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ABSTRACT

Applying machine learning (ML) in design flow is a popular trend
in Electronic Design Automation (EDA) with various applications
from design quality predictions to optimizations. Despite its promise,
which has been demonstrated in both academic researches and in-
dustrial tools, its effectiveness largely hinges on the availability of
a large amount of high-quality training data. In reality, EDA devel-
opers have very limited access to the latest design data, which is
owned by design companies and mostly confidential. Although one
can commission ML model training to a design company, the data
of a single company might be still inadequate or biased, especially
for small companies. Such data availability problem is becoming
the limiting constraint on future growth of ML for chip design. In
this work, we propose an Federated-Learning based approach for
well-studied ML applications in EDA. Our approach allows an ML
model to be collaboratively trained with data from multiple clients
but without explicit access to the data for respecting their data pri-
vacy. To further strengthen the results, we co-design a customized
ML model FLNet and its personalization under the decentralized
training scenario. Experiments on a comprehensive dataset show
that collaborative training improves accuracy by 11% compared
with individual local models, and our customized model FLNet sig-
nificantly outperforms the best of previous routability estimators
in this collaborative training flow.
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1 INTRODUCTION

EDA techniques have achieved remarkable progress over past decades.
However, the current chip design flow is still largely restricted to
individual point tools with limited interplay across different tools
and design steps. Tools in early steps cannot well judge if their
solutions may eventually lead to satisfactory designs, and the con-
sequence of a poor solution cannot be found until very late. Such
disjointedness in the design flow is traditionally mitigated by either
simplified estimations with heuristics or iterative design, which
often lead to over-conservative design or longer turn-around time,
respectively. To improve the predictability in chip design flow, ML
models have been constructed based on prior data to provide early
feedback or help accelerate the solving of EDA problems.

In recent years, ML for EDA has become a trending topic [12].
ML models are applied at almost all design stages of the VLSI
design flow, including high-level synthesis, logic synthesis, and
physical design [7, 23, 24, 28], making predictions on timing [24],
power [25], routability [7, 23, 28], etc. These ML models learn from
prior solutions and typically provide orders-of-magnitude faster
design quality evaluations. Besides being a hot research topic in
academia, ML-based estimators have also gained popularity in the
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EDA industry. Recent versions of commercial tools already sup-
port the construction of ML models on delay [5] or congestion
predictions [22]. The vendors also claim improved PPA or faster
convergence after invoking the ML models in their tools [5, 22]. In
summary, ML for EDA has demonstrated its impressive contribu-
tion to the quality of result (QoR) and overall turn-around time in
both academia and industry.

However, despite the proven advantages, there are still obstacles
that prevent wide applications of ML models in EDA. One vital
but rarely explicitly discussed challenge is the availability of data.
The data includes circuit designs and corresponding chip qualities
including power, performance, and etc. Most latest design data are
owned by design companies and are highly confidential. As a result,
many works from academia have to construct models with designs
from public benchmarks, most of which are either outdated or over-
simplified only for contest purposes. Data availability also affects
the quality of practical ML for EDA models in industry. Although
one can train ML models within a design company, the data of
a single company might still be inadequate or biased, especially
for small companies. As for EDA vendors, due to data privacy
concerns, some commercial tools [5] have to construct ML models
from scratch, only using the limited raw data provided by each
client. In summary, lack of data has seriously hampered the adoption
of ML models in EDA, yet very limited research explorations can
be found for mitigating this problem.

To address the above challenges and promote collaborative intel-
ligence, we present a novel framework to collaboratively train ML
models without explicitly collecting or viewing data from decentral-
ized design owners. This framework is demonstrated on routability
estimation, which is a well-studied problem in ML for EDA. To
promote collaborative learning, we co-design the federated learn-
ing ML model architecture, named FLNet, and its personalization
techniques to seek unprecedented solutions in federated learning.
The proposed approach, when put in practice, allows design com-
panies to leave private data on their own servers and admit only
pre-determined operations and communications. In this way, de-
sign companies can jointly utilize their design data for ML model
construction without disclosure of their product. For example, EDA
vendors can first train a significantly more general ML model using
designs from all its cooperators. Then each cooperator, as a client,
can optionally customize the general model for itself by leveraging
personalization techniques (e.g. local fine-tuning) using its own
private data to achieve better performance.

Our contributions in this work are summarized as follows.

e We bring attention to the data availability problem in ML
for EDA, and propose a collaborative training solution to
encourage data sharing while respecting data privacy.

e We co-design the personalization flow and network archi-
tecture for our proposed decentralized training scenario.

!Engineering details including the implementation of federated learning framework [2,
11] and privacy concerns [19, 21] about the framework on both model and data have
been well studied for general machine learning tasks. These engineering details are
not special in ML for EDA, thus are not the focus of this paper.



With the best personalization, FLNet outperforms previous
routability estimators by 11% in accuracy?.

e We provide detailed ablation studies to justify our co-design
on personalization and network architectures.

2 PRELIMINARIES
2.1 Routability Estimation

We demonstrate our algorithm on routability estimation, since it is
arepresentative and well-studied topic [7, 16, 23, 28] in ML for EDA,
and its problem formulation and solutions share many similarities
with other important EDA problems like IR drop estimation [9],
clock tree prediction [17], lithography hotspot detection [13, 27],
optical proximity correction (OPC) [26], etc. Previous works on
these problems typically borrow ideas from computer vision and
adopt deep learning techniques including convolutional neural
network (CNN) or generative adversarial network (GAN) to process
the features from circuit layouts.

Previous routability estimators use either routing congestions [7,
28] or DRC (design rule checking) [16, 23] as the metric of routabil-
ity. They detect congestion locations or DRC hotspots. Given a
set of placement solutions with extracted input feature maps X,
routability estimators generate a neural network model f to detect
the locations of DRC hotspots or congestions Y;:

f:X;e RWXhXe vy € {0, 1}Wxh

where w and h are the width and height of the layout, and ¢ indicates
the number of input features/channels.

We demonstrate our learning algorithm through comparisons
with two representative routability estimators from RouteNet [23]
and PROS [7]. Both works adopt fully convolutional network (FCN)-
based estimators with significantly different model structures. The
estimator from RouteNet [23], as an earlier work, consists of only
convolution layers, trans-convolutional layers and a shortcut struc-
ture. In comparison, the estimator from PROS [7] adopts more
advanced structures including dilated convolution [29] blocks, re-
finement blocks, and sub-pixel upsampling blocks.

2.2 Federated Learning

Federated learning (FL) includes a series of decentralized training
techniques, proposed for their distinct privacy protection advan-
tage compared with training on a central machine with persistent
data [18]. FedAvg [18] is a popular FL algorithm for most computer
vision tasks. In FedAvg, the decentralized training is performed
iteratively. In each round, the clients send updates of locally trained
models to the central server, and the server then averages the col-
lected updates and distributes the aggregated update back to all the
clients. FedAvg works well with independent and identically dis-
tributed (IID) datasets but may suffer from significant performance
degradation when it is applied to non-IID datasets.

3 PROBLEM FORMULATION

We assume there are altogether K clients providing their data
for model training. In practice, the circuit designs from the same
client/company tend to be more similar to each other, since they
may be from the same series of products, while different clients
may provide largely different designs. This is reflected in our ex-
periment by only assigning designs from the same benchmark
to the same client. Assume each client k € [1,K] provides nj

2This framework is open-sourced in https://github.com/panjingyu/Decentralized-
Routability-Estimation.
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data samples. For the routability estimation task, each data sam-
ple includes one placement solution, and its label is the ground-
truth DRC hotspot map. The training data for each client k is de-
noted as {X;, Y;}r (i € [1,ni].k € [1,K]), where X; € RW*hxc
is the feature map of a placement with w X h grids and ¢ chan-
nels, while ¥; € {0,1}"*" is the hotspot distribution. To verify
the estimator accuracy, each client also has their own testing data
{xTest yTesty (k € [1,K]), which is generated from circuit de-
signs completely different from those of the training data. Tradi-
tionally, if the developer directly commission ML model training
to each client, it results in K local models trained only by each
client’s local data. These models are baselines denoted as by, which
is trained on {X;, Y; }; by the client k.

A key difference in our problem setting compared with previous
works is the data privacy constraint. All clients’ data should be
private to themselves, which means no party other than the client
itself should have the access to its training and testing data. Under
the data privacy constraint, there are two goals in this work. First,
we develop a general model that achieves higher performance on
all K clients’ testing data {XiTeSt, Yl.TESt}k(k € [1,K]). This model
should generalize better than local model baselines. Second, we
build a customized model for each client for better local accuracy.

4 METHODOLOGY

In this work, we try to train our model for routability estimation
utilizing data from all K clients without violating their data pri-
vacy. Compared with baselines trained on each local client, we
enlarge the training dataset by K times. To achieve this, we need
a strict decentralized training setting with limited data access for
privacy protection. And the decentralized training setting poses
challenges to successful model construction. The client-level data
heterogeneity commonly seen in routability estimation tasks makes
decentralized training suffers from convergence issues and perfor-
mance degradation. To make thing worse, existing models are too
complex and involve special operators that are not robust against
some operations in the decentralized training setting, thus failing
to perform well. Therefore, in the following sections, we 1) analyze
the current challenges and a solution (FedProx) of decentralized
training for routability prediction; 2) propose FLNet, a novel model
customized for better performance in the limited decentralized
training setting; 3) explore model personalization techniques
to alleviate the negative impact of client-level data heterogeneity;
4) briefly mention the features we use for routability estimation.

4.1 When Decentralized Training meets
Routability Estimation

The decentralized training setting requires all training and opti-
mization operations to take place only at the client side, without
gathering data from any client. And the developer can only receive
model parameters from its clients, perform parameter aggregation,
and deploy the average parameters back to the clients. Figure 1
shows the visualization of the decentralized training setting with K
clients. For each round r € [1, R], each client k trains the model on
its own data, and send the trained parameters wy_to the developer.
Then the developer performs parameter aggregation on all collected
KMy To
k=1 n "k

conclude round r, the average model W’ *! is deployed back to all
the clients for further training at the next round. This procedure is
repeated for R times and the developer will construct a generalized

model WR, which is the aggregated model at the R-th round.

parameters and generate an average model W't = 3
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Figure 1: The visualization of the decentralized training set-
ting. R denotes the total number of rounds. K denotes the
number of clients. w and W denotes the locally trained mod-
els and the aggregated models, respectively.

This setting brings at least two new challenges. First, high data
heterogeneity among clients hinders the convergence of de-
centralized training. Different clients can contain largely different
circuit designs in terms of functionality or microarchitecture. The
intrinsic differences between circuit designs cause the data het-
erogeneity in their feature distributions. And ML models trained
on different clients tend to capture non-general patterns which re-
flect such data heterogeneity. The typical client-level heterogeneity
of routability data makes decentralized training suffer from slow
convergence and low accuracy, or even fail to converge.

Second, existing routability estimator models do not co-
operate well with decentralized training, leading to a large
performance degradation. Existing works typically utilize complex
models with very high non-linearity, and thus are over-sensitive to
operations like parameter aggregation, which happens frequently
in the decentralized training setting. Besides, they also involve
model components that increase convergence difficulty in the de-
centralized training setting.

We apply the FedProx [14] method to address the convergence
issue arising from heterogeneous training data distribution among
clients. In FedProx, each client performs training on its local data,
and sends the trained model parameters instead of the data to the
central machine of the model developer. The model developer then
performs parameter aggregation based on the collected parameters
from all clients, and sends back the average parameters to the clients
for further training. Such procedure is repeated until the model
converges. FedProx’s training setting satisfies the requirements of
the aforementioned decentralized training scenarios. Furthermore,
to alleviate the data heterogeneity challenge, it adds an extra proxi-
mal term to penalize the difference between each local model and
the model received from the developer at the beginning of each
training round. This makes FedProx applicable to EDA tasks such as
routability estimation, where heterogeneous data is very common
due to huge difference in circuits designs. In FedProx, at the r-th
round, client k optimizes the following objective Lpyoy:

nj
min Lprox (Wi, W) = > (wie(Xe) = Y02 + plW™ = wiel &, (1)
e i=1
where y is a hyper-parameter that controls the contribution of the
proximal term. In this way, the difference between the global model
W' and local model wy is constrained during the local training,
thus preventing the divergence of local models.

4.2 FLNet: Routability Model Customized for FL

Existing works typically fail to adapt to the decentralized train-
ing setting because they utilize complex models that have much
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Table 1: FLNet Model Architecture Configuration

Layer Kernel size | #Filters | Activation
input_conv 9x9 64 ReLU
output_conv 9X9 1 None

higher non-linearity than simple models. Such high non-linearity
introduces low robustness against fluctuation of model parame-
ters. And in the decentralized training setting, the model parameter
fluctuation frequently happens at the parameter aggregation op-
eration. This can lead to much lower performance of the model
compared with the same model trained in a centralized setting.
On the other hand, existing models commonly come with a large
number of sequential layers, and thus need special operators like
Batch Normalization layers. Batch Normalization layers aim to en-
sure good convergence by whitening the input of each layer using
recorded mean and variance during training. However, when train-
ing a model with Batch Normalization layers using decentralized
training setting, Batch Normalization layers usually fail to obtain
stable records of mean and variance due to the frequent model pa-
rameter aggregation operation, which makes the model even harder
to converge. As a result, existing models for routability estimation
generally fail to adapt well to the limited decentralized training
setting and show large performance degradation.

To achieve the best performance in federated learning, we co-
designed FLNet to reduce the performance degradation commonly
seen in existing models for routablity estimation. FLNet is a 2-layer
CNN model without any Batch Normalization operators. It has
much fewer model parameters than previous works and thus is
more robust to the negative impact from parameter fluctuation
introduced by parameter aggregation. Particularly, this parameter
fluctuation is amplified by the client-level data heterogeneity com-
monly seen in routability data. FLNet’s robustness can protect its
performance from unacceptable degradation, making it outperform
existing complex models when the data is highly heterogeneous.
Table 1 shows detailed configuration of FLNet. Despite its simple
structure, we select a large kernel size 9 X 9 for both layers to
ensure a large receptive field at the output. Therefore, FLNet can
still capture features with a relatively large spatial range, which is
important in routability estimation.

4.3 Personalization in Federated Learning

Federated learning methods (e.g., FedProx [14]) train one gener-
alized model to achieve good average accuracy on all clients. But
personalization techniques in federated learning aim to train mod-
els that can perform better than the generalized model for individual
clients that are highly data and system heterogeneous. Typically,
design companies care more about a model’s accuracy on the local
data than its transferability or generality. Actually, we can further
utilize model personalization techniques to trade off extra training
cost and model generality for improvement of local accuracy.

In this section, we explore a set of federated learning personal-
ization techniques based on the FedProx training scheme. We first
explore pre-existing techniques (e.g., FedProx-LG [15] and Iterative
Federated Clustering Algorithm [10]) as follows:

FedProx-LG is based on the prior idea of [15]. Figure 2(a) shows
the visualization of FedProx-LG. FedProx-LG partitions a model
into a global part g and a local part I. At the r-th round, the model
developer only communicate and aggregates the global part ¢”,
leaving the local part I}, (1 < k < K) private to each client k.

Iterative Federated Clustering Algorithm (IFCA) introduces
client-level clustering to alleviate the negative effect of data hetero-
geneity. Figure 2(b) shows the visualization of IFCA. The K clients
can be categorized as C clusters, and the clients of the same cluster
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Figure 2: Visualizations of federated learning personalization techniques based on FedProx. g and [ denote locally trained
global parts and local parts, respectively. G denotes aggregated global parts. C denotes the number of clusters. (a) FedProx-LG.

(b) IFCA. (c) Assigned clustering. (d) FedProx + a-portion sync.

have higher similarity and more shareable features to be captured
by the DNN model. In IFCA, the model developer initializes a model
for each cluster respectively. At each round r, client k determines
its cluster ¢j by verifying the loss L (W]) of C cluster models
(c=1,2,...,C) on client k’s training data and chooses the cluster ¢
with the lowest loss. Then, client k trains the chosen cluster model
W, and sends the updated model w;_ to the developer. At the de-
veloper side, each cluster only receives and aggregates the models
from its corresponding clients at that round. The procedure repeats
and the model clustering is updated iteratively.

Besides existing personalization techniques, we make our ex-
ploration comprehensive by investigating additional techniques
such as local fine-tuning, assigned clustering, and a-portion sync
to further enhance FL personalization, demonstrated as follows:
Local fine-tuning is a simple but effective technique for model
personalization. Based on the model trained with FedProx, each
client can further fine-tune the model received from the developer
for extra steps on its own data. In this way, all clients make the
collaboratively-trained model adapt towards the distribution of
their respective local data.

Assigned clustering pre-assigns a cluster for each client by lever-
aging prior knowledge about the clients’ similarity. Figure 2(c)
shows the visualization of the assigned clustering method. Com-
pared with IFCA, this method assigns a fixed cluster c¢; to each
client k for all rounds, and directly gains faster convergence and
potentially higher accuracy.

a-portion sync is another personalization technique with much
less extra cost, where the model developer simply performs differ-
ent weighted aggregation for model parameters from each client.
Figure 2(d) shows the visualization of the a-portion sync algorithm.
At the beginning of each round r, for each client k, the developer
aggregates a customized model W, that takes client k’s previous
parameters w;_l as a-portion in the aggregation. Compared with
FedProx, the a-portion sync method puts higher weight to each
client’s own parameters in the parameter aggregation. And thus, it
customizes the model to adapt more to the local data, while also
learning from data of other clients.

4.4 Feature Extraction

Regarding the features for routability estimation, we follow previ-
ous works [6, 7, 23] to select features and perform feature extraction.
More specifically, our selected features capture both cell density
features (e.g., locations of cells) and wire density features (e.g.,
connectivity between instances). Cell density features include the
routing blockage information. Wire density features encode the
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instance connectivity and routing congestion information using
several heuristics, such as RUDY [23] and fly lines.

5 EXPERIMENT RESULTS
5.1 Experiment Setup

We construct a comprehensive dataset using 74 designs with largely
varying sizes from multiple benchmarks. There are 29 designs from
ISCAS’89 [3], 13 designs from ITC 99 [8], 19 other designs from Fara-
day and OpenCores in the IWLS’05 [1], 13 designs from ISPD’15 [4].
For each design, multiple placement solutions are generated with
different logic synthesis and physical design settings. Altogether
7,131 placement solutions are generated from these 74 designs. We
apply Design Compiler® for logic synthesis and Innovus® [5] for
physical design, with the NanGate 45nm technology library [20].
To validate our algorithm, we mimic a real application scenario
by splitting all designs to nine different clients (K = 9). Since designs
from the same client tend to be more similar to each other, we assign
designs from the same benchmark suite to the same client. Then for
each client, we randomly split around 70% of designs to be training
data and the other 30% of designs to be the testing data. Notice
that there are no clients sharing common designs, and there are
no designs belonging to training and testing data at the same time.
This prevents information leakage between clients and ensures
testing designs are completely unseen to trained models. Details
of the design assignment and number of placements in each client
are shown in Table 2. Three clients collect designs from ITC’99,
three clients collect designs from ISCAS’89, two clients collect from
Faraday and OpenCores in the IWLS’05, and one client collects
from ISPD’15. For each client, the number of placement solutions

Table 2: Experiment Data Setup for Each Client

Clients Training Designs Testing Designs
(Num of Placements) (Num of Placements)

Client 1 4 designs in ITC’99 (462) 2 designs in ITC’99 (230)
Client 2 | 2 designs in ITC99 (231) 1 design in ITC’99 (114)
Client 3 | 2 designs in ITC'99 (231) 2 designs in ITC’99 (232)
Client 4 | 7 designs in ISCAS’89 (812) | 3 designs in ISCAS’89 (348)
Client 5 | 7 designs in ISCAS’89 (812) | 3 designs in ISCAS’89 (348)
Client 6 | 6 designs in ISCAS’89 (697) | 3 designs in ISCAS’89 (348)
Client 7 | 6 designs in IWLS’05 (656) | 3 designs in IWLS’05 (280)
Client 8 | 7 designs in IWLS’05 (742) | 3 designs in IWLS’05 (329)
Client 9 | 9 designs in ISPD’15 (175) 4 designs in ISPD’15 (84)




Table 3: Testing Accuracy Comparison (ROC AUC) on Routability Prediction with FLNet

Testing on
Client 1 [ Client 2 [ Client 3 [ Client 4 [ Client 5 [ Client 6 [ Client 7 [ Client 8 [ Client 9 H Average
Local Average (b; to bo) 0.76 0.75 0.71 0.72 0.67 0.70 0.76 0.64 0.82 0.72
Training Centrally on All Data 0.87 0.87 0.77 0.80 0.75 0.77 0.82 0.70 0.92

FedProx | o082 [ o078 | 073 | o075 [ o072 [ o074 [ o082 [ 069 | 09 [[ 078 |
FedProx-LG 0.77 0.61 0.65 0.65 0.60 0.69 0.77 0.63 0.93 0.70
IFCA 0.83 0.79 0.73 0.76 0.71 0.75 0.82 0.69 0.87 0.77

FedProx + Fine-tuning 0.84 0.89 0.79 0.78 0.72 0.75 0.82 0.72 0.90 [ 0.80
Assigned Clustering 0.81 0.86 0.75 0.76 0.72 0.75 0.81 0.70 0.88 0.78
FedProx + a-Portion Sync 0.82 0.79 0.73 0.76 0.72 0.75 0.81 0.69 0.90 0.78

Table 4: Testing Accuracy Comparison (ROC AUC) on Routability Prediction with RouteNet [23]

Testing on
Client 1 [ Client 2 | Client 3 | Client 4 | Client5 | Client 6 [ Client 7 [ Client 8 [ Client 9 [| Average
Local Average (b1 to bo) 0.76 0.76 0.71 0.73 0.68 0.71 0.75 0.64 0.78 0.73
Training Centrally on All Data | 0.86 0.88 0.79 0.82 0.81 0.77 0.82 0.75 0.94
FedProx | 063 [ 08 [ o071 [ 072 | 066 | 067 [ 063 [ 057 | o042 [[ 065 |
FedProx-LG 0.60 0.55 0.57 0.50 0.51 0.49 0.54 0.52 0.46 \
IFCA 0.46 0.28 0.35 0.37 0.39 0.4 0.43 0.43 0.71
FedProx + Fine-tuning 0.83 0.86 0.76 0.75 0.74 0.75 0.81 0.72 0.90
Assigned Clustering 0.70 0.85 0.74 0.65 0.64 0.65 0.49 0.46 0.89 0.67
FedProx + a-Portion Sync 0.66 0.57 0.61 0.57 0.54 0.58 0.68 0.58 0.72

Table 5: Testing Accuracy Comparison (ROC AUC) on Routability Prediction with PROS [7]

Testing on
Client 1 { Client 2 { Client 3 { Client 4 { Client 5 { Client 6 { Client 7 { Client 8 { Client 9 H Average

Local Average (b; to bog) 0.65 0.63 0.61 0.61 0.58 0.62 0.66 0.59 0.72 0.63

Training Centrally on All Data 0.75 0.68 0.65 0.65 0.62 0.62 0.73 0.65 0.73 0.67
FedProx [ 067 ] 060 [ o061 | o064 | 063 [ o064 | 065 [ 059 | o058 [[F062

FedProx-LG 0.69 0.62 0.62 0.63 0.61 0.65 0.71 0.60 0.84 0.66

IFCA 0.50 0.58 0.52 0.53 0.51 0.48 0.51 0.51 0.35

FedProx + Fine-tuning 0.74 0.65 0.76 0.72 0.53 0.67 0.81 0.69 0.50 0.67
Assigned Clustering 0.47 0.55 0.51 0.48 0.49 0.51 0.70 0.60 0.36 ‘
FedProx + a-Portion Sync 0.64 0.45 0.56 0.58 0.55 0.52 0.64 0.55 0.59 ‘

in the training data ranges from 175 to 812, and the number in the
testing data ranges from 84 to 348.

We evaluate accuracy with receiver operating characteristic
(ROC) area under curve (AUC), measured based on the confusion
matrix from prediction. The AUC ranges from 0 to 1, with larger
value indicating higher model accuracy. We verify the accuracy
in ROC AUC for all proposed federated learning methods with
personalization using three models, two representitive routability
estimators RouteNet [23] and PROS [7], and our proposed FLNet.

For hyperparameters in our experiment, the number of rounds
R = 50, the number of model update steps in each round S = 100, the
number of steps for local fine-tuning S’ = 5000. We use a learning
rate of 0.0002, Adam optimizer, and an L2 regularization strength
of 0.00001. The FedProx proximal term strength y is 0.0001. For
the a-portion model, we test a = 0.5. For FedProx-LG, we set the
output layers of the three models to be the local part, while the
remaining layers to be the global part. For IFCA, we set the number
of clusters C = 4. For the assigned clustering method, we select 4
clusters: Client 1-3, Client 4-6, Client 7-8, and Client 9.
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5.2 Training Method Evaluation

Table 3 shows the accuracy of FLNet, using various model training
algorithms based on decentralized private data. The first baseline
is the average performance among K = 9 locally-trained models b;
to bo, which equals 0.72. This corresponds to the performance of
traditional ML model construction methods in such a decentralized
setting. In addition, a very strong baseline is training the ML model
centrally on all training data. This indicates a scenario where we
can explicitly collect all data together from all clients without data
privacy concerns. Without accuracy degradation caused by hetero-
geneity among different clients, this accuracy 0.81 can be viewed as
an empirical upper limit we should target for decentralized training.
Ideally, our FL algorithms should achieve the same accuracy if they
well address all challenges in the decentralized setting.

As Table 3 shows, our FLNet model trained with FedProx reaches
the accuracy of 0.78, outperforming the locally trained baselines
(b1 to bg) by 0.06 in absolute accuracy value. When inspecting its
performance on each individual client, it outperforms the baseline’s
performance on every single client. This FedProx based on FLNet
is our proposed method to generate a single generalized model.



To achieve better local accuracy, instead of simply adopting the
generalized model from FedProx, we apply different personaliza-
tion techniques to customize the model for each client. Among all
five different personalization algorithms we proposed, the straight-
forward FedProx + Fine-tuning achieves the best accuracy in 0.80,
outperforming local models by 0.08, which is 11% relative improve-
ment. This accuracy is also very close to the empirical upper limit
accuracy (0.81) from centralized training. Compared with simple
FedProx, it further improves accuracy at the cost of extra fine-tuning
for each client.

5.3 ML Model Evaluation

The accuracy of representative routability models RouteNet [23]
and PROS [7] are shown in Table 4 and Table 5, respectively. Com-
pared with FLNet, RouteNet in Table 4 achieves slightly better
accuracy for local training and centrally training. This is reasonable
since the RouteNet model is developed under this traditional train-
ing setup. In comparison, for all decentralized training algorithms
we proposed, FLNet achieves superior accuracy than RouteNet. This
proves the robustness of our proposed FLNet against client data
heterogeneity, thus FLNet is a better choice for federated learning.

As indicated by Table 4, the FedProx method based on RouteNet
is obviously vulnerable to decentralized training and is even less
accurate than local models (b; to bo). Similarly, most personalization
methods are also significantly affected. Only after finetuning on
local clients, those customized models’ accuracy rises back to 0.79.
This is because such finetuning process is no longer under the
decentralized setting.

In Table 5, the overall accuracy of PROS, another popular routabil-
ity model, is much lower than RouteNet and FLNet. One possible
reason is PROS is originally proposed to predict routing conges-
tions, and thus is less effective for DRC violation prediction. Also,
its higher model complexity makes it even more vulnerable to the
data heterogeneity. But we can still observe a trend very similar to
RouteNet. The FedProx model based on PROS is also less accurate
than local models (b1 to byg), and after finetuning on local clients,
the accuracy rises close to the accuracy of centralized training.

In summary, the combination of our proposed FLNet and Fed-
Prox can well utilize decentralized private data and achieve better
performance (0.78) than existing methods RouteNet and PROS with
the accuracies 0.73 and 0.63, respectively. By further fine-tuning the
model on each client, the averaged accuracy of FLNet with FedProx
+ Fine-tuning rises to 0.80, which is close to the accuracy of training
all data centrally.

6 CONCLUSION

In this work, we bring attention to the serious data availability prob-
lem in ML for EDA applications, and propose a federated learning-
based solution to encourage data sharing. Our proposed collabora-
tive training method based on FLNet model proves to be robust to
the client heterogeneity in decentralized training data. This solution
demonstrates its benefit in routability prediction and can be poten-
tially extended to other ML for EDA tasks, especially layout-level
predictions and optimizations with similar problem formulations.
In the future, as the ML methods get more widely deployed in de-
sign flow and the demand on training data keeps increasing, such
collaborative training may become a standard training operation.
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