different contexts [26]. In response to such needs,

many studies have addressed modeling for future uncertainties. These studies improve the resilience
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of systems by staging decisions over time to reduce the variability of the model. This variability is

introduced modeling dynamic models over time and estimate long-term stochastic parameters [27].

These models typically discretize the uncertainty into a deterministic equivalent formulation and

use the different possible scenario paths to influence staged decisions and first-stage decisions that

can anticipate future trajectories of uncertain parameters. This approach does not only narrow the

infinite number of possibilities down to a finite number of scenarios to analyze, but also aligns well

with reality as deployment decisions are typically discrete. An example of such discretization is a

binomial lattice model [28], a time-discrete representation of a geometric Brownian motion. For a

general stochastic process besides a geometric Brown motion, there has been extensive literature

in the economics and operations research fields for scenario discretization of stochastic processes

as well as scenario reduction methods. Given the discretized scenarios, stochastic optimization

with either direct formulation or decision-rule-based formulation can be used to find flexible de-

signs. However, when applied to a large-scale system with numerous uncertainty sources, existing

scenario discretization methods either require arbitrary decision rules or an explosive number of

variables/constraints due to the scenario discretization methods. It is practically infeasible to

identify a decision rule for a complex system.

To address this gap, this paper justifies the need for a novel stochastic optimization method

based on time-dependent stochastic process models. This allows users to design stage-deployed

large-scale complex systems with coupled and co-evolving subsystems while considering time-variant

uncertainties and extreme events. In the case study, the importance of considering staged deploy-

ment for time-dependent stochastic processes in multi-disciplinary systems is highlighted. The rest

of the paper is organized as follows: Section 2 provides an overview of the staged deployment de-

sign problem with respect to All-at-once solution strategies for solving the deterministic equivalent

problem. Section 3 introduces a framework for solving multi-stage stochastic models using decom-

position techniques and highlights the proposed approach. Section 4 presents a numerical example

highlighting the need for a stage deployed optimization design for multi-disciplinary problems. Sec-

tion 5 presents an IEEE-30 Bus System case study to validate the results on a real model. This

study is concluded in Section 6.

2 Staged-Deployment Design Optimization Methodology

2.1 All-at-once Solution Strategy

Stochastic programming problems are an active research area due to their importance in ac-

curately representing real-world systems to make close-to-optimal decisions. However, due to the

complexity in solving stochastic problems, deterministic equivalent formulations exist to make de-

cisions while accounting for the stochastic nature of systems. Such formulations allow decision

makers to make decisions before the realization of stochastic events, given some prior knowledge

on the behavior of the stochastic parameters. This prior information can be in the form of random

distributions or projections, which allow decision makers to anticipate the behavior of the system
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over time. Deterministic Equivalent formulations discretize the random distributions and represent

them in the form of probabilistic scenarios. Although this approach accounts for the uncertain

nature of stochastic variables, if the prior information is not accurate, or if it changes with time,

then then these models are unable to make reliable decisions. This section presents some of the

most prominent all-at-once solution strategies for stochastic modeling.

2.1.1 Two-Stage Design

A common approach to optimizing stochastic problems involves utilizing Two-Staged Stochastic

Programming to mitigate the impact of making decisions with highly stochastic parameters. Two-

Staged Stochastic Programming utilizes existing data at the time of modeling to obtain a flexible

decision plan based on discretized scenario approximations. Two-Stage Stochastic Programming

is typically employed when some decisions need to be made before the realization of uncertain

events, and other decisions, such as the recourse decisions, are made after their realization [28].

The scenario-based formulation of a two-stage stochastic program can be cast into a deterministic

equivalent model to make it more amenable to numerical optimization [29]. The objective function

of the deterministic equivalent model is shown in Eqn. (1).

min
x

E(f(x, ω)) = min
x

cTx+ E(Q(x, ξω)) (1)

Where x represents the vector of decision variables, f(x, ω) represents the scenario specific

objective value for each scenario ω ∈ Ω and the Two-Stage Stochastic Model aims to minimize the

expectation of the objective function. c represents the cost associated with the decisions taken,

and ξω represents the set of stochastic parameters dependant on ω. The term represents the

deterministic term that is based on the cost of the first stage decisions. Lastly, the E(Q(x, ξω)) term

represents the expectation of the cost of the second stage decisions in the model [30]. Equivalently,

Eqn. (1) can be converted to the deterministic equivalent formulation by decomposing the stochastic

realizations into a finite number of scenarios Ω that can accurately represent the initial probability

space [29]. Given this, Eqn. (1) can be rewritten as in Eqn. (2).

min
x

E(f(x, ω)) = min
x

cTx+
∑
ω

pωQ(x, ξω) (2)

In Eqn. (2), pω represents the probability of scenario ω occurring. In order to solve Eqn. (2),

scenario discretization can be utilized. Scenario discretization creates duplicate of the decision

variables for each scenario ω. This is shown in Eqn. (3a) below. Since the deterministic equivalent

formulation introduces copies of the decision variables, non-anticipativity constraints need to be

added (Eqn. 3b) in order to ensure that even after the value of the stochastic variable is known, the

chosen value for the decision variable does not change [29]. Non-anticipativity constraints represent

a set of equality constraints that prohibit future information (information from future stages) to

be incorporated in current decisions by fixing the decision variable values at certain time periods.

In other words, these constraints limit the decisions that have the same history to be equivalent.
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Minimize
x

E(f(x, ω)) = min
x

(cTx+
∑
ω

pωQ(xω, ξω)) (3a)

s.t.
∑
ω∈Ω

Aωx
ω = h (3b)

x ∈ R (3c)

Given the presented formulation, the non-anticipaticity constraint can be relaxed using a la-

grangian penalty parameter, represented by λ. The following single-objective problem can be solved

in Eqn. (4).

Minimize
x

, λ cTx+
∑
ω

{pωQ(xω, ξω) + λTAωx
ω} − λTh (4)

While Two-Stage Stochastic Modelling allows the user to account for possible future realizations

of parameters in the model and adjusts the response of the second stage variables based on the

realization of the parameters, it does not incorporate new information as it arrives in order to

adjust the response of the model [31]. Two-Stage Stochastic Modeling works well when there is an

accurate probability distribution of the unknown parameters; however, in reality, it is very difficult

to accurately predict the probability distribution of long-term parameters. This introduces the

need for dynamic methods that can incorporate new information to accurately update the model

response as the updated predictions of the parameters arrive.

2.1.2 Multi-Stage Design

The presented two-stage stochastic formulation can be extended to a multi-stage design. The

multi-stage design considers several decision periods for random variables. The main difference

between the two-stage stochastic model, is that the value of the decision variables can change at

predetermined decision periods. The updated formulation is presented in Eqn. (5) below. In this

case, the stages at which decisions are made are defined as t. In this case, t can be equivalent

to the time periods, or can be a subset of the time periods involved. Only the decision variable

values at time t = 0 (first-stage decisions) are fixed irregardless of the realizations of the stochastic

parameters. Fig. 1 shows the main difference when considering multiple stages in terms of the

parameters in the model. In the figure, three time periods are considered, with two periods that

contain stochastic realizations of parameters. A single path, from root to tail, denotes a possible

scenario occurring over the full time period. The probability of a scenario path is then obtained

by multiplying the probability of the second stage realization with the third stage realization, as

shown in the box on the left of Fig. 1. It shows that the probabilities are not aggregated for each

scenario path for cases where the decisions are made for multiple time periods.

Given this updated formulation, the non-anticipativity constraints are updated to account for

the pairing between stages, therefore, Aωt is updated to a matrix to account for the relationship
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Figure 1: Example of scenario discretization with 3 decision points and possible evolution paths

(i.e., scenarios)

between the stages. It ensures that the variables are decided based only on knowledge known up

to that time, so that future knowledge (in subsequent stages) is not incorporated in earlier stages.

Fig. 2 illustrates how non-anticipativity constraints are formulated for the same simple example

presented in Fig. 1. The cost vector is defined by c1 for the first time period and cTt−1 for the rest

of the time periods. Similarly, x1 and xTt−1 are divided into the first period decision variables and

the decision variables in the subsequent time periods. This set of constraints updates the model so

that λ is now a vector corresponding to each equation.

Figure 2: Non-anticipativity constraints for the stochastic decision variables are formulated based

on the scenario tree.
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Minimize
x,λ

c1x1 +
∑
t

∑
ωt

{pωtc
T
t−{1}x

ωt

t−{1} + pωtQ(xωt , ξωt) + λTAωtx
ωt
t } −

∑
t

λTht (5)

Although this model can incorporate more flexibility by increasing the decision time steps,

this approach is still reliant on prior information on the behavior of the stochastic parameters.

Additionally, the number of decision variables increases drastically with the number of decision

time steps. This is a result of changing the decision variable values more frequently, which means

that additional indices are added to the decision variables and the size of the problem increases.

This leads to a high computational cost to implement such models and can be prohibitive for

realistic case studies where the scenario tree is large in size.

3 Dynamic Multi-Stage Design (DMSD)

3.1 The DMSD Formulation

This section presents an overview of the proposed staged-deployment design problem that in-

corporates new information to update the model design. In the traditional methods that con-

vert stochastic problems into a deterministic equivalent formulation, discretizing the scenarios for

each subsystem and analyzing all combinations of scenarios for all decisions, as shown in Fig. 3,

would be required in the staged-deployment optimization, resulting in a large number of vari-

ables/constraints. The size of the problem increases drastically when considering the staged un-

certainty, which can be demotivating to decision makers. However, by dynamically updating the

scenarios to consider more up-to-date probabilities, the model is able to consider smaller decision

periods with results that better match the dynamic nature of the systems considered in the study.

After each stage, the model is resolved with updated scenarios (both future and past realizations) to

ensure that the system adapts to past realizations and anticipates the future variable realizations.

Multi-staged modeling takes into account the realization of events up to the time period that

the decision maker is in, and after updating the state that the system is now in, solves a staged,

stochastic model to determine if the previously determined values of the variables need to be

modified given new predictions on the parameters in the model. Since the values of the scenario

sets, ξt, .., ξT , can change in each time period, updating them over stages allows the feasibility sets,

Ut, ..,UT , for each time period to change as well. In some cases, the updated feasibility sets can also

be empty based on the previous realizations of the scenarios. However, in this study, only cases

where the feasibility set is not empty are considered.

Fig. 3 shows the updated scenario tree for dynamic problems. In Fig. 3a, the complete scenario

tree is shown at time step t=0 since no additional information is known at that decision time

step. However, at the next decision time step, the scenario tree is updated according to new

information. Fig. 3b shows a possible case where only the probability of the parameter realizations

change. This change is due to the fact that after a subsequence of random variables, ξ1, .., ξt−1,

is known, the remaining sequence of random variables, ξt, .., ξT , is conditioned on the values of
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(a) Scenario tree with the scenario information available at decision time step t=0 (adapted from [2]).

(b) The case where the expected value of p changes at T=1.

(c) The case in which the time discretization is updated given the new information as well as the value of p

at T=1.

Figure 3: Possible updated scenario schemes at the next decision step
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ξ1, .., ξt−1. Alternatively, Fig. 3c shows the case where the number of scenarios is increased at that

decision time step as well as the probability distribution. Intuitively, it is clear that considering

a dynamic modeling scheme allows the most up-to-date information to be considered and can

therefore improve the model accuracy. Selecting the number of time periods in each stage is one

of the most important aspects of solving a dynamic, multi-stage model. While selecting a shorter

decision time period allows for a higher result accuracy, intuitively, it is clear that an inherent

tradeoff exists between improving the solution accuracy and increasing the cost incurred by the

system when updating/modifying the value of the variables [32]. Moreover, the addition of decision

time periods increases the size of the problem and can cause the model to become intractable.

The formulation for DMSD problem is updated for each stage. The original problem that is

solved is identical to the multi-stage formulation presented in Eqn. (5). However, as the information

prediction is updated, so are the scenario realizations. The formulation presented in Eqn. (6a) is

the general formulation of the problem at stage t, where any decisions made prior to stage t are

fixed decisions, and the scenario discretizations are updated based on the information available at t.

Here, xa represents the first stage decision variables and xb represents the staged decisions. Then,

the deterministic equivalent formulation is determined for the remaining staged time periods. In

Eqn. (6b), the constraint represents the non-anticipativity constraints.

Minimize
x

t−1∑
a=0

∑
ωt

cTxa +
T∑
b=t

∑
ωt

pωtQ(xωt
b , ξωt

b ) (6a)

s.t.
∑
ω∈Ω

Aωtx
ωt
b = h (6b)

x ∈ R

The non-anticipativity constraints can be relaxed by introducing a penalty term, λ, and adding

the constraint violation term in the objective function such as in Eqn. (7).

Minimize
x,λ

t−1∑
a=0

∑
ωt

cTxa +
T∑
b=t

∑
ωt

{pωtQ(xωt
b , ξωt

b ) + λTAωtx
ωt
b } − λTh (7)

The main contributions of this paper consist of:

• providing a framework for solving stochastic multi-stage optimization problems for different

scenario decomposition techniques and solution methods.

• dynamically incorporating new predictions of the stochastic parameters and system state and

updating the multi-stage model based on their realizations.

• providing a structured way to combine scenario decomposition and solve the resulting deter-

ministic model based on the ensuing decision tree. The decision tree is updated continuously

and when it is updated, the dynamic multi-stage formulation is updated and solved.

• Implement the proposed methodology to a realistic, stochastic case study of the IEEE 30-bus

system with and without the additional consideration of wind turbine power generation.
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3.2 Problem Description

This section studies the benefit of implementing multi-stage modeling for several applications

of the DMSD algorithm. In this section, staged capacity deployment problems and staged tactical

planning, examples of problems to be solved using the DMSD framework, are studied. Some general

formulations of target problems are described in Section 3.2.

3.2.1 Staged Tactical Planning

A large class of problems consist of making decisions that are both operational and tactical.

Tactical decisions are usually made by middle management at regular intervals during the work

year. Operational decisions, on the other hand, are made regularly during the work day and usually

involve lower management or shop floor employees [33]. Therefore, since tactical decisions are made

at a higher level, they can affect day to day operations and involve higher risk than operational

decisions. Thus, they are made at regular intervals to ensure that the decisions are optimal based

on the current environment. These problems are typically solved using multi-stage modeling, where

the tactical decisions are made at the decision stages and the operational decisions are made in

each time period [34]. Let us define a general Staged Tactical Planning problem as one with a cost

reducing objective as seen in 8a. Where dtsτ refers to tactical decisions that are made at τ = 0, ..., T1

decision stages under scenario s = 1, ..., S. While operational decisions are made by dost at time

period tau under s. The tactical and operational decisions are then linked through a function

depending on the problem domain as seen in 8b. Then, operational constraints are defined in 8c

and tactical constraints are defined in 8d.

mindtsτ ,do
s
t
=

∑
s

ps

(∑
τ

Ctacticaldt
s
τ +

∑
t

Coperationaldo
s
t

)
(8a)

f(dtsτ , do
s
t ) ≤ 0 ∀τ, t, s (8b)

g(dost ) ≤ 0 ∀t, s (8c)

h(dtsτ ) ≤ 0 ∀τ, s (8d)

dtτ ≥ 0 ∀τ
dot ≥ 0 ∀t

Such problems are common to many industries and could be used to represent most commercial

operations. The distinguishing feature for these models is that some decisions are made more

frequently than staged decisions (in this case, the tactical decisions). The operational decisions are

then updated based on the value of the tactical decisions since they impact the structure of the

system.
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3.2.2 Staged Capacity Deployment Problems

Traditionally, the deterministic formulation for expanding and rebuilding a single infrastructure

system will have the form shown in Eqn. (9a). The variable xt indicates the operating infrastruc-

ture size at a time step t, yt indicates the infrastructure size that retires at the end of time t,

and zt indicates the infrastructure size that is added at the beginning of time t. The objective

function includes the operational cost, Coperational, retire cost, Cretire, and expansion cost, Cexpand.

The constraints include the “mass balance” of the operational mass and a requirement on the

interruption of the operation. The latter can be written that over the time horizon, the unsatis-

fied demand max(Demand(t)−Performance(xt, t), 0) is within certain required demand shortage

amount DSreq. Note that Performance(xt, t) is not only a function of the current operating in-

frastructure size, but also time, to take into account the performance degradation over time of

aging infrastructure.

Minimize
∑
t

Coperationalxt + Cretireyt + Cexpandzt (9a)

s.t. xt = xt−1 − yt−1 + zt ∀t (9b)∑
t

max(Demand(t)− Performance(xt, t), 0) ≤ DSreq (9c)

The deterministic formulation above can be adapted to a multi-stage formulation. The updated

formulation considers staged decisions, d, where the demand realization for previous time periods

can be set and the future demand predictions can be updated based on new data. Additionally,

decisions can be introduced to determine whether the capacity of the system should be increased (ei-

ther due to performance degradation or increasing the overall capacity to handle higher production

requirements to meet the updated demand expectation).

In order to accurately evaluate the benefit of staging decisions, the associated costs must also

be considered in the evaluation of the methods [35]. These costs include the decision-making costs

as well as the additional fixed costs incurred with modifying system architectures. To correctly

assess the financial costs of the decisions, the Net Present Value (NPV) of the costs is usually used.

This allows all the decisions to be evaluated considering the total cost at the time of the decision,

even for multiple stages. The NPV of an investment in a certain time period can be calculated

using Eqn. (10), and this allows the investments made at different time periods to be juxtaposed.

NPV =

n∑
t=1

Rt

(1 + i)t
(10)

where Rt corresponds to the value of the investment at time t and i corresponds to the discount

rate [36]. Therefore, utilizing the NPV allows the value of future flexibility to be determined at the

decision period.
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3.3 Solution Framework

Dynamic Multi-Stage Modeling introduces flexibility when solving stochastic problems, yet they

tend to increase the computational resources required to solve the problem. Solving multi-stage

problems can be divided into two parts: scenario generation and solving the resulting problem.

3.3.1 Scenario Generation

Although stochastic programming is a tool that allows decisions to be made given uncertainties

in the parameters of a system, most stochastic programming methods can be intractable or need

advanced solution methods to address the specific structure of the model. In order to utilize

deterministic solution schemes for realistic problems, a deterministic equivalent formulation can

be used. This allows decision makers to mitigate the costs associated with advanced stochastic

programming tools and implement existing deterministic solution methods. Scenario generation

refers to the implementation of a finite discretization of a random vector [37]. The main difficulty

with scenario generation lies in maintaining a balance between selecting a large enough scenario set

size as to be representative of the true distribution of the random variable, as well as maintaining

a problem size that ensures computational tractability. The specific scenario generation scheme

can be selected based on the application and the granularity of the uncertain variables as well

as their approximated underlying distribution. Some of the popular scenario generation methods

include Monte Carlo simulations based on the expected distribution of the stochastic parameters,

path-based methods, moment matching and optimization discretization [38].

Tail-risk measures are used to ensure that the risk of extreme events is minimized and that the

number of scenarios far from the risk region are reduced. They focus on the upper tail region of

random distributions to identify critical regions [37]. Some popular tail risk measures include the

Value-at-Risk (VaR) and Conditional Value at Risk (CVaR) measures. These measures focus on

identifying the risk of potential loss depending on the problem being considered. VaR was initially

introduced to measure the potential loss of an investment. It determines the worst-case loss given an

uncertain event. CVaR, on the other hand, calculates the average loss provided that the VaR value

is exceeded [39]. Scenario generation schemes that are built based on tail-risk measures prioritize

generating scenarios that lie within risk regions close to the tail of the distribution. These methods

lie within the area of problem-driven scenario generation. One appropriate sampling method is the

asymptotic sampling algorithm in [37]. This sampling scheme is based on aggregation sampling,

where a risk region, �, is identified and a target risk region sample size, N�, is specified. The

algorithm then samples points from the distribution and if they are not located in the risk region,

�c, then they are aggregated into a single point, which in this case is the mean of the sample

points. Then, when assigning the probabilities of the points, they are assigned as in Eqn. (11) for

the samples in the risk region and Eqn. (12) for the average value of the sample points not in the

risk region. Here, pi represents the probability of sample point i, where i ∈ {1, N�}. As for the

points within the safe region, �c, as shown in Eqn. (12), they are given a probability based on the

number of samples drawn from within that region.
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pi ← 1

n�c +N�
(11)

pN�+1
← n�c

n�c +N�
(12)

Another popular scenario generation method is moment matching. Moment matching is used to

ensure that the statistics of the generated scenarios match the original distribution [40]. Although

scenarios are generated using Monte Carlo simulation (or equivalent methods) from the original

distribution, depending on the number of scenarios and the generated samples. Therefore, moment

matching allows the statistics of the sample to be compared with the true estimates and aims

to minimize the deviation between them. Several methods in the literature provide methods to

generate moment matching scenarios [41]. The main approach is to minimize the deviation between

the sample and the original parameters of the distribution. For a normal distribution, the squared

residuals of the main statistics can be minimized as in Eqn. (13) [42]. The main statistics that are

compared are the mean, μ, standard deviation σ, skewness, skew, kurtosis, kur and correlation,

corr.

min (μ ∗ −μs)
2 + (σ ∗ −σs)

2 + (skew ∗ −skews)
2 + (kur ∗ −kurs)

2 + (corr ∗ −corrs)
2 (13)

3.3.2 Problem Decomposition Schemes

In order to accommodate the higher computational cost associated with multi-stage modeling,

certain solution methods could be utilized to reduce the computational burden. Decomposition

methods are among the most prevalent solution methods associated with multi-stage stochastic

modeling. Decomposition methods, similar to their name, refer to methods that break down the

problem into smaller subproblems to aid in solving them faster. Common decomposition methods

are Bender’s Decomposition, Lagrangian Relaxation, and Multidisciplinary Design Optimization

(MDO) Methods like ATC and Response Surface Methodology [43], [44]. Traditionally, since sce-

nario decomposition techniques can be ill-posed if a smaller number of scenarios is evaluated in the

model, and increasing the number of scenarios considered can substantially elevate the computa-

tional time, parallel solution schemes can be utilized to exploit available resources [45].

For solving static multi-stage models, or models that have several staged decisions but have

a single input time for the probability distribution of the random parameters in the model, these

methods have been applied in the literature to obtain computationally inexpensive results. When

the data is included dynamically, however, the same methods cannot be applied in the same way

since the model itself is solved in stages. Each stage itself must be decomposed depending on the

structure of the problem itself. The structure of the problem can help determine which decomposi-

tion method should be used. For example, Lagrangian Relaxation is typically used when there is a
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complicating constraint or set of constraints [46]. These methods can be used to decouple problems

based on their inherent structure.

In this study, we propose a multi-level framework that has a system-level optimization in the first

level and subproblem optimization in the proceeding levels. However when each problem is solved

it is solved as a multi-stage problem. The pseudo code as detailed in Fig. 4 shows the structure

of the solution framework. Unlike the static multi-stage formulation predominant in the literature,

the dynamic formulation solves the problem τ times. The framework highlighted in Fig. 4 considers

the case where the stochastic problem is solved using the deterministic equivalent formulation based

on scenario discretization. However, the same framework can apply to other solution methods as

well as scenario decomposition techniques. Solving the Staged Problem can be done through the

use of commercial solvers depending on the specific problem formulation. The second level allows

for the recalculation of the scenarios considered (a new scenario tree is constructed and can have

different branches with varying probabilities), which can allow for computational savings since the

variance is reduced.

4 Numerical Case Study

The first numerical example presented is a model based on the mass damper system and op-

timization model presented in [47]. The authors aim to maximize the energy storage capacity of

the system by designing the spring thickness. Their model combines both the control and phys-

ical design aspects of the system in a co-design problem. Their model is dynamic through the

introduction of differential equations to model the control part. However, their model considers a

static, one-time decision of designing the spring thickness, when in some analogous systems, like a

car suspension system, the decision that needs to be made is dynamic in nature [48]. This means

that the value of the optimized variable can change at different points in time. Additionally, the

model in [47] assumes that the control variable is known, when in reality, again, like in the case

of the car suspension system, this parameter is stochastic. This introduces the need for a robust

model that accounts for the inherent variability in the system. This is especially the case when

the variability of the parameter decreases as the observation period approaches the time period

for which the prediction of the input variable is made, such as in Fig. 5. Moreover, with time

the expected distribution of the stochastic parameter approaches the true distribution. Therefore,

updating the distribution of the stochastic parameter can drastically improve the response of the

model.

Given the available distribution information, scenario discritization is performed as shown in

Fig. 6. Given the most recent information at each decision stage, the distribution is updated and

new scenarios are discretized. Since this allows the model to incorporate updated information with

reduced variance, a smaller number of scenarios can be used to represent the stochastic nature of

the parameter. This reduces the computational cost significantly.

This paper presents the numerical model in [47] updated so that the control input variable, ui
variable is stochastic and follows a similar behavior as that of Fig. 6. The original model developed
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Figure 4: DMSD Solution Framework

in [47] is presented in Eqs. 14a to 14g. Four variations of the model are presented, and the main

differences are highlighted in Table 1.

Nomenclature
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Figure 5: The figure shows the variability reduction and change in expected value over time when

estimating the force at time T.

Indices

i Set of springs, indexed by i ∈ {1, 2, 3}.
s Set of scenarios, indexed by s ∈ S.

Parameters

κ1 Minimum allowable inside diameter.

κ2 lower bound on physical variables.

Π Probability of scenario occurrence.

A Amplitude of Oscillation.

C Spring index.

c Damping coefficients.

Ds Clearance constant.

Fu Maximum allowable force.

G Shear modulus.

ki Spring constant.

mi Mass for each spring subsystem i .

Qi Diagonal weighting matrix associated with the velocity and position terms in the objective.
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Figure 6: The figure highlights the benefit of a Dynamic model for stochastic variable scenario

realizations. (a) shows the available knowledge of the stochastic parameter at each time period.

(b) shows the information available for the multistage model at time t=1 and (c) and (d) show how

the model is updated at t=10 and t=20 respectively.

Ri Weighting parameter associated with the control term in the objective.

wci Weighting coefficient associated with the control objective function.

wpi Weighting coefficient associated with the physical-design objective function.

xi0 Initial conditions of state variables.

Decision Variables

ui(t) Control variable corresponding to input applied to spring i at time t.

xi(t) Position and velocity of the ith mass at time t.

yi Local physical decision variables in ith subsystem.
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ys(i, j) Shared physical decision variables in ith and jth subsystems, i.e., combined, shared physical

decision variables.

min
yi,ui(t)

z =
∑
i∈I

(10.24G)wpi

(
π

12.8Fu

)2

C−2y4i +
1

2

∑
i∈I

wci

∫ t

0
(xTi Qixi(t) +Riu

2
i (t)) dt (14a)

s.t. (c−1 − 1)yi − κ1C
−1 ≤ 0 ∀i (14b)

κ2 − yi ≤ 1 ∀i (14c)

0.8Fu

DsG
C3y−2

i ≤ 1 (14d)

ẋ1(t) =

[
0 1

−k1+k2
m1

− c1+c2
m1

]
x1(t) +

[
0 0
k2
m1

c2
m1

]
x2(t) +

[
0
1
m1

]
u1(t) (14e)

ẋ2(t) =

[
0 1

−k2+k3
m2

− c2+c3
m2

]
x2(t) +

[
0 0
k2
m2

c2
m2

]
x1(t)

[
0 0
k3
m2

c3
m2

]
x3(t) +

[
0
1
m2

]
u2(t)(14f)

ẋ3(t) =

[
0 1

− k3
m3

− c3
m3

]
x3(t) +

[
0 0
k3
m3

c3
m3

]
x2(t) +

[
0
1
m3

]
u3(t) (14g)

xi0 = [1, 1]T , ∀i

Table 1: Differences between the four models compared in this study

Model 1 Model 2 Model 3 Model 4

Number of Y Variables 3 150 150 15

Number of K Variables 3 150 150 150

Number of Scenarios 15 15 15 15

Decision Time Steps 1 t t τ

Total Time Periods T T T T

Stochasticity of ui Random Random Decreasing Decreasing

4.1 Model Descriptions

The four models that are compared in Table 1 are explicitly differentiated in this section. The

differences between the model allow us to determine the importance of staging decisions when

dealing with extraneous stochastic parameters.
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4.1.1 Model 1

The first model is a slight variation of the model presented by [47] in Eqns. 14a to 14g. The

main difference is that the control input, ui(t), is made stochastic, usi (t), where s denotes a discrete

scenario realization of the control input. So it is adapted to include different possible values at each

time period given a fixed mean and standard deviation that we draw upon for scenario realizations.

The updated objective function is shown in Eqn. (15a). Moreover, Eqns. (14e) to (14g) should be

updated as in Eqns. (15b) to (15e).

min
yi,us

i (t)

∑
i∈I

(10.24G)wpi

(
π

12.8Fu

)2

C−2y4i +
1

2

∑
i∈I

wci

∫ t

0
(xTi Qixi(t) +

∑
s∈S

psRiu
s2
i (t)) dt (15a)

s.t. Eqns. 14b, 14c, 14d (15b)

ẋ1(t) =

[
0 1

−k1+k2
m1

− c1+c2
m1

]
x1(t) +

[
0 0
k2
m1

c2
m1

]
x2(t) +

[
0
1
m1

]
us1(t) ∀s (15c)

ẋ2(t) =

[
0 1

−k2+k3
m2

− c2+c3
m2

]
x2(t) +

[
0 0
k2
m2

c2
m2

]
x1(t)

[
0 0
k3
m2

c3
m2

]
x3(t) +

[
0
1
m2

]
us2(t) ∀s(15d)

ẋ3(t) =

[
0 1

− k3
m3

− c3
m3

]
x3(t) +

[
0 0
k3
m3

c3
m3

]
x2(t) +

[
0
1
m3

]
us3(t) ∀s (15e)

xi0 = [1, 1]T , ∀i

4.1.2 Model 2

Model 2 also considers the control input to be stochastic in nature, however, it also changes the

main decision variable, yi, the spring diameter, to be a dynamic variable that changes with time.

Although for this specific application, it is not a realistic constraint, it allows us to compare the

benefit of staging decisions against an ideal case. The new decision variable, yit, means that the

value of the spring thickness can change with time and no restriction is placed on the change. To

accommodate this modification, Model 2 follows the same model form as Model 1, however, the

objective function is updated in Eqn. (16).

min
yi,us

i (t)

∑
t∈T

∑
i∈I

(10.24G)wpi

(
π

12.8Fu

)2

C−2y4it +
1

2

∑
i∈I

wci

∫ t

0
(xTi Qixi(t) +

∑
s∈S

psRiu
s2
i (t)) dt

(16)

4.1.3 Model 3

Model 3 is similar to Model 2 in the sense that the main decision variable is dynamic in t and

the control input is stochastic, yet, the variance of the input parameter, ui(t) decreases with time.

In this case, it is assumed that the mean of the variable does not change. For this model, the

formulation is the same as that of Model 2. The only difference lies in the value of the input.
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4.1.4 Model 4

Model 4 differs from Model 3 with respect to the frequency that the main decision variable, yit
can change. In Model 2, the decision variable can change in every time period t, however, that

is not a realistic scenario in many applications. In some applications, changing the value of the

decision variable incurs a change cost in addition to the fixed cost of the variable being considered.

In order to have a more realistic comparison, the change in the decision variable is assumed to only

take place at staged intervals, τ . In this case, the prediction of the stochastic parameter is updated

at these staged intervals as well. Therefore, the updated decision variables are yiτ and the scenarios

for the control input are updated at every tau stage (assuming new information is available). The

updated formulation is presented in Eqns. 17a to 17e.

min
yi,us

i (t)

∑
i∈I

∑
τ∈T

(10.24G)wpi

(
π

12.8Fu

)2

C−2y4iτ

+
1

2

∑
i∈I

wci

∫ t

0
(xTi Qixi(t) +

∑
s∈S

psRiu
s2
i (t)) dt (17a)

s.t. (c−1 − 1)yiτ − κ1C
−1 ≤ 0 ∀i, τ (17b)

κ2 − yiτ ≤ 1 ∀i, τ (17c)

0.8Fu

DsG
C3y−2

iτ ≤ 1 ∀τ (17d)

Eqns. 14e to 14g (17e)

xi0 = [1, 1]T , ∀i

4.2 Results

Each of the four problems has been solved utilizing the same parameter values. The output of

the models is presented in Table 2. The relative error for each model is also recorded due to slight

inconsistencies with the finite difference method for the differential equations. The results show

that Model 3 has the lowest objective value, which is desirable since the objective of the model

is to be minimized. This is intuitive since the value of the decision variable is adapted at each

time period to compliment the newest prediction of the stochastic control input, ui(t), where the

variability is at its lowest since new information is known. However, as mentioned previously, this

is not representative of reality in the sense that it is sometimes not feasible to constantly change

the decision variable. For this purpose, the effect of staging the decision is studied at intervals of

1 second time periods. Additionally, the results show that Model 4 has a significant advantage in

terms of objective value over the remaining two models. Model 2 also shows comparable results

from Model 3, however, this model variation considers dynamically changing the decision variable,

which is also unrealistic, given a randomly distributed control variable whose variation is not time

dependent. These considerations are not representative of reality. As for model 1, not adapting to

the changing input causes the model to remain highly sub-optimal even though the computational
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time was lower higher than Model 4 since a single value for each spring thickness is obtained for

the model and different values of the parameter k do not need to be evaluated at each time period.

These results show the need for staging decisions when predictions about the value of the input

variable improve as the observer approaches the prediction period. In terms of the computational

cost results, although model 4 incurs the second highest computational cost, it is very close to the

other models, especially considering that the staged time periods and the original time indices need

to be coordinated. Model 2 has the highest computational cost as the decision variable values need

to be determined at each period, and the variability of the stochastic parameter ui(t) is high and

this makes the coordination of the model variables difficult with the differential equations.

Table 2: The output of the models is compared.

Model 1 Model 2 Model 3 Model 4

Objective Value 9.73× 1018 6.29× 1018 4.45× 107 3.05× 1018

Relative Error 1.54× 10−1 7.14× 10−1 9.85× 10−2 7.16× 10−2

Computation Time (s) 0.087 0.601 0.110 0.191

Order of Solutions 4 3 1 2%

5 Battery Cooling System Case Study

The proposed DSMD framework is applied to a battery management system with updated

temperature measurements to determine the optimal layout of the battery pack and decide the

coolant flow-rate over time. Section 5.1 gives a detailed overview of the problem and Section 5.2

presents the details of the optimization problem and the results.

5.1 Problem Description

With the booming of electric vehicles, immersion cooling has become a potential cooling method

for high-performance vehicles. For an immersion cooling system of the battery pack, plant design

along with control design need to be considered. The immersion cooling system needs to cool

down eight battery cells effectively while simultaneously minimizing the energy consumption of the

pump. To achieve the optimal design, we first tested 21700 battery cells and immersion cooling

battery packs so that we were able to build the high-fidelity finite element (FE) model in COMSOL

Multiphysics [49]. As shown in Fig. 7a, there are 8 battery cells in the battery pack, and 4C

discharging of state of charge (SOC) from 100% to 20% was simulated. The discharge process

takes 720 s and was divided into 4 decision stages (180 s each). The distance between battery cells

can be fixed (d), to 0.5 mm, 1.0 mm, or 1.5 mm. We adopted open-loop control for the control

of the coolant flow rate (v), with stages 1 and 2 having a flow rate of 5 or 10 kg/s, while stages
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3 and 4 have a flow rate of 10 or 15 kg/s. Because stages 3 and 4 have a higher temperature of

battery cells than stages 1 and 2, and thus need a higher flow rate to cool down the battery cells.

Based on the FE model, we can obtain the temperature of battery cells (Fig. 7b) and the energy

consumption of pumping the coolant in different scenarios. The pump energy consumption (P) [50]

can be calculated as shown in Eqn. (18).

(a) FE simulation setup. (b) FE simulation result.

Figure 7: Battery pack immersion cooling system.

P =

∫
vΔp dt (18)

where Δp is the pressure drop of the inlet to outlet. Since the maximum temperature (Tmax) of

battery cells also influences the performance of the battery pack, it is monitored when it goes above

30°C since it will decrease the battery pack’s performance [51]. The objective function considers

both the energy consumption of the pump and the maximum temperature of battery cells.

Cost = w1 ∗ P + w2 ∗ (Tmax − 30) (19)

where w1 and w2 are the weighting factors of the energy consumption of the pump and the maximum

temperature of battery cells.

5.2 Case Study Results

The FE simulation was run for different designs of the cooling system for the battery pack. A

full factorial design with 3 plant designs and 2 levels for each stage’s flow rate control design was

considered. The total time was 720 seconds, and 4 decision stages were studied, each consisting of

180 seconds. The design of the battery pack was considered only as a first stage decision and a static

multi-stage model was implemented to determine the predicted optimal design. Then the design

was fixed, and a temperature reading was used to update the FE simulation at each stage. The

two objectives, reducing the energy consumption and ensuring that the temperature of the battery

remains under 30°C are accounted for in a bi-objective model. The objectives are normalized by

their max value for each of the different objectives, to ensure that a fair comparison between them

is conducted and calculated as shown in Eqn. (19).
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In order to conduct a DMSD study on the battery pack design, a three-prong solution process is

conducted as seen in Fig. 8. First, the simulation results from the FE model are generated following

a Design of Experiments for 3 design diameters and 2 flow rates at each stage. Then, a Gaussian

Process Regression (GPR) model was implemented to extract more design options, where 4 levels

of each of the 5 design variables was considered. This increased the dataset to include a total of

1,024 different designs. Then, the multi-objective multistage optimization model was conducted to

find the optimal result over 720 seconds. At the second stage, a temperature reading of the battery

is used to update the operating temperature of the battery in the simulation and it is re-simulated

for the remaining time periods. The process is then repeated for the GPR and DMSD models in

order to optimize the coolant flow rates for the remaining time periods.

Figure 8: The framework for the first stage solution process.

The results of this design are presented in Fig. 9, where the optimal design was a diameter

distance of 1.5 mm, and the flow rate design is updated at each of the stages given the new battery

temperature measurements. As seen, the flow rate changes given the new information, which allows

for a more effective control of the cooling system. The starting temperatures for stages 2, 3, and

4 are 28.35°C, 29.85°C, and 26.85°C, respectively. The costs of the designs are also shown in the

figure and they refer to the energy consumption of the design. The shaded region shows the possible

design values for the coolant flow rate over time.

The case study provides an implementation for the DMSD framework for problems where the

analysis is not strictly numerical. The results shown, that by incorporating real-time information,

the design of the system can be updated to improve both the performance as well as the cost of
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Figure 9: The optimized coolant flow rate over 720 seconds with decisions made over four stages.

The shaded area represents the possible flow rates and the points represent the optimization results.

The energy consumption cost of each of the stages is also presented.

running the system.

6 IEEE-30 Bus Case Study

The importance of staged deployment for short-term operational decisions is also investigated for

volatile stochastic variables. The IEEE-30 bus system is used as a case study to implement staged

unit commitment for a day ahead system. This case study illustrates the benefit of providing

updated demand data to improve short-term demand forecasting. An illustration of the power

system considered in this case study is shown in Fig. 10 below. The system consists of 30 buses

and 6 generators placed, as seen in Fig. 10. The generator and transmission line data is collected

from [52]. The staged formulation considers updated demand and wind generation distributional

data every 6 hours (24 hours discretized into 4 time periods). This model considers 20 scenarios at

each staged time period where the total number of scenarios is 203 = 8000. The model decides the

generator schedule at each staged time period as well as the forecasted unit commitment. Due to

the stochasticity of the load demand and wind generation, given a realization of a stage, the next

stage considers the previously made decisions as fixed values and updates the generator operating

schedule for the upcoming stages. While the model consists of 4 stages, the system considers and

hourly time discretization.
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Figure 10: IEEE 30-Bus System as presented in [52]

6.1 Model Formulation

The model formulation is based on the formulation in [53] but extended to a multi-stage stochas-

tic formulation. The updated formulation is presented in Eqns. 20a to 20k.

Nomenclature

Indices

t Set of time periods indexed by t, k ∈ T .

st Set of staged decision time periods indexed by st ∈ T .

b Set of buses indexed by b, i, j ∈ B.

g Set of generators indexed by g, q ∈ G.

s Set of scenarios indexed by s ∈ S.

Parameters

ps Probability of scenario s occuring.
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Cgb Power generation cost using generatior g at bus b in MBtu/MW.

SUgb Startup cost for generator g at bus b.

SDgb Shutdown cost for generator g at bus b.

db,st Unit commitment prediction realizations at bus b at time t under scenario s.

MIgb Minimum generating capacity of generator g at bus b.

MAgb Maximum generating capacity of generator g at bus b.

RUgb Ramp-up rate limit of generator g at bus b.

RDgb Ramp-down rate limit of generator g at bus b.

Fbij Line flow distribution factor based on the net injection of bus b at the trans-

mission line linking buses i and j.

Uij Transmission line capacity linking buses i and j.

ws
bt Wind generation realization at bus b at time t under scenario s.

Decision Variables

xsgbt Power generation from generator g at bus b at time t under scenario s.

ysgbt Binary variable: 1 if generator g at bus b at time t under scenario s is on, 0

otherwise.

usgbst Binary variable: 1 if generator g at bus b at staged time period st under scenario

s is turned on, 0 otherwise.

vsgbst Binary variable: 1 if generator g at bus b at staged time period st under scenario

s is turned off, 0 otherwise.

min
z

∑
g

∑
b

∑
s

ps

(∑
t

Cgbx
s
gbt +

∑
st

SUgbu
s
gbst + SDgbv

s
gbst

)
(20a)

s.t. ysgbt−1 − ysgbt + ysgbk ≤ 0 ∀s, g, b, t : 1 ≤ k − (t− 1) ≤ MUgb

(20b)

−ysgbt−1 + ysgbt − ysgbk ≤ 1 ∀s, g, b, t : 1 ≤ k − (t− 1) ≤ MDgb

(20c)

−ysgbt−1 + ysgbt − usgbst ≤ 0 ∀s, g, b, t : st− 1 < t ≤ st (20d)

ysgbt−1 − ysgbt − vsgbst ≤ 0 ∀s, g, b, t : st− 1 < t ≤ st (20e)

MIgby
s
gbt ≤ xsgbt ∀s, g, b, t (20f)

xsgbt ≤ MAgby
s
gbt ∀s, g, b, t (20g)

xsgbt − xsgbt−1 ≤ ysgbt−1RUgb + (1− ysgbt−1)MAgb ∀s, g, b, t (20h)

xsgbt−1 − xsgbt ≤ ysgbtRDgb + (1− ysgbt)MAgb ∀s, g, b, t (20i)∑
b

∑
g

(
xsgbt + ws

bt

) ≥ ∑
b

db,st ∀s, t (20j)
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−Uij ≤
∑
b

Fbij

(∑
g

(
xsgbt + ws

bt

)− dsbt

)
≤ Uij ∀s, i, j, t (20k)

The formulation above denotes a unit commitment model where the decisions of when to turn

the generators on or off can be made at staged intervals, st. The objective aims to minimize

the total cost which includes the production cost and the cost of turning the generators off and

on. Constraints 20b and 20c ensure that the generators are operated within the minimum and

maximum uptime. Constraints 20d and 20e guarantee that the operating state of the generators

does not change unless the generators are turned off or on. Constraints 20f and 20g maintain that

the total generated capacity at a generator, if on, remains within the maximum and minimum

generating capacities. The next set of constraints, constraints 20h and 20i, limit the change in

generated capacity to be within predetermined generator thresholds. Constraint 20j represents the

unit commitment constraint to ensure that the demand is met. Lastly, constraint 20k represents

the capacity limits of the transmission lines.

In order to consider stochastic and dynamic demand patterns, a typical consumer load profile

is used to predict the system behavior. Fig. 11 below presents a typical load profile from which

the demand pattern is adapted in order to maintain realistic load behavior. Since the IEEE-30 bus

system provides average load values at each bus, these were utilized to ensure that the demand

pattern for each bus maintained a consistent load with the dataset. In order to model the different

demand behaviors expected at each stage, a Weibull distribution is used. Weibull distributions are

useful for demand predictions as they can represent a multitude of different stochastic parameter

behaviors. For each stage, the pattern of demand changes given updated information, and each of

the scenarios used for the deterministic equivalent formulation has a specific value for the Weibull

hyperparameters, θ and β, which are used to represent the distribution as seen in Eqn. (21).

Figure 11: Hourly load profile behavior divided into stages. Adapted from [54].
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Figure 12: Average daily wind speed [55] Figure 13: Electric power produced based on wind

speed [56]

f(t) =
βtβ−1

θβ
e−( t

θ
)β (21)

In this case, the parameters of the Weibull distribution are varied in each stage to represent

the same behavior with different parameter values. However, the behavior itself differs between

stages based on Fig. 5. In terms of the wind generation profile, it is based on the average hourly

wind speed profile from [55] as seen in Fig. 12. The wind generation is assumed to be directly

proportional to the wind speed and is scaled as in Fig. 13.

In order to generate realistic wind data, Table 4 summarizes the wind speed peaks that are

achieved at each of the buses with wind turbines. In all cases, we assume that the wind speed

follows a characteristic curve as shown in Fig. 12, scaled to account for area variations. The peak

power is approximated roughly from Fig. 13.

The model was modeled in GAMS and solved using the BARON MINLP solver embedded in

GAMS IDE.

Table 4: Generated Wind Profiles

Bus Location Peak Wind Speed (m/s) Peak Power (kW)

9 10 2400

22 7 750

26 12 3000%

6.2 Results

The model was compared to the two-stage stochastic model, which is referred to as the static

model (due to its use of static demand information available at the first time stage), and the results
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show the benefit of staging decisions based on new approximations of stochastic variables. This

case study allows for a realistic comparison of the two methods as it accounts for different demand

realizations that could occur as well as different wind availability. The generator operation is the

main first stage decision variable in the two-stage model and it is the staged decision in the multi-

stage model. The production of each generator is a dynamic variable that depends on the demand

realization in both models.

Table 5: Comparing results for the Dynamic and Static models of the IEEE-30 Bus System

Scenario Dynamic Static % Improvement Scenario Dynamic Static % Improvement

1 17005.56 17654.97 3.6783 11 17468.13 17909.72 2.4656

2 17433.59 17672.27 1.3505 12 17402.18 17519.55 0.6699

3 16896.36 17511.1 3.5105 13 17381.29 17734.85 1.9935

4 17089.54 17770.71 3.8331 14 17120.56 17034.66 -0.5042

5 17497.84 17514 0.0922 15 17127.39 17082.26 -0.2641

6 17197.75 17184.31 -0.0782 16 17136.29 17431.55 1.6938

7 17412.12 17375.04 -0.5606 17 17309.38 18117.14 4.4585

8 16892.22 17105.91 1.2492 18 17752.22 17977.17 1.2513

9 16574.4 17396.37 4.7249 19 17274.67 17871.15 3.3376

10 17447.7 17514.38 0.3807 20 17456.58 17597.19 0.7990

Average 1.7041

The model compares the static two-stage stochastic model with the dynamic multi-stage model

with different scenario realizations in Table 5 without accounting for wind turbines in the model.

The same scenarios are used to compare the total system costs between the two models. Using the

20 scenarios that the model was trained on; The generator operation results are used as an input to

update the power generation given the demand realizations. The results show that there are some

instances where the static model outperforms the dynamic, multistage model, however, on average,

the use of the DMSD model has an improvement of approximately 1.70% in objective function

value. Moreover, the average dynamic model cost, 17228.97, can be compared with the average

static model cost, 17470.71, to get an improvement of 241.74. In both cases, the the dynamic,

muti-stage model achieves the best results. These results are expected since the stochasticity in

the model is only contained in the realization of the demand, therefore, if the expectation of the

demand values are close to the realization, then the dynamic model might be comparable to the

static model.

The model is then extended to the case in which three turbines are added to buses 9, 22 and

26, as in Table 4. Fig. 14 shows the results of running the dynamic model with the addition of

three wind turbines as previously described. The results show the wind turbine schedule for the
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Figure 14: The results of the production of the 6 generators per hour for the dynamic model

multi-stage model. As seen, they show an almost linear production level by the active generators

(generator 6 is not used). However, we can see that during the peak hours extracted from Fig. 11,

the generators tend to have a higher production level. This production amount, in addition to the

wind profile, allow the model to meet the hourly demand. The model chose not to utilize generator

6 given the additional wind turbines introduced to the system and since the associated costs with

that generator were higher. Additionally, generator 6 had a small interval for varying production.

Table 6: Table showing the results of the Multi-stage model and the Two-Stage Stochastic model

considering the addition of three wind turbines in the system.

Scenario Dynamic Static Difference Scenario Dynamic Static Difference

1 12649.13 18070.19 5421.05 11 12812.16 18303.08 5490.92

2 12672.83 18104.04 5431.21 12 12524.29 17891.85 5367.55

3 12505.78 17865.4 5359.61 13 12661.04 18087.2 5426.16

4 12709.06 18155.8 5446.73 14 12192.75 17418.21 5225.46

5 12536.35 17909.07 5372.72 15 12247.78 17496.83 5249.04

6 12319.85 17599.78 5279.93 16 12454.4 17791.99 5337.59

7 12397.92 17711.32 5313.39 17 12922.75 18461.06 5538.31

8 12210.44 17443.49 5233.05 18 12311.41 17587.72 5276.31

9 12453.54 17790.77 5337.23 19 12281.82 17545.45 5263.63

10 12535.16 17907.37 5372.21 20 12585.7 17979.57 5393.87
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The updated model, referred to as the wind dynamic model, is tested against the static model

to test how well they work for 20 random scenarios in Table 6. As in Table 5, the operating schedule

of the dynamic and static models are fixed based on the results of the model. However, based on

the realization of the stochastic parameters (demand and wind generation), the production of each

generator is updated. The results in Table 6 show that the dynamic multi-stage model always out-

performs the static model by over 5000 dollars every time (with a cost-minimizing objective). While

the difference in the objective values of the models seems constant, this is due to the fact that the

main cost difference arises from changing the generator operation and the deviation in production

quantities does not drastically change the objective value. Their is a significant improvement in the

results of the wind dynamic model over the dynamic model that does not consider wind generation.

This is mostly due to the fact that the wind dynamic model incorporates more stochasticity that

can greatly alter the results of the model. The dynamic model can then consider robust solutions

to handle variations in the stochastic realizations.

7 Conclusions and Future Directions

This paper highlights the need to implement staged decision analysis in the modeling of real

systems in order to improve system costs, minimize computation time, and make use of the prop-

erty of diminishing stochasticity with time. This property is a result of stochastic processes that

follow a Markov-based stochastic pattern, where with the passing of time, the prediction of the

uncertain parameter is improved. In such systems, utilizing staged decisions becomes advanta-

geous in exploiting the stochastic nature of the system. The paper presents the DMSD framework

for solving multi-staged models by taking advantage of the modular structure of the system. In

order to understand the true benefit of staging decisions, the impact of studying different decision

periods, τ , should also be studied. Additionally, the costs associated with changing the value of

the decision variable at each stage should also be studied to better understand the added benefit of

the model. With this added cost, a tradeoff between the number of decisions to be made and the

overall system costs is introduced in the system, where the number of staged decisions becomes a

variable. Furthermore, the paper identifies a need for solution procedures to mitigate the increased

solution time of discretizing the random variables. Moreover, the benefit of implementing multi-

stage models is tested on a numerical case study as well as a real case study of the IEEE-30 bus

system, in which the overall cost benefits are investigated. The paper also accounts for the added

stochasticity of having a wind source as well. The results clearly show a benefit to implementing

multi-staged models, especially for problems with high stochasticity. Alternatives to discretizing

stochastic processes should also be investigated to find optimization approaches that can account

for stochastic variables and apply MDO theory to exploit the subsystem design of the problem

while simultaneously accounting for the dependencies between them.
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