Journal of Peridynamics and Nonlocal Modeling
https://doi.org/10.1007/542102-023-00098-5

RESEARCH

®

Check for
updates

PeriFast/Corrosion: A 3D Pseudospectral Peridynamic
MATLAB Code for Corrosion

Longzhen Wang' - Siavash Jafarzadeh? - Farzaneh Mousavi' - Florin Bobaru'

Received: 8 September 2022 / Accepted: 15 March 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

We introduce PeriFast/Corrosion, a MATLAB code that uses the fast convolution-based
method (FCBM) for peridynamic (PD) models of corrosion damage. The FCBM uses the
convolutional structure of PD equations and employs the Fast Fourier transform (FFT) to
achieve a computational complexity of O(NlogN). PeriFast/Corrosion has significantly
lower memory allocation needs, O(N), compared with, for example, the meshfree method
with direct summation for PD models that requires O(N?). The PD corrosion model and the
fast convolution-based method are briefly reviewed, and the detailed structure of the code
is presented. The code efficiently solves 3D uniform corrosion (example for copper) and
pitting corrosion (example for stainless steel) problems with multiple growing and merging
pits, set in a complicated shape sample. Discussions on possible immediate extensions of
the code to other corrosion damage problems are provided. PeriFast/Corrosion is a branch
of PeriFast codes and is freely available on GitHub [1].

Keywords Peridynamics - Pitting corrosion - Corrosion - Fast Fourier transform (FFT) -
Software - MATLAB

1 Introduction

Pitting corrosion is a type of localized corrosion that occurs in many alloys, such as aluminum
alloys, stainless steel, zinc alloys, and magnesium alloys. Under certain conditions, pits may
maintain stable growth [2] and lead to a rapid reduction in the durability of a structure.
Simulating pitting corrosion has been a challenge for many decades due to the complex
chemomechanical interactions that are influenced by geometry, environmental conditions,
and mechanical loading [3]. A different approach to modeling pitting corrosion has been
introduced by Chen and Bobaru in 2015 [4] and further advanced in [5]. PD models for
other types of corrosion have been introduced as well, including uniform corrosion [6],

< Florin Bobaru
fbobaru2 @unl.edu

Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln,
NE 68588, USA

Department of Civil and Environmental Engineering, The Pennsylvania State University,
University Park, PA 16801, USA

Published online: 26 April 2023) Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42102-023-00098-5&domain=pdf

Journal of Peridynamics and Nonlocal Modeling

pitting corrosion with lacy covers [5], crevice corrosion [7], galvanic corrosion [8], inter-
granular corrosion [9], and stress-dependent corrosion [6]. This peridynamic (PD) model
treats the problem as dissolution and diffusion in the solid interface/electrolyte system,
rather than just as a diffusion problem with a moving interface, as it has generally been
addressed in the past. In this way, the PD corrosion model allows autonomous propagation
of the corrosion front, with no need of tracking its location. By including corrosion damage
that takes place in the layer affected by corrosion, the PD corrosion model has been cou-
pled also with PD fracture models to simulate stress-dependent corrosion damage [6] and
stress corrosion cracking [10]. Different from the classical local theory, the PD governing
equations are in the form of integrodifferential equations (IDEs). In PD, a material point x
is connected via peridynamic bonds to other points within its neighborhood H, (see Fig. 1).
The neighborhood of material point x, also called the “horizon region,” is centered at point
x and usually is taken as a segment in 1D, a circular disk in 2D, and a sphere in 3D. The
radius of the neighborhood is called the “horizon,” 6, and it determines the range of “direct”
interactions between material points. Because of its ability in handling the autonomous
evolution of damage, the most widely used discretization for PD is the so-called meshfree
method [11-14]. The method is based on a simple approximation of the PD integral opera-
tor using mid-point integration (equivalent to one-point Gaussian integration) on a uniform
grid. Corrections for the partial nodal volumes covered by the horizon of an arbitrary discre-
tization node have been used to improve the approximation (see [15]).

In general, nonlocality increases the computational cost for numerical methods used to
approximate solutions to PD models. Various methods have been used to compute solu-
tions to PD equations: the meshfree method based on the one-point Gaussian quadrature
(meshfree PD) [11-14], the finite element method (FEM) [16, 17], etc. In meshfree PD,
for each node, a loop is executed over all nodes inside its “family” of neighboring nodes
(nodes located in H,, within 6 from the current node) to compute the quadrature by direct
summation of the terms. The computational cost of this method is O(NM) where the total
number of nodes in the discretized domain is N, and M is the number of neighbors in the
horizon region of a node. Since the neighbor nodes need to be stored, the memory cost for
the meshfree method is also high. The high computation cost in time and memory lim-
its the space and time scale PD simulations can access. This is especially true for three-
dimensional problems in which the number of neighbors needed for good resolution of
damage is high.

To reduce the computational cost, a pseudospectral method has been introduced in
[18-20] to take advantage of the convolutional structure present in some PD equations and
use the Fast Fourier Transform (FFT) to compute the quadrature, instead of the direct sum-
mation, and achieve O(NlogN) computational complexity, which beats O(NM), when M is
large, by a significant margin. The fast convolution-based method (FCBM) has been used
for several PD formulations: diffusion, elastic deformation and fracture, and dissolution
[18-21]. In addition to better scaling, FCBM does not need neighbor search and storage. In
general, spectral-type methods are limited to problems on periodic domains. With FCBM,
two methods have been used to solve problems on arbitrary domains: the embedded con-
straint method [19] and the volume penalization method [18]. Other variations of FCBM
have been recently proposed in [22, 23].

Due to the nonlocality, the boundary conditions in PD need to be applied, in 3D, not over a
surface, but a thick layer (a volume). There are numerous methods to enforce some given local-type
boundary conditions in PD models, please see [24-26]. In this study, we use the mirror-based fic-
titious node method (see [24, 25]) which applies corresponding constrained values to PD nodes over
the fictitious region (see Fig. 1), so that the desired local boundary conditions are satisfied.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.1 A point x in a body Q, its
horizon region H, and a neighbor
x’ in H,, the boundary (0Q), and
the (fictitious region I', used to
enforce given local boundary
conditions in the nonlocal model

In this paper, we present PeriFast/Corrosion, a MATLAB implementation of the FCBM for
the PD corrosion model. The paper is organized as follows: first, we briefly review the PD cor-
rosion model in Sect. 2; next, the FCBM discretization for PD corrosion models is described
in Sect. 3; in Sect. 4, the main structure of PeriFast/Corrosion code is given, together with the
GitHub link from which it can be downloaded; each code component is discussed in detail,
including post-processing of the results; in Sect. 5, we demonstrate setting up input data, run-
ning the code, and visualizing the results for two corrosion examples in 3D: one on uniform
corrosion and the other on pitting corrosion with salt-layer formation; users can easily repro-
duce the results shown here; in Sect. 6, we discuss possible extensions of the version of the
code presented here to treat a variety of other corrosion types (crevice, galvanic, intergranu-
lar, etc.) and to couple with other codes when solving other corrosion-related problems (e.g.,
stress-corrosion cracking); concluding remarks are gathered in Sect. 7.

2 Review of the Peridynamic Model for Corrosion

In the presence of an electrolyte, the corrosion process can be modeled as a process in
which the solid metal dissolves into the electrolyte, and the dissolved metal ions diffuse in
the electrolyte. Consider the PD corrosion model for an arbitrary domain Q with the ficti-
tious region I':

e = Lx,) x€Q,1>0
C@,0)=Cylx) x€Q (1
Cx,t)y=gx,t)y xeIl,t>0

where C(x, t) is the metal ion concentration at point x and time ¢, C; is the initial metal ion
concentration, and g(x, 7) is a function that prescribes the constraints of concentration on the
fictitious region I'. In PeriFast/Corrosion, we use the mirror-based fictitious node method to
find the profile for g(x,) such that the solution of Eq. (1) effectively matches a classical
boundary condition of Dirichlet or Neumann-type. More information on how to specify g(x, t)
using the fictitious nodes method can be found in [19]. L(x,t) = f H;’ (x,x’,t)de, is the
summation of flow densities between point x and its neighbor points. The flow density
J(x,x’,1)is defined as

@ Springer

Journal of Peridynamics and Nonlocal Modeling

C(x'.1)—Clx.p)

k(x,x’,t) s x&x €Q
' () Clen]
— sign[C(x,t)—C(x,t
I(x.x'1) = gl r) AP (4 € O & x’ € ©\ Oy Jor (v € O \Qsyy & ¥ € Q)
otherwise

2

Here, k(x,x',t) is the micro diffusivity for the bond connecting x to x’, at time ¢,

which can be connected to the measured diffusivity of metal ions in the electrolyte by

the following formulas (see [21] for details). q(x,x’ , t) is the micro dissolvability of the

bond between x to x’, at time f, which is calibrated to the corrosion current density as
shown below:

9K,

k(x,x',1) = 35 q(x,x',1) =

—3 i
nzF 53

(©))

where K is the diffusivity of metal ions in the electrolyte, ¢ is the horizon size,i is the
current density, z is the charge number, and F is Faraday’s constant. Equation (3)
gives the micro diffusivity and micro dissolvability for the 3D case. For 1D and 2D
cases, please see [21].

During corrosion, the electrolyte can become saturated in some regions, with the concen-
tration of dissolved metal ions reaching the saturated concentrations Csat, especially at the
bottom of the corrosion pits. In this case, the ions that the electrolyte cannot sustain forming
a salt layer [27]. The thickness of the salt layer increases until it balances the dissolution rate
with the diffusion rate. The influence of the salt layer is discussed in the Appendix.

In Eq. (3), €, is the liquid phase region, Qg is the dissolving solid region, and Qg is
the salt layer region. Region €; is defined as follows:

Q ={xeR’|3r €[0,1] : Clx,*) < Cy} @)

To locate the salt layer, we define g, to identify the liquid points at saturated dis-
solved metal ions concentration:

QSalt = {x € QL | C(x’ t) = Csat} (5)

If the concentration at a liquid node reaches C,, dissolution between the solid nodes
directly connected by PD bonds to this liquid node is temporarily stopped. In practice,
since we are comparing the floating point numbers, not integers, the salt layer is imple-
mented as liquid nodes whose concentrations are higher than or equal to C,.

During pitting corrosion, regions near the surface may passivate due to low pH val-
ues while corrosion continues in other regions. The corrosion process bypasses the
passivated part and may create (in stainless steel, for example) a perforated cover (the
“lacy cover”) when it reaches back to the surface (see [5]). In the current version of
the PeriFast/Corrosion code, passivation and lacy cover formation mechanisms are not
included. Instead, when modeling pitting corrosion, we assume the surface (except for
the initial pits) is passivated; therefore, corrosion only occurs between solid and liquid
inside the pits. To locate the liquid points inside the pits, we denote the non-pitted ini-
tial solid geometry as 5. Nodes in Qg that are in the liquid phase of the pitted sample
form the Q; ; set, defined as the intersection between ; and Qg. Similarly, we define
the salt layer inside pits. More details on the implementation of uniform and pitting cor-
rosion are presented in the next section.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Q i={xeQ nQ}

(6)
Qg pit = {x € Qg N QG}
The dissolving solid domain Qg is defined as
Qs ={xeQ\Q } @)

The model above, discretized using the meshfree method, has been validated against
various experimental results on uniform corrosion [6], pitting corrosion [5], crevice corro-
sion [7], intergranular corrosion [9], and galvanic corrosion [8]. Verification of the numeri-
cal implementation against analytical classical solution has been presented for galvanic
corrosion in [8].

The FCBM solution for the above model has been introduced in [21], where results
have been also verified against classical solutions and validated against experiments. To
account for material variability, randomness has been introduced in the meshfree imple-
mentation at the bond level. The bonds are randomly selected to be damaged to match the
corrosion damage value at each node (see [4]). In FCBM, a different way of introducing
the expected randomness in the material has to be used. In [21], this step is achieved by
defining the micro dissolvability ¢ as a function that depends on location via a stochastic
characteristic function.

3 Brief Review of the Fast Convolution-Based Method for PD Models
of Corrosion

PeriFast/Corrosion uses the fast convolution-based method (FCBM) to solve the cor-
rosion problem in Eq. (1). The fast convolution-based method (FCBM) assumes a
given domain of arbitrary shape QUI is embedded in a “tight” box T, which is then
extended by periodicity in all Cartesian directions, as shown in Fig. 2. Note that if the
fictitious region (here of thickness &) is not used for the imposition of boundary condi-
tions, one has to leave a space 6 between the domain and the edge of the box to avoid a

Fig.2 Extension of a peridy- l :
namic body to a periodic box r/ | L/ | L
T| T

Journal of Peridynamics and Nonlocal Modeling

wrap-around effect when constructing the periodic solution. To be able to treat arbitrary
boundary conditions, the “embedded constraint” approach [19] can be used.
After extending the problem domain, we replace Eq. (1) with the following periodic problem:

dc;:tc,z) = yo@)[L(x, 0] + Xl‘uA(x)w forxeT,t>0 ®
Cx,00=C, forxeT

where A = T\(Q UT) is the gap region, yo and yp, are characteristic functions used to
distinguish between the subdomains, and C,, is a function that is equal to the volume con-
straints on I and zero elsewhere:

) = lxeQ
1=V 0xeT\Q=TUA

0xeQ
Zrua®) =1 = xo(x) = { 1 iir\gzruA ©)

0 xX€EQUA
Culr.0) = { Cr(x,) x €T

where Cp(x,?) is the volume constraint calculated by the mirror-based fictitious node
method from the given local boundary conditions (Dirichlet- or Neumann-type). Notice
that the solution to Eq. (8) on Q is the same as the solution to Eq. (1). Since Eq. (8) is
defined over a periodic domain, we can use the FFT for fast computation of the circular convo-
lutions arising from the equation.

To apply the FCBM to PD formulations, these have to be set up in a convolutional
form. First, we define the following characteristic functions to identify the phases in Q:

l1xeQ
a0 = { 0 elseL

_J T xeQgy,
Hsan (%, 1) = { 0 else
Xs@x,) =1- y (1) (10)

where y; represents the liquid subdomain, yg,, is the salt layer subdomain, and yq repre-
sents the solid subdomain.
Since y; (x,1) + ys(x, 1) = 1, we can write:

/ Jx,x', Hdx' =
H,

x

[1) + xs(x,)] /H [(*. 1) + xs (¥, 1)] T (2. 1) dx = (11)

)(L/ aJax + (G — ZSalt)/ ;(éde’ + J(S/ (i - Xéalt)‘]dx’
H, H, H,

@ Springer

Journal of Peridynamics and Nonlocal Modeling

where y; is short for y; (x,) and y; is short for ;. (x’ , t) and similar for yg,, and yq.

The splitting of the original integral into four integrals means that each new integral represents
metal ion transfer via bonds connecting different phases. For example, yg / i (- ;(gah) Jdx'
represents the dissolution between solid nodes and liquid nodes whose concentration is below
C,, Since ion transport inside the solid is minute compared with the liquid—solid or liquid-liquid
transport, we take the transport between solid nodes to be zero, meaning that only three terms are
leftin Eq. (11).

In uniform corrosion, Eq. (11) is applied to all points near the surface. For the pitting cor-
rosion model, the surface is considered passivated except for the initial pits, and, as discussed
in the previous section, corrosion/dissolution involves the solid points near the pit surfaces and
the electrolyte inside the pits. To determine these regions (liquid-phase nodes inside pits), we
define the following characteristic functions:

lxeQ NnQ
1 pie%:1) = { 0 elLse ¢

lxeQ nay
Ao g (521) = { 0 ese (12)

By replacing the (i — tsu) With (¥ pic — Xsan_pi) @nd changing (x/ — xg,,) to
(;(ﬁ_ph - ;(éa]l_pit) in Eq. (11), we have

/J(x,x’,t)dx’:)(L/ 2 J dx’
H H,

+ (}(prit - XS&ILPR)/H ;(éde’ (13)

! ! /
+)(S/H (ZL,pn - ISah,pit)de

By entering the flow density J defined in Eq. (2) into Eq. (11) and Eq. (13), we obtain the
convolution form needed, for each of the two cases discussed:
Uniform corrosion:

/ Jdx' =;(L/){La)diﬂ-(”x’ —x||)C’ dx’ —)(LC/ 2] g (IIx’ —x||)dx’
H, H,

x x

+ (L — Xsar) / XeOeore (116 = xI) dx’ — g / (] = Xy Peore (I1X" = x1|) dx’
H, Hy
=1 [wdiff * ()(LC)] - ()(LC) [wdiﬂ‘ *)(L]
+ ()(L -)(Sall) [wcorr *)(S] -)(S[wcon' * (ZL -)(Sall)]
Pitting corrosion:
/H Jdx" =1 [oger * (2.C)] = (4.C) [@aits * 11

14
+ (}(L_pit - XSall_pit)[wcnrr * XS] (14

—Xs [a)corr * ()(L_pit -)(Salt_pil)]

@ Springer

Journal of Peridynamics and Nonlocal Modeling

’ _ _k ’ — _4 ;
where @g;¢¢ ([|x" — xll) = and @, ([|x" — xll) = o See extensions to other types

of corrosion damage; please see the discussion in Sect. 6.
To spatially discretize the periodic domain T, we use a uniform grid [18]:

. L L Ly
nAxl,msz,pr3),w1th Ax; = F;sz =]V;Ax3 =— (15)
1 2

X
Ny

wp =
where N, N,, N; are the number of nodes in each direction, n = {0, Y\ 1};m =
{0, cees Ny — 1};p ={0,...,N;—1},and L, L,, L; are the dimensions of T.

In the Fourier space, the circular convolution is transformed into a multiplication of the
convoluted functions. By denoting F and F~! the FFT and inverse FFT [18, 19], to numeri-
cally calculate the gy * (;(LC) in Eq. (14), we take the Fourier Transform of ... and
11.C, multiply them and take their inverse Fourier Transform F~! [F(a)giff)F(xLO)]. Notice
that the .. is the shifted kernel with respect to the box coordinates. This shift is neces-
sary for the circular convolution operation. The figure below shows the original version
and the shifted version of a 2D radial kernel. The colored disk represents the non-zero part
of the kernel Fig. 3.

The concentration at each time step is updated using the forward Euler time-integration
algorithm, and for each of the cases discussed, we have:

Uniform corrosion:

Qs5e(%, ¥)

y ‘r wgige (X, ¥)

AR
NIVA R

Fig.3 The support of the kernel function (wg;) in its original form (left) and its shifted form in the
box T (right)

@ Springer

Journal of Peridynamics and Nonlocal Modeling

nmp,t

Crmp AL =X <Inmp’t F F (@)) F(1.C)] AV

L
_(?(Empltcnmp’t) F! [F(a’fﬁff)F()(L)]
o™ = g VFT R (0l)F(xs)]| AV

nmp,t
_xnmpl -1 [F cOrr)F(XL - }(Salt)] ’ AV)
+ (1= ™!

nmp,t

AV

|nmp,t

Pitting corrosion:
crtsst =g (T B (0 F (1.C)]
= (") FHE (e) F (1))

00 g = K ;JF [F (000)F (15)]

nmp t

nmp,t

AV

nmp,t

AV

nmp,t

N

1) is replaced with superscript nmp,t to

(16)

- [F @ orr F (}(L_pit -)(Salt_pit)]
= e

where AV = Ax;Ax,Ax; and the argument (x
reduce the notational complexity.

Using the FFT to numerically calculate F and F~! at each time step, the computa-
tional complexity is reduced to O(NlogN). Since there is no need to store the neighbor
nodes, the memory cost is also reduced from O(N?) to O(N). The efficiency gains com-
pared with the direct summation for the meshfree method quadrature have been dis-
cussed in [18, 19, 21].

nmp?

4 The PeriFast/Corrosion Code

In this section, we first introduce the overall structure of PeriFast/Corrosion code
and then discuss in detail each of the m-files contained in it. The PeriFast/Corrosion
code can be found at https://github.com/PeriFast/Code. The user could download the
code by clicking on the “Code” and then “Download ZIP,” as shown in Fig. 3. If the
user has Git Bash installed, the code can be downloaded by typing “git clone https://
github.com/PeriFast/Code” in the Git Bash command window. The download will
contain the PeriFast/Dynamics code, which solves dynamic brittle fracture problems
(see [28]).

In the current version, the code can handle two different types of corrosion: uniform
corrosion and pitting corrosion starting from a set of predefined initial pits. The user
can easily switch between these two options by changing the corrosion_type in input.m.

@ Springer

https://github.com/PeriFast/Code
https://github.com/PeriFast/Code
https://github.com/PeriFast/Code

Journal of Peridynamics and Nonlocal Modeling

PeriFast/Corrosion consists of thirteen MATLAB (.m) files, including main.m,
inputs.m, nodes_and_sets.m, initial_conditions.m, kernel_functions.m, boundary_
conditions.m, initial_gpu_arrays.m, update_VC.m, update_C.m, dump_output.m,
dump_output_Tecplot.m, visualization.m, and postprocess.m.

The main.m file is the main script file to run PeriFast/Corrosion. It calls all the
scripts and functions required to run the corrosion simulation. inputs.m is the input
script that contains all the physical parameters. nodes_and_sets.m describes the
domain size, geometry, discretized nodes coordinates, horizon size, and the discrete
characteristic functions for subdomains. Currently, the user needs to manually setup
the geometry data for each example. Readers can contribute to the code by adding
functions that would automatically use geometry data exported from various CAD
systems. initial_conditions.m is the file that defines the initial concentration and the
locations and sizes of initial pits. kernel_functions.m specifies the kernel functions
used in the corrosion model. boundary_conditions.m defines the type and values of
boundary conditions. initial_gpu_arrays.m copies the arrays to GPU memory if the
user chooses to use GPU to speed up the computation. update_VC.m is used to update
the fictitious nodes’ concentration, based on the boundary conditions and concentra-
tion at each time step. update_C.m is used to update the concentration and charac-
teristic functions at each time step. dump_output.m and dump_output_Tecplot.m are
called, at the frequency defined by the user, to separately store the output data in a
MATLAB variable and a Tecplot file. visualization.m is the script that plots data at
certain times specified in inputs.m. postprocess.m is the script that the user could use
to visualize the output data.

The visualization part affects the runtime. When running speed tests or large simu-
lations, we suggest using the visualization part as a postprocessing step, by turning
it off. The user can turn off visualization by setting the variable is_plot_in_Matlab
equal to zero in inputs.m file. In such a case, the user needs to use the MATLAB out-
put data file (Results.mat) and postprocess.m to postprocess the results.

4.1 Description of Main.m
This file consists of the scripts needed to run the program. In MATLAB, since Released
2008a, the multithreaded computations have been on by default. MATLAB will deter-

mine the most desirable number of threads. The structure is shown in Algorithm 1.

Algorithm 1 Structure of main.m

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Call inputs.m to get the input parameters (see section 4.2)
Call nodes_and_sets.m to discretize the domain (see section 4.3)
Call initial_conditions.m to assign initial conditions and initial pits (see section 4.4)
Call kernel_functions.m to define and shift the kernel functions (see section 4.5)
Call boundary_conditions.m to define the boundary conditions (see section 4.6)
If the user chooses to output data to Tecplot file
Create a structure array tdata to store the output data (node coordinates and concentration)
If the user chooses to visualize during runtime and create an animation
Create a VideoWriter object to capture the plotted figures as frames in a video file (.avi format)
If the user chooses to run on GPU
Call initial_gpu_arryas.m to transform data to GPU
For each time step
Call update_VC.m to update the volume constraints (see section 4.6)

Call update_C.m to update node concentration using the forward Euler method (see Eq. (16)) and
update characteristic functions (based on definitions in Eqg. (10) and Eq. (12))

At a certain time, dump output data and visualize the results (see section 4.9) if the user chooses
to do so in inputs.m

End

If the user chooses to visualize during runtime and create an animation
Close the VideoWriter object

If the user chooses to output data to Tecplot file
Write the structure array tdata to a .plt file, using an opensource MATLAB script
(https://github.com/wme7/Aero-matlab/blob/master/Tecplot/mat2tecplot.m)

Save the output data to a MAT file.

4.2 Description of Inputs.m

This file consists of all the input physical parameters for the corrosion simulation, as well
as data needed to define outputs and their frequency. To run a corrosion simulation, the
user needs to define the following physical parameters and output-related data. We also
introduce functions to check all these input parameters and display error/warning messages
when input data is out of the expected range. For example, if the corrosion_type is set to
values other than 0 or 1, an error message will remind user to change it. The details of mes-
sages can be found in inputs.m.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Algorithm 2 Structure of inputs.m

Corrosion type (corrosion_type), O represents uniform corrosion and 1 represents pitting corrosion
Diffusion coefficient in the electrolyte (K), unit in m?/s

The current density of corrosion (i), unit in A/m?

Average charge number of material (n)

Dissolution flux ¢ = i/nF, F is Faraday’s constant (96485.33 C/mol)

The saturated concentration of dissolved metal ions in electrolyte (C,g), unit in mol/m?3
The concentration of metal atoms in the solid (Cyp;;4), unit in mol/m3

Simulation time (t,,4x), unit in seconds

Time step (dt), unit in seconds

Boolean value (is_plot_in_Matlab), whether to plot and output the animation

Boolean value (is_output_to_Tecplot), whether to write data to .plt file

Time interval of plotting and dumping output data (t_output), unit in seconds

Boolean value (has_salt_layer), whether to consider salt layer effect

Boolean value (run_in_gpu), whether to use GPU for computation

Function input_check which checks all above inputs and displays error/warning messages

4.3 Description of Nodes_and_sets.m

In this file, the user needs to define the geometrical information of the problem. As
shown in Fig. 2, given a PD body €, the user will first define a rectangular box T whose
edges are aligned with the coordinate system. The PD body Q and its fictitious region I
should be enclosed in the rectangular box T as tight as possible; this keeps the number
of excess nodes to a minimum. Since now the edge of T is at least § away from the PD
body Q, there will be no “wrap-around” effect. After discretization, the nodal coordi-
nates are stored as N, X N, X N, matrices. The solid geometry is represented as a char-
acteristic function, which is 1 for nodes located inside the geometry and 0 otherwise. In
the numerical example shown, the coordinate system is chosen in the center of the box.
A function checks the parameters defined in this script and displays error/warning mes-
sages when values could create problems. For example, if the m-factor value is less than
three, a warning message will appear to remind the user to set a finer grid. More details
of messages can be found in nodes_and_sets.m.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Algorithm 3 Structure of Nodes_and_sets.m

Define the horizon size (&), unitin m

Define the physical domain size (Ly, Ly, L;), unitin m

Extend the physical domain to a period box and define the size (By, By, B,), unitin m
Define the number of nodes in each direction (Ny, Ny, N,)

Calculate grid size in each direction (dx, dy, dz), unitin m

Create a uniform grid, nodal coordinates stored in X, Y, Z

Calculate m-factor value

Build the characteristic functions for the PD body () and the initial solid geometry (xy)

Function discretization_check which looks over all the above parameters and displays error/warning
messages

4.4 Description of Initial_conditions.m

The user needs to define the initial conditions of the corrosion simulation in this file. Notice
that in the pitting corrosion example shown, the initial pits’ location and size are randomly
generated on a single surface, using a uniform probability distribution. The user can spec-
ify the total initial pits number and the probability distribution for the location of centers
of spheres and their radii used to produce the initial pits by intersecting these spheres with
the solid sample. These intersections lead to initial pits having spherical cap shapes. The
region in which the centers of spheres are defined is currently selected to be slightly above
the corroding surface (up to 2 um), and the radii are selected inside the [2, 4] pm interval.

Algorithm 4 Structure of initial_conditions.m

Create an initial concentration matrix Cy and assign Cs,;;4 to the solid part
If the corrosion type is pitting corrosion (corrosion_type equals to 1)
Define the total number of initial spherical shape pits
For each initial pit
Randomly generate pit center coordinates, with uniform distribution
Randomly generate pit radius, with uniform distribution
Assign initial concentration to the nodes inside the pit
End
End

Initialize the characteristic functions for the liquid region (), the liquid region in pits (¥, p;), the salt
layer (xsait), and the solid region (xs) based on the definition in Eq. (10)

@ Springer

Journal of Peridynamics and Nonlocal Modeling

¥ main ~ ¥ 3 branches ©) 0tags Go to file Add file ~

PeriFast Rename Kernel_functions.m to kernel_functions.m B3 Clone ®

HTTPS SSH GitHub CLI

PeriFast_Corrosion Rename Kernel_functions.m to keri

PeriFast_Dynamics Update main.m https://github.com/PeriFast/Code.git 2
[@ LICENSE Initial commit o with SV isiog Shewes URL
[READMEmd Update README.md [¥) Open with GitHub Desktop

README.md [Download ZIP

PeriFast

PeriFast/Dynamic & PeriFast/Corrosion Code

Fig. 4 PeriFast Github download process

4.5 Description of Kernel_functions.m

In this file, the kernel functions (wg; and o) used in Eq. (14) are defined and dis-
cretized. Notice that the kernel functions are shifted such that the origins coincide with
the corners of the periodic box T, described in the previous section (see Fig. 4). The
[ftshift function in MATLAB is used to shift the kernel functions. This function cuts
the array at the mid-planes of the box, swaps the subdivisions, and returns the desired
shifted function. More detailed information about the fftshift function can be found in
MATLAB documentation.

Based on the stability analysis in [18, 19], we write a function stability_check that
can display a warning message if the time step might be too large relative to the hori-
zon size and the diffusion parameters used.

Algorithm 5 Structure of Kernel_functions.m

Define kernel functions for diffusion wgis, corrosion weerr
Discretize these kernel functions wgf';p = Wgitf(Xnmp), weor? = Weorr(Xnmp)

Translate these three kernel functions such that their origin coincides with the box center, and then

snmp _ snmp _

shift them using fftshift: w®git = fftshift (wdiff(xn = Xe,Yim — Yer Zp — Zc)), wSer? =
fftshift(wmrr(xn — X, Ym — Yor Zp — ZE)), where (X, Y., Z.) is the center of the periodic box T

Compute FFT of the shifted kernel functions wsgi';‘f” wSea?

Function stability_check to check whether the time step satisfies the stability condition [19][21], and
display warning messages

@ Springer

Journal of Peridynamics and Nonlocal Modeling

4.6 Description of Boundary_Conditions.m and Update_VC.m

In boundary_conditions.m, the user defines the boundary conditions type and their
value. The variable BC_type is 1 for the Dirichlet boundary condition and 2 for
the Neumann boundary condition. In update_VC.m, the fictitious nodes method is
implemented to apply/update the corresponding volume constraints to the nodes in
I'. In the fictitious node method, the volume constraint values are calculated based
on the given local boundary condition and the solution values on the interior side of
the boundary. More details of the mirror-based fictitious nodes method can be found
in Appendix A in [15].

Algorithm 6 Structure of Boundary_conditions.m & update_VC.m

boundary_conditions.m:

Define the boundary conditions type (Dirichlet or Neuman) and its value
Locate the nodes on the interior side of the boundary

update_VC.m:

Use fictitious node method to update C,, based on the boundary conditions and C at nodes located at
the interior side of the given domain boundary

Function boundary_condition_check verifies the boundary conditions types and returns error
messages if input data has issues.

4.7 Description of Initial_gpu_arrays.m

If the user wants to speed up the computation by using GPUs, MATLAB provides a
convenient way. Notice that the Parallel Computing Toolbox needs to be installed to
enable GPU computing in MATLAB. The MATLAB function gpuArray is used to copy
the data to GPU memory. By calling gpuArray supported functions, such as ffz, the com-
putation will automatically run on GPUs. A detailed list of gpuArray supported func-
tions can be found in MATLAB documentation.

4.8 Description of Update_C.m

To model uniform corrosion and pitting corrosion, two different functions are defined
in this file. In each function, the concentration is updated using the forward Euler
method. Characteristic functions are also updated at every time step. The details are
shown below.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Algorithm 7 Structure of update_C.m

Function update_C
If the corrosion type is uniform corrosion (corrosion_type equals to 0)

Call function uniform_corrosion_time_integration

Else if the corrosion type is pitting corrosion (corrosion_type equals to 1)

Call function pitting_corrosion_time_integration

Function uniform_corrosion_time_integration
Update the characteristic functions based on the definition in Eq. (10).
Update the concentration based on Eq. (16)

Function pitting_corrosion_time_integration
Update the characteristic functions based on the definition in Eq. (12).

Update the concentration based on Eq. (16)

4.9 Description of Dump_output.m, Dump_output_Tecplot.m, Visualization.m,
and Postprocess.m

These files are used for visualizing the results and storing data while the simulation is run-
ning. In dump_output.m, the snapshot number, concentration, and liquid characteristic
function are the inputs. These variables are stored in a structure type variable Output. The
user could easily store more variables in Output. In dump_output_Tecplot, the node coordi-
nates and concentration are stored. In visualization.m, we plot the result at a cross-section
in the x—y plane. The user can modify this file to plot their desired quantities. If the users
choose not to visualize during runtime, they can run the postprocess.m script to plot the
recorded output data after the simulation is finished.

5 Corrosion Examples in 3D
In this section, we show two corrosion simulations in 3D obtained with PeriFast/Corro-
sion: one using uniform corrosion (without considering salt layer formation) and the other

pitting corrosion (which considers salt layer formation). All figures in this section are plot-
ted using Tecplot.

5.1 Uniform Corrosion Example in 3D
In this part, we show the results for the uniform corrosion of a 3D shape selected here to

be the University of Nebraska logo, the Nebraska “N,” to show that arbitrary and relatively
complex shapes can be considered. The thickness of the 3D sample is 40 pm, along the

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.5 Nebraska “N” sample (left) and dimensions of the cross-section in the x—y plane, units in gm (right)

z-direction. The dimensions of the cross-section in the x—y plane are shown in Fig. 5, and
we define the characteristic function y, based on these values.

The sample is surrounded by 1 M NaCl solution. The solution is shown as the light blue
box in Fig. 5, with dimensions 158 pmX 128 pmXx48 pm. Since the bulk electrolyte in
many experiments normally occupies a much larger volume, zero concentration boundary
conditions (C = 0) are applied on all surfaces of the light blue box. To make sure the hori-
zon size is small relative to the geometrical feature in the sample, & is set to be 4pm. In
addition, this horizon size is in the range of the expected thickness of the layer affected by
corrosion [29]. The blue box is extended by 6 from all surfaces as the fictitious domain for
enforcing volume constraints. The discretization resolution along the three Cartesian direc-
tions is 27,27, 2% which results in 1,048,576 nodes. The m-factors [30] along these direc-
tions are - =3.09, - =3.77,and - = 4.57.

In this example, we consider a similar uniform corrosion environment as the experi-
ments in [6]. The metal sample is a commercial Cu plate with a purity of 99.94%. In
this experiment, the 1 M NaCl solution was circulated via two pumps to avoid the local
accumulation of Cu ions. Since the flowing solution flushes the dissolved Cu ions, the
salt layer effect does not need to be considered here. The material properties are dif-
fusivity K = 1297um? - s~!, average charge number n = 2, and Cq;,y = 141,000mol/m>
[31]. We choose the total time 7,,,, = 300s. The time step dt = 0.8ms is chosen based
on the stability analysis in [18, 19], leading to about 300 K time steps. By taking the
measured current density in [6], i is set to be 1.45 kA/m?. The evolution of uniform
corrosion is shown in Fig. 6, where the solid phase is shown at various times. A simula-
tion movie is available in Supplementary Materials (uniform_corrosion.mp4). We can
see that the corrosion occurs on all surfaces of “N” and the corners become rounded.
The metal concentration map at 300 s is shown in Fig. 7, where the “trace” of the solid
connection, dissolved by now, between the two vertical posts is seen in the electrolyte.

This computation is performed on a supercomputer in the Holland Computing Center
of the University of Nebraska-Lincoln, with an Intel Xeon E5-2670 2.60 GHz CPU, up
to 512 GB RAM per CPU, and a Tesla P100 GPU with 12 GB memory. This simulation,
with no visualization during running, takes 1.4 h. More discussion on comparing the
computational cost of using the FCBM or the meshfree method (with direct summation
for quadrature) can be found in [18, 19, 21].

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.6 Uniform corrosion of a complex shape ata 0s, b 100 s, ¢ 200 s, and d 300s

5.2 A pitting Corrosion Example in 3D with Multiple Growing and Merging Pits

In this example, we use the same geometry as in the last section. To model pitting corro-
sion, we first initiate 20 spherical pits with random locations on one of the surfaces and
random radii (2 to 4 pm), as shown in Fig. 8.

The boundary conditions on the “electrolyte box™ are the same as the previous uni-
form corrosion example. To obtain smoother pits, we need a higher resolution than that
used in the uniform corrosion example. The discretization resolution along the three
Cartesian directions is 28,28, 2% which results in 4,194,304 nodes. The m-factors [30]
along these directions are é =6.17, Aiy =17.53, andA% = 4.57, respectively.

In this example, the corrosion environment is the same as the experiments in [32].
The metal sample is 304L stainless steel, and it is surrounded by 0.1 M NaCl solu-
tion. Considering salt layer formation is important in pitting corrosion (see, e.g., [33])
and is taken into account here. The material properties are diffusivity K = 860pm? - s,
average charge number n = 2.19, Cg ;y = 142,900mol/m?, and NaCl solution at 25 °C
C,,. = 4600mol/m>. By taking the measured current density in [32], i is set to be 5.1
kA/m2. We choose the total time f,,, = 80s and time step df = Ims which is chosen
based on the stability analysis in [18, 19]. The evolution of pitting corrosion at different

@ Springer

Journal of Peridynamics and Nonlocal Modeling

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

Fig.7 Metal ion concentration in an x—y cross-section at 300s

times is shown in Fig. 9. The autonomous growth and merger of pits are observed. A
simulation movie is available in Supplementary Materials (pitting_corrosion.mp4). The
metal concentration in a cross-section at 80 s is shown in Fig. 10 for the section in the
y—z plane through the left side of the N-letter, cutting some three merging pits.

This simulation, with no visualization processed during the run, took 2.9 h to com-
plete on the same platform as the uniform corrosion example above.

Fig.8 Nebraska “N” sample
with initial pits

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.9 Growing and merging corrosion pits on the front face of a complex shape at a 20 s, b 40 s, ¢ 60 s,
and d 80s

6 Possible Extensions of PeriFast to Other Corrosion Types

PeriFast/Corrosion introduced in this paper implements PD models for uniform and pitting
corrosion. PD models for other types of corrosion have been introduced as well, for example,
uniform corrosion [6], pitting corrosion with lacy covers [5], crevice corrosion [7], galvanic
corrosion [8], intergranular corrosion [9], stress-dependent corrosion [6], and stress-corrosion

[T T T T T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000

Fig. 10 Metal ion concentration in a y—z cross-section at 80s

@ Springer

Journal of Peridynamics and Nonlocal Modeling

cracking [10]. These published PD models have used the direct summation in the meshfree
method with one-point Gaussian quadrature. Extending PeriFast/Corrosion to these other cor-
rosion types requires some changes, some of which are described briefly below.

In certain materials (like stainless steel), pitting occurs with the formation of lacy cov-
ers. Part of the surface may passivate due to low pH values while corrosion continues in
other regions. The corrosion process bypasses the passivated part and creates a perforated
cover (the “lacy cover”). The passivation and lacy cover formation mechanism have been
implemented in the pitting corrosion model and solved using FCBM [21] and could be eas-
ily added to the code.

Crevice corrosion happens when geometry restricts the flow of electrolytes in the
crevice, leading to the accumulation of metal ions. Electroneutrality means that more
chloride ions migrate from the bulk electrolyte into the crevice, triggering local acidi-
fication, which increases the anodic dissolution rate. To model this, the current density
i depends on the concentration, and the PD formulation in Eq. (3) needs to be changed
as described in [7]. Therefore, to model crevice corrosion using PeriFast/Corrosion, the
user should define a new characteristic function to take into account the concentration-
dependent current density.

Intergranular corrosion can significantly reduce the mechanical durability of metal
alloys. Due to the local galvanic coupling of grain boundaries and grain matrix, grain
boundaries are corroded preferentially, usually leading to faster dissolution along the grain
boundaries. To model this, the user would need to define characteristic functions to dis-
tinguish grain boundaries from the grains themselves. The introduction of such material
heterogeneities in the FCBM context could be performed as discussed in [21].

PeriFast/Corrosion can be coupled with PeriFast/Dynamics [28], which is an imple-
mentation of FCBM for dynamic elastic deformations and brittle fracture problems in
3D, to model stress-corrosion cracking and stress-dependent corrosion problems. In these
types of problems, stress influences the corrosion rate and corrosion reduces the mate-
rial’s toughness/strength (e.g., reduce ductility), leading to early fracture. Both PeriFast/
Corrosion and PeriFast/Dynamics are branches of the PeriFast code that implement the
FCBM for PD models. Three different PD material models are provided in PeriFast/
Dynamics: the linearized bond-based and ordinary state-based models for isotropic elastic
materials and the PD correspondence model for isotropic hyperelastic materials. The cur-
rent version of the code implements brittle damage models, but ductile failure can also be
considered [34, 35].

7 Conclusions

In this paper, we introduced a compact and efficient MATLAB code, PeriFast/Corro-
sion, for simulating uniform and pitting corrosion problems. PeriFast/Corrosion uses
the fast convolution-based method (FCBM) of discretization for peridynamic (PD) cor-
rosion models.

We reviewed the PD corrosion model and the FCBM for discretization. The salt layer
effect, critical in pitting corrosion, can be selected as an option in the model. Using the
embedded constraint method, the FCBM applies to arbitrary domains and given bound-
ary conditions. Compared with the direct summation used for the quadrature in the
meshfree discretization of the PD model, the computational cost for FCBM is reduced
from O(NM) to O(NlogN), and memory allocation requirements scale as O(N) instead

@ Springer

Journal of Peridynamics and Nonlocal Modeling

of O(N?). N is the total number of nodes, and M is the number of nodes in the family of
an arbitrary node. Due to these large gains in efficiency, one can run PD simulations of
corrosion damage at larger scales and for longer time spans than when using previous
discretization methods.

The structure of PeriFast/Corrosion and its modules are discussed in detail. The user
of the PeriFast/Corrosion has the flexibility to modify the modules based on their needs.
Two examples are included: a 3D uniform corrosion in copper and a 3D pitting corrosion
in stainless steel, both running on the same nontrivial shape (the University of Nebraska
“N”). The pitting corrosion example shows the autonomous growth and merger of many
pits. Possible extensions of the code to a variety of other corrosion types and corrosion-
related problems have been presented to show the potential of PeriFast/Corrosion.

Appendix: The Influence of the Salt Layer

In this part, using a 2D version of the FCBM pitting corrosion code [21], we investigate the
influence of the salt layer by running the same pitting corrosion example with and without
considering the salt layer effect. The specimen’s configuration and boundary condition are
shown in Fig. 11.

The size of the 2D computational sample is Imm X Imm. The material is stain-
less steel 304SS. The average charge number (n = 2.19) [36] of 304SS is calculated from
the charge number of Fe, Ni, Cr, and their mole fractions. The specimen is submerged
in 1 M NaCl solution. The material properties are given [37]: Cgq = 143000mol/m?3
andC,, = 5100mol/m?. The initial current density in the experiment [38] is measured to
be 3.8A - cm™2.

The simulation results with and without the salt layer can be found in Fig. 12. We
can see that the salt layer at the pit bottom influences the pit’s shape and size. With the
salt layer effect, the corrosion near the pit bottom is temporarily stopped, leading to the
shallower pit shape. In cases when the current density is small and ions can be timely

Fig. 11 Boundary conditions and aC(x,t)
initial conditions of the 2D cor- ax, 0
rosion example Clx,t) =0 2‘/
¥
6C(x,t)_0 BC(x,t):O
ax, C(x,0) = Csotia 0x4

\ -

ac(xt)
ox, 0

X1

@ Springer

Journal of Peridynamics and Nonlocal Modeling

<1074 Concentration at 120s <10% © 104 Concentration at 120s 10*
14 14
4 4
12 12
3 3
2 10 2 10
1 1
8 8
Ko Xo
1 6 ; s
2 4 2 4
3 3
2 2
4 4
0 0
4 3 2 4 0 1 2 3 4 4 3 2 44 0 1 2 3 4
x1 %1074 x1 <104

Fig. 12 PeriFast/Corrosion results with salt layer (left), and without salt layer (right). The colors represent
the metal concentration

diffused out of the pit, the salt layer may not play an important role and can be ignored.
A more detailed discussion of the salt layer effect can be found in [21].

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s42102-023-00098-5.

Author Contribution L. W., S. J., and F. M. implemented and tested the computer code. All authors wrote
the manuscript draft. F. B. acquired funding, designed and coordinated research plan, supervised the code
implementation, and edited the manuscript and computer code.

Funding This work has been supported by NSF CDS&E-CMMI grant No. 1953346 and by a Nebraska
System Science award from the Nebraska Research Initiative. This work was completed utilizing the Hol-
land Computing Center of the University of Nebraska, which receives support from the Nebraska Research
Initiative.

Data Availability The source code can be downloaded from https://github.com/PeriFast/Code by clicking the

green “Code” button and selecting “Download ZIP”. This will download all of the branches of the PeriFast
code, at this time PeriFast/Corrosion and PeriFast/Dynamics, which solves dynamic fracture problems.

Declarations
Ethics Approval Not applicable.

Competing Interests The authors declare no competing interests.

References

—_

PeriFast/Corrosion (2022) Retrieved from https://github.com/PeriFast/Code

2. Pistorius PC, Burstein GT (1992) Metastable pitting corrosion of stainless steel and the transi-
tion to stability. Philosophical transactions of the royal society of London. Series A: Phys Eng Sci
341(1662):531-559. https://doi.org/10.1098/rsta.1992.0114

3. Jafarzadeh S, Chen Z, Bobaru F (2019) Computational modeling of pitting corrosion. Corros Rev
37(5):419-439. https://doi.org/10.1515/corrrev-2019-0049

4. Chen Z, Bobaru F (2015) Peridynamic modeling of pitting corrosion damage. J] Mech Phys Solids

78:352-381. https://doi.org/10.1016/j.jmps.2015.02.015

@ Springer

https://doi.org/10.1007/s42102-023-00098-5
https://doi.org/10.1007/s42102-023-00098-5
https://github.com/PeriFast/Code
https://github.com/PeriFast/Code
https://doi.org/10.1098/rsta.1992.0114
https://doi.org/10.1515/corrrev-2019-0049
https://doi.org/10.1016/j.jmps.2015.02.015

Journal of Peridynamics and Nonlocal Modeling

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Jafarzadeh S, Chen Z, Zhao J, Bobaru F (2019) Pitting, lacy covers, and pit merger in stainless steel:
3D peridynamic models. Corros Sci 150:17-31. https://doi.org/10.1016/j.corsci.2019.01.006
Jafarzadeh S, Chen Z, Li S, Bobaru F (2019) A peridynamic mechano-chemical damage model for stress-
assisted corrosion. Electrochimica Acta, 323:134795. https://doi.org/10.1016/j.electacta.2019.134795
Jafarzadeh S, Zhao J, Shakouri M, Bobaru F (2022) A peridynamic model for crevice corrosion dam-
age. Electrochimica Acta, 401:139512. https://doi.org/10.1016/j.electacta.2021.139512

Zhao J, Jafarzadeh S, Rahmani M, Chen Z, Kim YR, Bobaru F (2021) A peridynamic model for gal-
vanic corrosion and fracture. Electrochimica Acta 391:138968. https://doi.org/10.1016/j.electacta.
2021.138968

Jafarzadeh S, Chen Z, Bobaru F (2018) Peridynamic modeling of intergranular corrosion damage. J
Electrochem Soc 165(7):C362—C374. https://doi.org/10.1149/2.0821807jes

Chen Z, Jafarzadeh S, Zhao J, Bobaru F (2021) A coupled mechano-chemical peridynamic model for
pit-to-crack transition in stress-corrosion cracking. J Mech Phys Solids 146:104203. https://doi.org/10.
1016/j.jmps.2020.104203

Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics.
Comput Struct 83(17-18):1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026

Wang L, Bobaru F (2021) Connections between the meshfree peridynamics discretization and graph
Laplacian for transient diffusion problems. J Peridynamics Nonlocal Model 3(4):307-326. https://doi.
org/10.1007/s42102-021-00053-2

Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Comput
Math Appl 71(11):2432-2448. https://doi.org/10.1016/j.camwa.2015.12.021

Mehrmashhadi J, Wang L, Bobaru F (2019) Uncovering the dynamic fracture behavior of PMMA with
peridynamics: the importance of softening at the crack tip. Eng Fracture Mech 219:106617. https://doi.
org/10.1016/j.engfracmech.2019.106617

Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle
fracture. Int J Fract 196(1-2):59-98. https://doi.org/10.1007/s10704-015-0056-8

Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des
43(15):1169-1178. https://doi.org/10.1016/j.finel.2007.08.012

Liu W, Hong J-W (2012) A coupling approach of discretized peridynamics with finite element method.
Comput Methods Appl Mech Eng 245:163—175. https://doi.org/10.1016/j.cma.2012.07.006

Jafarzadeh S, Larios A, Bobaru F (2020) Efficient solutions for nonlocal diffusion problems via
boundary-adapted spectral methods. J Peridynamics Nonlocal Model 2:85-110. https://doi.org/10.1007/
542102-019-00026-6

Jafarzadeh S, Wang L, Larios A, Bobaru F (2021) A fast convolution-based method for peridynamic
transient diffusion in arbitrary domains. Comput Methods Appl Mech Eng 375:113633. https://doi.org/
10.1016/j.cma.2020.113633

Jafarzadeh S, Mousavi F, Larios A, Bobaru F (2022) A general and fast convolution-based method
for peridynamics: applications to elasticity and brittle fracture. Comput Methods Appl Mech Eng
392:114666. https://doi.org/10.1016/j.cma.2022.114666

Wang L, Jafarzadeh S, Larios A, Bobaru F (2023) A fast convolution-based method for peridynamics
model of pitting corrosion. Submitted

Lopez L, Pellegrino SF (2022) A fast-convolution based space—time Chebyshev spectral method
for peridynamic models. Adv Continuous Discrete Models 2022(1):70. https://doi.org/10.1186/
$13662-022-03738-0

Lopez L, Pellegrino SF (2022) A space-time discretization of a nonlinear peridynamic model on a 2D
lamina. Comput Math Appl 116:161-175. https://doi.org/10.1016/j.camwa.2021.07.004

Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffusion. J Comput Phys 265:71-96.
https://doi.org/10.1016/j.jcp.2014.01.027

Zhao J, Jafarzadeh S, Chen Z, Bobaru F (2020) An algorithm for imposing local boundary conditions
in peridynamic models on arbitrary domains. https://doi.org/10.31224/0sf.i0/7z8qr

Le QV, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Com-
put Mech 61(4):499-518. https://doi.org/10.1007/s00466-017-1469-1

Isaacs HS, Cho J, Rivers ML, Sutton SR (1995) In situ X-Ray microprobe study of salt layers during
anodic dissolution of stainless steel in chloride solution. J Electrochem Soc 142(4):1111. https://doi.
org/10.1149/1.2044138

Jafarzadeh S, Mousavi F, Wang L, Bobaru F (2023) PeriFast/Dynamics: a MATLAB code for explicit
fast convolution-based peridynamic analysis of deformation and fracture. J Peridynamics Nonlocal
Model. https://doi.org/10.1007/s42102-023-00097-6

Springer

https://doi.org/10.1016/j.corsci.2019.01.006
https://doi.org/10.1016/j.electacta.2019.134795
https://doi.org/10.1016/j.electacta.2021.139512
https://doi.org/10.1016/j.electacta.2021.138968
https://doi.org/10.1016/j.electacta.2021.138968
https://doi.org/10.1149/2.0821807jes
https://doi.org/10.1016/j.jmps.2020.104203
https://doi.org/10.1016/j.jmps.2020.104203
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.1007/s42102-021-00053-2
https://doi.org/10.1007/s42102-021-00053-2
https://doi.org/10.1016/j.camwa.2015.12.021
https://doi.org/10.1016/j.engfracmech.2019.106617
https://doi.org/10.1016/j.engfracmech.2019.106617
https://doi.org/10.1007/s10704-015-0056-8
https://doi.org/10.1016/j.finel.2007.08.012
https://doi.org/10.1016/j.cma.2012.07.006
https://doi.org/10.1007/s42102-019-00026-6
https://doi.org/10.1007/s42102-019-00026-6
https://doi.org/10.1016/j.cma.2020.113633
https://doi.org/10.1016/j.cma.2020.113633
https://doi.org/10.1016/j.cma.2022.114666
https://doi.org/10.1186/s13662-022-03738-0
https://doi.org/10.1186/s13662-022-03738-0
https://doi.org/10.1016/j.camwa.2021.07.004
https://doi.org/10.1016/j.jcp.2014.01.027
https://doi.org/10.31224/osf.io/7z8qr
https://doi.org/10.1007/s00466-017-1469-1
https://doi.org/10.1149/1.2044138
https://doi.org/10.1149/1.2044138
https://doi.org/10.1007/s42102-023-00097-6

Journal of Peridynamics and Nonlocal Modeling

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Vallabhaneni R, Stannard TJ, Kaira CS, Chawla N (2018) 3D X-ray microtomography and mechani-
cal characterization of corrosion-induced damage in 7075 aluminium (Al) alloys. Corros Sci
139(2017):97-113. https://doi.org/10.1016/j.corsci.2018.04.046

Chen Z, Bobaru F (2015) Selecting the kernel in a peridynamic formulation: a study for transient heat
diffusion. Comput Phys Commun 197:51-60. https://doi.org/10.1016/j.cpc.2015.08.006

Ribeiro ACF, Esteso MA, Lobo VMM, Valente AJM, Simoes SMN, Sobral AJEN, Burrows HD (2005)
Diffusion coefficients of copper chloride in aqueous solutions at 298.15 K and 310.15 K. J Chem Eng
Data 50(6):1986—-1990. https://doi.org/10.1021/je050220y

Almuaili FA (2017) Characterisation of 3D pitting corrosion kinetics of stainless steel in chloride con-
taining environments. Ph.D. dissertation, The University of Manchester

Jafarzadeh S, Chen Z, Bobaru F (2018) Peridynamic modeling of repassivation in pitting corrosion of
stainless steel. Corrosion 74(4):393-414

Mousavi F, Jafarzadeh S, Bobaru F (2021) An ordinary state-based peridynamic elastoplastic 2D
model consistent with J2 plasticity. Int J Solids Struct 229:111146. https://doi.org/10.1016/j.ijsolstr.
2021.111146

Mousavi F, Jafarzadeh S, Bobaru F (2023) A fast convolution-based method for peridynamic models in
plasticity and ductile fracture. (submitted)

Scheiner S, Hellmich C (2009) Finite Volume model for diffusion- and activation-controlled pitting
corrosion of stainless steel. Comput Methods Appl Mech Eng 198(37-40):2898-2910. https://doi.org/
10.1016/j.cma.2009.04.012

Scheiner S, Hellmich C (2007) Stable pitting corrosion of stainless steel as diffusion-controlled disso-
lution process with a sharp moving electrode boundary. Corros Sci 49(2):319-346. https://doi.org/10.
1016/j.corsci.2006.03.019

Ernst P, Newman RC (2002) Pit growth studies in stainless steel foils. I. Introduction and pit growth
kinetics. Corros Sci 44(5):927-941. https://doi.org/10.1016/S0010-938X(01)00133-0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.1016/j.corsci.2018.04.046
https://doi.org/10.1016/j.cpc.2015.08.006
https://doi.org/10.1021/je050220y
https://doi.org/10.1016/j.ijsolstr.2021.111146
https://doi.org/10.1016/j.ijsolstr.2021.111146
https://doi.org/10.1016/j.cma.2009.04.012
https://doi.org/10.1016/j.cma.2009.04.012
https://doi.org/10.1016/j.corsci.2006.03.019
https://doi.org/10.1016/j.corsci.2006.03.019
https://doi.org/10.1016/S0010-938X(01)00133-0

	PeriFastCorrosion: A 3D Pseudospectral Peridynamic MATLAB Code for Corrosion
	Abstract
	1 Introduction
	2 Review of the Peridynamic Model for Corrosion
	3 Brief Review of the Fast Convolution-Based Method for PD Models of Corrosion
	4 The PeriFastCorrosion Code
	4.1 Description of Main.m
	4.2 Description of Inputs.m
	4.3 Description of Nodes_and_sets.m
	4.4 Description of Initial_conditions.m
	4.5 Description of Kernel_functions.m
	4.6 Description of Boundary_Conditions.m and Update_VC.m
	4.7 Description of Initial_gpu_arrays.m
	4.8 Description of Update_C.m
	4.9 Description of Dump_output.m, Dump_output_Tecplot.m, Visualization.m, and Postprocess.m

	5 Corrosion Examples in 3D
	5.1 Uniform Corrosion Example in 3D
	5.2 A pitting Corrosion Example in 3D with Multiple Growing and Merging Pits

	6 Possible Extensions of PeriFast to Other Corrosion Types
	7 Conclusions
	Appendix: The Influence of the Salt Layer
	Anchor 22
	References

