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Abstract
We introduce PeriFast/Corrosion, a MATLAB code that uses the fast convolution-based 
method (FCBM) for peridynamic (PD) models of corrosion damage. The FCBM uses the 
convolutional structure of PD equations and employs the Fast Fourier transform (FFT) to 
achieve a computational complexity of O(NlogN) . PeriFast/Corrosion has significantly 
lower memory allocation needs, O(N) , compared with, for example, the meshfree method 
with direct summation for PD models that requires O(N2) . The PD corrosion model and the 
fast convolution-based method are briefly reviewed, and the detailed structure of the code 
is presented. The code efficiently solves 3D uniform corrosion (example for copper) and 
pitting corrosion (example for stainless steel) problems with multiple growing and merging 
pits, set in a complicated shape sample. Discussions on possible immediate extensions of 
the code to other corrosion damage problems are provided. PeriFast/Corrosion is a branch 
of PeriFast codes and is freely available on GitHub [1].

Keywords  Peridynamics · Pitting corrosion · Corrosion · Fast Fourier transform (FFT) · 
Software · MATLAB

1  Introduction

Pitting corrosion is a type of localized corrosion that occurs in many alloys, such as aluminum 
alloys, stainless steel, zinc alloys, and magnesium alloys. Under certain conditions, pits may 
maintain stable growth [2] and lead to a rapid reduction in the durability of a structure.

Simulating pitting corrosion has been a challenge for many decades due to the complex 
chemomechanical interactions that are influenced by geometry, environmental conditions, 
and mechanical loading [3]. A different approach to modeling pitting corrosion has been 
introduced by Chen and Bobaru in 2015 [4] and further advanced in [5]. PD models for 
other types of corrosion have been introduced as well, including uniform corrosion [6], 

 *	 Florin Bobaru 
	 fbobaru2@unl.edu

1	 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, 
NE 68588, USA

2	 Department of Civil and Environmental Engineering, The Pennsylvania State University, 
University Park, PA 16801, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42102-023-00098-5&domain=pdf


	 Journal of Peridynamics and Nonlocal Modeling

1 3

pitting corrosion with lacy covers [5], crevice corrosion [7], galvanic corrosion [8], inter-
granular corrosion [9], and stress-dependent corrosion [6]. This peridynamic (PD) model 
treats the problem as dissolution and diffusion in the solid interface/electrolyte system, 
rather than just as a diffusion problem with a moving interface, as it has generally been 
addressed in the past. In this way, the PD corrosion model allows autonomous propagation 
of the corrosion front, with no need of tracking its location. By including corrosion damage 
that takes place in the layer affected by corrosion, the PD corrosion model has been cou-
pled also with PD fracture models to simulate stress-dependent corrosion damage [6] and  
stress corrosion cracking [10]. Different from the classical local theory, the PD governing 
equations are in the form of integrodifferential equations (IDEs). In PD, a material point x 
is connected via peridynamic bonds to other points within its neighborhood H

x
 (see Fig. 1). 

The neighborhood of material point x , also called the “horizon region,” is centered at point 
x and usually is taken as a segment in 1D, a circular disk in 2D, and a sphere in 3D. The 
radius of the neighborhood is called the “horizon,” � , and it determines the range of “direct” 
interactions between material points. Because of its ability in handling the autonomous 
evolution of damage, the most widely used discretization for PD is the so-called meshfree 
method [11–14]. The method is based on a simple approximation of the PD integral opera-
tor using mid-point integration (equivalent to one-point Gaussian integration) on a uniform 
grid. Corrections for the partial nodal volumes covered by the horizon of an arbitrary discre-
tization node have been used to improve the approximation (see [15]).

In general, nonlocality increases the computational cost for numerical methods used to 
approximate solutions to PD models. Various methods have been used to compute solu-
tions to PD equations: the meshfree method based on the one-point Gaussian quadrature 
(meshfree PD) [11–14], the finite element method (FEM) [16, 17], etc. In meshfree PD, 
for each node, a loop is executed over all nodes inside its “family” of neighboring nodes 
(nodes located in H

x
 , within � from the current node) to compute the quadrature by direct 

summation of the terms. The computational cost of this method is O(NM) where the total 
number of nodes in the discretized domain is N , and M is the number of neighbors in the 
horizon region of a node. Since the neighbor nodes need to be stored, the memory cost for 
the meshfree method is also high. The high computation cost in time and memory lim-
its the space and time scale PD simulations can access. This is especially true for three-
dimensional problems in which the number of neighbors needed for good resolution of 
damage is high.

To reduce the computational cost, a pseudospectral method has been introduced in 
[18–20] to take advantage of the convolutional structure present in some PD equations and 
use the Fast Fourier Transform (FFT) to compute the quadrature, instead of the direct sum-
mation, and achieve O(NlogN) computational complexity, which beats O(NM) , when M is 
large, by a significant margin. The fast convolution-based method (FCBM) has been used 
for several PD formulations: diffusion, elastic deformation and fracture, and dissolution 
[18–21]. In addition to better scaling, FCBM does not need neighbor search and storage. In 
general, spectral-type methods are limited to problems on periodic domains. With FCBM, 
two methods have been used to solve problems on arbitrary domains: the embedded con-
straint method [19] and the volume penalization method [18]. Other variations of FCBM 
have been recently proposed in [22, 23].

Due to the nonlocality, the boundary conditions in PD need to be applied, in 3D, not over a 
surface, but a thick layer (a volume). There are numerous methods to enforce some given local-type 
boundary conditions in PD models, please see [24–26]. In this study, we use the mirror-based fic-
titious node method (see [24, 25]) which applies corresponding constrained values to PD nodes over  
the fictitious region (see Fig. 1), so that the desired local boundary conditions are satisfied.



Journal of Peridynamics and Nonlocal Modeling	

1 3

In this paper, we present PeriFast/Corrosion, a MATLAB implementation of the FCBM for 
the PD corrosion model. The paper is organized as follows: first, we briefly review the PD cor-
rosion model in Sect. 2; next, the FCBM discretization for PD corrosion models is described 
in Sect. 3; in Sect. 4, the main structure of PeriFast/Corrosion code is given, together with the 
GitHub link from which it can be downloaded; each code component is discussed in detail, 
including post-processing of the results; in Sect. 5, we demonstrate setting up input data, run-
ning the code, and visualizing the results for two corrosion examples in 3D: one on uniform 
corrosion and the other on pitting corrosion with salt-layer formation; users can easily repro-
duce the results shown here; in Sect. 6, we discuss possible extensions of the version of the 
code presented here to treat a variety of other corrosion types (crevice, galvanic, intergranu-
lar, etc.) and to couple with other codes when solving other corrosion-related problems (e.g., 
stress-corrosion cracking); concluding remarks are gathered in Sect. 7.

2 � Review of the Peridynamic Model for Corrosion

In the presence of an electrolyte, the corrosion process can be modeled as a process in 
which the solid metal dissolves into the electrolyte, and the dissolved metal ions diffuse in 
the electrolyte. Consider the PD corrosion model for an arbitrary domain Ω with the ficti-
tious region Γ:

where C(x, t) is the metal ion concentration at point x and time t , C
0
 is the initial metal ion 

concentration, and g(x, t) is a function that prescribes the constraints of concentration on the 
fictitious region Γ . In PeriFast/Corrosion, we use the mirror-based fictitious node method to 
find the profile for g(x, t) such that the solution of Eq.  (1) effectively matches a classical 
boundary condition of Dirichlet or Neumann-type. More information on how to specify g(x, t) 
using the fictitious nodes method can be found in [19]. L(x, t) = ∫

Hx
J
(
x, x

′
, t
)
dV

x
′ is the 

summation of flow densities between point x and its neighbor points. The flow density 
J
(
x, x

′
, t
)
 is defined as

(1)

⎧⎪⎨⎪⎩

𝜕C(x,t)

𝜕t
= L(x, t) x ∈ Ω, t > 0

C(x, 0) = C
0
(x) x ∈ Ω

C(x, t) = g(x, t) x ∈ Γ, t ≥ 0

Fig. 1   A point x in a body Ω , its 
horizon region H

x
 and a neighbor 

x
′ in H

x
 , the boundary ( �Ω ), and 

the (fictitious region Γ , used to 
enforce given local boundary 
conditions in the nonlocal model
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Here, k
(
x, x

′
, t
)
 is the micro diffusivity for the bond connecting x to x′ , at time t, 

which can be connected to the measured diffusivity of metal ions in the electrolyte by 
the following formulas (see [21] for details). q

(
x, x

′
, t
)
 is the micro dissolvability of the 

bond between x to x′ , at time t, which is calibrated to the corrosion current density as 
shown below:

where KL is the diffusivity of metal ions in the electrolyte, � is the horizon size,i is the  
current density, z is the charge number, and F is Faraday’s constant. Equation  (3) 
gives the micro diffusivity and micro dissolvability for the 3D case. For 1D and 2D 
cases, please see [21].

During corrosion, the electrolyte can become saturated in some regions, with the concen-
tration of dissolved metal ions reaching the saturated concentrations Csat, especially at the 
bottom of the corrosion pits. In this case, the ions that the electrolyte cannot sustain forming 
a salt layer [27]. The thickness of the salt layer increases until it balances the dissolution rate 
with the diffusion rate. The influence of the salt layer is discussed in the Appendix.

In Eq. (3), ΩL is the liquid phase region, ΩS is the dissolving solid region, and ΩSalt is 
the salt layer region. Region ΩL is defined as follows:

To locate the salt layer, we define ΩSalt to identify the liquid points at saturated dis-
solved metal ions concentration:

If the concentration at a liquid node reaches Csat , dissolution between the solid nodes 
directly connected by PD bonds to this liquid node is temporarily stopped. In practice, 
since we are comparing the floating point numbers, not integers, the salt layer is imple-
mented as liquid nodes whose concentrations are higher than or equal to Csat.

During pitting corrosion, regions near the surface may passivate due to low pH val-
ues while corrosion continues in other regions. The corrosion process bypasses the 
passivated part and may create (in stainless steel, for example) a perforated cover (the 
“lacy cover”) when it reaches back to the surface (see [5]). In the current version of 
the PeriFast/Corrosion code, passivation and lacy cover formation mechanisms are not 
included. Instead, when modeling pitting corrosion, we assume the surface (except for 
the initial pits) is passivated; therefore, corrosion only occurs between solid and liquid 
inside the pits. To locate the liquid points inside the pits, we denote the non-pitted ini-
tial solid geometry as ΩG . Nodes in ΩG that are in the liquid phase of the pitted sample 
form the ΩL_pit set, defined as the intersection between ΩL and ΩG . Similarly, we define 
the salt layer inside pits. More details on the implementation of uniform and pitting cor-
rosion are presented in the next section.

(2)

J
�
x, x

�
, t
�
=

⎧⎪⎨⎪⎩

k
�
x, x

�
, t
�C(x� ,t)−C(x,t)

‖x�−x‖2 x & x
� ∈ ΩL

q
�
x, x

�
, t
� sign[C(x� ,t)−C(x,t)]

‖x�−x‖
�
x ∈ ΩS & x

� ∈ ΩL�ΩSalt

�
or (x ∈ ΩL�ΩSalt & x

� ∈ ΩS)

0 otherwise

(3)k
(
x, x

�
, t
)
=

9KL

2��3
, q

(
x, x

�
, t
)
=

3

�zF�3
i

(4)ΩL =
{
x ∈ ℝ

3|∃ t∗ ∈ [0, t] ∶ C(x, t∗) < Csat

}

(5)ΩSalt =
{
x ∈ ΩL |C(x, t) = Csat

}
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The dissolving solid domain ΩS is defined as

The model above, discretized using the meshfree method, has been validated against 
various experimental results on uniform corrosion [6], pitting corrosion [5], crevice corro-
sion [7], intergranular corrosion [9], and galvanic corrosion [8]. Verification of the numeri-
cal implementation against analytical classical solution has been presented for galvanic 
corrosion in [8].

The FCBM solution for the above model has been introduced in [21], where results 
have been also verified against classical solutions and validated against experiments. To 
account for material variability, randomness has been introduced in the meshfree imple-
mentation at the bond level. The bonds are randomly selected to be damaged to match the 
corrosion damage value at each node (see [4]). In FCBM, a different way of introducing 
the expected randomness in the material has to be used. In [21], this step is achieved by 
defining the micro dissolvability q as a function that depends on location via a stochastic 
characteristic function.

3 � Brief Review of the Fast Convolution‑Based Method for PD Models 
of Corrosion

PeriFast/Corrosion uses the fast convolution-based method (FCBM) to solve the cor-
rosion problem in Eq.  (1). The fast convolution-based method (FCBM) assumes a 
given domain of arbitrary shape Ω ∪ Γ is embedded in a “tight” box �  , which is then 
extended by periodicity in all Cartesian directions, as shown in Fig. 2. Note that if the 
fictitious region (here of thickness � ) is not used for the imposition of boundary condi-
tions, one has to leave a space � between the domain and the edge of the box to avoid a 

(6)
ΩL_pit =

{
x ∈ ΩL ∩ ΩG

}

ΩSalt_pit =
{
x ∈ ΩSalt ∩ ΩG

}

(7)ΩS =
{
x ∈ Ω�ΩL

}

Fig. 2   Extension of a peridy-
namic body to a periodic box
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wrap-around effect when constructing the periodic solution. To be able to treat arbitrary 
boundary conditions, the “embedded constraint” approach [19] can be used.

After extending the problem domain, we replace Eq. (1) with the following periodic problem:

where Λ = ��(Ω ∪ Γ) is the gap region, �Ω and �Γ∪Λ are characteristic functions used to 
distinguish between the subdomains, and Cw is a function that is equal to the volume con-
straints on Γ and zero elsewhere:

where CΓ(x, t) is the volume constraint calculated by the mirror-based fictitious node 
method from the given local boundary conditions (Dirichlet- or Neumann-type). Notice 
that the solution to Eq.  (8) on Ω is the same as the solution to Eq.  (1). Since Eq.  (8) is 
defined over a periodic domain, we can use the FFT for fast computation of the circular convo-
lutions arising from the equation.

To apply the FCBM to PD formulations, these have to be set up in a convolutional 
form. First, we define the following characteristic functions to identify the phases in Ω:

where �L represents the liquid subdomain, �Salt is the salt layer subdomain, and �S repre-
sents the solid subdomain.

Since �L(x, t) + �S(x, t) = 1 , we can write:

(8)
{

𝜕C(x,t)

𝜕t
= 𝜒Ω(x)[L(x, t)] + 𝜒Γ∪Λ(x)

𝜕Cw(x,t)

𝜕t
for x ∈ � , t > 0

C(x, 0) = C
0

for x ∈ �

(9)

�Ω(x) =

{
1 x ∈ Ω

0 x ∈ ��Ω = Γ ∪ Λ

�Γ∪Λ(x) = 1 − �Ω(x) =

{
0 x ∈ Ω

1 x ∈ ��Ω = Γ ∪ Λ

Cw(x, t) =

{
0 x ∈ Ω ∪ Λ

CΓ(x, t) x ∈ Γ

�L(x, t) =

{
1 x ∈ ΩL

0 else

�Salt (x, t) =

{
1 x ∈ ΩSalt

0 else

(10)�S(x, t) = 1 − �L(x, t)

(11)

∫ H
x

J(x, x�, t)dx� =

[
�L(x, t) + �S(x, t)

]
∫ H

x

[
�L

(
x
�
, t
)
+ �S

(
x
�
, t
)]
J
(
x, x

�
, t
)
dx� =

�L∫ H
x

� �
L
J dx� + (�L − �Salt )∫ H

x

� �
S
J dx� + �S∫ H

x

(� �
L
− � �

Salt
) J dx�
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where �L is short for �L(x, t) and � �
L
 is short for �L

(
x
′
, t
)
 and similar for �Salt and �S.

The splitting of the original integral into four integrals means that each new integral represents 
metal ion transfer via bonds connecting different phases. For example, �S∫ H

x

(� �
L
− � �

Salt
) J dx� 

represents the dissolution between solid nodes and liquid nodes whose concentration is below 
Csat . Since ion transport inside the solid is minute compared with the liquid–solid or liquid–liquid 
transport, we take the transport between solid nodes to be zero, meaning that only three terms are 
left in Eq. (11).

In uniform corrosion, Eq. (11) is applied to all points near the surface. For the pitting cor-
rosion model, the surface is considered passivated except for the initial pits, and, as discussed 
in the previous section, corrosion/dissolution involves the solid points near the pit surfaces and 
the electrolyte inside the pits. To determine these regions (liquid-phase nodes inside pits), we 
define the following characteristic functions:

By replacing the (�L − �Salt ) with (�L_pit − �Salt_pit ) and changing (� �
L
− � �

Salt
) to 

(� �
L_pit

− � �
Salt_pit

) in Eq. (11), we have

By entering the flow density J defined in Eq. (2) into Eq. (11) and Eq. (13), we obtain the 
convolution form needed, for each of the two cases discussed:

Uniform corrosion:

Pitting corrosion:

�L_pit (x, t) =

{
1 x ∈ ΩL ∩ ΩG

0 else

(12)�Salt_pit (x, t) =

{
1 x ∈ ΩSalt ∩ ΩG

0 else

(13)

∫ H
x

J(x, x�, t) dx� =�L∫ H
x

� �
L
J dx�

+
(
�L_pit − �Salt_pit

)
∫ H

x

� �
S
J dx�

+ �S∫ H
x

(
� �
L_pit

− � �
Salt_pit

)
J dx�

∫
Hx

J dx
� =�

L∫
Hx

� �
L
�

diff

���x� − x��
�
C

�
dx

� − �
L
C∫

Hx

� �
L
�

diff

�‖x� − x‖� dx�

+ (�
L
− �

Salt
)∫

Hx

� �
S
�

corr

�‖x� − x‖� dx� − �
S∫

Hx

(� �
L
− � �

Salt
)�

corr

�‖x� − x‖� dx�

= �
L

�
�

diff
∗
�
�
L
C
��

−
�
�
L
C
��
�

diff
∗ �

L

�

+ (�
L
− �

Salt
)
�
�

corr
∗ �

S

�
− �

S
[�

corr
∗ (�

L
− �

Salt
)]

(14)
∫ H

x

J dx� =�L

[
�dif f ∗

(
�LC

)]
−
(
�LC

)[
�dif f ∗ �L

]

+ (�L_pit − �Salt_pit )
[
�corr ∗ �S

]

− �S[�corr ∗ (�L_pit − �Salt_pit )]
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where �dif f

�‖x� − x‖� = k

‖x�−x‖2 and �corr

�‖x� − x‖� = q

‖x�−x‖ . See extensions to other types 
of corrosion damage; please see the discussion in Sect. 6.

To spatially discretize the periodic domain �  , we use a uniform grid [18]:

where N
1
 , N

2
 , N

3
 are the number of nodes in each direction, n =

{
0,… ,N

1
− 1

}
;m ={

0,… ,N
2
− 1

}
;p = {0,… ,N

3
− 1} , and L

1
, L

2
, L

3
 are the dimensions of � .

In the Fourier space, the circular convolution is transformed into a multiplication of the 
convoluted functions. By denoting � and �−1 the FFT and inverse FFT [18, 19], to numeri-
cally calculate the �dif f ∗

(
�LC

)
 in Eq.  (14), we take the Fourier Transform of �s

dif f
 and 

�LC , multiply them and take their inverse Fourier Transform �−1[�
(
�s
dif f

)
�(�LC)] . Notice 

that the �s
dif f

 is the shifted kernel with respect to the box coordinates. This shift is neces-
sary for the circular convolution operation. The figure below shows the original version 
and the shifted version of a 2D radial kernel. The colored disk represents the non-zero part 
of the kernel Fig. 3.

The concentration at each time step is updated using the forward Euler time-integration 
algorithm, and for each of the cases discussed, we have:

Uniform corrosion:

(15)xnmp =
(
nΔx

1
,mΔx

2
, pΔx

3

)
,with Δx

1
=

L
1

N
1

;Δx
2
=

L
2

N
2

;Δx
3
=

L
3

N
3

Fig. 3   The support of the kernel function (�dif f ) in its original form (left) and its shifted form in the 
box �  (right)
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Pitting corrosion:

where ΔV = Δx
1
Δx

2
Δx

3
 and the argument (xnmp, t) is replaced with superscript nmp, t to 

reduce the notational complexity.
Using the FFT to numerically calculate � and �−1 at each time step, the computa-

tional complexity is reduced to O(NlogN) . Since there is no need to store the neighbor 
nodes, the memory cost is also reduced from O(N2) to O(N) . The efficiency gains com-
pared with the direct summation for the meshfree method quadrature have been dis-
cussed in [18, 19, 21].

4 � The PeriFast/Corrosion Code

In this section, we first introduce the overall structure of PeriFast/Corrosion code 
and then discuss in detail each of the m-files contained in it. The PeriFast/Corrosion 
code can be found at https://​github.​com/​PeriF​ast/​Code. The user could download the 
code by clicking on the “Code” and then “Download ZIP,” as shown in Fig. 3. If the 
user has Git Bash installed, the code can be downloaded by typing “git clone https://​
github.​com/​PeriF​ast/​Code” in the Git Bash command window. The download will 
contain the PeriFast/Dynamics code, which solves dynamic brittle fracture problems 
(see [28]).

In the current version, the code can handle two different types of corrosion: uniform 
corrosion and pitting corrosion starting from a set of predefined initial pits. The user 
can easily switch between these two options by changing the corrosion_type in input.m.

Cnmp,t+Δt =�
nmp

Ω

(
�
nmp,t

L
�
−1
[
�
(
�s
dif f

)
�
(
�LC

)]|||
nmp,t

ΔV

−
(
�
nmp,t

L
Cnmp,t

)
�
−1
[
�
(
�s
dif f

)
�
(
�L

)]|||
nmp,t

ΔV

+(�
nmp,t

L
− �

nmp,t

Salt
)�−1

[
�
(
�s
corr

)
�
(
�S

)]|||
nmp,t

ΔV

−�
nmp,t

S
�
−1
[
�
(
�s
corr

)
�
(
�L − �Salt

)]|||
nmp,t

ΔV
)

+ (1 − �
nmp

Ω
)Cnmp,t

w

(16)

Cnmp,t+Δt =�
nmp

Ω

(
�
nmp,t

L
�
−1
[
�
(
�s
dif f

)
�
(
�LC

)]|||
nmp,t

ΔV

−
(
�
nmp,t

L
Cnmp,t

)
�
−1
[
�
(
�s
dif f

)
�
(
�L

)]|||
nmp,t

ΔV

+(�
nmp,t

L_pit
− �

nmp,t

Salt_pit
)�−1

[
�
(
�s
corr

)
�
(
�S

)]|||
nmp,t

ΔV

−�
nmp,t

S
�
−1
[
�
(
�s
corr

)
�
(
�L_pit − �Salt_pit

)]|||
nmp,t

ΔV
)

+ (1 − �
nmp

Ω
)Cnmp,t

w

https://github.com/PeriFast/Code
https://github.com/PeriFast/Code
https://github.com/PeriFast/Code
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PeriFast/Corrosion consists of thirteen MATLAB (.m) files, including main.m, 
inputs.m, nodes_and_sets.m, initial_conditions.m, kernel_functions.m, boundary_
conditions.m, initial_gpu_arrays.m, update_VC.m, update_C.m, dump_output.m, 
dump_output_Tecplot.m, visualization.m, and postprocess.m.

The main.m file is the main script file to run PeriFast/Corrosion. It calls all the 
scripts and functions required to run the corrosion simulation. inputs.m is the input 
script that contains all the physical parameters. nodes_and_sets.m describes the 
domain size, geometry, discretized nodes coordinates, horizon size, and the discrete 
characteristic functions for subdomains. Currently, the user needs to manually setup 
the geometry data for each example. Readers can contribute to the code by adding 
functions that would automatically use geometry data exported from various CAD 
systems. initial_conditions.m is the file that defines the initial concentration and the 
locations and sizes of initial pits. kernel_functions.m specifies the kernel functions 
used in the corrosion model. boundary_conditions.m defines the type and values of 
boundary conditions. initial_gpu_arrays.m copies the arrays to GPU memory if the 
user chooses to use GPU to speed up the computation. update_VC.m is used to update 
the fictitious nodes’ concentration, based on the boundary conditions and concentra-
tion at each time step. update_C.m is used to update the concentration and charac-
teristic functions at each time step. dump_output.m and dump_output_Tecplot.m are 
called, at the frequency defined by the user, to separately store the output data in a 
MATLAB variable and a Tecplot file. visualization.m is the script that plots data at 
certain times specified in inputs.m. postprocess.m is the script that the user could use 
to visualize the output data.

The visualization part affects the runtime. When running speed tests or large simu-
lations, we suggest using the visualization part as a postprocessing step, by turning 
it off. The user can turn off visualization by setting the variable is_plot_in_Matlab 
equal to zero in inputs.m file. In such a case, the user needs to use the MATLAB out-
put data file (Results.mat) and postprocess.m to postprocess the results.

4.1 � Description of Main.m

This file consists of the scripts needed to run the program. In MATLAB, since Released 
2008a, the multithreaded computations have been on by default. MATLAB will deter-
mine the most desirable number of threads. The structure is shown in Algorithm 1.

Algorithm 1   Structure of main.m
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Call inputs.m to get the input parameters (see sec�on 4.2)

Call nodes_and_sets.m to discre�ze the domain (see sec�on 4.3)

Call ini�al_condi�ons.m to assign ini�al condi�ons and ini�al pits (see sec�on 4.4)

Call kernel_func�ons.m to define and shi� the kernel func�ons (see sec�on 4.5)

Call boundary_condi�ons.m to define the boundary condi�ons (see sec�on 4.6)

If the user chooses to output data to Tecplot file

Create a structure array tdata to store the output data (node coordinates and concentra�on)

If the user chooses to visualize during run�me and create an anima�on

Create a VideoWriter object to capture the plo�ed figures as frames in a video file (.avi format)

If the user chooses to run on GPU

Call ini�al_gpu_arryas.m to transform data to GPU

For each �me step

Call update_VC.m to update the volume constraints (see sec�on 4.6)

Call update_C.m to update node concentra�on using the forward Euler method (see Eq. (16)) and 
update characteris�c func�ons (based on defini�ons in Eq. (10) and Eq. (12))

At a certain �me, dump output data and visualize the results (see sec�on 4.9) if the user chooses 
to do so in inputs.m

End

If the user chooses to visualize during run�me and create an anima�on

Close the VideoWriter object

If the user chooses to output data to Tecplot file

Write the structure array tdata to a .plt file, using an opensource MATLAB script

(h�ps://github.com/wme7/Aero-matlab/blob/master/Tecplot/mat2tecplot.m)

Save the output data to a MAT file. 

4.2 � Description of Inputs.m

This file consists of all the input physical parameters for the corrosion simulation, as well 
as data needed to define outputs and their frequency. To run a corrosion simulation, the 
user needs to define the following physical parameters and output-related data. We also 
introduce functions to check all these input parameters and display error/warning messages 
when input data is out of the expected range. For example, if the corrosion_type is set to 
values other than 0 or 1, an error message will remind user to change it. The details of mes-
sages can be found in inputs.m.
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Algorithm 2   Structure of inputs.m

Corrosion type (corrosion_type), 0 represents uniform corrosion and 1 represents pi�ng corrosion

Diffusion coefficient in the electrolyte ( ), unit in m2 s⁄

The current density of corrosion ( ), unit in A m2⁄

Average charge number of material ( )

Dissolu�on flux = ⁄ , is Faraday’s constant (96485.33 C mol⁄ )

The saturated concentra�on of dissolved metal ions in electrolyte ( ), unit in mol m3⁄

The concentra�on of metal atoms in the solid ( ), unit in mol m3⁄

Simula�on �me ( ), unit in seconds

Time step ( ), unit in seconds

Boolean value (is_plot_in_Matlab), whether to plot and output the anima�on

Boolean value (is_output_to_Tecplot), whether to write data to .plt file

Time interval of plo�ng and dumping output data (t_output), unit in seconds

Boolean value (has_salt_layer), whether to consider salt layer effect

Boolean value (run_in_gpu), whether to use GPU for computa�on

Func�on input_check which checks all above inputs and displays error/warning messages

4.3 � Description of Nodes_and_sets.m

In this file, the user needs to define the geometrical information of the problem. As 
shown in Fig. 2, given a PD body Ω , the user will first define a rectangular box �  whose 
edges are aligned with the coordinate system. The PD body Ω and its fictitious region Γ 
should be enclosed in the rectangular box �  as tight as possible; this keeps the number 
of excess nodes to a minimum. Since now the edge of �  is at least � away from the PD 
body Ω , there will be no “wrap-around” effect. After discretization, the nodal coordi-
nates are stored as Ny × Nx × Nz matrices. The solid geometry is represented as a char-
acteristic function, which is 1 for nodes located inside the geometry and 0 otherwise. In 
the numerical example shown, the coordinate system is chosen in the center of the box. 
A function checks the parameters defined in this script and displays error/warning mes-
sages when values could create problems. For example, if the m-factor value is less than 
three, a warning message will appear to remind the user to set a finer grid. More details 
of messages can be found in nodes_and_sets.m.
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Algorithm 3   Structure of Nodes_and_sets.m

Define the physical domain size ( , , ), unit in m

Extend the physical domain to a period box and define the size ( , , ), unit in m

Define the number of nodes in each direc�on ( , , )

Calculate grid size in each direc�on ( , , ), unit in m

Create a uniform grid, nodal coordinates stored in , ,

Calculate m-factor value

Build the characteris�c func�ons for the PD body ( ) and the ini�al solid geometry ( )

Func�on discre�za�on_check which looks over all the above parameters and displays error/warning 
messages

Define the horizon size ( ), unit in m

4.4 � Description of Initial_conditions.m

The user needs to define the initial conditions of the corrosion simulation in this file. Notice 
that in the pitting corrosion example shown, the initial pits’ location and size are randomly 
generated on a single surface, using a uniform probability distribution. The user can spec-
ify the total initial pits number and the probability distribution for the location of centers 
of spheres and their radii used to produce the initial pits by intersecting these spheres with 
the solid sample. These intersections lead to initial pits having spherical cap shapes. The 
region in which the centers of spheres are defined is currently selected to be slightly above 
the corroding surface (up to 2 �m ), and the radii are selected inside the [2, 4] μm interval.

Algorithm 4   Structure of initial_conditions.m

Create an ini�al concentra�on matrix 0 and assign to the solid part

If the corrosion type is pi�ng corrosion (corrosion_type equals to 1)

Define the total number of ini�al spherical shape pits

For each ini�al pit

Randomly generate pit center coordinates, with uniform distribu�on

Randomly generate pit radius, with uniform distribu�on

Assign ini�al concentra�on to the nodes inside the pit

End

End

Ini�alize the characteris�c func�ons for the liquid region ( L), the liquid region in pits ( L_pit ), the salt 
layer ( Salt ), and the solid region ( S ) based on the defini�on in Eq. (10)
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4.5 � Description of Kernel_functions.m

In this file, the kernel functions ( �dif f and �corr ) used in Eq. (14) are defined and dis-
cretized. Notice that the kernel functions are shifted such that the origins coincide with 
the corners of the periodic box �  , described in the previous section (see Fig. 4). The 
fftshift function in MATLAB is used to shift the kernel functions. This function cuts 
the array at the mid-planes of the box, swaps the subdivisions, and returns the desired 
shifted function. More detailed information about the fftshift function can be found in 
MATLAB documentation.

Based on the stability analysis in [18, 19], we write a function stability_check that 
can display a warning message if the time step might be too large relative to the hori-
zon size and the diffusion parameters used.

Algorithm 5   Structure of Kernel_functions.m

Fig. 4   PeriFast Github download process
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4.6 � Description of Boundary_Conditions.m and Update_VC.m

In boundary_conditions.m, the user defines the boundary conditions type and their 
value. The variable BC_type is 1 for the Dirichlet boundary condition and 2 for 
the Neumann boundary condition. In update_VC.m, the fictitious nodes method is 
implemented to apply/update the corresponding volume constraints to the nodes in 
Γ . In the fictitious node method, the volume constraint values are calculated based 
on the given local boundary condition and the solution values on the interior side of 
the boundary. More details of the mirror-based fictitious nodes method can be found 
in Appendix A in [15].

Algorithm 6   Structure of Boundary_conditions.m & update_VC.m

Func�on boundary_condi�on_check verifies the boundary condi�ons types and returns error 
messages if input data has issues.

boundary_condi�ons.m:

Define the boundary condi�ons type (Dirichlet or Neuman) and its value

Locate the nodes on the interior side of the boundary

update_VC.m:

Use fic��ous node method to update based on the boundary condi�ons and at nodes located at 
the interior side of the given domain boundary

4.7 � Description of Initial_gpu_arrays.m

If the user wants to speed up the computation by using GPUs, MATLAB provides a 
convenient way. Notice that the Parallel Computing Toolbox needs to be installed to 
enable GPU computing in MATLAB. The MATLAB function gpuArray is used to copy 
the data to GPU memory. By calling gpuArray supported functions, such as fft, the com-
putation will automatically run on GPUs. A detailed list of gpuArray supported func-
tions can be found in MATLAB documentation.

4.8 � Description of Update_C.m

To model uniform corrosion and pitting corrosion, two different functions are defined 
in this file. In each function, the concentration is updated using the forward Euler 
method. Characteristic functions are also updated at every time step. The details are 
shown below.
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Algorithm 7   Structure of update_C.m

Func�on update_C

If the corrosion type is uniform corrosion (corrosion_type equals to 0)

Call func�on uniform_corrosion_�me_integra�on

Else if the corrosion type is pi�ng corrosion (corrosion_type equals to 1)

Call func�on pi�ng_corrosion_�me_integra�on

Func�on uniform_corrosion_�me_integra�on

Update the characteris�c func�ons based on the defini�on in Eq. (10).

Update the concentra�on based on Eq. (16)

Func�on pi�ng_corrosion_�me_integra�on

Update the characteris�c func�ons based on the defini�on in Eq. (12).

Update the concentra�on based on Eq. (16)

4.9 � Description of Dump_output.m, Dump_output_Tecplot.m, Visualization.m, 
and Postprocess.m

These files are used for visualizing the results and storing data while the simulation is run-
ning. In dump_output.m, the snapshot number, concentration, and liquid characteristic 
function are the inputs. These variables are stored in a structure type variable Output. The 
user could easily store more variables in Output. In dump_output_Tecplot, the node coordi-
nates and concentration are stored. In visualization.m, we plot the result at a cross-section 
in the x–y plane. The user can modify this file to plot their desired quantities. If the users 
choose not to visualize during runtime, they can run the postprocess.m script to plot the 
recorded output data after the simulation is finished.

5 � Corrosion Examples in 3D

In this section, we show two corrosion simulations in 3D obtained with PeriFast/Corro-
sion: one using uniform corrosion (without considering salt layer formation) and the other 
pitting corrosion (which considers salt layer formation). All figures in this section are plot-
ted using Tecplot.

5.1 � Uniform Corrosion Example in 3D

In this part, we show the results for the uniform corrosion of a 3D shape selected here to 
be the University of Nebraska logo, the Nebraska “N,” to show that arbitrary and relatively 
complex shapes can be considered. The thickness of the 3D sample is 40 μm, along the 
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z-direction. The dimensions of the cross-section in the x–y plane are shown in Fig. 5, and 
we define the characteristic function �N based on these values.

The sample is surrounded by 1 M NaCl solution. The solution is shown as the light blue 
box in Fig.  5, with dimensions 158  μm × 128  μm × 48  μm. Since the bulk electrolyte in 
many experiments normally occupies a much larger volume, zero concentration boundary 
conditions ( C = 0 ) are applied on all surfaces of the light blue box. To make sure the hori-
zon size is small relative to the geometrical feature in the sample, � is set to be 4μm . In 
addition, this horizon size is in the range of the expected thickness of the layer affected by 
corrosion [29]. The blue box is extended by � from all surfaces as the fictitious domain for 
enforcing volume constraints. The discretization resolution along the three Cartesian direc-
tions is 27, 27, 26 which results in 1,048,576 nodes. The m-factors [30] along these direc-
tions are �

Δx
= 3.09,

�

Δy
= 3.77, and

�

Δz
= 4.57.

In this example, we consider a similar uniform corrosion environment as the experi-
ments in [6]. The metal sample is a commercial Cu plate with a purity of 99.94%. In 
this experiment, the 1 M NaCl solution was circulated via two pumps to avoid the local 
accumulation of Cu ions. Since the flowing solution flushes the dissolved Cu ions, the 
salt layer effect does not need to be considered here. The material properties are dif-
fusivity K = 1297μm2

⋅ s−1 , average charge number n = 2 , and CSolid = 141, 000mol∕m3 
[31]. We choose the total time tmax = 300s . The time step dt = 0.8ms is chosen based 
on the stability analysis in [18, 19], leading to about 300 K time steps. By taking the 
measured current density in [6], i is set to be 1.45 kA∕m2 . The evolution of uniform 
corrosion is shown in Fig. 6, where the solid phase is shown at various times. A simula-
tion movie is available in Supplementary Materials (uniform_corrosion.mp4). We can 
see that the corrosion occurs on all surfaces of “N” and the corners become rounded. 
The metal concentration map at 300 s is shown in Fig. 7, where the “trace” of the solid 
connection, dissolved by now, between the two vertical posts is seen in the electrolyte.

This computation is performed on a supercomputer in the Holland Computing Center 
of the University of Nebraska-Lincoln, with an Intel Xeon E5-2670 2.60 GHz CPU, up 
to 512 GB RAM per CPU, and a Tesla P100 GPU with 12 GB memory. This simulation, 
with no visualization during running, takes 1.4  h. More discussion on comparing the 
computational cost of using the FCBM or the meshfree method (with direct summation 
for quadrature) can be found in [18, 19, 21].

Fig. 5   Nebraska “N” sample (left) and dimensions of the cross-section in the x–y plane, units in �m (right)
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5.2 � A pitting Corrosion Example in 3D with Multiple Growing and Merging Pits

In this example, we use the same geometry as in the last section. To model pitting corro-
sion, we first initiate 20 spherical pits with random locations on one of the surfaces and 
random radii (2 to 4 μm ), as shown in Fig. 8.

The boundary conditions on the “electrolyte box” are the same as the previous uni-
form corrosion example. To obtain smoother pits, we need a higher resolution than that 
used in the uniform corrosion example. The discretization resolution along the three 
Cartesian directions is 28, 28, 26 which results in 4,194,304 nodes. The m-factors [30] 
along these directions are �

Δx
= 6.17,

�

Δy
= 7.53, and

�

Δz
= 4.57 , respectively.

In this example, the corrosion environment is the same as the experiments in [32]. 
The metal sample is 304L stainless steel, and it is surrounded by 0.1  M NaCl solu-
tion. Considering salt layer formation is important in pitting corrosion (see, e.g., [33]) 
and is taken into account here. The material properties are diffusivity K = 860μm2

⋅ s−1 , 
average charge number n = 2.19 , CSolid = 142, 900mol∕m3 , and NaCl solution at 25 ◦C 
Csat = 4600mol∕m3 . By taking the measured current density in [32], i is set to be 5.1 
kA∕m2 . We choose the total time tmax = 80s and time step dt = 1ms which is chosen 
based on the stability analysis in [18, 19]. The evolution of pitting corrosion at different 

Fig. 6   Uniform corrosion of a complex shape at a 0 s, b 100 s, c 200 s, and d 300s
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times is shown in Fig. 9. The autonomous growth and merger of pits are observed. A 
simulation movie is available in Supplementary Materials (pitting_corrosion.mp4). The 
metal concentration in a cross-section at 80 s is shown in Fig. 10 for the section in the 
y–z plane through the left side of the N-letter, cutting some three merging pits.

This simulation, with no visualization processed during the run, took 2.9 h to com-
plete on the same platform as the uniform corrosion example above.

Fig. 7   Metal ion concentration in an x–y  cross-section at 300s

Fig. 8   Nebraska “N” sample 
with initial pits
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6 � Possible Extensions of PeriFast to Other Corrosion Types

PeriFast/Corrosion introduced in this paper implements PD models for uniform and pitting 
corrosion. PD models for other types of corrosion have been introduced as well, for example, 
uniform corrosion [6], pitting corrosion with lacy covers [5], crevice corrosion [7], galvanic 
corrosion [8], intergranular corrosion [9], stress-dependent corrosion [6], and stress-corrosion 

Fig. 9   Growing and merging corrosion pits on the front face of a complex shape at a 20 s, b 40 s, c 60 s, 
and d 80s

Fig. 10   Metal ion concentration in a y–z cross-section at 80s
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cracking [10]. These published PD models have used the direct summation in the meshfree 
method with one-point Gaussian quadrature. Extending PeriFast/Corrosion to these other cor-
rosion types requires some changes, some of which are described briefly below.

In certain materials (like stainless steel), pitting occurs with the formation of lacy cov-
ers. Part of the surface may passivate due to low pH values while corrosion continues in 
other regions. The corrosion process bypasses the passivated part and creates a perforated 
cover (the “lacy cover”). The passivation and lacy cover formation mechanism have been 
implemented in the pitting corrosion model and solved using FCBM [21] and could be eas-
ily added to the code.

Crevice corrosion happens when geometry restricts the flow of electrolytes in the 
crevice, leading to the accumulation of metal ions. Electroneutrality means that more 
chloride ions migrate from the bulk electrolyte into the crevice, triggering local acidi-
fication, which increases the anodic dissolution rate. To model this, the current density 
i depends on the concentration, and the PD formulation in Eq. (3) needs to be changed 
as described in [7]. Therefore, to model crevice corrosion using PeriFast/Corrosion, the 
user should define a new characteristic function to take into account the concentration-
dependent current density.

Intergranular corrosion can significantly reduce the mechanical durability of metal 
alloys. Due to the local galvanic coupling of grain boundaries and grain matrix, grain 
boundaries are corroded preferentially, usually leading to faster dissolution along the grain 
boundaries. To model this, the user would need to define characteristic functions to dis-
tinguish grain boundaries from the grains themselves. The introduction of such material 
heterogeneities in the FCBM context could be performed as discussed in [21].

PeriFast/Corrosion can be coupled with PeriFast/Dynamics [28], which is an imple-
mentation of FCBM for dynamic elastic deformations and brittle fracture problems in 
3D, to model stress-corrosion cracking and stress-dependent corrosion problems. In these 
types of problems, stress influences the corrosion rate and corrosion reduces the mate-
rial’s toughness/strength (e.g., reduce ductility), leading to early fracture. Both PeriFast/
Corrosion and PeriFast/Dynamics are branches of the PeriFast code that implement the 
FCBM for PD models. Three different PD material models are provided in PeriFast/
Dynamics: the linearized bond-based and ordinary state-based models for isotropic elastic 
materials and the PD correspondence model for isotropic hyperelastic materials. The cur-
rent version of the code implements brittle damage models, but ductile failure can also be 
considered [34, 35].

7 � Conclusions

In this paper, we introduced a compact and efficient MATLAB code, PeriFast/Corro-
sion, for simulating uniform and pitting corrosion problems. PeriFast/Corrosion uses 
the fast convolution-based method (FCBM) of discretization for peridynamic (PD) cor-
rosion models.

We reviewed the PD corrosion model and the FCBM for discretization. The salt layer 
effect, critical in pitting corrosion, can be selected as an option in the model. Using the 
embedded constraint method, the FCBM applies to arbitrary domains and given bound-
ary conditions. Compared with the direct summation used for the quadrature in the 
meshfree discretization of the PD model, the computational cost for FCBM is reduced 
from O(NM) to O(NlogN) , and memory allocation requirements scale as O(N) instead 
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of O(N2) . N is the total number of nodes, and M is the number of nodes in the family of 
an arbitrary node. Due to these large gains in efficiency, one can run PD simulations of 
corrosion damage at larger scales and for longer time spans than when using previous 
discretization methods.

The structure of PeriFast/Corrosion and its modules are discussed in detail. The user 
of the PeriFast/Corrosion has the flexibility to modify the modules based on their needs. 
Two examples are included: a 3D uniform corrosion in copper and a 3D pitting corrosion 
in stainless steel, both running on the same nontrivial shape (the University of Nebraska 
“N”). The pitting corrosion example shows the autonomous growth and merger of many 
pits. Possible extensions of the code to a variety of other corrosion types and corrosion-
related problems have been presented to show the potential of PeriFast/Corrosion.

Appendix: The Influence of the Salt Layer

In this part, using a 2D version of the FCBM pitting corrosion code [21], we investigate the 
influence of the salt layer by running the same pitting corrosion example with and without 
considering the salt layer effect. The specimen’s configuration and boundary condition are 
shown in Fig. 11.

The size of the 2D computational sample is 1mm × 1mm . The material is stain-
less steel 304SS. The average charge number ( n = 2.19 ) [36] of 304SS is calculated from 
the charge number of Fe, Ni, Cr, and their mole fractions. The specimen is submerged 
in 1  M NaCl solution. The material properties are given [37]: CSolid = 143000mol∕m3 
andCsat = 5100mol∕m3 . The initial current density in the experiment [38] is measured to 
be 3.8A ⋅ cm−2.

The simulation results with and without the salt layer can be found in Fig. 12. We 
can see that the salt layer at the pit bottom influences the pit’s shape and size. With the 
salt layer effect, the corrosion near the pit bottom is temporarily stopped, leading to the 
shallower pit shape. In cases when the current density is small and ions can be timely 

Fig. 11   Boundary conditions and 
initial conditions of the 2D cor-
rosion example
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diffused out of the pit, the salt layer may not play an important role and can be ignored. 
A more detailed discussion of the salt layer effect can be found in [21].
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