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Abstract

We present a new Bjorken x-dependence analysis of a previous lattice quantum chromodynam-
ics data for the pion distribution amplitude from MILC configurations with three lattice spacing a =
0.06, 0.09,0.12 fm. A leading renormalon resummation in renormalization as well as the perturbative
matching kernel in the framework of large momentum expansion generates the power accuracy of the
matching to the light-cone amplitude. Meanwhile, a small momentum log resummation is implemented
for both the quark momentum x P; and the antiquark momentum (1 — x) P, inside a meson of boost mo-
mentum P, up to 1.72 GeV along the z direction, allowing us to have more accurate determination of the
x-dependence in the middle range. Finally, we use the complementarity between the short-distance factor-
ization and the large momentum expansion to constrain the endpoint regions x ~ 0, 1, thus obtaining the
full-range x-dependence of the amplitude.
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1. Introduction

Distribution amplitudes (DAs) are important observables for both theoretical and phenomeno-
logical reasons within the realm of quantum chromodynamics (QCD). The DA of a meson
describes the probability amplitude of identifying the meson in a quark-antiquark Fock state
on the lightcone, carrying longitudinal momentum fractions x and 1 — x, respectively. It is also
known as the leading Fock wave function of the meson. They are important as inputs to many
exclusive processes with large momentum transfer, such as the B-meson decay, that can be fac-
torized into the nonperturbative DA and the hard-scattering kernel [1,2]. Although the DAs are
important quantities in QCD, their properties, such as the moments, the shape and the endpoint
power-law behavior are still undetermined from experiments [3—6]. A direct nonperturbative cal-
culation of the DAs from lattice QCD is thus of great interest.

The nonperturbative physics of partons is defined on the lightcone, i.e., in the effective limit
of infinite momentum. Direct calculations on the lightcone are inaccessible on the lattice due
to the dependence on real time. Early calculations determined DAs by calculating their lowest
moments from local twist-2 operators [7—12] or from nonlocal current-current and quark bilin-
ear correlators [13—17]. The local-operator calculations provide precise measurements up to the
second moment of the DA [12], but the increasing noise and the nontrivial mixing in the lattice
renormalization make it very difficult to access higher moments. The nonlocal-operator calcula-
tions analyze data in a certain current-current displacement or Wilson-line length z range, where
the short-distance factorization is valid; this either allows us to obtain the lowest few moments,
or needs a model assumption to fit the x-dependence [15,17]. A direct x-dependence calculation
has not been possible in the two traditional methods.

The method of large-momentum effective theory (LaMET) [18-20] offers a different ap-
proach, which starts from the Euclidean matrix element of equal-time, spatially separated
fermion fields. After renormalization, we can physically extrapolate these matrix elements to
large distances and Fourier transform them to momentum space. We use field-theoretical large
momentum expansion to match the data at finite hadron-momentum to the light-cone distribution.
This allows us to compute the precise shape of DA in the middle range of momentum fractions,
x, without uncontrolled model fits. The first lattice calculation of the pion DA in LaMET was pre-
sented by the LP3 Collaboration in 2017 [21], where they used a boosted pion at P, &~ 1.3 GeV
and a mass counterterm, ém, extracted from the Wilson-loop static potential to renormalize the
matrix elements. A similar work on the kaon DA followed this work [22], studying its skew-
ness and SU(3) symmetry, with a higher meson momentum P, ~ 1.7 GeV and more precisely
determined ém by fitting to Wilson loops on multiple lattice spacings. The first continuum ex-
trapolation a — 0 was presented by the MSU group with nonperturbative renormalization [23]
on three lattice spacings down to a &~ 0.06 fm. In the latest calculation by LPC [24,25], the lat-
tice artifacts have been controlled well by boosting to momentum as large as P, ~ 2.15 GeV,
extrapolating to the continuum, and calculating at the physical pion mass m, &~ 130 MeV.

Now, the x-dependence calculation of the DA has entered an era of high precision, where
the systematic controls on the theory side become more important. One complication in the
calculation of quasi-DA matrix elements comes from the linearly divergent Wilson line self-
energy [26-28]. To remove the linear divergence without introducing extra nonperturbative
effects, an improved renormalization in the hybrid scheme [29] with self-renormalization [30]
at short distances has been applied to ensure the validity of the perturbative matching. However,
such a renormalization is still not fully satisfactory, and there are more systematics to be con-
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trolled including the power accuracy, the large logarithms in the perturbative matching kernel
and the endpoint region where the LaMET expansion breaks down.

The power accuracy is not automatically guaranteed in LaMET calculations, because of the
ambiguity in renormalizing the linear divergence, and the factorially divergent coefficients in the
perturbative matching. This ambiguity results in an extra O(Aqcp/x P;) leading power correc-
tion to the matching procedure. These have previously been handled by absorbing their behavior
into a single fit parameter (often denoted mg) [31,25] when the lattice matrix elements are renor-
malized, while still using a fixed-order matching kernel. However, this method was examined in
Ref. [32] and found to be inaccurate at twist-three level. The same paper describes a more robust
method, known as leading-renormalon resummation (LRR), defining a renormalization scheme
of the linear divergence in the perturbative results by resumming the contribution from the lead-
ing renormalon. Then the non-perturbative parameter mg can be extracted reliably to match
the renormalized lattice data to MS perturbative calculations to linear-z accuracy, such that any
linear-z correction is eliminated. A corresponding LRR correction to the matching kernel elim-
inates the ambiguity from renormalization and thus improves the accuracy to O(Aqcp/x P;).
We demonstrate in this work that the renormalization with LRR significantly improves the be-
havior of the quasi-DA short-distance correlations, making the results more consistent with the
theoretical prediction from the operator product expansion (OPE).

The large momentum expansion of lattice observables includes both the nonperturbative light-
cone distributions and the perturbative matching. The perturbative matching always involves
logarithms of the renormalization scale p and the physical scale of the system. When the log-
arithm becomes large, the higher-order effects are no longer negligible, and these higher-order
logs need to be rearranged to ensure convergence of the perturbation series. This can usually be
done by setting the renormalization scale  equal to the physical one to eliminate the large loga-
rithms, then solving the renormalization group (RG) equations to recover the ¢ dependence. This
is known as renormalization-group resummation (RGR). When the physical scale becomes too
small (around Aqcp), we reach the Landau pole, which suggests that perturbation theory breaks
down or contains very large uncertainties. In the case of the parton distribution function (PDF),
the only physical momentum is the parton momentum x P,, so the logarithms become large at
small x. Its effects and importance have been discussed in a recent work [33]. The case of DAs is
slightly different, as two different physical scales emerge. One scale is the quark momentum x P;,
and the other is the antiquark momentum (1 — x) P,. The existence of two different but correlated
scales makes it more complicated to apply RGR because no choice of u can eliminate the large
logarithms simultaneously. In coordinate space, there is only one physical scale, the inverse of
the correlation length z~!. Thus, in principle it is easier to implement RGR in coordinate space
for DAs before large momentum expansion. However, the coordinate-space matching is based
on the short-distance twist expansion, which no longer works after reaching the Landau pole
at z ~ A(SéD' This prevents us from extracting the x dependence of the DAs with coordinate-
space matching. To obtain the lightcone DA with RGR, we propose an approach to resum the
two logarithms simultaneously, which is valid in the mid-x region, where LaMET gives accurate
predictions.

In principle, the endpoint regions are not calculable from LaMET, because its applicable
range is just the mid-x region x € [Xmin, Xmax] Where Xmin ~ Aqcp/P; and Xmax = 1 — Xmin.
However, the short-distance OPE provides us with global information about the lightcone distri-
bution, allowing us to determine a few lowest moments of the lightcone DA, but not the local
x-dependence. The two methods complement each other [34], enabling us to combine the lo-
cal information from the LaMET calculation and the global information from the short-distance
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OPE. We model the x-dependence outside the region x € [Xmin, Xmax] and fit to the short-distance
correlations, obtaining a model-independent mid-x distribution and a model-dependent endpoint
distribution. The endpoint distribution is constrained by the physical requirement ¢(x) — 0
when x — 0 or 1 as well as the requirement of continuity with the LaMET calculation, which
limit the model dependence. This combined approach provides a full x-dependence calculation.

With the above three ideas (elimination of the linear correction, resummation of large loga-
rithms and constraining the endpoint regions), we improve the analysis of the lattice quasi-DA
data to extract the full x-dependence of the lightcone DA with improved accuracy. The rest of the
article is arranged as follows. In Sec. 2, we describe the DA calculation using LaMET, discuss
the ambiguities in the renormalization and perturbative matching, and present how we achieve
power accuracy in the LaMET matching. In Sec. 3, we discuss the origin of two different phys-
ical scales in the LaMET matching and show how to resum them. In Sec. 4, we discuss how to
use the short-distance OPE to constrain the endpoint regions to extend our calculation to the full
range of x. In Sec. 5, we apply LRR renormalization and LRR matching with RGR to extract the
lightcone DA, then use complementarity to obtain the full x dependence. Finally, we conclude
in Sec. 6.

2. Renormalization and power accuracy

The correlator that defines the pion DA on the lightcone is

dn~ . -
b (X 1) = / %em’*” (O[F ) ysy-W (O, 17)W ()| (P)) | 1)

where W(0,n7) = 7Sexp [—ig fonids nMA”(ns)] is the Wilson line between the two points 0

and n~, and P is the path-ordering operator. Lightcone coordinates are defined for a general
Lorentz vector V#, as V* = %(V0 + V3), since we may assume without loss of generality

that the meson is traveling in the z(= n°>) direction. The term g is the coupling, A* denotes the
gauge field and |7 (P)) is a pion state with 4-momentum P ™. The variable x is the fraction of
the meson momentum carried by the constituent parton.

The operator in Eq. (1) has dependence on real time and is, thus, inaccessible directly on the
lattice. The method of LaMET begins with the following “quasi” correlation:

- P.dz . ~
G, P) = / Pz persiie, by %)

P.dz — = -
=/2z—n€’xp*7z (010, 0)y57: W0, 2)¥ (0, )| (Py)) g »
where /R is the renormalized coordinate-space matrix element defined in the second line. The
lightcone DA, ¢ (x, w), is related to the quasi-DA (gDA) in the large momentum P, limit via

2 2
AQCD AQCD
xX2P2’ (1—-x)2P2 )’

1

q?,,(x, P;) =/dY¢n(y, wIC(x,y, w, Pz)+0<

0

3

where the C(x, y, i, P;) is the perturbative matching kernel in momentum space, and the residual
quadratic in Agcp/ P; comes from higher-twist effects and is only leading if the linear divergence
in the bare operator in Eq. (2) were not present as we explain below.

4
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The bare matrix elements we compute on the lattice are the ﬁff (z, P;, a) terms corresponding
to Eq. (2) before renormalization, so our data are initially in position space and contain UV
divergences. The spatial Wilson line W (0, z) has a linearly-divergent self energy of size %, SO
besides the usual logarithmic divergence, the linear divergence must also be removed through a

multiplicative renormalization [35] before extrapolating to the continuum.

Rz, P, a) =h®(z, P,,a)/ ZR(z, a), )

where Zg(z, a) ~ e~ 0m@:

terterm dm(a) ~ é

When renormalizing the linear divergence, one could in principle also choose to subtract a
finite constant term along with it. The choice of this finite piece defines the renormalization
scheme. Also, when expanding §m(a) as a perturbation series in the strong coupling, o,

is the renormalization constant with the linearly divergent mass coun-

1
dm=—3 e @), 5)

n

the coefficient r,, ~ n! grows factorially at higher orders due to an infrared renormalon ef-
fect [36,37]. Thus, the series is divergent for any «;, and the sum is ill-defined. To fix this
degree of freedom, we need to introduce an additional renormalization scheme for the linear
divergence to define ém(a, t) unambiguously, with a new t-dependence. This result varies by
O(Aqcp) in different T-schemes, so an ambiguity of O(zAqcp) arises in the renormalization
factor. The same intrinsic ambiguity appears when we try to extract m from fitting lattice data,
where ém is always mixed with another non-perturbative quantity, such that we have a freedom
to choose among different fitting results. Similarly, a calculation of the perturbative matching
kernel C(x, y, u, P;) also suggests a factorial growth with the same pattern [38]. The lightcone
distribution ¢ (x, p) is obtained by convoluting the inverse matching kernel C —1(x, y, w, P;) with
the renormalized quasi-DA, (]3,1 (x, P;), both containing the ambiguities. The combination will,

in general, result in a linear correction O (ﬁQﬁD) to the matching [29],

1
N A A2
b (x, P.) = /dy¢>(y, WCQE, Y, P) + O (%) +0 ( QCD) , 6)
0

- szzz

where we have ignored the (1 — x) P, scale for simplicity, which can be recovered by a substi-
tution x <> 1 — x, due to the symmetry of the matching. When the hadron momentum is large
enough, this correction is not important. But the hadron states in lattice calculations are usually
moving with P, ~ GeV, where the linear correction can be large, especially near the endpoints,
and more important than the quadratic higher-twist effects.

In principle, these ambiguities from the renormalization and the perturbative matching can

cancel because the twist-2 lightcone DA ¢ (x, ) is free of the linear divergence and the infrared
AQcp
xP;

renormalon. Thus, the power accuracy up to O ( ) is the best we can achieve without know-

ing higher-twist information. It is shown that they indeed cancel only when the renormalization
of linear divergence and the regularization of the matching coefficients are defined in the same
t-scheme [32]. To achieve this accuracy, we need to carefully define the renormalization scheme
for the linear divergence §m and regularize the perturbative matching consistently to eliminate
the linear correction.
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A recent work [25] uses a fixed-order approach to handle this ambiguity by introducing an
additional twist-three mass parameter, denoted by my, in the renormalization process to en-
sure that the short-distance behavior of the renormalized matrix element is in agreement with
perturbation theory. The approach is still not good enough for several reasons: 1) A bridge is
missing to connect the lattice calculation and the perturbative calculation, usually known as the
scheme-conversion factor in the renormalization; 2) Resumming the logarithms ln(z2 uz) at short
distances clearly suggests that m is not a constant but has a large dependence on z, mainly due
to the fixed-order truncation not being a proper scheme to regularize the divergent series [32]; 3)
A fixed-order matching is used, which cannot eliminate the linear ambiguity.

We propose a new approach, aimed at eliminating such a correction to achieve the power
accuracy, as demonstrated in Ref. [32]. It includes four steps:

e Modify the perturbative matching coefficients through a leading renormalon resummation
(LRR) with a principal value (PV) prescription, defined as the t-scheme.

e Determining the non-perturbative twist-3 parameter mo(t) through the matching condition
that the renormalized P, = 0 lattice data agree with the LRR-improved Wilson coefficients
in the T-scheme up to twist-3 accuracy in the OPE at short distances;

e Renormalize the P, > 0 lattice data with the m((t) extracted from the previous step in the
7-scheme;

e Extract the DA with the LRR-improved perturbative matching kernel.

The mo(t) parameter is fixed by P, = 0 pion quasi-PDF data and used for the renormaliza-
tion of the quasi-DA at nonzero momentum. The justification for this choice is that the linear
correction from the ambiguity in the linear divergence is independent of the momentum of the
external state and the Dirac structure. ém is universal for the Wilson-line self energy, which is the
same in these observables (P, = 0 and P, > 0) obtained from the same gauge action; the leading
renormalon contribution that we resum in the MS perturbative calculation also originates from
the Wilson line self energy, thus is the same for these observables, up to an overall phase factor
depending on the external states’ momentum. Thus, once the cancellation of the ambiguities is
achieved for one observable, it is also guaranteed for other observables of a similar structure, i.e.,
with the same Wilson line in the quark bilinear operator but with a different Dirac structure or
different external states.

The LRR improves the renormalization method in two aspects, as we will show in Sec. 5.
Firstly, the ™07 factor is extracted with LRR, so it is different from that extracted in fixed-order
perturbation theory. With LRR improvement, its extraction is almost independent of small-z
values, and is determined with a significantly reduced uncertainty from scale variation [32]. Sec-
ondly, in the hybrid scheme, the renormalized matrix elements are divided by P, = 0 perturbative
results (i.e., the Wilson coefficient Cqp) at short distances, whose z-dependence is improved after
LRR in the sense that they are more consistent with the OPE at short distances, with the low-
est few moments as inputs. This moment is supposed to be consistent with the one extracted
from a renormalization-independent ratio between two different momenta, which will be dis-
cussed in more detail in Sec. 4. Thus, a comparison between the moments extracted from the
renormalization-dependent matrix element and from the renormalization-independent ratio will
test whether the renormalization is properly done.

The idea of LRR is to resum the leading factorially divergent high-order terms to all orders
in the perturbation series. Then the remaining part of the series, if without other renormalons, is
convergent, and any leading power correction could be fixed by a regularization of the resummed
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divergent part. Although it is impossible to analytically calculate the perturbation for specific
processes to all orders, we can calculate a specific type of bubble-chain diagrams [39] in the
large Bp limit. Beyond the large- 8y limit, the asymptotic form of the leading renormalon pole is
known [36,40], whose overall strength has been estimated from perturbation series of the heavy
quark pole mass [40,41] and lattice calculations of the static potential [37]. Thus we can also
choose to resum these known asymptotic forms. These two approaches both resum the leading
pole corresponding to the linear divergence, but have different “background” effects that are
higher powers of Agcp and higher order of «. Thus they are supposed to make slightly different
predictions in the mid-x region, as we will discuss in Sec. 5.

2.1. LRR in the large By limit

For quasi-PDF operators, a calculation for bubble-chain diagrams has been done in Ref. [38].
Note that only the Wilson-line self-energy diagram (also called the “tadpole” diagram in
Ref. [42]) is relevant to the leading renormalon, so we can ignore the other diagrams which
only account for higher renormalon poles.

By resumming the tadpole diagrams, the LRR in the large- 8y limit modifies the P, = 0 matrix
element for the DA, i.e., the Wilson coefficient Coo(z, 1), in the following way:

CH® (2 7) = Ch 2, u>|pv+z(c&;(z w - m), )

where COO (z, n)|pv is the resummed diagrams with the principal value prescription for the poles
defined as scheme ,

o 5
_ 2Cr (T —u)es (22u?/4)"
Cop(e- ey = / due T Bo X( (1 —2u)T(1 +u) —h)e ®
0, PV

and Coo (l)(z W) is the i-th order expansion of COO(z W |pv in ag. At NLO, we have

C 11
tP (1)( ) a—F In (ZZH/ e2yE /4) . (9)
2 3
and the corresponding Wilson coefficient [42]
(1) asCr ( 2.2 2y ) 7
— =1 E/4 = 1
Coo (2, 1) = o (znz,ue / +2, (10)

The P, > 0 matrix elements H(z, P ., 1) are corrected by LRR in a similar way, where the
momentum dependence only enters through a phase factor,

ARGy P 1) =H (2. y P ) + e V3P0 @) lpy — Y e 5P @z, ),

i
(11)
which can be Fourier transformed to obtain the correction to the NLO matching kernel in MS,

PZdZ ei(X—y)ZP

MS (1
ACMS(x,y, Poop, 1) = / : (C(t)%(z, wley — Cy Pz, u))

2
P,dz asC 1

:/ eI ey — S (12)
2 2r  |x —y|
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where the first part is not a traditional convergent function, but a distribution operating on the
DA function through a convolution, whose effect is convergent mathematically. In practice, it is
enough to perform a truncated numerical evaluation to some large zmax, €-2-, Zmax = 10 fm.

In the ratio scheme [43—45], the ratio between two momentums is free of linear divergence,
thus no LRR modification is needed, and the matching kernel C™° is unchanged. In the hybrid
scheme, the correction is an integration from z; to zmax during the Fourier transformation,

ACMPI(x y P, T)

e ¢]

:2/ Pzzdz cos ((x — y)zP.)

T

s

»(1 (1
x (€ mley = €V @) = Cytas ey + €5 @)

P.dz
- / ZZJT cos ((x — y)zFP) (C(t)%(z’ wWlpv — C(t)%(zs, wlpv)

ascF( 1 2Si<<x—y>zst>>’ (13)

2 \Ix =yl T(x—y)
where the first term can be calculated numerically to zmax in practice.

It is also straightforward to derive the LRR correction to the DA Wilson coefficients by ex-
panding Eq. (11) in z P;:

ACHR =5y <c5%(z, Wiy =Y Ci? u)) : (14)
i
which can be applied to the OPE of short distance correlations.
2.2. LRR of the asymptotic series

Besides resumming the leading renormalon pole, the large- 8y approximation introduces extra
effects in subleading renormalon poles. Alternatively, as discussed in Ref. [32], we can resum
the asymptotic form of the leading renormalon contribution, which only includes the leading
renormalon pole. In this approach, we utilize the fact that the leading renormalon contribution
originates from the heavy quark pole massm =p ", rna?“, with a known asymptotic form in
large perturbation order n [36,41,37],

Bo n '(n+1+by) c1bg
Y 1 . 15
T m<2n) ra+b0 | " hotn (15

where by = B1/2B3 and ¢i = (87 — PoB2)/(4bof) are from higher orders in the QCD beta
function. Using an analytical method in Ref. [40], the overall strength can be determined as
Npu(ny=3)=0.575, Nyy(ny =4) = 0.552. Thus the contribution to the DA Wilson coefficients
has the following form at large n:

V(2 10 5 Spzprna ™ (). (16)

Similar to the LRR in the large-Bg limit, we can resum the asymptotic form with the PV pre-
scription,
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4mu

o0
C/ilsympt(z, Wpv = 5kleZl/«4/;3—Z / due @y m(l +eo1(1=2u)+...). (17)

0,PV
It’s easy to verify that the ambiguity of this integral is linear in zAgcp and independent of
. Note that the Fourier transformation of this correction can be calculated analytically, but
the explicit linear-z dependence will be transformed into a singular distribution of x — y, in-
cluding derivatives of the §(x — y) function. It is numerically very unstable if this function is
applied to discrete data. So a regularization is applied, by multiplying the linear-z term with a
small exponential decaying factor exp(—¢,,z), which will result in extra higher-twist corrections

o (6:‘")(233)) that is insignificant in mid-x region. With such a regularization, the correction to

the hybrid-scheme matching will be

ACYYPRAA 1 P Ty = (Cl‘;‘lsymp‘(z, WPV/z — ropas (1))
y {eEst Pz(l + €EmZs + 6’%’Zg) + i <e_€mZJZS (Sin[AxyZS Pz])
Ayy

3 18
€T 4

n e mis P,
(5, + P2A3)?

((6,2,, — Aiy PZ2 + 6,3"1; +€m PzzA)zcyZS) Cos[Ayyzs P;]

— Ay P Qe + Aiy Pzzzx + e,z,lzs) sin[Ayyzs PZ])> }+ ,
where Ay = |x — y|. The overall factor Czlsympt(z , W)pv/zZ — ropag () only depends on p and
can be integrated numerically. The total correction is written as a plus function to guarantee the
current conservation because one term proportional to §(x — y) has been omitted. Testing with
some different €, ~ 20 — 100 MeV values, and with Ax = 0.01 as the step size of our numerical
methods in the momentum space matching, we find the results are consistent and stable. Working
with smaller €, requires a finer discretization of the data as a function of x or y.

3. Small-momentum large logarithm resummation
3.1. Resummation in coordinate space

To study the resummation of large logarithms, we start from a simpler case, the coordinate-
space matching of the quasi-DA. It is more straightforward because only one physical scale,
7 = A/ P,, is involved in the matching. The renormalized quasi-DA matrix element, flR(k, P,),
can be matched to lightcone DA, h (A, 1), through

1
R0 P = [[dvhon 0202070 + OGNjer). (19)
0

where Z(v, z%, u?, 1) is the perturbative matching kernel in coordinate space. In the ratio
scheme [43-45],

Z(V’ZZ’MZ’ A) = 5(1 — V) + OlsCF {(L) (_(1 + L)(l _i_efi)u(lfv)))
2w l-v/,

_ ) _ ,—ix(1-v)
—2 (M) (14~ H1=)) 4 (167 ~Lsa- v)) G- L)} )
1—v i i 2
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where L =In (z2 w>e*ve 4) is the only scale-dependent logarithm appearing in the kernel and Cr
is the quadratic Casimir for the fundamental representation of SU(3). At either short distances,
z — 0, or long distances, z > A(S(l:D, the logarithm becomes large. We can eliminate the loga-
rithm by setting ;o = 2¢ 72z~ on the right-hand side of the equation. Then an RG evolution to
the default scale, e.g. u =2 GeV, will resum the large logarithms at that scale,

1 40

ER(A,PZ)=/dveXp /f)(p/w,k,,u,’)dlny/z h(p, W) Z (v, 22, ud, 0
0 5
242
+0(z AQCD)’ (21)

where V is the coordinate space representation of the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) evolution kernel [46—49],

~ o C i v
Vv, &, p) = Lg; 2 ((1 +e M) (—1 — v)
+

l_e—ik(l—u) 1
+ T—ES(I—V) 0(1 —v). 22)

Both the evolution and matching kernels can be made purely real by multiplying by a phase
factor ¢/*(=)/2 "and applying these to the phase-rotated matrix elements

HR (., Py =e*2hR (0, Py), (23)

which is purely real for symmetric DAs that satisfy ¢ (x) = ¢ (1 — x). So the matching and the
evolution preserve the symmetry of the DAs.

Such a resummation works fine at short distances, but at long distances the scale g hits the
Landau pole, indicating that the perturbation theory as well as the entire short-distance operator
expansion break down. Without knowing the correct information at large z, we are unable to
extract the x dependence of the DA.

3.2. Origin of two different scales

In large momentum expansion, we perform the resummation and matching in momentum
space, and the higher-twist non-perturbative physics appear now at the endpoint regions x — 0
and x — 1, which we will choose to model using complementarity, as we will discuss in the next
section. In momentum space, the quasi-DA is matched to the lightcone DA through

1

Adep
. P = /dycu, . P00+ 0 S ). 24)
0

The momentum-space matching kernel C(x, y, u, P;) can be obtained from a double Fourier
transformation of the coordinate-space matching in Eq. (20),

00 1
di ; A2
Cuon = [ 52 [ave iz (v 0 2)). 5)
Z
—00 0

10
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To trace how the physical scale and the logarithm transform, we can check the double Fourier
transform of the logs, L, in Z(v, yi‘—;z, uz) of Eq. (20). The terms involved include f(v)L and

f(W)Le~ (=Y In dimensional regularization d = 4 — 2¢, higher-order logs L" can be ex-
pressed as the O(1) term of ;’—,; (,uzzzezyE /4)6 in the € expansion. Integrating A first, we obtain

00 1

€
/ d—)\eiXA/dVe_i”)’An!f(U) A2M262VE
2 en 4Pp?

—0 0

[ dvfn! T(1/2+¢) (;ﬂe?VE)f
) x =y JrenT(—e) P?
0

1 2.2y \ €
:/ dvf(n!  T(1/2+e€) (u e ) ’ (26)

J ylx/y —v[1+2€ /menT(—e) \ y2P?

which can be expanded in € — 0 [42]. Note that only when 0 < x/y < 1 is it possible for |x/y —
v| to be zero in the integration region v € [0, 1], and then the expansion of |x/y — v|~172¢
generates the leading divergent term E—JS(X/ y —v). So when x is in the nonphysical region, or
when 1 > x > y > 0, the expansion does not contain any leading logarithms of (Inu)”. When
0 <x <y < 1, the expansion yields additional log terms

1

fdvf(v) <ln” (l/«2) _ nln"—l(uz) ]n<4y2PZZ)> x 8(x — yv) + O(lnn—Z 1)
0

2

m
4y? P2

1
0

The remaining integral preserves the structure of the log and only changes its coefficients. Thus,
we get the physical scale 2y P, for this term. On the other hand, the other term f (v)Le **(1=V)
after a double Fourier transformation becomes

1

2,,2,2 €

/d—keiXA/dvefivyxefix(lfu)”!f(V) A2 p2etve

2 on 4Pz2
0

: dvfn! TA/2+¢€) [ u2e?E\S
/If—yvl”k ﬁe”F(—e)( P? )

0
/1 dvfn!  TA2+e) [u2er\"
y|f/y_v|l+2e ﬁenr(_e) yzpzz ,

@7
0

with X =1 —x and ¥y = 1 — y, which does not contain any leading logarithm when 1 — x is
nonphysical, or when 0 < x <y < 1. When 1 > x > y > 0, the € expansion yields

11
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1
2

/ dvf (V)8(F — v) In" (4}’;1)2) L O ). 28)

0 Z

So the two different physical scales correspond to different regions of x and y. The scale 2y P,
for x < y corresponds to the quark-splitting process; the scale 2(1 — y) P, for x > y corresponds
to the antiquark-splitting process.

Note that the two scales 2y P, and 2(1 — y) P, we obtained at the current stage both depend on
the convolution variable y, which is, in principle, not implementable because we cannot have dif-
ferent scales p for different y in ¢ (1, y). However, note that the matching kernel C(x, y, u, P;)
is almost localized, i.e., the region of x ~ y is greatly enhanced compared to any other regions.
As a result, the proper scale choice to resum the RG logarithm would be 2x P; and 2(1 — x) P,
instead, corresponding to the quark and antiquark momentum fractions in the quasi-DA. More-
over, a comparison between the quasi-PDF and DIS shown in Ref. [33] suggests that 2x P, is the
proper scale in the quasi-PDF case, also supports the scales to be 2x P, and 2(1 — x) P; in our
quasi-DA. We can examine the sensitivity to this choice of scale by slightly varying the value
from 2x P; to 2cx P, with ¢ € [0.75, 1.5], which roughly correspond to a +30% change in o
near 1 GeV.

3.3. Resummation of two different logarithms

The perturbative matching kernel in Eq. (24) C(x, y, u, P.) =8(x — y) +CV(x, y, u, P.) +
O(a?) has been calculated to 1-loop order [50], where C! is the O(;) term of the matching,
and satisfies the quark-antiquark symmetry

Clx,y,u, P )y=C(1l —x,1 —y,u, P;). (29)
Moreover, it contains logarithms of both kinds as discussed in the previous subsection, which
becomes large at the end-point regions. Indeed, in the two regions x < y and y < x, the match-

ing kernel has different u dependencies, corresponding to the piecewise function of the ERBL
evolution kernel:

1

Zﬁfﬁl = f dy%vm’(x, M) + 0@, (30)
0
where
VO(x,y) = (fﬂe(y—xw [“*f]) , 31)
y y—x yeyl),
and the plus function is
1
f(x,y)+=f(x,y)+8(x—y)/de(z,y)- (32)
0

The logarithms become large in the matching kernel C(x, y, u, P;) for x close to both endpoints
x — 0 or 1, so a resummation of large logs is necessary.

The traditional method of resummation is to choose a scale g in the scale-independent fac-
torization such that the large logs in C(x, y, o, P;) are eliminated, and apply the RG evolution

of ¢(y, w:

12
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1 o

é(x’PZ)z/dyC(x’ y’ MO’ PZ)Pexp delnM/z ¢)(y’ M)s (33)
0 H

where P is the path ordering of the evolution path, and V is the operator corresponding to the

ERBL kernel acting on ¢. However, such an approach does not work in the quasi-DA’s case,

because there are two different scales in the piecewise matching kernel. The logarithm in x <

y is 1n[4)¢2PZ2 /12, corresponding to the quark-splitting; the logarithm in x > y is In[4(1 —

)c)zPZ2 /1?1, corresponding to the antiquark-splitting. No single choice of g is able to eliminate

the two logs at the same time. We have to develop a different strategy to resum the log in the DA.
We start from separating the matching formula in two different regions

d(x) = (x, 1) +/ dyCD(x,y, W (y, w +/ dyCV(x,y, ey, 1) + Oad)

x<y x>y
=06, 0+ (W @ ¢ +CV (W) @ p(), (34)

where we label the integral in two regions as Cg) and Cg) convoluted with ¢. One idea is to set
the two terms to different scales, CI(AI)(Zx P.) ® ¢(2x P;) and Cg)(Z(l —xX)P,)®¢2(1 —x)P,).
To make this possible, we need to split the first term into two parts and combine with them
separately. After the split, the two parts need to be scale-invariant individually up to order «;. So
we need to find the weights, wy (x) and wg(x) =1 — wy (x), for the following split

F) = wr () (x, 1) +CP () © P (1) (35)
+wr(X)G(x, 1) +CY (1) ® p(), (36)

such that the two lines are individually scale-independent. If we force wy (x) to be scale inde-
pendent, then simple algebra gives

VO ®ew

VO ®@¢G) Gn

wr(x) =
where we define VL(O) = V(0)|x<y and V1<e0) = V(O)|x>y in a similar way. The solution wy,(x)
is scale-dependent at order o, contradicting our requirement. However, noticing that ¢ (1) and
¢ differ by O(ay) corrections, and the quasi-DA ¢ is scale independent, we may substitute the
¢ (w) in Eq. (37) with ¢, making wy (x) scale independent. The new solution

V(O) ® ¢
wr () = —E—— (38)
VO & )
satisfies the scale dependence of the original equation at order O(«y),
dwr () a,Cr VO R (V" ® $(1))
dlnp? 27 VO @ (w)
a4, Cr VO e (V" ® p(10)) (1 + Oay))
27 VO ® () (1+O(ay))
sC
= 2LV " 0000 + 0@, (39)

13
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which cancels the u dependence in Cil)(u) ® ¢ (). So we write the matching formula as

R AT
$x) = V(sz D) +C () ® ()
Ve ®¢
V(Tqu( 12) + Cp (12) ® B (2. (40)

where the two scales are chosen to be w; = 2xP; and uy = 2(1 — x) P, so that the small-
momentum logarithms in both C(Ll)(;u) and Cg) (w2) vanish.

To extract the lightcone-DA at a specific factorization scale u, we can relate the quasi-DA,
qg(x), to the lightcone DA, ¢ (i, x), through

V(O) ®¢ (1) 123!
7 ’ /2
(V(O)®¢+C (1 ))Pexp /lenu
m

H2

Ve ®6 s ; 2
+(V(T®¢ +C (2 ))Pexp /len,u ()
"

= Crer (WP (1), (41

where C and V are both operators acting on the function ¢ through a convolution. Once we solve
the resummed matching kernel, Crgr(it), the lightcone DA can be extracted from the inverse
matching,

¢ (1, x) = / dyCale (x, v, . Py, Py). 42)

An easy way to implement the RGR for DA numerically is to write all the operators in the
matrix representation. Both the quasi-DA and the lightcone DA are vectors on a grid of x;,
¢; = ¢(x;). The matching kernel C and the evolution operator V are now matrices on a grid of
x; and x;, éi i =C(x;, x;). Thus the resummed matching in matrix representation is

VL¢~)' M1
¢i = < Y/ ~]5ik+éﬁc(ﬂl)>eXP /thl,“«/z

ijPj

12 kl
V,.Rq~5~ A 7% A
+ ( L s+ Cﬁ(uz)) exp / Vdlnp'? b1(1)
ij®
n kl
=CEOR (e (), )

where the resummed kernel CROR now is just an n x n matrix, which can be calculated row by
TOW.

We have used an approximation of V ® qb V ® ¢ + O(ay) to construct the ratio (V(O)
$)/(V© @ $). However, such an approximation is not applicable to all regions, because there
are zero points for V(?) ® ¢. Near this point xo, the higher order term ~ O(e) cannot be ignored,
and the ratio also blows up. The point xg of course depends on the shape of the DA and quasi-DA

14
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curve. A test on several functions suggests that xo ~ 0.2 for most DA-like functions. Thus we
are still able to perform the above resummation within the region 0.25 < x < 0.75. In principle,
the formalism may also work for x < 0.1 and x > 0.9.

Another issue of constructing the matching matrix is the endpoint regions of x. When either
the scale ) = 2x P, or ur» =2(1 — x) P, becomes very small, o (1) increases to O(1). In this
region, the perturbative expansion in o5 (1) fails, thus the matching cannot be determined through
perturbative calculations. In the numerical evaluation, these rows may blow up. Since we are
calculating the matching kernel in perturbation theory, the inverse matching kernel at NLO can
be expressed as

Cl e,y s P =8(x —y) —CV(x, y, 1, P,) + O?). (44)

Applying to our matrix form, we get the inverse matching matrix
5RGR,—1 _ ~s . ARGR
Cij =28i; =5, (45)

which does not need the full information of the matrix to obtain a part of its inverse. So the
endpoint region is no longer a problem for us to extract the resummed DA ¢ (x, u =2 GeV)
in the intermediate x region. Those endpoint regions are thus left undetermined by perturbative
calculations, and may be obtained from some nonperturbative approaches in the future.

With this approach, we are able to extract the lightcone DA in the intermediate region 0.25 <
x <0.75.

4. Constraints from short-distance OPE

LaMET allows us to determine the pion DA in the moderate x-region. The calculation begins
to break down when x — 0 or x — 1 as shown in Eq. (3). We can, however, determine the global
behavior of the pion DA from the short-distance OPE and use this information to constrain the
endpoints.

At short distances, the renormalized coordinate space matrix elements can be expanded in
terms of the Mellin moments of the DA

1
(") = / dxpr (x, )2 — 1) 46)
0
where £ = x — (1 — x) =2x — 1, via the OPE,

_ o . P./2)" n
ARz P)=>" % > Com(z. ) (™) + O Adyep) 47
n=0 ’ m=0

where C,,(z, u) are the Wilson coefficients, and O(zzAéCD) are higher twist effects which
become relevant at distances z = 0.2 fm. Fitting the matrix elements at short distances to the
relevant Wilson coefficients allows us to determine the Mellin moments, (¢§”). The Mellin mo-
ments describe the global information of the DA and, thus, set constraints on the endpoint
region once the mid-x distribution is determined. Combined with the physical requirement that
¢(0) =@ (1) =0, it allows us to obtain the shape of the DA near the endpoints with small model
dependence. This is called the “complementarity” between the large momentum expansion and
the short distance factorization.
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In our DA analysis, we can fit the moments from the following RG invariant and renormaliza-
tion independent ratio [17]:

ey A S Com 2 ) (E™)

00 (fiszZ /2)" ’
Zn:O B Zm:() Cum(z, ) (%—m)
which can be truncated at some order because higher moment contributions are negligible. Then
with the Wilson coefficients known from the perturbative calculation, a fit to the short-distance
ratio M(z, Py, P») determines the second Mellin moments (éz) independent of the renormaliza-
tion method. Given the d)L (x, u) calculated from LaMET in the mid-x region, we can model the
full x-dependence, ¢f (x, m), as

Mz, Pr, Py) = HP (z, PP /A (2, P§) =

(48)

oL (xo, wx"/xgt 0<x =<xo
¢7 (v, ) = 1 65 (x, 1) x<x<1—x (49)
¢t (xo. WX"/XG  1-xo<x <1
where x( is the minimal x we can calculate with LaMET. Then we can determine the parameter
m by requiring
1

/ dx! (v, w@x = 1= (%) (W (50)

OPE
0

to obtain the full distribution.

An alternative approach is not to constrain the endpoint region with moments, but with short
distance correlations. Constructing the same full x-range distribution ¢)f (x, ), we can first
Fourier transform it to coordinate space

1

h (2, Pryp) = / dxe™ g7 (x, ), (51)
0
then use the short-distance factorization in Eq. (19) to convert it to the quasi-DA correlations
h'(z, P,, w), and fit to our renormalized matrix elements /(z, P., ). This approach depends
on the renormalization of our matrix elements in coordinate space, but not on the data at other
momenta.
We expect the second approach to give the same result as the first one. The two approaches
provide a consistency check for our renormalization method with the short-distance OPE.

5. Numerical results

In this work, we re-analyze the data presented in Ref. [23], measured on three lattice en-
sembles of lattice spacings a = {0.0582(4), 0.0888(8),0.1207(11)} fm and pion mass m, ~
310 MeV generated by the MILC collaboration [51]. The analysis starts with the same bare
matrix elements extracted from a two-state fit to the lattice correlators.

5.1. Renormalization

The method used in Ref. [23] for renormalization was the regularization-independent mo-
mentum subtraction (RI/MOM) scheme. However, this method has some problems when dealing
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Fig. 1. The continuum extrapolation for renormalized phase rotated matrix elements at P, = 1.72 GeV. For the pion, the
phase rotated matrix elements are purely real. There is a good consistency among different ensembles, so the continuum
extrapolation works fine.

with the linear divergence in the nonlocal operator with a spatial Wilson line, as well as gen-
erating unknown nonperturbative effects at large distances [52]. We deal with these issues by
working in the hybrid scheme [29] with the LRR-improved ratio scheme at short distances from
the self-renormalization [30], as discussed in the previous section. The renormalization factors
ZR(z, a) at short distances are obtained from P, = 0 matrix elements of the pion PDF to remove
the linear divergence,

CFO In[In(1/aAqep)]

k 3
Zr(z,a,7) = AT+ ——nr— — + +
r(z,a,7) =exp aTn(ahocn) mo(t)z + f(2)a o

+In|1+ 4 (52)
ln(a AQCD)

where AZ is a conversion constant in different schemes, adjusted through fitting to make sure
the small z-correlations are matched to MS results. The fitting parameter d = —0.53 represents
the NLO RG evolutions on the lattice. The term m is the linear divergence with fitting
parameters k and Aqgcp which are not uniquely determined due to the intrinsic ambiguity. By
choosing a set of fitting parameters k = 3.3 fm~! GeV~! and Aqcp = 0.1 GeV [30] as scheme
7/, we can determine a corresponding m(7) = 0.151 GeV [32] to relate the P, = 0 lattice matrix
elements to the perturbative calculation of C(I)‘(?R(z, W, T), as defined in Sec. 2 with the asymptotic
form, which eliminates such an ambiguity. The term f(z)a as a fit parameter incorporates the
discretization effects and the remaining terms come from the resummed logarithmically divergent
dependence on a.

After removing the linear and logarithmic UV divergences through Eq. (4), we are able to
extrapolate to the continuum limit to take out additional discretization effects at finite P;, which
is a simple process of fitting the renormalized matrix elements at different lattice spacings but at
a fixed z value to a linear function:

HR®(z,a,P)=c(z) xa+ HR(z,a=0, P,), (53)

for some function c(z) where HR is defined in Eq. (23). We carry out this extrapolation for a
continuous curve after interpolating our data on three lattice spacings. The matrix element after
renormalization and continuum extrapolation is shown in Fig. 1, which shows a good consistency
among different lattice spacings. A comparison of renormalized matrix elements H* at different
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Fig. 2. The renormalized matrix elements for different momenta. As the momentum decreases, the distribution ap-
proaches the P, = 0 perturbative calculations C, 6‘RR (z,z7h.

momenta with the LRR perturbative result at P, = 0 is shown in Fig. 2. We can clearly see that the
distribution approaches the P, = 0 perturbative calculations C(%{R(z, z~1) when the momentum
decreases.

Then a ratio to the P, = 0 perturbative results for DA is taken at short distance |z| < z; to

convert to the hybrid scheme,

AR(z, P,) AR(z, P,)

MW p 0y = T (g — z]) +
U HR@ P=0) HR(zy, P, =0)

O(lz] — zs), (54)
where HR is defined in Eq. (23). The P, > 0 matrix elements H Rz, P;) are obtained from our
data renormalized by Eq. (52), while the H(z, P, = 0) « P, = 0 vanishes in DA measurement,
thus we use the Wilson coefficient Cop from the perturbative calculation in MS scheme. The
parameter z; that separates the nonperturbative and perturbative regions must be much larger than
the lattice spacing to avoid discretization effects but not so large as to necessitate higher-twist
terms in the OPE. In our calculations, we choose z; = 0.18 fm. Note that there is no modification
of z dependence in the second term to avoid introducing unwanted non-perturbative effect.

Fig. 3 shows a comparison between the ratio MMd(z P 0) obtained from fixed-order
self-renormalization and the LRR-improved self-renormalization. An obvious problem in the
fixed-order renormalization is the hump near z = 0.1 fm, which suggests a negative second mo-
ment (E 2) < 0, irreconcilable with the OPE predictions at short distance. The LRR-improved
renormalized matrix elements, on the other hand, show good consistency with OPE predictions
at short distances. This comparison demonstrates that the modification from LRR is necessary
for a correct renormalization. Both the continuum extrapolation and the conversion to the hybrid
scheme are linear, thus the two steps commute with each other.

5.2. Extracting x-dependence of quasi-DA

In order to Fourier transform our coordinate space correlations to momentum space and ex-
tract the x-dependence, we need to extrapolate our matrix elements to infinite distance. We first
convert our position-space variable to quasi light-cone distance A = z P, as introduced in Sec. 3.1.
Since P, is fixed for a single calculation, large distance corresponds to large A. Although the
large-A correlation becomes extremely noisy at a finite momentum from the lattice, which in
principle makes it impossible for us to know the longtail information, the distribution is not ar-
bitrary. A general consideraction of coordinate space correlations suggests an algebraic decay
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Fig. 3. A comparison between the fixed-order self-renormalization and the LRR-improved self-renormalization. The
LRR improves the short distance behavior to be more consistent with the OPE predictions.
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Fig. 4. Continuum position space ratio in the hybrid scheme, M (1), with extrapolations to large-|A|. The consistency be-
tween the data (red) and the extrapolation (blue) in the overlapping region suggests the good quality of the extrapolation.

along with an exponential decay [29,25]. The constraints allow us to reduce the error in the
large-A region and extract the x-dependence of the quasi-DA.

Based on these constraints, we can extrapolate our matrix elements in position space to the
corresponding inverse Fourier transform [29,25]:

~ i C —i 1 -
HR(A,_) o0, PZ)= <61A/2(i)\,_)" +e I}L/2W>€ A1/%0 (55)
where Ag is a large constant describing the correlation length and depends on the hadron mo-
mentum, and the terms (c1, n) are fitting parameters. Note that at long distances in our hybrid
scheme, the ratio MMPrid() p.) only differs from HR (., P,) by a constant factor HR(z,,0), so
they have the same functional form. We then fit the longtail of MWbrid p oy to Eq. (55). An
example of the large-A extrapolation is shown in Fig. 4.

With a full-range coordinate space correlation, we are able to extract ¢(x, P,) through a
Fourier transformation in our chosen renormalization scheme,

o0

~ dr . .
T A (56)
b4
—00
as shown in Fig. 5. Although we used a model to describe the large-A behavior, we should address
that the final result is not sensitive to the highly suppressed long tails. To illustrate this, we use
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Fig. 5. The x-dependence of the quasi-DA. There is a nonvanishing distribution outside the physical region x € [0, 1] for
the quasi-DA. This nonphysical distribution will be suppressed when matched to the lightcone.
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Fig. 6. The x-dependence of the quasi-DA from three different long-tail modelings. Their results are consistent, with a
difference much smaller than the statistical error (blue band) in the mid-x region.

two different models corresponding to Eq. (55), one is not to include the exponential decaying
factor (labeled as “Power Decay”), the other is by fixing the correlation length A9 = 50 (labeled
as “Exp Decay?2”) to check the sensitivity of DA to the long-tail model assumptions. The com-
parison is shown in Fig. 6, showing small discrepancies in mid-x region when compared to the
statistical error in blue band. The endpoint regions are more sensitive to the long-tail modeling,
but we only calculate the mid-x region of light-cone DA directly and the endpoint regions are
obtained from modeling. So the long-tail modeling dependence has little influence on our final
determination of the full-x distribution.

5.3. Matching to obtain DA in mid-x region

After obtaining the quasi-DA in momentum space, we can then apply the matching to obtain
the lightcone DA. Firstly, we apply the fixed-order matching kernel, modified with LRR, at scale
n =2 GeV without the large log resummation. The fixed order matching appears to be valid
for the full x region. However, as we discussed, it is just an artificial effect. As we approach
the endpoints, the higher-order large logs can no longer be neglected and have to be resummed.
We thus apply the matching with RGR, and show the comparison in Fig. 7. As we discussed in
Sec. 3, the resummed matching causes a divergence at small physical scales, suggesting that the
endpoint region is not accessible in perturbation theory, and x € [0.25, 0.75] is considered a safe
range for the RGR. So we only show a segment of x € [0.25, 0.75] for the RGR matched result,
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Fig. 7. The mid-x dependence of the lightcone DA after we perform the inverse matching on the quasi-DA ¢ (x). The
blue band is the quasi-DA ¢ (x) before matching as a reference. We show only x € [0.25, 0.75] for the result with RGR
because the strategy does not work outside the range.
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Fig. 8. Comparison of the DA in mid-x region after LRR+RGR matching with different LRR approaches (left) and
different scale choices (right). They are all consistent within error, up to < 3% difference.

and use a gray band to shade the outside regions. The RGR effect is almost zero near x = 0.5,
and starts to suppress the distribution when approaching the endpoints.

We also find that the result is insensitive to which LRR method is used, and the scale choice for
RGR by changing the initial scale of RGR from 2x P; to 2cx P, with ¢ € [0.75, 1.5], suggesting
only < 3% difference, as shown in Fig. 8.

5.4. Full x-dependence for lightcone DA

Now we have the distribution determined for the mid-x region, while the endpoint regions are
still unknown from the LaMET approach. Fortunately, in coordinate space, the matching coeffi-
cients in small-z region is perturbative, thus can be resummed safely. Applying these matching
coefficients to lattice data, we are able to obtain the lightcone correlation in a certain range of cor-
relation length A = z P;, which contains the global information of the x-dependent DA, such as
its moments. With the information from the mid-x region, we can complete our picture of the ex-
tracted DA by utilizing the small-z information to constrain the endpoint behavior, as suggested
in Ref. [34].

Near the endpoints, we can parametrize the DA as a power of x or 1 — x as in Eq. (49). To
ensure continuity, we require that the parametrized form coincide with our mid-x results at x =
xo. We convert this parametrized DA into coordinate space, apply the short-distance matching,
and fit the result to our renormalized matrix elements. Fig. 9 shows the comparison from the
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Fig. 9. The fitting of parametrized DA to lattice data at short distance. The fitted short-distance correlations agree well
with the data.

- — LaMET
0.4f —SDF

Fig. 10. Full x dependence of the DA. The red band in x € [0.25, 0.75] is obtained from LaMET, and the green (blue) band
is obtained from the short-distance correlations by modeling of the endpoints with statistical (statistical and systematic)
erTors.

parametrized DA and our lattice data at short distances, which suggests good consistency. Besides
that, we allow some model-dependence by adding a small correction,

¢ (x < x0) = Ax" (1 + sin(b)x), (57)

where sin(b) is to guarantee that the size of this correction term is not so large as to cause a
sharp turn at the junction point, i.e., the different regions are smoothly connected. The same
modification is symmetrically applied to x — 1 — x, and a model-dependence is included as the
systematic error by calculating the difference between the modified model and the original one
in Eq. (49). The final estimation taking into account such a systematic error is shown in Fig. 10.

We can estimate the moment from the full x-dependence from Eq. (46) with Eq. (49). We get

(1) =0.999(5), <52> =0.306(19), (58)

which are in good agreement with the theoretical normalization (1) = 1, and the second moment
(52) = (0.298(39) obtained from the renormalization-independent OPE fit to Eq. (48). This self-
consistency is a strong support for our renormalization method.

In Fig. 11 we compare with previous model-dependent calculations and lattice results, includ-
ing the Dyson-Schwinger Equation (DSE’13) [53], the prediction of the light-front constituent-
quark model (LFCQM’15) [54], the OPE reconstruction from local second moment calculations
(RQCD’19) [12], the lattice calculation from LPC (LPC’22) [25], and the reconstruction from
fitted moments by ANL/BNL collaboration (ANL/BNL’22) [17]. Our final result suggests the
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Fig. 11. Comparison of the x dependence with previous phenomenological and lattice results. In this work, the mid-x
region from direct LaMET calculation is labeled with solid red line, while the endpoint regions from complementarity
are labeled with dashed red lines.

flattest and broadest distribution among all these calculations, as we can also tell from the large
second moment in our data. This may have a big impact on the phenomenology of pion hard
exclusive processes. At large Q2, the wyy™ transition form factor Fnyy(Qz, 0) [4,3,5,55] and
the pion electromagnetic form factor F,,(Qz) [56] are both sensitive to the shape of the DA
¢ (x, Q2). In general, since both are enhanced near the threshold x — 1 [57,58], a broader DA
will predict the form factors to be larger at large Q2. However, the factorization of the exclusive
processes is known to be problematic near the threshold [47,59,60], and the scale setting in the
pion electromagnetic form factor F,; (Q?) also causes large uncertainty to its estimation from
the DA [61,57]. Due to these complications, the study of these phenomenologies is beyond the
scope of this work, but a more detailed and systematic study is needed in the future to completely
understand the impacts.

6. Conclusion

In this paper we have computed the pion distribution amplitude with momentum fraction in
the range x € [0, 1] with improved handling of three sources of systematic errors: removing the
O(Aqcp/x P;) power correction from intrinsic ambiguities, resumming the small-momentum
logarithms, and constraining the distribution near the endpoints from short distance correla-
tions. We renormalize the matrix elements in the hybrid scheme with the LRR-improved self-
renormalization factors at short distance. Then an LRR-improved matching kernel is used, along
with a two-scale resummation, to obtain the pion DA in the mid-x region x € [0.25,0.75]. We
then model the endpoint region with a power law function, allowing a small variation, to recon-
struct coordinate space correlations and fit to our data. The second Mellin moment determined
from the full-x dependence was (E 2) = 0.302(23) and from the renormalization-independent
short-distance OPE was (5 2) = 0.298(39). These two results are in good agreement and give
us confidence in the determination of the endpoint region of the DA. Our final result suggests a
broad distribution of the pion DA. It has the potential for a big impact on the form factors of the
DA at large 02, and will be investigated in detail in the future.
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Appendix A. Notations

We tabulate the various symbols used throughout this paper for the convenience of the reader
in Table 1.

Table 1

Notations used throughout this paper.

Symbol Definition

iB(z, P, a) Bare gDA in coordinate space

Rz, P;) Renormalized qDA in coordinate space
HRB(z, P) el2P/2pRB (7 Py

M. PV, P A8, Py aB @, PP)

¢(x, Py) Renormalized gDA in momentum space
G(x, 1) Lightcone DA in momentum space
C(x,y,u, Py) Momentum space matching kernel
Z(v, zz, uz, A) Coordinate space matching kernel
Cnm(z, 1) DA Wilson coefficients
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