Journal of Peridynamics and Nonlocal Modeling
https://doi.org/10.1007/542102-023-00097-6

RESEARCH

®

Check for
updates

PeriFast/Dynamics: A MATLAB Code for Explicit Fast
Convolution-based Peridynamic Analysis of Deformation
and Fracture

Siavash Jafarzadeh'? . Farzaneh Mousavi' - Longzhen Wang' - Florin Bobaru'

Received: 1 September 2022 / Accepted: 8 March 2023
©The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

We present PeriFast/Dynamics, a compact and user-friendly MATLAB code for fast peri-
dynamic (PD) simulations for deformation and fracture. PeriFast/Dynamics uses the fast
convolution-based method (FCBM) for spatial discretization and an explicit time march-
ing scheme to solve large-scale dynamic fracture problems. Different from existing PD
solvers, PeriFast/Dynamics does not require neighbor search and storage, due to the use
of the Fast-Fourier transform and its inverse to compute the integral operator. Run-times
and memory allocation are independent of the number of neighbors inside the PD horizon,
leading to faster computations and lower storage requirements. The governing equations
and discretization method are briefly reviewed, the code structure explained, and individual
modules described in detail. A demonstrative example on dynamic brittle fracture in 3D,
with multiple crack branching events, is solved using three different constitutive models:
a bond-based, an ordinary state-based, and a correspondence model. The small differences
between results with the three different constitutive models are explained. Users are pro-
vided with a step-by-step description of the problem setup and execution of the code. Peri-
Fast/Dynamics is a branch of the PeriFast suite of codes, and is available for download at
the GitHub link provided in reference [1].

Keywords Peridynamics - Software - MATLAB - Fast Fourier transform - Dynamic
fracture - Convolution

Siavash Jafarzadeh and Farzaneh Mousavi are co-first authors and equally contributed to this work.

< Florin Bobaru
fbobaru2 @unl.edu

Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln,
NE 68588-0526, USA

Department of Civil and Environmental Engineering, The Pennsylvania State University,
University Park, PA 16802-1408, USA

Published online: 24 March 2023) Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42102-023-00097-6&domain=pdf

Journal of Peridynamics and Nonlocal Modeling

1 Introduction

Computational modeling of damage and fracture has been one of the most challeng-
ing areas in computational mechanics. Classical theories with the governing equations
expressed in terms of partial differential equations (PDEs) are not fully capable of describ-
ing fracture since cracks are, in fact, evolving discontinuities in the continuum, and spatial
derivatives at discontinuities in the displacement field are not defined. Peridynamic formu-
lations for mechanics [2] offer alternative nonlocal approaches in which spatial derivatives
are replaced with volume integrals of the primary unknowns over a certain finite region
around each point, hence, allowing discontinuities (in the unknown field) to emerge and
evolve in a mathematical consistent way since integration is not affected by discontinuities.
PD makes seamless modeling of fracture and damage possible. In PD, cracks can naturally
emerge, propagate, branch, and coalesce without the need of external, ad-hoc rules and
conditions (e.g., see [3-5]). Significant interest on modeling fracture with PD has been
observed [6-8].

The most common, straightforward and functional discretization for PD equations is the
so-called meshfree method. In this, one approximates the integral over the nonlocal region
(the PD horizon region) with a Riemann-type sum, normally using the one-point Gaussian
integration, or a slight modification of that to account for nodal volumes (usually cubes)
that are only partially covered by the PD horizon region [9]. Note that the commercially
available computer-aided engineering (CAE) software is mostly based on the finite element
method (FEM) and classical PDEs. Consequently, they are inherently different from mesh-
free PD in terms of data structures for geometry (elements and quadrature nodes in FEM,
versus nodes in meshfree PD), and in terms of solvers used, since they are based on different
numerical approximation methods. There have been several attempts to manipulate com-
mercial FEM packages to perform PD analyses (e.g., see [10, 11]). Some commercial codes,
e.g., LS-Dyna, have added PD capabilities as separate modules in their platform. In LS-
Dyna, for example, the Discontinuous Galerkin method is used to approximate solutions to
PD models ([12, 13]). U.S. National labs like Sandia and Oak Ridge National Laboratories,
and research groups in academia and research labs in industry developed in-house codes for
PD. Peridigm [14] is one of the few open-source PD software available from Sandia. The
MOOSE-based PD code for implicit thermomechanical analysis by Idaho National Labora-
tory [15] is another example.

Because of its versatility in solving problems in fracture and damage, the meshfree
method with direct summation for the quadrature is adopted by most existing PD in-house
codes. In this approach, at every node, a loop is performed over all nodes in its “family”
(neighboring nodes positioned within a finite size distance from the current node). If N is
the total number of nodes and M is the number of nodes in the family of an arbitrary node,
the nested loops result in solvers with the computational complexity of, at best, O(NM).
In 3D PD simulations with coarsest grids, M is at least in order of hundreds, which make
PD simulations costly when compared with, for example, FEM solvers for corresponding
local models. Using FEM solvers for PD is, obviously, an option but the complexity would
be the same; in addition, FEM solvers are not practical for solving problems with disconti-
nuities. That is where the advantage of the meshfree method comes in. These observations
show the need for faster solvers for PD models, especially for problems involving disconti-
nuities, like fracture and damage.

Various attempts have been made to reduce the cost of PD simulations. One popular
approach is the local-nonlocal coupling where only areas around cracks are modeled by

@ Springer

Journal of Peridynamics and Nonlocal Modeling

PD, while the rest of the body is modeled using the local theory, discretized by FEM
or by an efficient meshfree method [16—18]. Another way pursued for addressing PD
high computational cost is grid refinement where necessary (mostly areas with dam-
age) [19, 20]. These approaches, however, require prior knowledge of where fracture is
likely to occur, or they need to employ smart adaptive schemes for determining those
zones, which adds challenges and coding complexities. Moreover, for cases in which the
damaged and fragmented region comprises most of the body, these coupling/adaptive
approaches lose their advantage relative to a full PD model.

Recently, the fast convolution-based method (FCBM) for PD was introduced [21-23].
In this method, nodal quadrature is expressed in terms of convolution sums, which are
evaluated efficiently via fast Fourier transform operations. Since the quadrature is evalu-
ated by multiplication of the Fourier modes of the convolving functions, looping over
the family of neighbors is not performed. The major cost is associated with the FFT
operations, which leads to an O(NlogzN) complexity. No neighbor search and storage
are required in FCBM, resulting in fast initialization and low memory requirements.
The studies mentioned above have shown speedups as high as thousands compared with
the direct quadrature PD solver. Certain variations of FCBM have been proposed and
used in [24-27].

In the original meshfree method with direct summation quadrature, for a fixed hori-
zon size, M scales with O(N) in an m-convergence test [28], leading to O(Nz) com-
plexity. For a é-convergence calculation [28], in which M is kept fixed while reducing
the horizon size (thus increasing N), the direct summation quadrature would scale as
O(NM) which, at first glance, looks better than O(NlogzN) However, based on the per-
formance comparison between direct quadrature and FCBM, for an m-factor (ratio of
horizon size to grid spacing) of 3 in a 3D computation, the direct summation quadrature
outperforms FCBM only when N becomes larger than 7 x 10%.

Another advantage of the FCBM-PD is its low barrier for utilizing HPC. One can
simply call parallel or GPU-based FFT libraries instead of the serial ones to benefit
from parallel computing at no additional programming effort. An FCBM for PD diffu-
sion code has been published as supplementary material in a previous study [22]. That
code, however, was designed for a limited class of diffusion problems.

Here, we introduce PeriFast/Dynamics, an FCBM-based code written in MATLAB
for modeling deformation and fracture using peridynamics. PeriFast/Dynamics is sim-
ple, compact, and easy to use and expand to a variety of other problems. After brief
reviews of PD formulations for deformations/fracture/damage and the main steps in
the FCBM for discretizing such formulations, we provide the overall description of the
PeriFast/Dynamics code structure with detailed explanations for each of its modules
(m-files). In addition, we present an example showing how the code can be used, and
how one can extend it to other material models and applications. Full details of the PD
theory and FCBM discretization can be found in the following references, for example:
[22, 23, 29, 30].

The paper is organized as follows: governing equations for the initial boundary value
problems for deformations and damage are discussed in Section 2; in Section 3, the
FCBM discretization is briefly reviewed; data structures used in PeriFast/Dynamics are
shown in Section 4; the code’s general structure and details of each of its modules are
presented in Section 5; in Section 6, a demonstrative example is provided with step-
by-step instructions for a user to perform a 3D peridynamic analysis of dynamic brittle
fracture using the freely-available code.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

2 The Peridynamic Initial-Value Volume-Constrained Problem
for Dynamic Fracture

PeriFast/Dynamics analysis aims to solve PD equations of dynamic deformation and damage
subjected to initial conditions (IC) and volume constraints (VC), a.k.a. nonlocal boundary
conditions. Consider a 3D peridynamic body (B), with constrained volumes I';,I',, and I'; on
which the displacement field components u, u,, and u are respectively prescribed. The con-
strained volumes usually coincide with one another, but they do not have to. Figure 1 shows a
generic 2D PD body with constrained volumes.

Let x(¢) = {xl(t),xz(t),x3(t)} be the position vector of a material point at time ¢, with
i =1,2,3 corresponding to the three Cartesian coordinate directions in 3D. The PD initial-
value volume-constrained (IVVC) problem for dynamics is [31]

TUD = L)+ bx.t) X EQ 1> 0
ui(x,0) = u?; v,(x,0) =)1.C) x € Q, ;i=1,2,3 1)
u;(x, 1) = g,(x,))(V.C.) xel, t>0

where u; is the displacement in the i-direction, v/(velocity) is the time-derivative of u;, g; is
a given volume constraints on I';, and b; is the body/external force density in the i-direc-
tion. L; denotes the internal force density in i-direction and is defined as

Li(x,t) = /Hxﬂ<x,x',t)ﬁ(x,x',t>dx'; i=1,2,3 2)

where H, is the finite size neighborhood of x where the nonlocal interactions pertaining to
x occur. H, is known as the family or the horizon region of point x and is usually a sphere
in 3D, centered at x with the radius § referred to as the horizon size. x' denotes the position
vector for family nodes in H,. fi(x,x’ , t) is the dual force density: the net force between
the material volume at x and the material volume at x’, and is determined by a PD consti-
tutive model. PD material models, which define the expression for fi(x,x' N t) in Eq. (2),
can be of two types: bond-based (BB) and state-based (SB). In BB-PD, the dual force
density for each pair of nodes depends on the displacement of those nodes only, whereas
in the more general SB-PD, the dual force density for each pair of nodes can depend on
the deformation of the entire families of x and x’. In SB-PD, PD states are introduced as
general nonlinear mappings, generalizations of tensors, which are linear mappings, in the

Fig. 1 Schematic of a 2D peri-
dynamic body (B), consisting of
the domains Q, and Q,, where
displacement components u; and
u, are unknown, respectively,
and the constrained volumes (I,
and I';) where u; and u, are inde-
pendently prescribed. (Figure
adopted from [23])

@ Springer

Journal of Peridynamics and Nonlocal Modeling

classical continuum mechanics theory [32]. The constitutive relationships define the PD
“force-state” as a function of the PD “deformation-state” and other quantities. f; in Eq. (2)
is defined based on the force-states at x and x’ [32]. The relationship between PD force
and deformation states can either be directly constructed/obtained in the nonlocal setting
(the “native PD approach”), or it can be derived by a conversion (or “translation”) method
from a classical (local) constitutive model. The latter is known as the PD correspondence
approach, which usually leads to non-ordinary state-based (NOSB) PD models. In ordi-
nary state-based (OSB) PD models, the force vector between x and x' is collinear to the
bond vector connecting the two points, while NOSB-PD models this does not necessarily
happen [32]. Correspondence models are convenient since they can use existing consti-
tutive local models, but can suffer from numerical instabilities (zero energy modes, see
[33-35]), and tend to have a higher computational cost than corresponding OSB ones. The
constitutive model formulas used in this work are given in Appendix.

The function u in Eq. (2) is a history-dependent bond-level damage function with the
following binary definition normally used for brittle-type damage:

, 1 xx’ bond is intact (carries force) at time ¢
X 1) = { 0 xx’ bond is broken (does not carry a f) at time ¢ 3
y a force) at time
Note that PD bonds refer to pairs of family points. A broken bond means that the inter-
action between the two family points that the bond connects no longer exists. In PeriFast/
Dynamics, we use the energy-based damage model proposed in [23], which is consistent
with the FCBM discretization. In this model, once the strain energy density (W) at a point
reaches a critical strain energy density (W,), that point loses all of its bonds irreversibly,
i.e., it is completely detached from the body. The definition for y in this approach can be

expressed as
u(x.x', 1) = A, 0A(x', 1) = A4 4)
where

1 W< W,
Ax,t) = { 0 if W,0)> W, o

The definition of W(x,) depends on the constitutive model. For the material models
implemented in PeriFast, W is provided in Appendix. The threshold W, is calibrated to the
critical fracture energy G, :

G,
W = —°

.= 5 (©)

The details of calibration can be found in [23]. Note that the calibrated formula shown in
reference [23] does not include the 2 in the denominator. There, the 2 was incorporated into
formula for W, leading to equivalent results as here. We prefer the current formula for clarity.

Most engineering measurements are taken on surfaces of the domain, leading to math-
ematical descriptions in terms of (classical) Dirichlet, Neumann, or mixed boundary condi-
tions. In order to approximate a (classical) Dirichlet boundary condition in the PD nonlocal
settings described by Eq. (1), one can impose displacements on a é-thick volumetric layer
at the boundary: this is known as the “naive approach” [36]. For more accurate enforce-
ment of local boundary conditions in PD models, please see, e.g., [36—40]. In the current
version of PeriFast/Dynamics, we use the naive approach. The mirror-based fictitious

@ Springer

Journal of Peridynamics and Nonlocal Modeling

nodes method (FNM) [36] is also compatible with FCBM and has been implemented in the
PeriFast/Corrosion branch [41].

Traction boundary conditions (Neumann type) are usually implemented as body force
densities applied on a é-thick layer at the corresponding boundary. Other options can be
used, for example, one can specify a certain profile for g; in Eq. (1), that approximates, for
example, the desired Dirichlet and Neumann boundary conditions, see [22, 36]. The body
force approach is implemented here in PeriFast/Dynamics.

In order to be able to use the FCBM-PD, a constitutive model needs to be setup in con-
volutional form. For the PeriFast/Dynamics code, the linearized BB, linearized native
OSB-PD model, and PD correspondence model are implemented based on the formula-
tions presented in [23, 42], where the convolutional forms for each of these constitutive
models, including brittle fracture, have been derived.

While for linearized PD models and PD correspondence models of the form shown in
[32], convolutional structures are easy to obtain (see [42—44]), a case-by-case investigation
is needed for general nonlinear models to find a convolutional form to which FCBM can be
applied. One example for a nonlinear bond-based model is provided in [23], while refer-
ences [43, 44] show the procedure for obtaining the convolution form in the case of elasto-
plasticity and ductile failure.

3 Review of the Fast Convolution-Based Discretization Method (FCBM)

PeriFast/Dynamics uses the fast convolution-based method (FCBM) to solve the PD-IVVC
problem in Eq. (1). In FCBM, the convolution theorem and efficient FFT algorithms are
employed to evaluate the mid-point quadrature at significantly lower costs compared to the
direct summation that is traditionally used. Details of the method are given in [23] and
briefly summarized below. Identification and looping over neighbors of a given node are
no longer needed in FCBM, making the method independent of the neighbor numbers. The
initial family search is eliminated, and memory allocation is significantly reduced, since
neighbor information does not need to be stored. We aim to approximate the integral over
the horizon region in Eq. (1) using mid-point integration (one-point Gaussian quadrature)
but evaluated using the Fast Fourier Transform (FFT) and its inverse, instead of the regular
direct summation through a nested loop over the horizon region. For FFT to be applicable
in computing the convolution sums, the problem needs to be extended by periodicity to the
entire space. This is done by first embedding the PD domain in a rectangular box (with a
buffer of at least 6 between the surface of the domain and the edge of the box), which is
then extended by periodicity to the entire space.

Figure 2 shows the box (delineated by the dashed line) with the actual domain contained
in it, extended by periodicity as depicted in Fig. 1. Note that the box edges should be at
least one horizon (§) away from the boundary of the body B. This will ensure that there
will be no wrap-around effect in the circular convolution discussed below.

After extension of the body to T, the following characteristic functions, are defined for
distinguishing various subdomains (partitioning T in a way):

_J1 x€B
= 0xeT\B=A ™

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.2 Extension of a generic peri-
dynamic body to a periodic box in
2D. (Figure adopted from [23])

1 Q;
Yo,) = { 0re T =1 uA) =) = 1o @) ®)

xp 1s defined for eliminating any interaction between the PD body and the rest of the box
and yq is for applying the BCs.
Using yg and g, the PD IVVC problem in Eq. (1) is modified as follows:

0%u, , .
p?';' = }(Qi(/T}(BXBMf;‘deI + bl) + (1 -)(Qi)pTv;’ xeT,t>0
ui(x, 0) =)(Qiu? + (1 - }(Q[)Wi(xy 0) xeT)
5.0 = g+ (1= 1) 22 ret
where w;(x, t) is known from the given data:
_J & x€eT;
wite 1) = { 0 xeT\I (10)

Changing the domain of integration from H, in Eq. (2) to T in Eq. (10) does not alter
the integral because f; is zero outside of the horizon region.

The solution to Eq. (10) on €, is the same as the solution to Eq. (1). Equation (10), how-
ever, is defined over a periodic domain (T) which allows for utilizing FFT for fast evalua-
tion of the circular convolutions arising from discretization of PD integrals.

PeriFast/Dynamics uses uniform grid spacing for spatial discretization at this stage. The
discrete coordinates are defined:

Xy = {(n = DAxy, (m = 1)Ax,, (p — 1)Ax, }, where Ax; = sz— Ax, = %;A;% = %
andn={12....,N }im={1,2,....,N, };p={1,2,...N;}
(1)

L,,L, and L, are the dimensions of the box T in 3D, and N,,N,, and N; are number of
nodes in each coordinate direction. Note that FCBM might be compatible with nonuniform
discretizations if the nonuniform FFT is employed, but this is an area for future research.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Using mid-point quadrature for the integral in Eq. (9). One gets

N3,NoN
nmpt nmp rsq
Z (xrsq’xnmp’ t)fz (xrsq’ nmp?) 1)Vt (12)
q,S, r=1
NyNpNy _ N N N .
where) V27 =3 1 X2 2L, - Note that to compute PD integrals more accurately,

one can use the partial-volume correction algorithms [45, 46]. These algorithms can be
easily incorporated to the FCBM framework by introducing a volume correction function
to Eq. (12). The correction functions can be defined similar to the one defined in [45]. This
is not done here because we will tend to use relatively large m-values (m is the ratio of
horizon size to grid spacing), reducing the error in that way. An analysis of the influence of
partial-volume algorithms on FBCM results is planned in the future.

The key step in FCBM is to express the summation in the equation above in terms of linear
combinations of convolutions, in the following general form:

N, Ng N,.N;
nmp,t _
Ll‘ - Z nmp’ Z bl rsq’ cl(nmp xrsq’ t)
I=1 g.5,r=1

. (13)
= Z a;’mp’r [bz % cl]nmp’t
=1

where N, is a positive integer that denotes the number of convolutions, and for each
I=1,...,N.: a,is a function of point x, b, is function of x’, and ¢, is a function of (x — x’).
Here c; functions are referred to as the kernel functions. Note that different constitutive
models lead to different a,, b;, and ¢, functions that need to be defined in the code. Convo-
lutional forms for the linearized bond-based, linearized native state-based, and PD corre-
spondence models used in this work are provided in Appendix. Generally, a convolutional
structure is natural for the integral operator in linear PD formulations [23, 47]. For nonlin-
ear PD models, one needs to either linearize them or investigate on a case-by-case basis to
see if such a structure can be found. In our previous publication [23] (see also Eq. (13) in
the present manuscript) we showed how to obtain the convolutional structure for a large
class of nonlinear PD problems. For problems that do not fall directly into this general set-
ting, like the PD model with critical bond-strain damage criterion, we had to introduce a
modified damage criterion (based on critical nodal strain energy density, instead of critical
bond-strain) which allowed us to recast the formulation into that general setting and easily
obtain the convolutional structure needed. Several examples for constructing convolution-
based discretizations for nonlinear PD problems have been shown for nonlinear diffusion
[22], and nonlinear elasticity (bond-based) with brittle fracture [23]. Notably, PD corre-
spondence models of the form presented in [38] also fall into the general setting mentioned
above and, therefore, it is easy to derive their convolutional structure (see [42—44]).
Using the discrete convolution theorem, Eq. (13) can be computed as

N,

c

L = 3 () F(c)]) 4

=1

where F and F~! denote the FFT and inverse FFT operations, and cj is the shifted kernel
with respect to the box coordinates. cj is the periodic version of ¢, function over T, where
the origin of ¢, is shifted to coincide with the corners of T. This is necessary for the circular

@ Springer

Journal of Peridynamics and Nonlocal Modeling

convolution operation to represent the PD convolution integrals. Figure 3 shows the origi-
nal and the shifted version of a generic 2D radial kernel.

In Section 4.6 the operation of generating the shifted kernel from the given kernel func-
tion in PeriFast is described.

By comparing Eqgs. (13) and (15), we can see that the summation over the neighbors of
X,,,, 1O longer appears in the fast convolution computation, and therefore FCBM is independ-
ent of the number of neighbors of a given node. As a consequence, there is no need to search,
identify, and store neighbor information, leading to important CPU and storage savings.

The displacement and velocity fields at each time step At are updated explicitly via the
velocity-Verlet algorithm (see [4] for details):

nmp,t+At ___ nmp nmp,t nmp,t At nmp,t nmp,t nmp nmp,t+At
u; = Xo {ui + Atfv; " + Z(Li + b,) } + (1 ~ Xo,)wi
s)
nmp,t+At __ nmp nmp,t At nmp,t nmp,t nmp,t+At nmp,t+At
vi = X, {Vi + 2 [(Li +b;) + <Li +b;)] } (16)

Remark: in addition to the internal force density, all other PD integrals, if used (e.g., PD
strain energy density), need to be expressed in the form of Eq. (13), in order to be com-
puted using the FCBM.

Remark: in order to impose periodic BC in FCBM, one takes yp(x) = X0, (x) = 1 for all
x. This implies that the body becomes a torus/periodic box: yg = yo = T. In this case, the
Fourier basis functions employed in the FFT operations naturally capture the “wrap-around”
effect expected in a periodic setting. This is in contrast with other discretization methods such
as FEM or other meshfree methods where the periodic/wrap-around condition needs to be
explicitly enforced on the boundary nodes. In the case of Fourier-based discretizations, like
Fourier spectral methods and FCBM, periodic BCs are naturally captured and there is no
need to explicitly enforce any type of conditions or constrains. The characteristic function

s
Cl(xry) C (x»y)
Ymax " i
s L
i i
- i
! !
assume ! H
periodicity ; T |
and shift ! i
- i
- :
i 5
Ymin bmmms e oo
xmln xmax

Fig.3 On the left: a 2D generic kernel function in its original form centered at zero (c;). On the right: the
periodic shifted version (c;) used in the fast convolution on T = [XinXmax] X [ViminYmax]- The colored disk
denotes the non-zero part of the kernel function

@ Springer

Journal of Peridynamics and Nonlocal Modeling

introduced in our FCBM approach allows the extension of this Fourier-based method to
bounded domains with non-periodic BCs.

Remark: convergence studies for FCBM have shown a quadratic rate for diffusion problems
in 1D and 2D [21, 22] and a super linear rate in a 3D elasticity example [23]. For fracture
problems, an m-convergence study in 2D was reported in [23], and a §-convergence study can
be found in [43, 44]. Convergence studies for certain variations of FCBM can also be found in
[24-26].

4 PeriFast/Dynamics Code Description

In this section, we describe the data structures used in the discretization in PeriFast/Dynamics,
discuss the overall structure of the code and provide details of each of its modules (m-files).

4.1 Data Structure for PD Nodes

PeriFast/Dynamics stores the PD nodal positions and nodal values for different quantities in a
consistent way with MATLAB’s multi-dimensional FFT operations.

Let T = [XpinXmax] X [VminYmax] X [ZminZmax] denote a periodic box in 3D, with the uni-
form discretization given below:

X; Xpin + (@ — DAX .,
. L L
X =9Y ¢ =9 Ymin T+ (G — DAy ;AX=17‘I,A)/=N—§;AZ=172;
% Zmin + (k— 1)Az 17

andi=12,... Nj=12 .. Nk=12 ..N,

Ll = Xmax ~ Xmin> L2 = Ymax — ymin’L3 = Zimax ~ Zmin

In PeriFast/Dynamics the x, y, and z-coordinates of all nodes are stored in three distinct 3D
arrays of size N, X N; X Nj:
X= [Xﬁk]Nsz, ><N3’Y = [ink]zvzxzv1 XNy’ Z= [Zjik]NszlxN3 (18)
i=12,...,Nj=12,... ,Nk=1,2,...,N;

where X, Yy, and Zy; respectively denote the x,y, and z-coordinates of node x;. Note

that the index in y-direction precedes the x-direction index, due to the way MATLAB’s
meshgrid function generates 3D arrays. While in traditional solvers all nodal data are usu-
ally vectorized regardless of the spatial dimension, in FCBM it is necessary to work with
multi-dimensional arrays, because of using multi-dimensional FFT operations.

In PeriFast/Dynamics, functions of space and time are defined as functions of X,Y, Z, and
t, and return outputs in the form of 3D N, X N, X N; arrays containing their nodal values.

For example, let C(x) be a 3 X 3 tensor-valued function defined in 3D. The discrete version
of this function in PeriFast/Dynamics is

C,(X.Y.Z)= [(Cpq)jik]NszlxN3; for each p,g =1,2,3 (19)

For each p and g (each component of the tensor C), C,, is a 3D N, X N; X N5 array
returned by a function of XY, and Z. See PeriFast’s nodes_and_sets.m module for exam-
ples of such definitions.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

4.2 The Overall Code Structure

The current version of PeriFast/Dynamics consists of 14 MATLAB m-files: main.m,
inputs.m, nodes_and_sets.m, pre_constitutive.m, constitutive.m, update_tractions.m,
update_VC.m, initial_gpu_arrays.m, dump_output.m, visualization.m, open_Matlab_
video.m, create_matlab_video.m close_Matlab_video.m and postprocess.m.main.m is
the script that executes the program. inputs.m contains certain input data including mate-
rial properties, simulation time, time steps, initial and boundary conditions, visualization
parameters. nodes_and_sets.m contains the PD horizon and discrete geometrical data
including nodal coordinates and discrete characteristic functions that define various sub-
domains: the original body, constrained volumes, pre-damaged regions, and subregions
where tractions are applied as a body force. Pre_constitutive.m, and constitutive.m contain
the material model information (available in the form of Eq. (13)). Functions that are inde-
pendent of the field variables and time, i.e., are not changing during the simulations, are
defined in pre_constitutive.m. The kernel functions are usually of this type and are defined
in this module. The precomputed functions in pre_constitutive.m as well as the displace-
ment field and other inputs are passed onto the module constitutive.m, where the internal
force density, strain energy density, and damage are computed. constitutive.m is the module
that is called in each time step to update the material response. Files update_tractions.m,
and update_VC.m are modules called when traction and displacement boundary conditions
need to be updated, respectively. initial_gpu_arrays.m, converts variables involved in the
convolution operations to MATLAB’s “gpuarray” type to use GPU-based computations.
Dump_output.m script is called every several time steps (frequency defined by the user in
inputs.m) to record output data into a Matlab variable and into a Tecplot 360 [48] file (user
can determine in inputs.m if Tecplot file is desired). If visualization is requested by the user
(in inputs.m), visualization.m is called as well to plot results in Matlab at every snapshot
during the analysis (number of data dump and visualization frames can be set by the user
in inputs.m).

Naturally, performing the visualization during the analysis slows down the run time.
For speed tests, or if solving a larger problem, it is recommended to turn off visualization_
during_analysis (in inputs.m). One can postprocess the recorded output data once the
simulation is completed. The option to generate a Tecplot output (tecplot_output in
inputs.m) file may also affect the speed of the analysis.

For a given problem, the user needs to specify input data in inputs.m and geometrical
data in nodes_and_sets.m. Currently, the geometry data (the characteristic function, the
boundary regions, the box domain coordinates) is setup manually, on a case by case basis.
The users are invited to contribute functions to the code that would automate this step, for
example, to directly import various CAD systems representations of the geometry data.

In this version, three material models have been implemented in PeriFast/Dynamics:
(1) linearized bond-based isotropic elastic; (2) linearized state-based isotropic elastic;
and (3) PD correspondence model for a hyperelastic material. We model brittle damage
in all of the three cases (see Section 2 and Appendix for the damage models). New mate-
rial models can be added to PeriFast/Dynamics by defining additional material types in
pre_constitutive.m and constitutive.m. The user can also easily specify additional variables
to output in dump_output.m (e.g., internal variables in history dependent material models)
and customize visualization.m, open_Matlab_video.m, create_matlab_video.m and close_
Matlab_video.m as desired.

In the following, we take a closer look at each m-file.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

4.3 Description of main.m

Box 1 shows the structure of main.m as the executable main file of the program. The file
consists of three stages: reading input information, initialization, and the time computation
loop. After the time loop a outputs are saved in a file named: results.mat.

4.4 Description of inputs.m

In the inputs.m file, user-prescribed data are assigned to variables and passed onto the main
program. The user needs to directly insert the input data in this file.

The terms in the parentheses denote the MATLAB variable names used in the code.
Props is a 1D array, while Fb, IC_u and IC_v are structure arrays-type variables, each con-
taining three functions corresponding to each vector component. The function of the body
force’s x-component for example is Fb(I).func. The variables used for traction and dis-
placement boundary conditions are also of struct type. For BCs, however, each coordinate
direction has a distinct variable associated with it, containing the number of the prescribed
BCs in that direction and the corresponding functions. For example, if one needs to enforce
two traction BCs in y direction, one sets trac_y.No=2, and then define the two functions
trac_y(1).func and trac_y(2).func.

The desired number of data dumps and frames for visualization is selected by the user
through variables number_of_data_dump and number_of visualization_frames.

Variable tecplot_output can be either 1 or 0. Choosing value 1 leads to the selected
outputs being saved as a Tecplot file during the analysis (in the current version of the
code we choose damage index as an output to be saved in a Tecplot file as an example;
users can select any desired outputs). Using value 0 cancels the Tecplot output.

Call inputs.m function to generate the input data
Call nodes_and_sets.m function to generate geometrical data
Compute and store invariant functions of the material model (call pre_constitutive.m, see Section 4.6)
- Initialize the time loop:
- Assign initial conditions (using output data from inputs.m)
- Assign pre-damage (if any) (using data generated by nodes_and_sets.m)
- Compute initial body force (using output of inputs.m)
- Compute initial traction forces using update_tractions.m (see Section 4.9)
- Compute initial internal force density using constitutive.m (see Section 4.7)
- If GPU option is selected in inputs.m, setup GPU arrays using initial_gpu_arryas.m (see section
4.10)
For each time step:
- Update volume constraints using update_VC.m (see Section 4.8)
- Update displacement field (via velocity-Verlet method with embedded constraint in Eq. (15))
- Update internal force using constitutive.m (see Section 4.7)
- Update tractions using update_tractions.m (see Section 4.9)
- Update body force
- Update velocity field using Eq. (16)
- Dump output data and visualize the results using dump_output.m and visualization.m (see
Section 4.11 and 4.12) if visualization option is on in inputs.m.
End time loop
- Save outputs to a.mat file.

Box 1 Structure of the main program file: main.m

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Define the following variables and return as the function output:
material properties (props)
simulation time (t_max)
time step (dt)
GPU run switch (run_in_gpu)
number of dump data (number_of_data_dump)
visulalization frames frequency (number_of visualization_frames)
Tecplot switch (tecplot_output)
visualization during analysis switch (visualization_during_analysis) select desired outputs for being
plotted/animated (outputs_var_for_visulazation)
body force density (Fb)
initial conditions:
- displacements as functions of space (/IC_u)
- velocities as functions of space (IC_v)
traction boundary conditions (trac_x, trac_y, trac_z):
- number of tractions
- each traction as a function of space and time
displacement boundary conditions (dispBC_x, dispBC_y, dispBC_z):
- number of displacement BCs
- each displacement BC as a function of space and time

Box 2 Structure of inputs.m

Variable visualization_during_analysisis either 0 or 1, with 1 requesting Matlab
visualization during the analysis phase, and 0 leaving out run-time visualization. Note
that plots/animations can be obtained by postprocessing the output saved in Results.
mat file. The variable visualization_during_analysis can be set to 0 so that the results
can be plotted/animated by running postprocess.m after saving Results.mat. This is,
in fact, the recommended option when solving larger problems since plotting during
analysis slows down the solver. In this version of the code the default option sets the
visualization_during_analysisis variable to 0.

The user can choose the desired outputs among dumped outputs (dump_output.m) to
be plotted/animated by defining a vector of integers, outputs_var_for_visualization in
inputs.m. A number is assigned for each output and used for defining outputs_var_for_
visualization in inputs.m. In the current version of PeriFast/Dynamic code, uj,u,,usu_
mag,v;,v,vs; v_mag, W, d (i.e., displacement vector components, displacement magnitude,
velocity vector components, velocity magnitude, strain energy density, damage index)
and lambda are dumped as outputs and the assigned number for them is 1 through 11,
respectively. For example, if users want to visualize u;, u,, and d among these dumped
outputs, they need to set outputs_var_for_visualization=[1, 2, 10]. Note that in order to
add any other outputs for visualization which is not defined in the current version of dump.
output.m, users first need to add it to dump.output.m and then modify visualization.m,
open_Matlab_video.m, create_Matlab_video.m and close_Matlab_video.m to visualize
that as well.

4.5 Description of nodes_and_sets.m

nodes_and_sets.m contains nodal coordinates and the geometrical information of the prob-
lem. Before describing its details, we first point out how the domain extension required by

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.4 A 2D generic PD body T
(B), the enclosing box (shown by le

the dash-line), and one possible
extension to the periodic box T

FCBM (see Fig. 2) is implemented in PeriFast/Dynamics. Given a PD body (B) defined by
the original PD-IVVC problem, it is first assumed that the body is enclosed in a rectangu-
lar box, as tight as possible to the body. This enclosing box is shown in Fig. 4 for the 2D
case with dash-line. Note that this is different from the box that is repeated by periodicity.
Assuming a coordinate origin, we define the coordinates of the enclosing box vertices. To
construct the periodic box T, the enclosing box is extended along each direction/axis with
an extension at least as large as the horizon size to avoid the “wrap-around” effect in the
circular convolution. Figure 4 shows a PD body, the enclosing box (the dash-line), and the
extended periodic box T in 2D. [, denotes the extension length (which should be selected
larger than 6).

Note that the best choice of the enclosing box (and the coordinate system directions)
is the one that leads to the least extra space between the body and the box. Considering
a fixed nodal spacing, less gap results in less excess degrees of freedom in FCBM. If the
body itself is a rectangular box, then the enclosing box would be the body itself.

Box 3 shows the structure of nodes_and_sets.m.

In nodes_and_sets.m, the user first defines the horizon size (§), the enclosing box
dimensions, the extension length (/, in Fig. 4), and the number of nodes in each direc-
tion. The program then extends the enclosed box to find T, and then create nodes accord-
ing to Egs. (14) and (15). Next, the various characteristic functions/node sets are defined
by the user to describe different subdomains corresponding to the original body, traction
forces, volume constraints, and pre-damage. At the end, node sets representing displace-
ment BCs in the same directions are merged to form three distinct node sets yr , . At
Then yq . Xo,Xq, are obtained by Eq. (5). The horizon, box T info, nodal coordinates, and

Define PD horizon size (delta)
Define the enclosing box (x_min, x_max, y_min, y_max, z_min, z_max)
Define the extension length (extension)
Define the number of nodes in each direction (Nx, Ny, Nz)
Extend the enclosing box to the periodic box
Create nodes and nodal volumes
Construct the characteristic functions (i.e., node sets) for:
- original body (chiB)
- traction BC (chit_x, chit_y, chit_z)
- displacement BC (chiG_x, chiG_y, chiG_z)
- pre-damage (chi_predam)
Assemble xr, (chiGx, chiGy, chiGz)
Compute and return yq. (chiOx, chiOy, chiOz)

Box 3 Structure of nodes_and_sets.m

@ Springer

Journal of Peridynamics and Nonlocal Modeling

the characteristic functions are passed onto main.m to be used in the analysis.chit_x, chit_y,
chit_z, and chiG_x, chiG_y, chiG_z are all struct type variables and include the number
of BCs in their specific direction, as well as the node sets for each of those. For example,
if there are two traction BCs given in the y direction, one needs to set chit_y.No=2, and
define chit_y(1).set and chit_y(2).set, where each of these sets are 3D N, X N; X N; arrays
with value 1 for nodes in the node set and zero elsewhere.

Remark: the number of node sets in chit_x, chit_y, chit_z, and chiG_x, chiG_y, chiG_z,
should be consistent with number of tractions and displacement BCs given by trac_x,
trac_y, trac_z, and dispBC_x, dispBC_y, dispBC_z, in inputs.m respectively.

4.6 Description of pre_constitutive.m

This m-file contains the time-invariant functions needed for evaluation of the PD constitutive
terms such as the internal force, strain energy, etc., available in the form of form of Egs. (10)
and (11). For most well-known material models, kernel functions (c; is Eq. (10)) are invariant
in time and should be defined in this module. Note that this module returns the FFT of the
kernel functions in their shifted forms (c}) described in previous section (see Fig. 3).

Box 4 gives the structure of pre_constitutive.m.

Here is how the “shift operation” shown in Fig. 4 is carried out in PeriFast/Dynamics:
for obtaining cf, first, ¢, is translated such that its origin coincides with the center of the
box: cl(X -x,Y =Yy, L— zc). Then the fftshift MATLAB function is used on the trans-
lated c,. The fftshift command breaks down the array from mid-planes of the box and swap
the partitions, resulting in the desired shifted form: ¢;. More information on ffishift is pro-
vided in the MATLAB documentation.

The coded PD correspondence model for the hyperelastic material (material ID=2)
uses St. Venant—Kirchhoff classical model for finite deformation elasticity. The imple-
mented correspondence model includes the stability term introduced in [33] to suppresses
zero energy modes and stabilizing the PD correspondence solutions.

4.7 Description of constitutive.m

This module takes the displacement field, history-dependent variables such as the old dam-
age parameter, material properties (defined in inputs.m), discretization info (defined in

Module inputs: material properties, horizon, nodal coordinates, periodic box dimensions
Read material ID from the properties
Calculate the coordinates of the center of the box (x_¢, y_¢, z c)
If material ID = O (Linearized bond-based elastic material)
- Compute the PD elasticity constants from material properties
- Define kernel functions ¢;(X, Y, Z) (see Eq. (13))
- Perform shift operation on ¢; to obtain ¢
- Compute FFT of ¢f functions: ¢}
- Return ¢; as the module output
If material ID = 1 (Linearized state-based elastic material)
- [same procedure as BB, but with different functions]
If material ID = 2 (PD correspondence model for hyperelastic material)
- [same procedure as BB, but with different functions]

Box 4 Structure of pre_constitutive.m

@ Springer

Journal of Peridynamics and Nonlocal Modeling

nodes_and_sets.m), and the invariant parameters in the constitutive response (from pre_
constitutive.m) as inputs, and returns the internal force density, strain energy density, and
updated history-dependent variables (e.g. damage) as outputs. Box 5 presents the structure
of this module.

Note that user-defined material models are allowed in PeriFast/Dynamics and can be
introduced by defining appropriate functions in pre_constitutive.m and constitutive.m, with
additional material IDs, in the If-statements.

While PeriFast/Dynamics can adopt different user-defined damage models along with
the user-defined constitutive laws, in the current version, for the three included constitutive
models, we used the same energy-based pointwise damage model introduced in [23]. In this
damage model, the parameter that store damage information is a binary variable denoted
by lambda which is O for a damaged node and 1 otherwise. A damaged node is a node for
which its strain energy density exceeds a threshold calibrated to the critical fracture energy
of the material. The damage index (here tracked by the variable named damage) varies
between 0 and 1 and it is computed from lambda using the following relation [23]:

[2w xpmdVy [28 20 o(1EDAV.,
doey=1- 8 Ly TR 20)
[2854V S xerpo(1EDAV,
In Eq. (20), w is the influence function and & = x’ — x denotes the bond vector. The
influence function w(|€|) = é is used in this work.

Lambda, damage, and any other history-dependent quantities, are defined in a structure-
type variable named history_var.

Remark: if one intends to study stress waves only (i.e., deformation without damage/
fracture), one can either comment out the commands corresponding to updating damage,
or just prescribe a very large fracture energy value in inputs.m.

4.8 Description of update_VC.m

This module takes the displacement BCs as functions of space and time (from inputs.m),
and also their corresponding node sets (from nodes_and_sets.m), and returns the nodal
values for functions w; (i = 1,2, 3) in Eq. (15) as outputs. Box 6 shows the structure of
update_VC.m.

Module inputs: material properties, displacements, history-dependent variables, horizon, body node
set, nodal coordinates, nodal volume
Read material ID from the properties
If material ID = O (Linearized bond-based elastic material)
- Compute the frequently repeated terms, and store for the following computations
- Compute the internal force density: (L1, L2, L3) (from Eq. (14))
- Compute strain energy density (W)
- Update the damage parameter (lambda) given the old lambda and W
- Compute the damage index (damage)
- Returnll1, L2, L3, W, damage, lambda
If material ID = 1 (Linearized state-based elastic material)
- [same procedure as BB, but with different functions]
If material ID = 2 (PD correspondence model for hyperelastic material)
- [same procedure as BB, but with different functions]

Box 5 Structure of constitutive.m

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Module inputs: functions of displacement BCs, their node sets, nodal coordinates, time
Assemble w; (wx) using displacement functions in x (dispBC_x) and their node sets (chiG_x)
Assemble w, (wy) using displacement functions in y (dispBC_y) and their node sets (chiG_y)
Assemble w3 (wz) using displacement functions in z (dispBC_z) and their node sets (chiG_z)
Return assembled volume constraints (wx, wy, wz)

Box 6 Structure of update_VC.m

4.9 Description of update_tractions.m

In PeriFast/Dynamics, traction BCs are enforced as body forces applied uniformly on a §
-thick layer of the body at the boundary (distributed uniformly through the thickness of the
layer). The body force nodal value is obtained by dividing the traction force at a point by 6.
The structure of update_tractions.m is very similar to update_VC.m.

4.10 Description of initial_gpu_array.m

To accelerate computations using GPUs, one needs to convert variables involved in the
convolution operations to MATLAB’s “gpuarray” type using the file initial_gpu_array.m.
Then, calls to MATLAB’s FFT and inverse FFT functions will automatically use the GPU
for these operations. Note that the Parallel Computing Toolbox needs to be installed to
enable GPU computing in MATLAB.

4.11 Description of dump_output.m

This module gets the snapshot number (ks), displacements and velocities in x, y, and z
directions, strain energy density, damage index, and lambda as inputs. These variables
along with other post-processed quantities such as displacement magnitude, are stored in a
single structure-type MATLAB variable named Output. If the visualization switch is on (if
visualization_during_analysis==1) this variable is passed onto the visualization module
for creating MATLAB plots during the analysis. The frequency of visualization of outputs is
dependent on the number _of _visualization_frames defined in inputs.m. Also, if the Tecplot
switch is ON in inputs.m file, the desired output is saved as a Tecplot file (.plt). Results stored
in Output can be used for any desired post-processing operation. dump_output.m module can
be easily modified by the user to store other user-defined outputs.

4,12 Description of visualization.m and postprocess.m

This module takes the outputs from dump_output.m, the snapshot number, nodal coordinates,
and the body node set, and uses them to visualize the results. This module, too, can be easily

Module inputs: functions of traction BCs, their node sets, horizon, nodal coordinates, time
Assemble b; (btx) using traction functions in x (trac_x), their node sets (chit_x), and horizon (delta)
Assemble b, (bty) using traction functions in y (trac_y), their node sets (chit_y), and horizon (delta)
Assemble b; (btz) using traction functions in z (trac_z), their node sets (chit_z), and horizon (delta)
Return assembled traction body force (btx, bty, btz)

Box 7 Structure of update_tractions.m

@ Springer

Journal of Peridynamics and Nonlocal Modeling

modified by the user to plot the desired figures and/or record animations (user can select the
desired output for visualization in inputs.m), and to export files in user-defined formats for
further processing in external software. In order to record Matlab videos from the snapshots,
create_Matlab_video.m is used. There is an option in input.m to select whether the user desires
to visualize the results during the analysis or after. The default is to perform the visualization
after the analysis by running postprocess.m and using the data saved in the Results.mat file.

4.13 Description of open_Matlab_video.m, create_Matlab_video.m and close_
Matlab_video.m

These modules are used for creating Matlab videos from the outputs. For every desired output
to be animated, first, a video file needs to be opened using open_Matlab_video.m. Next, by call-
ing create_Matlab_video.m, the sequence of frames from the desired output is written to the
video file. Finally, the video file needs to be closed by using close_Matlab_video.m. In the cur-
rent version of PeriFast/Dynamics, a video file for damage evolution is created. Users can easily
add any other desired output for creating a video by modifying outputs_var_for_visualization in
inputs.m. For example, for the nodal velocity vector components and the strain energy density,
one can define outputs_var_for_visualization=[5-7, 9], where v,, v,, v;, and W are assigned the
indices 5, 6, 7, and 9 in this version of code.

5 Example of Running PeriFast/Dynamics: 3D Dynamic Analysis
of Brittle Fracture in a Glass Plate

In this section, we show how a particular problem on dynamic fracture in glass is setup and
run with PeriFast/Dynamics. The physical problem is an example of dynamic brittle fracture
in which crack branching takes place, when the applied loading is sufficiently high. For the
crack to grow straight, one needs to lower the applied stress, see below. These type of prob-
lems, until the advent of PD, have been especially difficult to correctly simulate [12, 49].

5.1 Problem Setup

We consider a thin single-edge glass plate of size 0.1 x 0.04 x 0.002 m> with a pre-crack,
subjected to sudden uniaxial tensile stress of o, = 4 MPa on its top and bottom edges (see
Fig. 5). These types of boundary conditions are not easily replicated in experiments, with
crack surface ramped-up loadings being a more realizable scenario [50]. However, these

Fig.5 Problem description for the 0o
3D numerical example of dynamic . @ % " N . 4
brittle fracture. The thickness of TT Ti : ﬁ T\T ﬁ I ﬁ i T\T I I ﬁ 1 1

the sample along the z-direction is
exaggerated for visibility

y
TTZHC EEEEEEEREEEREERERER]

09

@ Springer

Journal of Peridynamics and Nonlocal Modeling

boundary conditions are the most employed in numerical simulations of crack branching,
and this is the reason for using them here. See [49] for comparison of different types of
dynamic loading that induce crack branching in glass samples of this type.

The material properties are selected the same as in [49]: density p = 2440 kg.m™3,
Young modulusE = 72 GPa, Poisson ratio v = 0.25, and fracture energy G, = 3.8 J.m™2.
Since v is restricted to be 0.25 for the bond-based model, the choice of 0.25 with the state-
based models, allows for the comparison of the simulation results against each other. The
horizon size 6 = 1.02e-3 m, and the grid spacing is chosen to be Ax = Ay = Az =2e-4 m.
The addition of 0.02e-3 to le-3 for the horizon size is to avoid numerical sensitivity when
the horizon size 6 is an exact multiple of the grid spacing.

5.2 Defining the Code Input Data
The following input data is used to solve the problem define above with PeriFast/Dynamics:
5.2.1 Ininputs.m

1. Material properties are entries in the props variable in the following order: material ID,
p, Gy, E, v. Set:
props = [0; 2440; 3.8; 72e9; 0.24];
0, 1, or 2 for the material ID determines if which material model is employed. If mate-
rial ID=0, then the bond-based model is used, and the value defined for v is disregarded.
2. Define the simulation time, time step, run in gpu switch, snapshot frequency, visualiza-
tion, and Tecplot output switches as
t_max = 33e-6;
dt = 5e-8;
number_of_data_dump= 100;
number_of _visualization_frames = 30;
run_in_gpu = 0;
tecplot_output= 0;
visualization_during_analysis= 0;
outputs_var_for_visualization = [10];
3. Set all the functions for the body force components and the initial displacements and
velocities to zero (this is the default case).
4. Define the traction BCs by setting
trac_y.No = 2;
trac_y(1).func = @(x,y,z,t) 4e6;
trac_y(2).func = @(x,y,z,t) -4e6;

5.2.2 Innodes_and_sets.m:

[

Define the PD horizon size: delta=1.02e-3;
2. Define the enclosing box by providing the minimum and the maximum of the box dimen-
sion along each coordinate direction in
x_min = 0; x_max = 0.1;
y_min = 0; y_max = 0.04;
z_min = 0; z_max = 0.002;
3. Define the extension length to form the periodic box: extension =2e-3;

@ Springer

Journal of Peridynamics and Nonlocal Modeling

4. As noted earlier, this should be larger than the horizon size.
Define the resolution in each direction

Nx = 510;
Ny = 210;
Nz = 20;

which results in over 2 million nodes. These values are calculated from the dimension
of the extended box and the grid spacing of Ax = Ay = Az =2.5e-4.
5. Define yy (body node set) with value 1 for nodes inside the body and 0 otherwise. For
our example, we set
chiB = ones (Ny, Nx, Nz);
chiB (Z <z_min|Z > z_max) =0;
chiB (Y <y_minlY >y_max)=0;
chiB (X < x_min | X > x_max) =0;
6. Define the node sets for the traction BCs
chit_y.No =2;
chit_y(1).set = double(chiB ==1 & Y > y_max - delta + dy/2 & Y < y_max + dy/2);
chit_y(2).set = double(chiB==1& Y > y_min-dy/2 & Y < y_min + delta - dy/2);
The “double” command converts the logical arrays in the arguments to double arrays
for computation.
7. Define the node set representing the pre-crack (the notch region)
chi_predam = double(chiB == 1 & abs(Y - y_min - Ldy/2)<= (delta/2) & X < Xx_min
+ Ldx/2);

5.3 Selection of Outputs

Components of the displacement and the velocity vectors as well as their magnitude, strain
energy density, damage index, and lambda are selected as the output variables by defining
the following commands in dump_output.m file:

Output(ks).ul =ul;

Output(ks).u2 =u2;

Output(ks).u3=u3;
Output(ks).u_mag=sqrt(ul.*2 +u2.A2 +u3."2);
Output(ks).vl =vl;

Output(ks).v2=v2;

Output(ks).v3=v3;

Output(ks).v_mag =sqrt(v1. 2 +v2.A2 +v3.A2);
Output(ks).W =W,

Output(ks).d =damage;

Output(ks).Jambda =1ambda;

5.4 Execution of the Program

For faster computations, one can use the Matlab’s capabilities for parallel, multi-threading,
and GPU-based computations. In the current version of PeriFast/Dynamics, multithreading
is immediately accessed by simply changing the maximum number of threads used in the
run: LASTN =maxNumCompThreads (p), at the beginning of main.m, where p is the max

@ Springer

Journal of Peridynamics and Nonlocal Modeling

number of threads desired. The default option is for serial computations, using p=1. GPU-
based computation is explained in Section 4.2.

LASTN =maxNumCompThreads(1);

To execute the code, we run the main.m file.

5.5 Visualization of Results

Figure 6 shows the damage index 3D MATLAB profiles obtained by the bond-based and
the state- models (native and correspondence). Evolution of velocity fields, as well as
strain energy density and damage index during fracture are provided in Videos 1, 2, and 3
for these PD models, respectively.

5.6 Explanations of Differences Between Models

The results shown in Fig. 6a for the bond-based model are similar to those obtained with
a 2D plane stress simulation in [49]. This is a good verification of the PeriFast/Dynamics’
implementation. The slight differences between damage patterns (branching near the edge)
from the three FCBM-based models stem from the small actual difference between the PD
constitutive models.

Although the force density in the state-based and the bond-based models in Eqgs. (A-1
and A-5) are different in general, for the linearized versions in Eqgs. (A-1 and A-6, if the
Poisson ratio is chosen as % in the state-based model, the first term in Eq. (A-6) vanishes
and the bond-based formula is recovered, for points in the bulk. These models, however,
even for the one-quarter Poisson ratio value, are slightly different near surfaces. The root
cause for this difference is in the different PD elastic micro-moduli computed in these two
models. In the bond-based formulation (see [47]) the micro-modulus is computed based on
a calibration for points in the bulk, and assumlng no surface correction is used for points
near boundaries, has the Value equal to T in 3D. In the state-based formulation, the bond-
level elasticity constant, =%, depends on the weighted volume at a node, denoted by m.
The weighted volume in 01’1nr model is obtained numerically by approximating the following
integral over the horizon (see [47]):

m= / ollgDierav, o

We can easily show the equivalency of the elastic constants in the native state-based
model (30”) to the bond based micromoduli at the continuum level for points in the bulk
by computlng m for nodes in the bulk (over a full spherical neighborhood) and using
the following influence function w(|€|) = E(used in this work):

0 _ 0y s _
m foﬂ 02” /06 r3sing dr dpdo mé* mdt

(22)

The domain of integration in computing m, i.e., neighborhood H,, varies, however, for
nodes near surfaces, including original domain boundaries and growing crack surfaces,
compared to the nodes in the bulk, leading to automatically modified bond-level elastic
properties near the surfaces for the native state-based models. In other words, for points
near the boundary, the function m, according to Eq. (21) in the state-based model, changes

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Fig.6 Damage index profiles in
glass obtained from PeriFast 3D
analysis with a the bond-based, b
the linearized state-based, and ¢
the correspondence models

damage, t=33e-6s

x1073

0.04

(a)

%1073

0.04

0.8
damage, t= 33e-6s

0.7

0.6

10.5

Ci

(b)

damage t=33e-6s

(c) 0

value, while in bond-based models, unless PD surface correction algorithms (e.g., see [37])
are enforced, the bulk parameters are used everywhere.

We tested a state-based model, to compare with the results from the bond-based shown in
Fig. 6a, by setting v = 0.25 and m = z6* at all points in the domain (independent on whether
they are near a boundary or not). We obtained results identical to the bond-based model.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

While the bond-based and native state-based models differ mostly near surfaces as
described above, the correspondence model is intrinsically different from the other two,
making use of a “translation” between PD concepts (force and displacements maps) and
classical continuum mechanics quantities (stresses and strains tensors) and employing, a
local constitutive model for defining the stress—strain relationship.

As the horizon goes to zero, one expects the bond-based and native state-based mod-
els approach identical solutions since their near-the-surface differences vanish. The cor-
respondence model, in the limit of §-convergence, and for well-behaved problems, also
converges to the classical solution of the corresponding problem. For problems with dam-
age/fracture, this statement needs further investigation, which is outside the scope of the
current work.

The 3D PD dynamic brittle fracture analyses, using a single processor, with over 2 x 10°
nodes and over 660 time steps took about 1.15, 1.67, and 2.87 h to complete, with the bond-
based, native state-based, and the correspondence models, respectively. When employing
GPU-based calculations, the computational time is around 5 min, 6 min, and 11 min, for
the three different constitutive models, respectively. Computations were performed on a
Dell-Precision T7910 workstation PC, Intel(R) Xeon(R) CPU E5-2643 W v4 @3.40 GHz
logical processors, and 128 GB of installed memory and NVIDIA Quadro M4000 GPU
with 8 GB memory.

6 Summary and Possible Extensions of PeriFast/Dynamics

We introduced a compact Matlab-based code, PeriFast/Dynamics, which is an implementa-
tion of the Fast Convolution-Based Method (FCBM) for dynamic deformations and frac-
ture problems in 3D. The current version of the code uses explicit time integration and
offers three different options in terms of peridynamic (PD) material models: the linearized
bond-based and ordinary state-based models for isotropic elastic materials, and the PD cor-
respondence model for isotropic hyperelastic materials. Each of these comes with a model
for brittle damage based on nodal strain energy density. The code is modularized with the
explicit purpose to make it user-friendly and easier to adapt, modify, and extend to other
problems. As long as the PD formulation for a particular problem can be setup to exhibit
a convolutional structure, one can simply update/modify the MATLAB files defining the
constitutive model for that particular problem. For example, elasto-plastic and ductile fail-
ure problems can easily be implemented with the structure of our code. The code could
also be extended to include a pre-processor step that reads CAD-generated sample geom-
etries and boundary conditions and automatically determines the characteristic functions
that identify the domain and boundary regions in the computational box.

Because of the FCBM used to discretize the PD formulations, PeriFast/Dynamics’ simula-
tion run-times and memory requirements are independent of the number of neighbors of a
node. Previous studies showed that the FCBM leads to speedups of tens to thousands com-
pared against the traditional meshfree method, depending on the number of neighbors used.

We have briefly reviewed the PD governing equations for dynamic brittle fracture and
the FCBM discretization, followed by describing the data structures used in the code. The
general structure of PeriFast/Dynamics and detailed descriptions of each of the m-files
contained in the code have been given. A demonstrative example of dynamic brittle frac-
ture in glass in 3D, solved using three different constitutive models, has been provided,
with step-by-step descriptions for input data and choices of outputs.

@ Springer

Journal of Peridynamics and Nonlocal Modeling

6.1 Possible Extensions

Note that the current version uses damage models with a single parameter, which can be
calibrated to the critical fracture energy (material fracture toughness). These models work
well in problems with pre-cracks, but when applied to problems with no pre-cracks, a
higher and higher effective strength is found if one uses smaller and smaller horizon sizes
(for a discussion of how to select a “proper” horizon size please see [51, 52]). For quasi-
brittle fracture problems in bodies without pre-cracks we recommend using (and imple-
menting), for example, the two-parameter bond-failure model (see [53]). Such an extension
is immediate by defining lambda in constitutive.m as a non-binary variable with a gradual
transition from 1 to 0, capturing a softening behavior at the microscale.

To implement ductile failure models, one can use, for example, the new PD correspond-
ence model introduced and verified in [43, 44]. The PeriFast version presented here uses an
explicit time integration scheme (velocity Verlet) and solves dynamic problems. Implicit
solvers using iterative methods such as the nonlinear conjugate gradient method have been
used with FCBM before (see [23]) and can be easily added to the code to perform static
and quasi-static analyses.

PeriFast/Corrosion is one branch of the PeriFast suite of Matlab-based codes that imple-
ment the FCBM for PD models. The PeriFast/Corrosion branch solves corrosion damage
problems (pitting corrosion, including with formation of lacy covers) and is described in
[41]. By coupling the/Corrosion and/Dynamics code branches of PeriFast, one can solve,
for example, stress-corrosion cracking problems like those in [5]. Because the code is fast
and memory requirements are relatively low, one can solve such problems for samples at
engineering-relevant scales.

Another possible extension of the code presented here is to model thermomechanical
fracture and damage. Using the diffusion-type solver structure implemented in the/Corro-
sion branch of PeriFast, one can easily write a similar solver for transient thermal transport
and couple it with the mechanics code/Dynamics to simulate thermomechanical fracture.

While not immediate, other interesting extensions may be possible: (1) fracture in het-
erogeneous materials (these could use, for example, the masking functions used in [41] to
generate a polycrystalline microstructure); (2) impact and fragmentation (contact detection
algorithms would be required for such models).

Appendix. Constitutive models included in PeriFast/Dynamics

1. Linearized bond-based elastic material model

This model is basically the linearized version of the micro-elastic solid (see [47]).
The internal force density for this material is

Lx,1) = / Xpxphf (x. X' 1)dv, = / e xpAd C(EMAV, (A-1)
",

X

£®¢

T with

where & Is the bond vector, n is the relative displacement and C(&) = aw(|&])

a=Cand (18 =
And the strain energy density is

@ Springer

Journal of Peridynamics and Nonlocal Modeling

W(x, 1) = % / . xgx;iﬂ/n-(%C(é)n)der (A-2)

The convolutional form of the internal force density and strain energy density for lin-
earized bond-based models (Egs. (A-1) and (A-2)) used in this work are [23]
L= ./H IB){}’;’I’llcij”jdVA’ = /H XBX);AA’CU(M} - ”j)dvx’ = XB/I{[Cij * ()(B/Wj)] =[Gy *)(Bll]uj}
(A-3)
W, 1) = %/H ;(B;(,;u’n,,(%cijqj)dvr, = %){BA([CU % gp] —2[Cy % g awu; + [Cy # g A]u)

(A-4)
2. Linearized state-based elastic material model

This model is the linearized version of the native state-based linear elastic solid (see
[47]). The internal force density for this material is

Lix.1) = / . xaipf (3.1)av, = / xBxBu(T[x 1) T, 1](~£)av,,
) (A-5)
where

§®§
|&I?

where k and G here are the bulk and shear moduli, respectively, and 9 is the a nonlocal
dilation [47].
The strain energy density for this linearized state-base material model is [47]

1 E®¢E 15G
Wx,t) = §<<k_7>'92+a/ uo(|&)n. |§|2 ndv) 7 (A7)

1(6) = (F22)aleno + Slalen = (A6)

Note: by adopting a Poisson ratio of one-quarter, the first terms on the right-hand
side of Eq. (A-6) and (A-7) vanish and the linearized bond-based model presented by
Eq. (A-1) and (A-2) is recovered for the points in the bulk as explained in Section 5.6.

The convolution structures for 9 and m are derived in [23]. Let C(§) = 30Gw(|lj|)@ and

&
a(®) = o(1ED& with (1&]) = L.

the convolution structure for internal force density and strain
energy density (Egs. (A-6) and (A-7)) obtained as [23].

1= 2o A((E229) (<8fa, « 04] - [a # 2028)) + --(1C; %] = [C; %))
m
(A-8)

W, 1) =

<k—

N =

1 ;o
)192 + E/)(BZB/M "Iicgf"l/'dvx’>

92 + —/ ;(B}(B/M,C;/-(u:.u;. - u:.u/- - u[u; + wu)dVy)

N = NI'—‘

A/-\/-\
Pr-

°|5 °|5 ©|§

)92 + _ZBA{[CL/ # gpduty] = u;[Cy g du] — 1, [Cy g Aa] + ;[Cy ZB’”})
(A-9)

@ Springer

Journal of Peridynamics and Nonlocal Modeling

The details on deriving the convolutional structure for linearized bond-based and state-
based models are provided in [23].

3. PD correspondence hyperelastic material model

This model uses the correspondence formulation introduced in [32], and uses the clas-
sical Saint—Venant-Kirchhoff hyperelastic constitutive law. The internal force density for
this material is

L(x,1) = /H}(B}(;g/’l <T<§> - T_’<—§>> dvy (A-10)
where

T(§) = w(lél)a(F)K“é (A-11)

Kis the shape tensor and o is the first Piola—Kirchhoff (P-K) stress tensor which is in terms
of F.the PD deformation gradient and defined based on the classical constitutive model that
we use (for details on the correspondence formulation please see [32]). One issue encountered
when using a PD correspondence model for problems with cracks is material instabilities in
the form of zero energy modes. A number of solutions have been proposed to reduce/eliminate
these zero energy modes. For a review of various strategies for stabilizing PD correspondence
models please see [54]. In this work we use the method introduced in [33] in which a stabiliz-
ing term (T%(&)) is added to the force state formulation T¢(&) as follows:

T(&) = T%) + T(&) = (€D (o (F)K e + £2(8)). 2(6) = (&) - F,
wy = [, o(&))dV,, C = 18k/x6
(A-12)
For the Saint—Venant Kirchhoff model used in this study we have

S = Arr(E)I + 2GE (A-13)

where S is the second P-K stress tensor and needed to be converted to the first P-K (o)
stress tensor to be used in Eq. (A-11). E is the Lagrangian Green strain tensor, and 4 and G
are the Lamé constant and shear modulus of the material. I is the identity tensor.

For the PD correspondence model, we use the classical formulation to compute the
strain energy density as W(x, t) = %S(x, 1) : Ex,1).

Let a(&) = w(|€])E, w(|€]) = é andf = Z—OC, then the convolutional form for the inter-

nal force density in the PD correspondence model (Eq. A-10)) is

L= =x4(0,K5 0, * 2] + 0,55 xada,]
—ﬁ(—Z[;{B/I * a,-] - 2[;53/1 * a)]ul- + 2[;{B/lui * a)] +1_3ij[aj>k ;(Bl] + [;(B/ll_?ij * aj]))
(A-14)
The detailed derivation of the convolutional form of the PD-correspondence model is
given in [42] (see Section 10.3.4 there), and [43, 44].

@ Springer

Journal of Peridynamics and Nonlocal Modeling

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s42102-023-00097-6.

Acknowledgements This work has been supported by the National Science Foundation, USA under CMMI
CDS&E Award No. 1953346, and by a Nebraska System Science award from the Nebraska Research Initiative.

Author Contribution F.M. and S. J. implemented and tested the code. All authors revised the code. All authors
wrote the manuscript draft. F.B. obtained funding, coordinated the project, and revised the manuscript.

Funding National Science Foundation, USA under CMMI CDS&E Award No. 1953346.

Availability of Data and Materials The source code and input data used in the examples shown in the manu-
script are available for free download at https://github.com/PeriFast/Code/tree/main/PeriFast_Dynamics

Declarations
Ethical Approval Not applicable.

Competing Interests The authors declare no competing interests.

References

1. PeriFast/Dynamics. https://github.com/PeriFast/Code. Accessed Dec 2022
2. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J] Mech
Phys Solids 48(1):175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
3. Hu W, Wang Y, YulJ, Yen C-F, Bobaru F (2013) Impact damage on a thin glass plate with a thin poly-
carbonate backing. Int J Impact Eng 62:152-165. https://doi.org/10.1016/].ijimpeng.2013.07.001
4. Zhang G, Gazonas GA, Bobaru F (2018) Supershear damage propagation and sub-Rayleigh crack
growth from edge-on impact: a peridynamic analysis. Int J Impact Eng 113:73-87. https://doi.org/10.
1016/j.ijimpeng.2017.11.010
5. Chen Z, Jafarzadeh S, Zhao J, Bobaru F (2021) A coupled mechano-chemical peridynamic model
for pit-to-crack transition in stress-corrosion cracking. J Mech Phys Solids 146:104203. https://doi.
org/10.1016/j.jmps.2020.104203
6. Diehl P, Lipton R, Wick T, Tyagi M (2022) A comparative review of peridynamics and phase-field
models for engineering fracture mechanics. Comput Mech 69:1259-1293. https://doi.org/10.1007/
s00466-022-02147-0
7. Dahal B, Seleson P, Trageser J (2022) The evolution of the peridynamics co-authorship network. J
Peridyn Nonlocal Model. https://doi.org/10.1007/s42102-022-00082-5
8. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics review. Math Mech Solids
24(11):3714-3739. https://doi.org/10.1177/1081286518803411
9. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechan-
ics. Comput Struct 83(17-18):1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
10. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des
43(15):1169-1178. https://doi.org/10.1016/].finel.2007.08.012
11. Madenci E, Guven I (2015) The finite element method and applications in engineering using
ANSYS®. Springer
12. Mehrmashhadi J, Bahadori M, Bobaru F (2020) On validating peridynamic models and a phase-
field model for dynamic brittle fracture in glass. Eng Fract Mech 240:107355. https://doi.org/10.
1016/j.engfracmech.2020.107355
13. Ren B, Wu CT (2018) A peridynamic model for damage prediction fiber-reinforced composite lam-
inate. In 15th International LS-DYNA User Conference (p. 10). Michigan Detroit
14. Parks ML, Littlewood DJ, Mitchell JA, Silling SA (2012) Peridigm users’ guide v1. 0.0. Sandia Report
SAND2012-7800. https://doi.org/10.2172/1055619, https://www.osti.gov/servlets/purl/1055619
15. Chen H, Hu Y, Spencer BW (2016) A MOOSE-based implicit peridynamic thermomechanical model. In
ASME International Mechanical Engineering Congress and Exposition (Vol. 50633, p. VO09T12A072).
American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2016-65552

@ Springer

https://doi.org/10.1007/s42102-023-00097-6
https://doi.org/10.1007/s42102-023-00097-6
https://github.com/PeriFast/Code/tree/main/PeriFast_Dynamics
https://github.com/PeriFast/Code
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1016/j.ijimpeng.2013.07.001
https://doi.org/10.1016/j.ijimpeng.2017.11.010
https://doi.org/10.1016/j.ijimpeng.2017.11.010
https://doi.org/10.1016/j.jmps.2020.104203
https://doi.org/10.1016/j.jmps.2020.104203
https://doi.org/10.1007/s00466-022-02147-0
https://doi.org/10.1007/s00466-022-02147-0
https://doi.org/10.1007/s42102-022-00082-5
https://doi.org/10.1177/1081286518803411
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.1016/j.finel.2007.08.012
https://doi.org/10.1016/j.engfracmech.2020.107355
https://doi.org/10.1016/j.engfracmech.2020.107355
https://doi.org/10.2172/1055619
https://www.osti.gov/servlets/purl/1055619
https://doi.org/10.1115/IMECE2016-65552

Journal of Peridynamics and Nonlocal Modeling

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes
with Peridynamic grids. Comput Methods Appl Mech Eng 330:471-497. https://doi.org/10.1016/j.
cma.2017.11.011

D’Elia M, Li X, Seleson P, Tian X, Yu Y (2021) A review of local-to-nonlocal coupling methods
in nonlocal diffusion and nonlocal mechanics. J Peridyn Nonlocal Model 1-50. https://doi.org/10.
1007/s42102-020-00038-7

Shojaei A, Hermann A, Cyron CJ, Seleson P, Silling SA (2022) A hybrid meshfree discretization
to improve the numerical performance of peridynamic models. Comput Methods Appl Mech Eng
391:114544. https://doi.org/10.1016/j.cma.2021.114544

Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018) An adaptive multi-grid peridy-
namic method for dynamic fracture analysis. Int J Mech Sci 144:600-617. https://doi.org/10.
1016/j.ijmecsci.2018.06.020

Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refine-
ment in 2D peridynamics. Int J Fract 190(1-2):1-22. https://doi.org/10.1007/s10704-014-9970-4
Jafarzadeh S, Larios A, Bobaru F (2020) Efficient solutions for nonlocal diffusion problems via
boundary-adapted spectral methods. J Peridyn Nonlocal Model 2:85-110. https://doi.org/10.1007/
$42102-019-00026-6

Jafarzadeh S, Wang L, Larios A, Bobaru F (2021) A fast convolution-based method for peridy-
namic transient diffusion in arbitrary domains. Comput Methods Appl Mech Eng 375:113633.
https://doi.org/10.1016/j.cma.2020.113633

Jafarzadeh S, Mousavi F, Larios A, Bobaru F (2022) A general and fast convolution-based method
for peridynamics: applications to elasticity and brittle fracture. Comput Methods Appl Mech Eng
392:114666. https://doi.org/10.1016/j.cma.2022.114666

Lopez L, Pellegrino SF (2022) A fast-convolution based space-time Chebyshev spectral method for
peridynamic models. Adv Cont Discr Mod 2022:70. https://doi.org/10.1186/s13662-022-03738-0
Lopez L, Pellegrino SF (2022) A nonperiodic Chebyshev spectral method avoiding penalization
techniques for a class of nonlinear peridynamic models. Int J Numer Meth Eng 123(20):4859-4876.
https://doi.org/10.1002/nme.7058

Lopez L, Pellegrino SF (2021) A spectral method with volume penalization for a nonlinear peridy-
namic model. Int J Numer Meth Eng 122(3):707-725. https://doi.org/10.1002/nme.6555

Lopez L, Pellegrino SF (2022) A space-time discretization of a nonlinear peridynamic model on a
2D lamina. Comput Math Appl 116:161-175. https://doi.org/10.1016/j.camwa.2021.07.004

Hu W, Ha YD, Bobaru F (2012) Peridynamic model for dynamic fracture in unidirectional fiber-
reinforced composites. Comput Methods Appl Mech Eng 217:247-261. https://doi.org/10.1016/].
cma.2012.01.016

Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73—
168. https://doi.org/10.1016/S0065-2156(10)44002-8

Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. CRC Press
Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) Analysis of the volume-constrained peri-
dynamic Navier equation of linear elasticity. J Elast 113(2):193-217. https://doi.org/10.1007/
$10659-012-9418-x

Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive mod-
eling. J Elast 88(2):151-184. https://doi.org/10.1007/s10659-007-9125-1

Silling SA (2017) Stability of peridynamic correspondence material models and their particle discre-
tizations. Comput Methods Appl Mech Eng 322:42-57. https://doi.org/10.1016/j.cma.2017.03.043
Behzadinasab M, Foster JT (2020) On the stability of the generalized, finite deformation corre-
spondence model of peridynamics. Int J Solids Struct 182:64-76. https://doi.org/10.1016/j.ijsolstr.
2019.07.030

Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peri-
dynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233-250.
https://doi.org/10.1016/j.cma.2014.01.002

Zhao J, Jafarzadeh S, Chen Z, Bobaru F (2020) An algorithm for imposing local boundary conditions
in peridynamic models on arbitrary domains. engrXiv Preprints. https://doi.org/10.31224/osf.i0/7z8qr
Le QV, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture.
Comput Mech 61(4):499-518. https://doi.org/10.1007/s00466-017-1469-1

Scabbia F, Zaccariotto M, Galvanetto U (2021) A novel and effective way to impose boundary
conditions and to mitigate the surface effect in state-based Peridynamics. Int J Numer Meth Eng
122(20):5773-5811. https://doi.org/10.1002/nme.6773

Springer

https://doi.org/10.1016/j.cma.2017.11.011
https://doi.org/10.1016/j.cma.2017.11.011
https://doi.org/10.1007/s42102-020-00038-7
https://doi.org/10.1007/s42102-020-00038-7
https://doi.org/10.1016/j.cma.2021.114544
https://doi.org/10.1016/j.ijmecsci.2018.06.020
https://doi.org/10.1016/j.ijmecsci.2018.06.020
https://doi.org/10.1007/s10704-014-9970-4
https://doi.org/10.1007/s42102-019-00026-6
https://doi.org/10.1007/s42102-019-00026-6
https://doi.org/10.1016/j.cma.2020.113633
https://doi.org/10.1016/j.cma.2022.114666
https://doi.org/10.1186/s13662-022-03738-0
https://doi.org/10.1002/nme.7058
https://doi.org/10.1002/nme.6555
https://doi.org/10.1016/j.camwa.2021.07.004
https://doi.org/10.1016/j.cma.2012.01.016
https://doi.org/10.1016/j.cma.2012.01.016
https://doi.org/10.1016/S0065-2156(10)44002-8
https://doi.org/10.1007/s10659-012-9418-x
https://doi.org/10.1007/s10659-012-9418-x
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1016/j.cma.2017.03.043
https://doi.org/10.1016/j.ijsolstr.2019.07.030
https://doi.org/10.1016/j.ijsolstr.2019.07.030
https://doi.org/10.1016/j.cma.2014.01.002
https://doi.org/10.31224/osf.io/7z8qr
https://doi.org/10.1007/s00466-017-1469-1
https://doi.org/10.1002/nme.6773

Journal of Peridynamics and Nonlocal Modeling

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

Behera D, Roy P, Anicode SVK, Madenci E, Spencer B (2022) Imposition of local boundary condi-
tions in peridynamics without a fictitious layer and unphysical stress concentrations. Comput Meth-
ods Appl Mech Eng 393:114734. https://doi.org/10.1016/j.cma.2022.114734

Aksoylu B, Celiker F, Kilicer O (2019) Nonlocal operators with local boundary conditions in
higher dimensions. Adv Comput Math 45(1):453-492. https://doi.org/10.1007/s10444-018-9624-6
Wang L, Jafarzadeh S, Mousavi F, Bobaru F (2023) PeriFast/Corrosion: a 3D pseudo-spectral peri-
dynamic Matlab code for corrosion. J Peridyn Nonlocal Model, (in this issue)

Jafarzadeh S (2021) Novel and fast peridynamic models for material degradation and failure. Ph.D.
dissertation. Mechanical and Materials Engineering, University of Nebraska-Lincoln

Mousavi F, Jafarzadeh S, Bobaru F (2023) A fast convolution-based method for peridynamic mod-
els in plasticity and ductile fracture. Under review

Mousavi F (2022) Novel and fast peridynamic models for large deformation and ductile failure.
Ph.D. dissertation. Mechanical and Materials Engineering, University of Nebraska-Lincoln

Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. Int J
Multiscale Comput Eng 9(6):635-659. https://doi.org/10.1615/IntJMultCompEng.2011002793
Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a
molecular dynamics code. Comput Phys Commun 179(11):777-783. https://doi.org/10.1016/j.cpc.
2008.06.011

Silling SA (2010) Linearized theory of peridynamic states. J Elast 99(1):85—111. https://doi.org/10.
1007/5s10659-009-9234-0

tecplot (n.d.) https://www.tecplot.com/downloads/

Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle
fracture. Int J Fract 196(1-2):59-98. https://doi.org/10.1007/s10704-015-0056-8

Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: IV. On
the interaction of stress waves with propagating cracks. Int J Fract 26(3):189-200. https://doi.org/
10.1007/BF01140627

Xu Z, Zhang G, Chen Z, Bobaru F (2018) Elastic vortices and thermally-driven cracks in brittle mate-
rials with peridynamics. Int J Fract 209(1-2):203-222. https://doi.org/10.1007/s10704-017-0256-5
Bobaru F, Hu W (2012) The meaning, selection, and use of the peridynamic horizon and its rela-
tion to crack branching in brittle materials. Int J Fract 176(2):215-222. https://doi.org/10.1007/
510704-012-9725-z

Niazi S, Chen Z, Bobaru F (2021) Crack nucleation in brittle and quasi-brittle materials: a peridy-
namic analysis. Theor Appl Fract Mech 112:102855. https://doi.org/10.1016/j.tafmec.2020.102855
Chen H, Spencer BW (2019) Peridynamic bond-associated correspondence model: stability and con-
vergence properties. Int] Numer Meth Eng 117(6):713-727. https://doi.org/10.1002/nme.5973

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.1016/j.cma.2022.114734
https://doi.org/10.1007/s10444-018-9624-6
https://doi.org/10.1615/IntJMultCompEng.2011002793
https://doi.org/10.1016/j.cpc.2008.06.011
https://doi.org/10.1016/j.cpc.2008.06.011
https://doi.org/10.1007/s10659-009-9234-0
https://doi.org/10.1007/s10659-009-9234-0
https://www.tecplot.com/downloads/
https://doi.org/10.1007/s10704-015-0056-8
https://doi.org/10.1007/BF01140627
https://doi.org/10.1007/BF01140627
https://doi.org/10.1007/s10704-017-0256-5
https://doi.org/10.1007/s10704-012-9725-z
https://doi.org/10.1007/s10704-012-9725-z
https://doi.org/10.1016/j.tafmec.2020.102855
https://doi.org/10.1002/nme.5973

	PeriFastDynamics: A MATLAB Code for Explicit Fast Convolution-based Peridynamic Analysis of Deformation and Fracture
	Abstract
	1 Introduction
	2 The Peridynamic Initial-Value Volume-Constrained Problem for Dynamic Fracture
	3 Review of the Fast Convolution-Based Discretization Method (FCBM)
	4 PeriFastDynamics Code Description
	4.1 Data Structure for PD Nodes
	4.2 The Overall Code Structure
	4.3 Description of main.m
	4.4 Description of inputs.m
	4.5 Description of nodes_and_sets.m
	4.6 Description of pre_constitutive.m
	4.7 Description of constitutive.m
	4.8 Description of update_VC.m
	4.9 Description of update_tractions.m
	4.10 Description of initial_gpu_array.m
	4.11 Description of dump_output.m
	4.12 Description of visualization.m and postprocess.m
	4.13 Description of open_Matlab_video.m, create_Matlab_video.m and close_Matlab_video.m

	5 Example of Running PeriFastDynamics: 3D Dynamic Analysis of Brittle Fracture in a Glass Plate
	5.1 Problem Setup
	5.2 Defining the Code Input Data
	5.2.1 In inputs.m
	5.2.2 In nodes_and_sets.m:

	5.3 Selection of Outputs
	5.4 Execution of the Program
	5.5 Visualization of Results
	5.6 Explanations of Differences Between Models

	6 Summary and Possible Extensions of PeriFastDynamics
	6.1 Possible Extensions

	Appendix. Constitutive models included in PeriFastDynamics
	Anchor 32
	Acknowledgements
	References

