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Abstract

Consensus clustering has been widely used in bioinformatics and other applications to
improve the accuracy, stability and reliability of clustering results. This approach ensembles
cluster co-occurrences from multiple clustering runs on subsampled observations. For appli-
cation to large-scale bioinformatics data, such as to discover cell types from single-cell
sequencing data, for example, consensus clustering has two significant drawbacks: (i)
computational inefficiency due to repeatedly applying clustering algorithms, and (ii) lack of
interpretability into the important features for differentiating clusters. In this paper, we
address these two challenges by developing IMPACC: Interpretable MiniPatch Adaptive
Consensus Clustering. Our approach adopts three major innovations. We ensemble cluster
co-occurrences from tiny subsets of both observations and features, termed minipatches,
thus dramatically reducing computation time. Additionally, we develop adaptive sampling
schemes for observations, which result in both improved reliability and computational sav-
ings, as well as adaptive sampling schemes of features, which lead to interpretable solutions
by quickly learning the most relevant features that differentiate clusters. We study our
approach on synthetic data and a variety of real large-scale bioinformatics data sets; results
show that our approach not only yields more accurate and interpretable cluster solutions,
but it also substantially improves computational efficiency compared to standard consensus
clustering approaches.

Author summary

Clustering seeks to discover groups in big data with wide applications across scientific
domains, especially in bioinformatics. However, for huge and sparse data sets common
with genomic sequencing technologies, clustering methods can suffer from unreliable
results, lack of interpretability in terms of feature importance, and heavy computational
costs. To solve these challenges, we propose an extension of consensus clustering that
leverages minipatch learning, an ensemble learning framework with learners trained on
tiny subsets of observations and features. With adaptive sampling frameworks on both
features and observations, our method is able to achieve higher clustering accuracy and
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reliability, as well as simultaneously identify scientifically important features that distin-
guish the clusters. In addition, we offer major computational improvements, with dramat-
ically faster speed than our competitors. Our method is general and widely applicable to
data sets from any field, and especially can offer superior performance when dealing with
complex sparse and high dimensional data found in bioinformatics.

This is a PLOS Computational Biology Methods paper.

Introduction

Consensus clustering is a widely used unsupervised ensemble method in the domains of bioin-
formatics, pattern recognition, image processing, and network analysis, among others. This
method often outperforms conventional clustering algorithms by ensembling cluster co-occur-
rences from multiple clustering runs on subsampled observations [1]. However, consensus
clustering has many drawbacks when dealing with large data sets typical in bioinformatics.
These include computational inefficiency due to repeated clustering of very large data on mul-
tiple subsamples, degraded clustering accuracy due to high sensitivity to irrelevant features, as
well as lack of interpretability. Consider, for example, the task of discovering cell types from
single-cell RNA sequencing data. This data often contains tens-of-thousands of cells and
genes, making consensus clustering computationally prohibitive. Additionally, only a small
number of genes are typically responsible for differentiating cell types; consensus clustering
considers all features and provides no interpretation of which features or genes may be impor-
tant. Inspired by these challenges for large-scale bioinformatics data, we propose a novel
approach of consensus clustering that utilizes tiny subsamples or minipatches as well as adap-
tive sampling schemes to speed computation and learn important features.

Related work

Several types of consensus functions in ensemble clustering have been proposed, including co-
association based function [2-5], hyper-graph partitioning [6-8], relabeling and voting
approach [9-11], mixture model [12-14], and mutual information [15-17]. Co-association
based function, such as consensus clustering, is faster in convergence and is more applicable to
large-scale bioinformatics data sets. Our approach is based on consensus clustering, whose
concept is straightforward. In order to achieve evidence accumulation, a consensus matrix is
constructed from pairwise cluster co-occurrence, ranging in [0,1]. It is later regarded as a simi-
larity matrix of the observations to obtain the final clustering results [18]. Closely related to
our work, numerous variants of consensus clustering with adaptive subsampling strategies on
observations have been proposed. For instance, Duarte et al. [19] update the sampling weights
of objects with their degrees of confidence, which are subtracted by clustering the consensus
matrix; Parvin et al. [20] compute sampling weights by the uncertainty of object assignments
based on consensus indices’ distances to 0.5; and Topchy et al. [21] adaptively subsample
objects according to the consistency of clustering assignments in previous iterations. Besides
adaptive sampling, Ren et al. [22] overweight the observations with high confusion, and assign
the one-shot weights to obtain final clustering results. However, the existing sampling schemes
focus on observations only and do not take feature relevance into consideration. So these
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methods show inferior performance in the application to sparse data sets, where only a small
set of features can significantly influence cluster assignments. Many clustering methods and
pipelines have been proposed that specifically focus on single-cell RNA-seq data [23-27]. A
popular approach, SC3 [23], employs consensus clustering by applying dimension reduction
to the subsampled data and then applying K-means. Satija et al. [25] integrate dropout imputa-
tion and dimension reduction with a graph-based clustering algorithm. Another widely used
and simple approach is to conduct tSNE dimension reduction followed by K-Means clustering
[28]. Many have discussed the computational challenge of clustering large-scale single-cell
sequencing data [28] and have sought to address this via dimension reduction. But clustering
based on dimension reduced data is no longer directly interpretable; that is, one cannot deter-
mine which genes are directly responsible for differentiating cell type clusters. The motivation
of our approach is not only to propose a computationally fast approach, but also to develop a
method that has built-in feature interpretability to discover differentially expressed genes. A
series of clustering algorithms have been proposed to add insights on feature importance.
Some clustering algorithms conduct sparse feature selection through regularization within
clustering algorithms. For example, sparse K-Means (sparseKM), sparse hierarchical clustering
(sparseHC) [29] and sparse convex clustering [30,31] facilitate feature selection by solving a
lasso type optimization problem. However, this type of sparse clustering algorithm is often
slow and highly sensitive to hyper-parameter choices; thus, they face maybe computational
challenges for large data. Another class of methods ranks features by their influence on results.
The resulting sensitivity to the changes of one feature can be measured by the difference in sil-
houette widths of clustering results [32], the difference in the entropy of consensus matrices
[33], or consistency of graph spectrum [34]. However, feature ranking methods have to mea-
sure the importance of each feature separately, which leads to extremely high computational
costs. Additionally, [35] propose a post-hoc feature selection method that solves an optimiza-
tion problem to determine important features within the standard consensus clustering algo-
rithm; however, this approach suffers from major computational hurdles for large data.
Therefore, we are motivated to propose an extension of consensus clustering to greatly
improve clustering accuracy, provide model interpretability, and simultaneously ease the
computational burden, by incorporating innovative adaptive sampling schemes on both fea-
tures and observations with minipatch learning.

Contributions

In this paper, we propose a novel methodology as an extension of consensus clustering, which
demonstrates major advantages in large-scale bioinformatics data sets. Specifically, we seek to
improve computational efficiency, provide interpretability in terms of feature importance, and
at the same time improve clustering accuracy. We achieve these goals by leveraging the idea of
minipatch learning [36-38], which is an ensemble of learners trained on tiny subsamples of
both observations and features. Compared to only subsampling observations in existing con-
sensus clustering ensembles, our approach offers significant computational savings by learning
from many tiny data sets. In addition, we develop novel adaptive sampling schemes for both
observations and features to concentrate learning on observations with uncertain cluster
assignments and on features that are most important for separating clusters. This provides
inherent interpretations for consensus clustering and also further improves the computational
efficiency of the learning process. We test our novel methods and compare them to existing
approaches through extensive simulations and four large real-data case studies from bioinfor-
matics and imaging. Our results show major computational gains with our run time on the
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same order as that of hierarchical clustering, as well as improved clustering accuracy, feature
selection performance, and interpretability.

Methods

Let X € R¥M be the data matrix of interest, with M features measured over N observations. x;
€ RMis the M-dimensional feature vector observed for sample i. Our goal is to partition the
observations into disjoint homogeneous clusters, which can reflect the underlying data struc-
tures and patterns. We propose to extend popular consensus clustering techniques [39] to be
able to detect clusters more accurately and computationally efficiently, in high-dimensional
noisy data common in bioinformatics [40,41]. We also seek ways to ensure our clusters are
interpretable through feature selection. To this end, we propose a number of innovations and
improvements to consensus clustering outlined in our Minipatch Consensus Clustering
framework in Algorithm 1. Similar to consensus clustering, our approach repeatedly subsam-
ples the data, applies clustering, and records the N x N co-clustering membership matrix, V. It
then ensembles all the co-clustering membership information together into the N x N consen-
sus matrix S. This consensus matrix takes values in [0,1] indicating the proportion of times
two observations are clustered together; it can be regarded as a similarity matrix for the obser-
vations. A perfect consensus matrix includes only entries of 0 or 1, where observations are
always assigned to the same clusters; values in between indicate the (un)reliability of cluster
assignments for each observation. To obtain final cluster assignments, one can cluster the esti-
mated consensus matrix, which typically yields more accurate clusters than applying the stan-
dard, non-ensembled clustering algorithms [1].

While the core of our approach is identical to that of consensus clustering, we offer three
major methodological innovations in Steps 1 and 2 of Algorithm 1 that yield 112 remarkably
faster, more accurate, and interpretable results. Our first innovation is building cluster ensem-
bles based on (n = 25%N, m = 10%M) tiny subsets with default of both observations and fea-
tures termed minipatches [37-39]. Note that existing consensus clustering approaches form
ensembles by subsampling typically 80% of observations and all the features for each ensemble
member [42]. For large-scale bioinformatics data where the number of observations and fea-
tures could be in the tens-of-thousands, repeated clustering of this large data is a major
computational burden. Instead, our approach, termed Minipatch Consensus Clustering
(MPCC), subsamples a tiny fraction of both observations and features and hence has obvious
computational advantages. The computational complexity of MPCC in Algorithm 1 is O
(mn*T + N?), where T is the total number of minipatches. Since m and n are very small, the
dominating term is the N* computations required to update the consensus matrix. This com-
pares very favorably to existing consensus clustering approaches. If the default of 80% of obser-
vations are subsampled in each run, then the time complexity is O(MN®T), which can be very
slow for both large N and large M datasets. On the other hand, our method is comparable in
complexity to hierarchical clustering, which is also O(N?) [43], but is perhaps slower than
K-Means, which is O(N) [44]. The proof of the time complexity is in S1 Text.

While MPCC offers dramatic computational improvements over standard consensus clus-
tering, one may ask whether the results will be as accurate. We investigate and address this
question from the perspective of how tiny subsamples of observations and separately features
affect clustering results. First, note that if a tiny fraction of observations is subsampled, then by
chance, some of the clusters may not be represented; this is especially the case for large K or
for uneven cluster sizes. Existing consensus clustering approaches typically apply a clustering
algorithm with fixed K to each subsample, but this practice would prove detrimental to our
approach. Instead, we propose to choose the number of clusters in each minipatch adaptively.
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While there are many techniques in the literature to do so that could be employed with our
method [18,45], we are motivated to choose the number of clusters very quickly with nearly no
additional computation. Hence, we propose to exclusively use hierarchical clustering on each
minipatch and to cut the tree at the i quantile of the dendrogram height to determine the
number of clusters and cluster membership. This approach is not only fast but also adaptive to
the number of clusters present in the minipatch, and the results change smoothly with cuts at
different heights. Our empirical results reveal that this approach performs well on minipatches,
and we specifically investigate its utility, sensitivity, and tuning of & in S1 Text; importantly,
we find that setting /i = .95 to nearly universally yields the best results, and hence we suggest
fixing this value. Additionally, we provide details on hyper-parameters, tuning, and stopping
criteria in S1 Text. Besides, we also explored other alternatives to determine the number of
clusters in a minipatch, including selecting the cluster number with the highest silhouette
score and using the oracle number of clusters K. However, the alternatives yield worse perfor-
mance either in terms of clustering accuracy or computational time. Further details are in

S1 Text.

Next, one may ask how subsampling the features in minipatches affects clustering accuracy.
Obviously, for high-dimensional data in which only a small number of features are relevant for
differentiating clusters, subsampling minipatches containing the correct features would
improve results. We address such possibilities in the next section. But if this is not the case,
would clustering accuracy suffer? Since we apply hierarchical clustering, which takes distances
as input, we seek to understand how far off our distance input can be when we employ sub-
samples of features. We consider this theoretically in S1 Text and empirically in the subsequent
section. Our analysis and results reveal that while smaller minipatches yield faster computa-
tions, there may be a 164 slight trade-off in terms of clustering accuracy. Our empirical results
in S1 Text 165 suggest that such a trade-off is generally slight or negligible, so we can typically

utilize 166 smaller minipatches.

Algorithm 1: Minipatch Consensus Clustering

Input: X, n, m, V‘O), D(m, h; while stopping criteria not meet do

1. Obtain minipatch X;.,z © R”™ by subsampling n observations I, C
{1,...,N} and m featrues F, C {1,...,M}, without replacement;

e MPCC subsamples uniformly at random;,

e MPACC uses the adaptive observation sampling scheme only;,

* IMPACC uses both adaptive feature and observation sampling schemes
simultaneously;

2. Obtain estimated clustering result C'® by fitting hierarchical
clustering to Xr:, rr and cut tree at h height quantile;

3. Update co-clustering membership matrix V and co-sampling matrix D:

VO, i) = v G, i) +1(C” = c); DY, 7)) = D"V (i, i) +1(iel,i €l,)

end
vDii)
max(1,D(1) (i,i")) "

Calculate consensus matrix S(i,i) =
Obtain final clustering result I by using S as a similarity matrix;
Output: S, Il.

We have introduced minipatch consensus clustering (MPCC) using random subsamples of
both features and observations. The advantage of this approach is its computational speed,
which is on the order of standard clustering approaches such as hierarchical and spectral clus-
tering, as suggested by our empirical results in Results section. But, one may ask whether clus-
tering results can be improved by perhaps optimally sampling observations and/or features

instead of random sampling. Some
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have suggested such possibilities in the context of consensus clustering [19-22]; we explore
it and develop new approaches for this in the following sections.

Minipatch Adaptive Consensus Clustering (MPACC)

One may ask whether it is possible to improve upon minipatch consensus clustering in terms
of both speed and clustering accuracy by adaptively sampling observations. For example, we
may want to sample observations that are not well clustered more frequently to learn their
cluster assignments faster. In the method MiniPatch Adaptive Consensus Clustering
(MPACC), we propose to dynamically update sampling weights, with a focus on observations
that are difficult to be clustered and that are less frequently sampled. In addition, we leverage
the adaptive weights by designing a novel observation sampling scheme. Specifically, we pro-
pose to update observation weights by adjusted confusion values dynamically, with a default
learning rate oy = 0.5. To measure the level of clustering uncertainty, confusion values are

derived from consensus matrix, given by conufusion, = 3" | S(i,#)(1 — S(i, 1)) for obser-
vation i. A larger confusion value near 0.25 indicates poorer clustering with unstable assign-
ments, and the minimum confusion value 0 suggests perfect clustering. Note that confusions
tend to grow with iterations because more consensus values are updated from the initial value
0. Therefore, a large confusion value due to oversampling cannot truly reflect the level of
uncertainty. To eliminate bias caused by oversampling and to upweight less frequently sam-
pled observations, we further adjust confusion values by sampling frequencies of observations
in previous iterations, as presented in Algorithm 2. The next question is, how do we leverage
the weights to dynamically construct minipatches as the number of iterations grows? A
straightforward solution is to probabilistically subsample with probability (Prob) proportional
to the weights. But the problem with this approach is that the clustering performance will be
compromised if we only tend to sample uncertain and difficult observations. To resolve such
drawback, we develop an exploitation and exploration plus probabilistic (EE + Prob) sampling
scheme (Algorithm 3). The scheme consists of two sampling stages: a burn-in stage and an
adaptive stage. The burn-in stage aims to explore the entire observation space and ensure
every observation is sampled several times. During the next adaptive stage, observations with
levels of uncertainty greater than a threshold are classified into of observations using probabi-
listic sampling. Here, {y(t)} € [0.5,1],¢ = 1,2,.. is a monotonically increasing sequence that con-
trols sampling size in the exploitation and exploration step. Meanwhile, the algorithm explores
the rest of the observations with uniform weights to avoid exclusively focusing on difficult
observations. The reason why we randomly sample the observations that we are confident
about is that, we need to include a fair amount of easy-to-cluster observations to construct
well-defined clusters in
Algorithm 2: Weight updating in adaptive observation sampling scheme
the high uncertainty set, and the algorithm exploits this set by sam-
pling y‘® proportion each minipatch so as to better cluster the uncer-
tain ones. We also propose to use the EE + Prob scheme as our adaptive

feature sampling scheme, which is discussed in Interpretable Minipatch
Adaptive Consensus Clustering (IMPACC) section.

_ - t—1
Input: SV, w Y {L} ), o5 SO =0,w,® =1L;

1. Calculate sample uncertainty u, =137 S(i,#)(1 - S(i,i)) x ﬁ;
1y 1€l
2. Update observation weight vector w,® =ow,( D+ (1 - m)ﬁ; Output:
=1 Y
Wy ()
In Algorithm 3, t denotes the current count of iterations, E denotes number of burn-in

epochs with default value 3, and wi ™ is generated from Algorithm 2. And {7} is the data-
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driven threshold of uncertain observations (important features), which is set to be the 90%
quantile of observation weights (mean plus one standard deviation of feature weights).

Relation to existing literature

Several have suggested similar weight updating approaches in the consensus clustering litera-
ture. Ren et al. [22] also obtain observation weights by confusion values as in our method. The
difference is that, their method only uses the weighting scheme at the final clustering step
rather than adaptive sampling. On the other hand, similar to our adaptive weight updating
scheme, Duarte et al. [19], Topchy et al. [21] and Parvin et al. [20] iteratively update weights
depending on clustering history. However, these existing methods utilize probabilistic sam-
pling, so they would largely suffer from biased sampling and inaccurate results by only focus-
ing on hard observations. However, instead of probabilistic sampling, we design the EE + Prob
sampling scheme to leverage the weights, which is inspired by the exploration and exploitation
(EE) scheme from multi-arm bandits [46,47] and also employed for feature selection with
minipatches [36]. Compared to the latter, the innovation in our approach is to combine the
advantages of probabilistic sampling and exploitation-exploration sampling, which proves to
have particular advantages for clustering. Comparisons with other possible sampling schemes

proposed in the literature are in S1 Text.

Algorithm 3: Adaptive Observation (Features) Sampling Scheme—EE +Prob
Input:t, n, N, E, {y(t)}, w;" ", {(1}; w:'@ = 1/N;

Initialization: Q= [¥],7={1,...,N}; if t < E - O then

// Burn-in stage if mody(t) = 1 then

// New epoch

Randomly reshuffle feature index set I and partition into disjoint
sets {Z, 5;01;

else Set It = Ipoqo(t); end

// Adaptive stage

1. Update observation weights wy by Algorithm 2;

2. Create high uncertainty set H,={i€{l,...,N}: w}f) > Tfj} ;

3. Exploitation: sample min(n,y(t) |H7|) observations I, ; € H; with
probability wIHtI;

4. Exploration: sample (n - min(n,y(t) |H| 7)) observations I, , € {1,...,
N}I\H; uniformly at random;

5. Set It = It,1 U It,2;

end Output: I,..

(t)

Interpretable Minipatch Adaptive Consensus Clustering (IMPACC)

One major drawback of consensus clustering is that it lacks interpretability into important fea-
tures. This is especially important for high-dimensional data like that in bioinformatics, where
we expect only a small subset of features to be relevant for determining clusters. To address
this, we develop a novel adaptive feature sampling approach termed Interpretable Minipatch
Adaptive Consensus Clustering (IMPACC) that learns important features for clustering and
improves clustering accuracy for high-dimensional data. In clustering, two types of approaches
to determine important features have been proposed. One is to obtain a sparse solution by
solving an optimization problem [29-31], and another one is to rank features by their influ-
ence to results [32-34]. However, in data sets with a large number of observations and features,
both kinds of methods suffer from significant computational inefficiency. So the question we
are interested in is, can we achieve fast, accurate, and reliable feature selection within the con-
sensus clustering process with minipatches? We address this question by proposing a novel
adaptive feature weighting method that measures the feature importance in each minipatch
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and then ensembles the results to increase the weights of the important features. Given these
adaptive feature weights, we can then utilize our adaptive sampling scheme proposed in Algo-
rithm 3 to sample important features more frequently. Outlined in Algorithm 4, we propose
an adaptive feature weighting scheme by testing whether each feature is associated with the
estimated cluster labels on that minipatch. To do so, we use a simple ANOVA test in part,
because it is computationally fast and only requires one matrix multiplication. Based on the p-
values from these tests, we establish an important feature set, A, and obtain the importance
scores as the frequencies of features being classified into this feature set over iterations. Then
the feature sampling weights are dynamically updated with learning rate ar, with a default
value 0.5. Therefore, by ensembling feature importance obtained from each iteration, we are
able to simultaneously improve clustering accuracy and build model interpretability from
resulting feature weights, with minimal sacrifices of computation time. In Algorithm 4, C“~"
denotes the clustering labels on the (¢ — 1)-th minipatch, denotes sets of subsampled features
in each minipatch up to iteration ¢ — 1, denotes the feature support constructed up to iteration
t — 2, and the p-value cutoff 77 has default value 0.05. We also explored alternative measures of
the association between features and cluster labels in a minipatch. These include using a non-
parametric ANOVA (a Kruskal-Wallis test), which relaxes normality assumptions, and using a
multinomial regression of features to predict cluster assignments, which can account for fea-
ture correlations. Both of these approaches, however, have a higher computational burden
than using a simple ANOVA test. We explore these empirically to additionally show that they
also yield lower clustering accuracy in S1 Text.

We propose to utilize the same type of EE + Prob sampling scheme (Algorithm 3) given our
feature weights to learn the important features for clustering. Such a scheme exploits the
important features and samples these more frequently as the algorithm progress. But it also
balances exploring other features to ensure that potentially important features are not missed.
Our final IMPACC algorithm then utilizes both adaptive observation sampling and adaptive
feature sampling to improve computation efficiency and clustering accuracy while also provid-
ing feature interpretability. Utilizing minipatches in consensus clustering allows us to develop
these innovative adaptive sampling schemes and be the first to propose feature learning in this
context. Even though IMPACC has several hyper-parameters, in practice, our methods are
quite robust and reliable to parameter selections and generally give a strong performance
under default parameter settings. Therefore, we are freed from the computationally expensive
hyper-parameter tuning process and its computational burdens. We include a study on learn-
ing accuracy with different hyper-parameters and default values and suggest a data-driven tun-
ing process in S1 Text. Overall, the proposed MPACC with only adaptive sampling on
observation is more suitable for data of no or little sparsity; and IMPACC, which adaptively
subsamples both observations and features in minipatch learning, can be more useful when
dealing with high dimensional and sparse data sets in bioinformatics. It enhances model accu-
racy, scalability, and interpretability by focusing on uncertain observations and important fea-
tures in an efficient manner. Our empirical study in Results section demonstrates the major
advantages of the IMPACC method in terms of clustering quality, feature selection accuracy,

and computational savings.
Algorithm 4: Weight updating in adaptive feature sampling scheme

Input:, wF(tfl), ap; wF(O) = 1/M;

1. For each feature j € F,_;, conduct ANOVA test between features j and
c!*Y, record p-value p}H);

2. Create a feature support AV CF,_ : A"V ={ie{l,...,m}: pj(»’fl) >nti o

3. Update feature weight vector wr ° € RY by ensembling feature

supports
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{ayn"
L IGEF,jeA)
max(1, Y-, 1(j € F)

t—1
ij(’) = ocpij( )+ (1—o)
Output: w;'" .

Results

In this section, we assess the performance of IMPACC and MPCC with application to a high
dimensional and high noise synthetic simulation study in Synthetic Data section and four
large-scale real data sets in Case Studies on Real Data section, in comparison with several con-
ventional clustering strategies.

Synthetic data

We evaluate the performance of MPCC and IMPACC in terms of clustering accuracy and
computation time with widely used competitors, and compare IMPACC’s feature selection
accuracy with the existing sparse feature selection techniques. We propose two kinds of gener-
ative models for the synthetic data, with different structures of feature correlation. Here we
only show the results of sparse simulation with autoregressive covariance structure. In addi-
tion, we also generate synthetic data based on a real single-cell RNA-seq data set using the
splatter single-cell simulation method [48]. The results of splatter simulation and simulation
with block-diagonal covariance structure conducted in sparse, weak sparse and no sparse sce-
narios are in S1 Text. In the sparse autoregressive simulation study, each data set is created
from a mixture of Gaussian with AR(1) covariance structure, where the covariance between
feature j and j' can be written as g;; = pV7'1. The parameter p is set to be 0.5. We set the number
of observations, features and clusters to be N = 500, M = 5,000, K = 4, respectively. In order to
better reflect the structure of real bioinformatics data, we design unbalanced cluster sizes and
the numbers of observations in each cluster are 20, 80, 120, 280. The means of features in syn-
thetic data is y = [pp.po], where i € R*® and Ho = 04975 are the means of 25 signal features and
4,975 noise features, respectively. The signal-to-noise (SNR) ratio is defined as the L2-norm of
feature means: SNR = ||y||,. In order to assess feature selection capability, synthetic data is gen-
erated with SNR ranging from 1 to 8. Specifically, the signal features are generated with

py =55 1oy = (S?)IR g, = 5 11T2)T7:“3 = <_ 5 1?37%' 11TQ)T7/‘4 = —%F- 1, Data
with higher SNR ratio has more informative signal features so is easier to be clustered. For all
clustering algorithms, we assume oracle number of clusters K. Hierarchical clustering is
applied as the final algorithm in IMPACC and MPCC, with the number of iterations deter-
mined by an early stopping criteria, as described in S1 Text. And we have exactly the same set-
ting as those of MPCC in regular consensus clustering, including the number of iterations.
Ward’s minimum variance method with Manhattan distance is used in all hierarchical cluster-
ing related methods. Details on the implementation of competing methods are in S1 Text. In
terms of feature selection, IMPACC provides feature importance scores ranging in [0,1], and
sparseKM and sparseHC generate sparse feature weights with zero values for unimportant fea-
tures. We propose two methods to evaluate feature selection accuracy. The oracle method
selects the top 25 features (the oracle number of signal features) with the highest importance
score in IMPACC or the highest non-zero weights in sparseKM and sparseHC. And the data-
driven feature selection is to select features with importance scores higher than the mean plus
one standard deviation of all scores in IMPACC, and select all the features with non-zero
weights in sparseKM and sparseHC [30].
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Fig 1. Clustering performance (ARI), feature selection accuracy (F1 score), and computation time on sparse synthetic data sets. (A) ARI (higher is better)
of estimated grouping; (B) computation time in log seconds; (C) F1 score for signal feature estimates with oracle and data driven selection. IMPACC has
superior performance over competing methods in clustering and feature selection accuracy with significant computational savings.

https://doi.org/10.1371/journal.pcbi.1010577.9001

Table 1. Data sets used in empirical study.

PANCAN
Data type RNA-seq
Tissue tumor cells
# clusters 5
# observations 761
# features 13,244
% zeros 14.2%
citation [49]
Source Synapse:syn4301332

https://doi.org/10.1371/journal.pcbi.1010577 t001

We use adjusted rand index (ARI) to evaluate the clustering performance and the F1 score
to measure feature selection accuracy, which both range in [0,1], with a higher value indicating
higher accuracy. The averaged results over 10 repetitions are shown in Fig 1. Overall, IMPACC
yields the best clustering performance over all competing methods with the highest ARI in
most of the SNR settings. Comparing feature selection performance, IMPACC has perfect
recovery on informative features, with an F1 score equaling to 1 when SNR is large, and is sig-
nificantly better than sparseKM and sparseHC. Note that the oracle and data-driven F1 scores
are the same for sparseKM and sparseHC because these two methods under-select important
features. Additionally, IMPACC achieves significantly major computational advantages com-
paring to sparse feature selection clustering strategies. All of the computation time is recorded
on a laptop with 16GB of RAM (2133 MHz) and a dual-core processor (3.1 GHz). Note that
we only show results of the sparse simulation with autoregressive covariance structure in Fig 1,
and we include the rest scenarios in S1 Text. Our methods are still dominant in sparse simula-
tions with block-diagonal structure and splatter simulations, but IMAPCC shows little
improvement in the no-sparsity scenario when all the features are relevant.

Case studies on real data

We apply our methods to one bulk-cell RNA-seq data set, which measures the expression of
different tumor cells, three gold-standard single-cell RNA-seq data sets and one image data set

Biase Goolam Yan COIL20
scRNA-seq scRNA-seq scRNA-seq Image
mouse embryos mouse embryos human embryos

3 5 7 20

49 124 90 1,440
25,737 41,480 20,286 1,024
50.43% 68.56% 38.08% 34.38%
[51] (52] (53] [54]
GSE57249 E-MTAB-3321 GSE36552
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with known cluster labels, whose information is reported in Table 1. The PANCAN bulk
RNA-seq data [49] is a benchmark data obtained from UCI Machine Learning Repository [50],
which contains gene expressions of patients with different types of tumor: BRCA, KIRC,
COAD, LUAD and PRAD. The cluster information of the three single-cell RNA-seq data is
known because these data sets are generated from cells of various development stages. The
Biase [51] data is generated from 49 single cells composed of 1-cell (zygote), mid-stage 2-cell,
and 4-cell mouse embryos. The Goolam [52] data investigates gene expression patterns in the
pre-implantation development of mouse embryos, including cells isolated from the 2-cell stage
to the 32-cell stage. And the Yan [53] data measures gene expression of cells from human pre-
implantation embryos and human embryonic stem cells at different passages. In the RNA-seq
data, gene expressions are transformed by x — log,(1 + x) before conducting clustering algo-
rithms; the image data set [54] is adjusted to be within the range [0,1]. Note that we do not
conduct any prior feature selection before applying clustering algorithms. With the same set-
tings in Synthetic Data section, we evaluate the learning performance of MPCC and IMPACC
with existing methods, with the number of clusters being oracle. Details on the implementa-
tion of competing methods are in S1 Text.

Table 2 summarizes the mean of 10 realizations of clustering results on real data sets.
IMPACC is either the best or among the top-performing methods in each data set at discover-
ing known clusters with the high ARI scores. Also, it demonstrates major computational
advantages, sometimes even beating hierarchical clustering. Clustering followed by dimension
reduction via tSNE can have faster and better clustering accuracy for some of the data sets, but
it fails to provide direct interpretability of feature importance. Many conduct inference for dif-
ferentially expressed genes post clustering, but this suffers from selection bias and inflated false
positives [55-57]; thus, a direct way to assess important genes as with our method is preferred.

Table 2. Clustering performance (ARI) and computation time in seconds on real data sets with known cluster labels.

IMPACC (HC)
IMPACC (Spec)
MPCC (HC)
MPCC (Spec)
Consensus (HC)
Consensus (Spec)
sparseKM
sparsHC

Seurat

SC3
tSNE+KMeans
tSNE+HC
tSNE+spectral
tSNE+KMedoid
KMeans

HClust

Spectral
KMedoid

PANCAN
0.991

0.99

0.982
0.991
0.754
0.774
0.981

0.983
0.991
0.803
0.98

0.795
0.756
0.734
0.761

Biase
0.953
0.953
0.948
0.948
0.953
0.953
1
0.342
0.66
0.948
0.509
0.948
0.948
0.948
0.948
0.948
0.948
1

ARI Time (s)
Goolam Yan COIL20 PANCAN Biase Goolam Yan COIL20
0.815 0.742 0.74 33.379 1.849 7.602 4.17 70.297
0.829 0.742 0.663 33.379 1.849 7.602 4.17 70.297
0.66 0.742 0.717 21.897 0.093 4.73 2.189 52.446
0.682 0.772 0.672 21.897 0.093 4.73 2.189 52.446
0.452 0.834 0.673 75.377 0.121 1.797 0.967 557.623
0.684 0.763 0.67 75.377 0.121 1.797 0.967 557.623
0.459 0.736 0.441 1044.875 46.636 141.162 68.011 95.572
0.514 0.777 14.883 86.904 22.97
0.447 0.548 0.922 1.412 0.791
0.687 0.731 75.290 73.234 68.598
0.317 0.736 0.619 7.853 0.288 1.598 0.514 133.09
0.3 0.671 0.685 7.864 0.287 1.598 0.514 3.543
0.307 0.666 0.787 12.598 0.411 1.685 0.594 3.578
0.354 0.641 0.727 8.008 0.287 1.6 0.516 20.255
0.493 0.544 0.771 2.67 0.045 0.326 0.107 7.04
0.433 0.763 0.54 57.236 0.057 1.116 0.201 0.201
0.381 0.473 0.65 4.817 0.118 0.393 0.181 2.097
0.676 0.743 0.447 58.955 0.066 1.212 0.214 12.491

Clustering performance (ARI) and computation time in seconds on real data sets with known cluster labels. The IMPACC method is among the best in terms of

clustering performance, with significant improvements on the computational cost compared to sparseKM, sparseHC, and consensus clustering. The MPCC method also

yields comparable clustering performance and computational speed.

https://doi.org/10.1371/journal.pcbi.1010577.t002
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Even though single cell RNA-seq specific method SC3 has comparable accuracy in the Biase
[51] and Yan [53] data set, these methods select genes with high variance before performing
clustering algorithm and do not provide inherent interpretations of important genes. Note
that R failed to apply sparseHC to large genomics data due to excessive demand on computing
memory, and we only perform SC3 and Seurat on single-cell RNA-seq data sets. Further, even
though MPCC has a slightly lower ARI than IMPACC, it still yields better or comparable per-
formance in learning accuracy over consensus and standard methods, and it is relatively fast.
Additionally, we visualize the consensus matrices of IMPACC and compare them to that of
regular consensus clustering in Fig 2. We can conclude that IMPACC is able to produce more
accurate consensus matrices, with clearer diagonal blocks of clusters and less noise on oft-diag-
onal entries.

Interpretability analysis on Yan data set

IMPACC further provides interpretability in terms of feature importance. Since the feature
support set in IMPACC is constructed by including features that demonstrate different expres-
sions across clusters, we can identify differentially expressed genes from the final feature
importance scores. We propose a data-driven way to set the cutoff as the mean plus one stan-
dard deviation of all scores to conduct feature selection. Here we conduct our interpretability
analysis focusing on a realization of IMPACC clustering on the Yan [53] data set. IMPACC
selects 466 differentially expressed genes using the data-driven cutoff, and the full list of genes
is reported in S1 Table. We plot the gene expression matrix of the top 50 differentially
expressed genes determined by IMAPCC in Fig 3, with the subgroups defined by the final con-
sensus matrix of IMPACC, using the oracle number of clusters K = 7 (separated by white verti-
cal lines). The important genes selected by IMPACC have significantly different expressions
among different clusters of cells, especially in the Morulae cluster.

The Yan [53] data set measures gene expression in human oocytes, early embryos at seven
developmental stages and hESC cells. And the original paper Yan et al. [53] discovered that the
EPI cells have lower gene expression in gamete generation, germ cell development and repro-
duction process, indicated from the GO terms identified by differential genes between EPI

PANCAN Biase Goolam Yan COIL20
IMPACC IMPACC IMPACC IMPACC IMPACC

Regular CSS Regular CSS Regular CSS

Fig 2. Heatmaps of final consensus matrix derived from IMPACC and consensus clustering respectively, using oracle number of clusters. Darker color
indicates higher consensus value.

https://doi.org/10.1371/journal.pchi.1010577.g002
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Fig 3. Gene expression matrix of the top 50 differentially expressed genes identified by IMPACC in Yan data set, with subgroups defined by the final consensus
matrix of IMPACC.

https://doi.org/10.1371/journal.pcbi.1010577.9003

cells and other cell lineages in blastocysts. To further evaluate the model interpretability of
IMPACC, we perform Gene Ontology (GO) pathway enrichment analysis on the 466 differen-
tially expressed genes determined by our data-driven approach. With a p-value cutoff of 0.05,
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Pathway
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Fig 4. Top 10 pathway of GO enrichment analysis using the differentially expressed genes identified by IMPACC in Yan data set, with information on
adjusted p-values, fold enrichment and count.

https://doi.org/10.1371/journal.pcbi.1010577.9004

we can successfully identify 26 GO terms, and these pathways are highly related to germ cell
development (oogenesis, oocyte development, oocyte differentiation), gamete generation
(female gamete generation, DNA methylation involved in gamete generation), and reproduc-
tion (regulation of reproductive process, negative regulation of reproductive process, positive
regulation of reproductive process, cellular process involved in reproduction in multicellular
organism). The top 10 pathways with fold enrichment, p-values, and counts are illustrated in
Fig 4. And the enriched GO terms reported in Yan et al. [53], the complete list of GO terms
based on IMPACC, and pathway analysis using differentially expressed genes identified by
SC3 and sparseKM are in S1 Text and S2 Table. Overall, these results reveal that IMPACC is
able to provide accurate and reliable interpretations of scientifically important genes as well as
biologically meaningful GO enrichment analysis; these results match the original paper’s scien-
tific conclusions in which the cell types are known.

Discussion

We have proposed novel and powerful methodologies for consensus clustering using mini-
patch learning with random or adaptive sampling schemes. We have demonstrated that both
MPCC and IMPACC are stable, robust, and offer superior performance than competing meth-
ods in terms of accuracy. Further, our approaches offer significant computational savings with
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runtime comparable to hierarchical or spectral clustering. Finally, IMPACC offers interpret-
able results by discovering features that differentiate clusters. This method is particularly appli-
cable to sparse, high-dimensional data sets common in bioinformatics. Our empirical results
suggest that our method might prove particularly important for discovering cell types from
single-cell RNA sequencing data. Note that while our methods offer computational advantages
over consensus clustering for all settings, our method does not seem to offer any dramatic
improvement in clustering accuracy for non-sparse and non-high-dimensional data sets. In
future work, one can further optimize computations through memory-efficient management
of the large consensus matrix and through hashing or other approximate schemes. Overall, we
expect IMPACC to become a critical instrument for clustering analyses of complicated and
massive data sets in bioinformatics as well as a variety of other fields.

Supporting information

S1 Text. Fast and Interpretable Consensus Clustering via Minipatch Learning: Supplemen-
tary Materials.
(DOCX)

S1 Table. Differentially expressed genes in Yan selected by IMPACC.
(CSV)

$2 Table. SC3’s GO Enrichment Pathway Analysis of Yan data set.
(CSV)
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