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A B S T R A C T   

In Part II of this work we extend the method introduced in Part I to consider dislocation dynamic 
evolution through dislocations nucleation, glide, pile-up, and annihilation. The SP DDD-PD 
scheme is employed to investigate uniaxial tension in a single crystal and a polycrystal and 
verify its accuracy. The model is then used to simulate elastoplastic fracture by considering in
teractions between dislocations and crack growth. For Mode I elastoplastic fracture in a single 
crystal, we observe that the crack path is “attracted” towards regions of high density of gliding 
dislocations, leading to an undulating crack paths, as observed in experiments but never repli
cated by continuum-level computational models before. Tests on different sample sizes show how 
the proximity of constraints to the crack tip can lead to plastic hardening. Ductile-to-brittle 
transition happens naturally in this model when the crack, under Mode I displacement- 
controlled loading, approaches a free edge. A new way to calibrate the critical bond strain 
based on the material toughness or fracture energy is proposed. The present SP DDD-PD scheme 
can be used to investigate complicated elastoplastic fracture problems in which the interaction 
between dislocation motion and damage is critical.   

1. Introduction 

As a physics-based theory and a computational tool, Discrete Dislocation Dynamics (DDD) has been applied to simulate the dy
namic evolution of discrete dislocations during mechanical deformation and phase transformation in crystalline materials. DDD is 
usually coupled with other methods, such as the finite element method (FEM) (Cleveringa et al., 1999; Cui et al., 2022; Guo et al., 
2021; Longsworth and Fivel, 2021; Lu et al., 2022; Wang et al., 2022), extended finite element method (XFEM) (Belytschko and 
Gracie, 2007; Liang et al., 2021; Oswald et al., 2011), boundary element method (BEM) (El-Awady et al., 2008; Takahashi and 
Ghoniem, 2008), etc., to solve elastoplastic Boundary Value Problems (BVPs). Among these methods, the one using the FEM method 
has a relatively strong dependence on the computational mesh (Campilho et al., 2011; Cornejo et al., 2020; Song et al., 2022; Wang 
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et al., 2019b). When coupled with the XFEM, the extended form function must be used, making the model considerably more 
cumbersome. Special techniques are needed for using the BEM-based model to solve problems with inhomogeneous microstructures 
that involve larger-scale samples (El-Awady et al., 2008). Moreover, since the methods mentioned above (FEM, XFEM, and BEM) are 
all based on the continuity assumption, requiring extra algorithmic conditions on how damage/cracks form from dislocations and 
special rules/techniques for redefining the body, remeshing, etc. altogether leading to drastic limitations for analyzing the microscopic 
fracture behavior of materials. This, perhaps, is the main reason for which no attempts have been made so far to simulate the 
dislocation to crack transition problem. To date, in dislocation-based studies of elastoplastic fracture, fracture paths generally are 
preset, e.g., as straight segments (Liang et al., 2019). However, experimental evidence shows tortuous fracture surfaces in single 
crystals (Creuziger et al., 2008; Kalácska et al., 2020; Sumigawa et al., 2018). To tackle this problem and study the interaction between 
dislocations and propagating cracks, new DDD models that allow cracks to grow autonomously need to be introduced. This is the topic 
of the present paper. 

As a reformulation of classical mechanics, peridynamics (PD) is based on replacing spatial derivatives from the classical models 
with integral operators (Silling, 2000). In this way, cracks are allowed to naturally initiate and propagate autonomously, leading to 
results that match experimental observations in a variety of fracture and damage problems in a variety of materials (Xu et al., 2018; 
Zhang et al., 2018). Due to its great advantages in dealing with displacement discontinuities, PD has been widely used in a variety of 
material degradation and damage cases, such as quasi-static and dynamic brittle and ductile fracture, thermally-driven fracture, 
corrosion and stress corrosion cracking (Chen and Bobaru, 2015; Chen et al., 2021; Cheng et al., 2022; Mousavi et al., 2021; Wu et al., 
2021, 2020; Xu et al., 2018), etc. 

In Part I of this work (Dong et al., 2022), a superposition (SP) scheme of peridynamic and discrete dislocation dynamics (DDD) (i.e., 
SP DDD-PD scheme) was developed to study boundary value problems (BVPs) with dislocations and various types of damage (pores, 
cracks) embedded. By replacing the classical surface traction in the complementary problem, and the complementary problem itself, 
with a nonlocal/peridynamic one, the SP DDD-PD scheme can simulate arbitrary domains, including those with pre-damage, cracks, 
and voids of arbitrary shapes, without explicitly tracking boundaries, interfaces, cracks, etc. This scheme has been employed to 
simulate the interaction between multiple dislocations, solve the stress field around a dislocation emitted from a crack tip, and model 
the interaction between dislocation and voids. All dislocations considered in Part I (Dong et al., 2022) were stationary. In this second 
part of the work, the SP DDD-PD scheme is employed to simulate dislocation-based elastoplastic response in both single and poly
crystals. The simulation results are compared with those from DDD-FEM and DDD-XFEM, to further verify the feasibility and accuracy 
of the proposed SP DDD-PD method for the evolution of dislocations in elasto-plastic problems. We then use the new method to 
calculate the dislocation/stress evolution during elastoplastic indentation and mode-I fracture in single-crystal metals. 

2. The SP DDD-PD scheme for elastoplastic and fracture problems 

In Part I of this work (Dong et al., 2022), the DDD was reviewed briefly, and the superposed (SP) scheme of DDD and PD was 
introduced. The solution of the SP DDD-PD scheme includes the deformation fields (∼) for dislocations embedded in an isotropic 
infinite body and the complementary correction fields (^) used to satisfy the given boundary conditions. The overall responses for the 
BVPs can be written as 

u = ũ + û, ε = ε̃ + ε̂, σ = σ̃ + σ̂ (1)  

where u, ε, andσ are the total displacement, strain and stress fields, respectively. 
Different from Part I (Dong et al., 2022), where stationary dislocations embedded in single crystals and polycrystals with void

s/cracks were considered, here, in Part II, we focus on BVPs with quasi-static displacement boundary conditions, but in which we 
follow the dislocation dynamic evolution, such as dislocations’ glide, nucleation, motion, pile-up and annihilation. The elastoplastic 
response obtained will be a direct result of dislocation glide, and long-range and short-range interactions between dislocations. The 
long-range dislocation interaction is governed by the Peach-Koehler (P-K) force, and the short-range interactions are modelled by a 
series of constitutive laws, which are briefly reviewed as follows. 

The Peach-Koehler (P-K) force (Peach and Koehler, 1950) controls the motion of dislocations. In DDD, it can be represented as (Van 
der Giessen and Needleman, 1995): 

f i = ni ⋅

(

σ̂ +
∑

j∕=i

σ̃j

)

⋅ bi (2)  

whereni is the unit normal of the slip plane,σ̂ is the stress of the supplementary problem,σ̃j represents the stress induced by all other 
dislocations on the considering dislocationi, andbi the Burgers vector. The glide velocityνi of the ith dislocation can be calculated by the 
P-K force as: 

νi =
f i

B
(3)  

where B is the Drag coefficient set asB = 105 Pa⋅ns (Kubin et al., 1992), which is a representative value for typical FCC crystals, 
including aluminum, the material considered in this work. 

In this paper, the dislocation nucleation is simulated based on the Frank-Read source (Frank and Read Jr, 1950). No dislocation is 
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introduced initially. Initial dislocation source points are distributed randomly on the slip planes. The single crystal selected in this work 
is face-centered cubic (FCC) aluminum. For the 2D plane-strain case considered, three slip systems are included. For each slip system, a 
series of slip planes are distributed with a uniform spacing of 100b, with b being the magnitude of the Burgers vector. 

When the effective shear stress at the considering source point exceeds the critical nucleation stress within a time periodtnuc (Van 
der Giessen and Needleman, 1995), a pair of dislocation dipoles with opposite Burgers vectors form near the dislocation source. When 
the distance between two opposite dislocations on the same slip plane is less than the critical distance 6b, they annihilate each other. 

The computational flow of the SP DDD-PD scheme for BVPs with dislocation evolutions is shown in Fig. 1. The major components 
are the DDD module and the PD module. The DDD module controls the dislocation nucleation, motion, pile-up, escaping from surfaces 
and annihilation. The PD module is employed to solve for equilibrium with the given boundary conditions. After each time step, the 
dislocations information is updated in the DDD module and then transferred to the PD module, when conditions require. By using the 
PD model and the superposition scheme, the stress, displacement fields, and damage evolution can be computed (for more details, 
please refer to Part I (Dong et al., 2022)). The updated stress and damage information is then transferred back to the DDD module for 
the simulation of the next time step. 

Note the PD module in the DDD-PD model is for small deformation calculations. However, the DDD-PD model is composed of two 
modules: the DDD module and the PD module. The plastic strain is calculated in the DDD module, and it accumulates during the 
calculation steps. During each step, the accumulated strain is small, but over many steps, plastic strains can accumulate to large values. 

Suddenly applied constant-rate displacement-controlled boundary conditions are considered in this work. The effect of strain rate 

Fig. 1. Flow-process diagram of SP DDD-PD method for dislocation-based elastoplastic deformation and fracture.  
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on both the mechanical behavior and dislocation evolution is investigated. In computations, the strain rateε̇ is adjusted by varying the 
elongation increment (Δl) along the loading direction (with original lengthLo): 

ε̇ =
Δl
Lo

1
Δt

(4)  

whereΔt is the time step set asΔt = 0.5 ns (Balint et al., 2008; Deshpande et al., 2003). The strain rates considered in this work are in 
the range of 200~1000 s-1. Although this strain rate is much higher than values achieved under quasi-static experimental conditions at 
the macro-scale, the static PD solver is still suitable since the sample size is only about 1~10 μm, inducing loading rates 5~6 orders of 
magnitude lower than the dislocation speed and the elastic wave speed. Therefore, in this work, the DDD module is dynamic, but the 
PD solver is quasi-static. 

In the following sections, the developed SP DDD-PD scheme is employed to simulate the elastoplastic uniaxial tension (under plane 
strain conditions) of a single crystal (Section 3) and polycrystal (Section 4), indentation of a rigid rectangular beam on a single crystal 
structure (Section 5), and crack growth in a single crystal under Mode I fracture (Section 6). 

3. Uniaxial tension of single crystal 

As shown in Fig. 2, a rectangular model with a geometry of0.6 μm × 2.4 μm, under plane-strain condition, is considered. For the 
peridynamic computations, the horizon size (the distance limit within which a material point directly interacts with other points in the 
peridynamic model, see Part I (Dong et al., 2022) for details) is chosen asδ = 0.0402 μm, and the horizon factor m (the ratio between 
the horizon size and grid spacing, see Dong et al. 2022 for details) is set as 4.02, leading to about 16,864 nodes in the uniform grid. The 
material is single-crystal aluminum, with Young’s modulus E = 70 GPa and Poisson’s ratioν = 0.25, corresponding to plane-strain 
conditions in bond-based PD. The magnitude of Burgers vector is taken to be b = 0.25 nm, and the friction for the dislocation glide 
is set to zero. Three slip systems in directions 0◦, 60◦, 120◦ (with respect to the x-axis positive direction, see Fig. 2) are distributed in the 
model (Deshpande et al., 2003; Huang et al., 2007). The distance for the neighboring slip planes is set to 100b = 25 nm for each slip 
system. 

At the initial stage, the deformation is linearly elastic and no dislocation nucleates, meaning that at this stage, the computational 
solution is solely completed by the PD algorithm. Although no dislocations exist in the material initially, dislocation sources are 
randomly distributed. The density of the dislocation sources is chosen asρ = 50/μm2 similar to those used by (Balint et al., 2008; Van 
der Giessen and Needleman, 1995). Once the density of dislocation sources becomes large enough, the dislocation nucleation rate is 

Fig. 2. Loading conditions and slip planes distribution in the uniaxial tension test of single-crystal aluminum sample (rigid-body rotation is removed 
by constraining the horizontal displacement for the middle points on the top and bottom sides). 
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roughly determined by the dislocation-source strength and independent of the source density. In addition, the hardening behavior and 
yield strain of the material is slightly affected by the source density, but the yield and flow strength are not affected. 

To distribute dislocation sources randomly in the model with the desired density, we use the following algorithm:  

(1) Setup slip planes for dislocation motion. Generate starting point coordinates (x0i) of each slip plane, the length of each slip 
planesi (the ith slip plane), and compute the total length S of slip planes (see Fig. 3. S=

∑n
i=1si, where n is the total number of slip 

planes);  
(2) Calculate the total number of the source points (N), which is0.6 μm × 2.4 μm × 50 /μm2 = 72 in the problem considered in 

Fig. 2;  
(3) Generate a random number (R) in the interval from 0 to 1;  
(4) Multiply the random number (R) by the total slip planes’ length S (the summation of all the slip planes’ lengths) to obtain a 

length valuel = S × R. Then, a specific slip plane (the j-th slip plane) is determined to satisfy:
∑j−1

i=1si ≤ l <
∑j

i=1si. The co
ordinates of a source point are:xs1 = x0i + (l −

∑j−1
i=1si)

bj

bj (as shown in Fig. 3);  
(5) Repeat steps (3) and (4) N-1 times. 

Note that source points’ locations are set to be not too close to the free boundary to avoid dislocations induced by the meshing- 
related stress concentration. For this, if a source point obtained according to the above algorithm has a distance from the boundary 
less than a horizon size, the source point will be eliminated, and a new source point will be generated at another place. 

The strength of a dislocation sourceτnuc follows a Gaussian distribution, with a mean valueτnuc = 50 MPa and a standard deviation 
0.2τnuc = 10 MPa. When the magnitude of the P-K force at the dislocation source exceedsτnucb during a time step of 10 ns, a pair of 
dislocation dipoles nucleate near the source. 

Once a dislocation reaches the surface (boundary of the sample), the dislocation can glide out from the model. Although this 
dislocation disappears and no longer produces stress field in the material, it induces a permanent deformation field in the material. As a 
result, a surface step equal to the magnitude of Burgers vector b is introduced, as shown in Fig. 4. The deformed model can be regarded 
as two rigid regions divided by the dislocation slip plane. 

When no damage (such as cracks) is present (see examples in Sections 3–5), dislocations only glide out from the sample’s surfaces. 
However, when damage initiates and evolves in the material, a dislocation can glide out from the newly formed crack’s surfaces, for 
example. More detail about how to deal with dislocation escaping at a newly created surface is given in Section 6. 

A uniaxial tension test is carried out using the new SP DDD-PD scheme with different loading rates ofε̇ = 200/s, 500/s, and 1000/s. 
Imposed displacements are applied on both upper and lower boundaries of the simulation model, and the “mirror-type” method (Mei 
et al., 2021) of imposing Dirichlet boundary conditions in a PD model is adopted. The left and right sides of the sample are traction free 
(see Fig. 2). In addition, the x coordinates of upper and lower center points are fixed to prevent rigid body rotations. For each 
simulation case, the model is loaded until the strain reaches 2%. To verify the present SP DDD-PD scheme, we compare results with 
those from the SP DDD-FEM scheme (with implementation following (Huang et al., 2007)), with node spacing and the DDD parameters 

Fig. 3. Defining the location of a dislocation source point.  

Fig. 4. Displacement produced by a dislocation gliding out of an undamaged model.  
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set similarly to those used in the SP DDD-PD scheme. 
The numerical displacement and stress fields at the applied strainε = 2% obtained with the SP DDD-PD and the SP DDD-FEM 

schemes are plotted in Fig. 5 and Fig. 6, respectively. These figures show that although the dislocation source points are randomly 
distributed throughout the modeling region, most dislocations nucleate from two slip planes. The reason is that once a dislocation 
nucleates, it shields the activation of other sources and guides subsequent dislocations to nucleate on the same slip planes. The first 
nucleated dislocations and the corresponding glide planes create specific spots of stress concentration to guide the nucleation of the 
follow-up dislocations. The results by the present SP DDD-PD scheme match well with those by the SP DDD-FEM scheme. The only 
noticeable differences are in the stress fields (the calculation method of stress fields in PD is shown in Appendix C in Part I of this work 
(Dong et al., 2022)) near the bottom-right corner of the sample (see Fig. 6). These are caused by the PD surface effect (Le and Bobaru, 
2018). 

The stress contours atε = 2% and the achieved stress-strain curves are given in Fig. 7 and Fig. 8, respectively, for different loading 
rates. When the strain rateε̇ equals to 200/s (see Fig. 6) or 500/s (see Fig. 7a), the dislocations have enough time to glide out of the 
crystal; only one dislocation can be observed for the considered strain. In contrast, for a strain rate of 1000/s, more dislocations co-exist 
simultaneously in the crystal (see Fig. 7b). 

The stress-strain curves calculated with the SP DDD-PD and DDD-FEM schemes and shown in Fig. 8, exhibit an elastic perfectly- 
plastic behavior (linear elasticity/constant stress plasticity). The stresses from the DDD-PD model are obtained by multiplying the 
sum of bond force density in Y-directionfy of the m-layer nodes above the upper boundary (within the thickness ofδ) by the square of 
node spacing and then dividing by the width of the model (Lehoucq and Silling, 2008; Wu et al., 2020). The stresses from the DDD-PD 
model are obtained by dividing the sum of the stress valuesσyy of the nodes in the upper boundary layer by the number of nodes. 

The yield stressσY shown in Fig. 8 follows the Schmid law:σY = 1
uτnuc, where the Schmid factor u for the 2D case is1

2 sin2θ (θ is the 
angle between the loading and slip directions), and the mean value of the dislocation source strengthτnuc is 50 MPa. Withθ = 30∘, we 
obtain the yield stress of about 115.5 MPa. This value is close to the stresses at the peaks (corresponding to the nucleation of dislo
cations) of the curves in Fig. 8. Peak stresses for different strain rates are almost the same, but the low-points of the fluctuations 
decrease with increasing strain rate. This is because more dislocations nucleate simultaneously at the higher strain rates, leading to 
larger drops and wider stress fluctuations. 

The slightly higher flow stress values calculated by PD-DDD compared to those calculated by the FEM-DDD are due to the com
bination of nonlocality and numerical discretization methods used. For example, the meshfree method used in the PD model dis
cretization is equivalent to a piecewise constant discontinuous Galerkin FEM, which has lower accuracy than bilinear finite elements 
used in the FEM solution. New ways to calculate highly accurate (closer to the classical solution) stresses from PD models and 
formulate new models for dislocation evolution based on deformations or displacements only, may be possible, and this will be studied 
in the future. 

In the single crystal tension case, the dislocation density is related to the sample size, strain rate, setting of obstacles, etc. 
(Deshpande et al., 2005) shows that the dislocation density depends strongly on the sample size, and the dislocation density decreases 

Fig. 5. (a) Horizontal and (b) vertical displacements at strain ε = 2%, obtained from the DDD-PD and DDD-FEM models. Strain rate ε̇ = 200/s. The 
units for both the coordinates and displacements shown are μm. 
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Fig. 6. The stress fields (a) σxx, (b) σyy, and (c) σxy calculated with DDD-PD and DDD-FEM. Strain rate ε̇ = 200/s. The unit of the color bars is Pa for stresses.  
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with decreasing size. The smaller the strain rate, the smaller the number of dislocations nucleates in each time step. One way to look at 
more “complex” cases is to add obstacles that prevent dislocation motion. In Appendix A and Section 4, we show how rigid boundaries 
affect the dislocation evolution during uniaxial tension. 

4. Uniaxial tension of polycrystal with rigid grain boundaries 

Dislocations could be hindered by other material defects (including other dislocations). Grain boundaries (GBs) are defects that can 
block dislocations effectively. In this section, we apply the SP DDD-PD scheme to simulate uniaxial tension of polycrystalline 
aluminum, similar to the cases studied in Huang et al. (2020) using the DDD-XFEM model, to further validate its applicability on 
dislocation problems. 

Due to the presence of GBs, mechanical properties of polycrystals are usually different from those of a single crystal (Hirth, 1972; 
Thompson et al., 1973). The dependence of mechanical properties on the grain size usually follows the Hall-Petch law, i.e., the yield 
strength increases with decreasing grain size (Hall, 1951a, b; Sylwestrowicz and Hall, 1951). 

For this simulation, we set the GBs as rigid boundaries, that is, dislocation can neither penetrate the GBs nor be reflected or 
absorbed by the boundaries. This case is the same as the one in (Huang et al., 2020). The cases with penetrable GBs can also be 
simulated by the present SP DDD-PD, but this is not pursued in this paper. 

Fig. 9 shows the polycrystalline aluminum sample composed of4 × 12 grains, also considered, in Huang et al. (2020), where the 
DDD-XFEM scheme was used. The grains are all squares with a side length d. The elastic modulus, Poisson’s ratio, and magnitude of 
Burgers vector are the same as those for the single crystals used in the last section. The source density isρ = 80/μm2, similar to Huang 
et al. (2020). As shown in Fig. 9, slip systems 2 and 3 have an intersection angle of 54.736◦, counterclockwise and clockwise, 
respectively, from the slip system 1 (Huang et al., 2020). The grain orientation depends on the direction of slip system 1, which is 
distributed randomly in each grain. Therefore, the entire polycrystalline sample considered in Fig. 9 can be treated, statistically, as 
isotropic and homogeneous. 

A constant strain rateε̇ = 500/s along Y direction is applied suddenly to both the upper and lower boundary. The left and right 
boundaries are traction free. As a result, dislocations can freely glide out from the left and right boundaries. Note that no dislocation 
sources are placed in the bottom and top layers of grains to simulate the gripper effect. This setting is consistent with that used in 
(Huang et al., 2020). The dislocation gliding away from free surfaces is similar to the cases discussed above, that is, a dislocation is 
deleted from the model and a permanent displacement is set along the slip plane (Segurado et al., 2007). 

For the single crystal case, we have demonstrated in Part I (Dong et al., 2022) that the present DDD-PD model has good
δ-convergence (Bobaru et al., 2009) properties. Here we test its convergence behavior for the polycrystalline case, and obtain 
stress~strain curves forδ = 0.2, 0.1, 0.08, and 0.05 μm shown in Fig. 10, for the fixed grain size d = 0.25 μm. A bilinear elastoplastic 
behavior can be observed for all fourδ considered, and for both the elastic and plastic regimes, results are consistent with each other. 
Fig. 10 indicates that a horizon size in the range between 0.05 and 0.2 μm does not appear to influence the results. 

Note that for the single crystal case, the stress-strain relationship obtained by the model was also bilinear but with a perfectly- 

Fig. 7. The σxy stress fields for tensile tests with strain rates: ε̇ = 500/s (a), and ε̇ = 1000/s (b), calculated with the DDD-PD and DDD-FEM.  
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plastic response. We next test the expectation that increasing the grain size leads to a decrease in the hardening rate in the plastic 
regime. 

The stress/train curves for polycrystalline specimens with different grain sizes d = 0.25, 0.5, 1.0, 2.0 μm are plotted in Fig. 11. For 
the cases with d = {0.5, 1.0, 2.0} μm, the horizon size is 0.4 μm. For the case with d = 0.25 μm, a smaller horizon size 0.2 μm is used. 
The stress required for the dislocations to nucleate depends on the dislocation source strength, and the direction between the slip plane 
and the loading direction. The stress at which the polycrystal starts to yield does not depend on the grain boundaries (see Fig. 11), 
while increasing the density of the grain boundary (decreasing the grain size) leads to a shorter distance for dislocation to glide, leading 
to a higher slope of the stress/strain curve in the strain hardening stage of deformation. The expected dependency between grain size 
and the plastic hardening rate is confirmed. 

Moreover, the results in Fig. 11 match well those from Huang et al. (2020) calculated with the DDD-XFEM scheme. In (Huang et al., 
2020), the Hall-Petch relation between grain size and the nominal yield stress was obtained and studied in detail. Although the stress 
at which the polycrystal starts to yield does not depend on the grain boundaries, the nominal yield stresses, for instance,σ0.2 (at plastic 

Fig. 8. The stress/strain curves from the (a) DDD-PD and (b) DDD-FEM models, with strain rates 200/s (upper), 500/s (middle), and 1000/s 
(bottom). . 
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strainεp = 0.2%) andσ0.4 (at plastic strainεp = 0.4%), increase when decreasing the grain size. Huang et al. (2020) showed that the 
relationship between grain size d and nominal yield stress σ0.4 (at plastic strainεp = 0.4%) isσ0.4 = 90 + 92.4d−1. Our goal with 
simulating the polycrystalline sample is to compare the DDD-PD results with the corresponding DDD-XFEM ones, for model validation. 
A detailed analysis of the deformation mechanisms has been provided in Huang et al. (2020) and, for brevity, is not repeated here. 

The stress and dislocation evolutions are also easy to obtain from the present SP DDD-PD simulations. Fig. 12 shows the contour of 
stress componentσyy for d = 1.0 μm andε = 0.01. Although the uniform tensile displacement is applied, the stress fieldσyy is highly 
uneven at the grain level. The dislocation distribution and the dislocation density distribution atε = 0.01 are also provided in Fig. 12. 
The dislocation density is calculated by counting the dislocation number in a circular region around an arbitrary node with grid 
spacing as the radius, and dividing the dislocation number by the circular area around that node. The present SP DDD-PD model can, 
therefore, simulate dislocation-based elastoplastic behavior in polycrystals and can be helpful to understanding intrinsic plasticity 
mechanisms in materials. 

Note that slip transfer could take place near the grain boundary, and the grain boundary morphology can play a key role in ma
terial’s performance (Liu et al., 2012, 2021; Zhu et al., 2020). These are critical problems remaining to be further studied. In the 
current work (both Part I (Dong et al., 2022) and Part II), we present a new tool for dislocation-based plasticity and fracture analysis. 
We focus on validating the model and demonstrating the major advantages (handling dislocations in arbitrary domains and allowing 
autonomous interactions between dislocations and cracks). More realistic grain boundary morphology and interaction behavior be
tween grain boundaries and dislocations will be studied in our follow-up research. 

5. Indentation on a single crystal 

In the last two sections, the SP DDD-PD scheme was verified for uniform tensile loading tests. In this section, we apply the method to 
simulate a 2D nanoindentation process on a single crystal, a classical example of non-uniform loading of a sample, to verify it for this 

Fig. 9. Schematic diagram of the grains and slip systems in the polycrystalline tensile specimen.  
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more complex loading scenario. Indentation has been recognized as one of the most efficient and useful methods of determining 
material properties of metals (Juran et al., 2015; Zambaldi and Raabe, 2010). As a tool for mechanical characterization of materials, 
indentation has been widely used to determine a variety of mechanical properties of materials, such as their elastic modulus, hardening 
exponents, creep parameters, fracture toughness, residual stresses, etc. (Bahrami et al., 2021; Kuksenko et al., 2019). 

The stress state in a specimen under indentation is complex (Karimzadeh et al., 2014). In addition, indentation is one of the few 
experimental techniques that can take into account both the micro and macro scale, allowing one to study material length scales from 
nanometer to millimeter (Cheng and Cheng, 2004) in various types of materials (Chen et al., 2013; Yang et al., 2018; Zhang et al., 
2017). 

Berkovich, spherical, and flat indenters are used quite frequently in experiments. Many works have been published on the simu
lation and understanding of dislocation evolution during the indentation process with different types of indenters (Feng et al., 2020; 
Lu et al., 2019; Shinde et al., 2022; Wang et al., 2019a; Xu et al., 2019). The reason we present this particular indentation case is 

Fig. 10. The stress/strain curves for the polycrystalline sample (with grain size d = 0.25 μm) under tension for four different horizon sizes δ = 0.2, 
0.1, 0.08, and 0.05 μm (The number of nodes are 1904, 6144, 9164, and 21,824, respectively). 

Fig. 11. The stress/strain curves for tensile polycrystalline specimens with grain sizes: d = 0.25, 0.5, 1.0, 2.0 μm, respectively. The horizon size is 
0.2 μm for the cases with d = 0.25 μm, and the horizon size is 0.4 μm for the other cases. 
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Fig. 12. (a) Contours of σyy stress component, (b) corresponding dislocation distribution and (c) dislocation density at strain ε = 0.01, for the case with grain size d = 1.0 μm.  
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specifically to demonstrate the capability of the new model in simulating non-uniform deformations. Therefore, we select the flat 
indenter to observe the evolution of dislocation nucleation, gliding and “pop-in” during indentation. In addition, the flat-tip indenter 
can ensure a constant contact area, and the load/displacement curve is straight in the elastic stage. 

The indenter is simplified into a rigid rectangles, which is illustrated in Fig. 13, although any other shapes of indenter can also be 
easily modelled with the present SP DDD-PD scheme. For the sake of simplicity, we assume that the contact surface between the 
specimen and the indenter is completely smooth, and ignore the influence of any surface roughness that may be present in an 
experimental sample. 

As shown in Fig. 13, the indenter width is 0.28 μm. The width of the specimen is 5 μm, and the height is 2 μm. We use a horizon 
sizeδ = 0.0804 μm (node spacing 0.02 μm). The size-dependency of indentation is greatly affected by the density of dislocation ob
stacles and sources (Campilho et al., 2011; Zhang et al., 2014). For simplicity, no obstacles are set in the indentation simulation. To 
make the specimen nucleate enough dislocations during compression consistent with reality, a larger dislocation source densityρ =
500/μm2 is considered here. Three slip systems are input with intersection angles between the slip systems and the positive x-axis of 
30◦, 90◦, 150◦, respectively (see Fig. 13). Other parameters, such as Young’s modulus E, Poisson’s ratioν and DDD parameters, are set 
the same as those given in Sections 3 and 4. The displacement componentux on the bottom boundary and componentuy for the center 
point on the bottom boundary are kept fixed as 0. Other boundaries are set as free surfaces. The moving direction of the indenter is 
from top to bottom, with a speed of 500μm/s. 

The indenter is unloaded and returned to its original position after moving downward 0.02 μm. The force-displacement curve for 
the whole process, including loading and unloading, is shown in Fig. 14, which is quantitatively consistent with the theoretical solution 
described in (Hu et al., 2015). It can be seen from the force-displacement curve that there is an obvious yield in the early stage of 
loading (from A to B in Fig. 14), namely "pop-in", which is believed to be caused by uniform nucleation of dislocations under the 
indenter. This phenomenon has also been noticed in some experiments and simulations (Durst et al., 2006; Shim et al., 2008; Zhou 
et al., 2020). In addition, staircase yield (arrowed locations in Fig. 14) also occurs in the later loading stages. This phenomenon may be 

Fig. 13. Schematic diagram for the sample using for indentation on single-crystal aluminum.  

Fig. 14. Force-displacement curve from the SP DDD-PD simulation of indentation.  
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related to the indenter size and the loading rate (Cordill et al., 2009). 
As shown in Fig. 14, at the initial stage, the deformation is purely elastic and no dislocation nucleates. The load-displacement curve 

is linear, matching with the analytical solution of Hu et al. (2015). At the first plastic stage (when the material starts to yield), the 
number of dislocations in the material is small. As a result, the nucleated dislocations can glide out from the free surface soon after their 
nucleation. Therefore, the force-displacement curve is relatively flat (the first "pop-in" plateau from A to B in Fig. 14). As dislocation 
interactions between different slip systems take place, more and more dislocations remain in the material. The chance for dislocations 
gliding away at the surface becomes limited, leading to a stiffening effect and a steeper load/displacement behavior. In the unloading 
stage (from C to D in Fig. 14), the force decreases gradually. 

During the simulated nanoindentation process, we record all traces of dislocations, and these are shown in Fig. 15a. In addition, the 
dislocation distribution produced by the indenter impressed at its maximum depth is provided in Fig. 15b. Dislocations are concen
trated, as expected, in the region just below the contact between the indenter and the sample (Javaid et al., 2017; Pharr et al., 2010). 

In the previous sections, we have verified SP DDD-PD model’s ability to simulate dislocation-based elastoplastic deformations and 
track dislocations’ evolution, under uniform and non-uniform loadings. In the next section, we will investigate the use of the new 
model for elastoplastic fracture problems. We shall see how initiation and propagation of both dislocations and cracks can be 
autonomously captured by the SP DDD-PD scheme. 

6. Mode I elastoplastic fracture 

In this section, the DDD-PD model is employed to study Mode I elastoplastic fracture in a single crystal, by allowing failure of PD 
bonds. Specimens with different sizes will be considered to study the size effect on the elastoplastic fracture behavior. We also analyze 
the dependence of fracture results on the input fracture toughness of the material, by using different critical bond strains (bond strain 
beyond which the bond sustains zero force) and calculating the corresponding strain-to-failure for the specimen. 

6.1. Damage model 

In this section, we extend the SP DDD-PD scheme to allow simulation of damage evolution. In the SP DDD-PD model, the bond 
strain is composed of elastic and plastic parts. The plastic bond strain part is induced by the dislocations and slip planes crossing the PD 
bonds. This strain is assumed to not directly contribute to damage and fracture, but only to the permanent plastic deformation. The 
initiation, growth, and coalescence of micro-voids induced by the dislocations’ evolution are treated as plastic deformation in the 

Fig. 15. (a) The traces of all dislocations during the indentation process. (b) The traces of dislocations in the specimen at the time when the indenter 
is at the maximum depth. Units on axes are μm. 
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model. Here we assume that damage can only be induced by elastic bond strain exceeding a critical value, i.e., the critical bond strain. 
In Part I of this work (Dong et al., 2022), the PD solver for elastic behavior has been briefly reviewed. A linear elastic model with brittle 
damage, the original Prototype Micro-Brittle (PMB) material model, is adopted here to describe damage. 

In the PMB model, the local damage at a material point (x) at time t is therefore expressed by a damage indexφ, defined as 

φ(x, t) = 1 −

∫

Hμ(x, t, ξ)dV
∫

HdV
(5)  

whereξ is the relative position of a PD bond, H is the horizon of material point x, andμ is a scalar function that characterizes whether 
the bond is broken. 

μ(t, ξ) =

{
1 if se ≤ s0
0 otherwise (6)  

wherese is the elastic part of the bond strain, ands0 is the critical bond strain. For brittle fracture, the critical bond strain is usually 
calibrated to the critical fracture energy (material fracture toughness). When the damage index at a point is greater than 0.5 (Silling 
and Askari, 2014) (in the discrete form, this critical value depends on the horizon factor m), then a crack is formed. In this work, 
because we currently do not have a theoretical connection between a material’s fracture toughness and the critical PD bond strain for 
our new model (linear elastic, brittle fracture, plus dislocations), we select some arbitrary values for the critical bond strain. The 
computational tests below will, however, show a linear dependence between the strain-to-failure and the critical bond strain values. 

Once damage is introduced, it becomes necessary to consider the newly formed boundaries and their effect on dislocation evo
lutions. In Section 3, it has been demonstrated that when a dislocation glides out from the boundary, it no longer produces stress field 
in the model, instead leading to a permanent displacement, via a step on the surface (see Fig. 4). In the models discussed in Sections 3–5 
(no damage present), the dislocation could only glide out from the initial boundaries. Because the domain is simply connected, it was 
easy to deal with displacements induced by dislocations. When damage is present, the dislocations could glide out from any damage 
surface. The original continuous slip plane could be separated by newly formed damages or cracks (see Fig. 16). Therefore, in the 
simulations with damage, once a slip plane intersects a damage region (e.g. a crack surface), we relabel the slip plane into two in
dividual slip planes with new starting and ending positions. As shown in Fig. 16, considering a finite model with damage placed in the 
middle and an edge dislocation located in the undamaged part of the model, the dislocation slip plane is truncated due to damage. In 
this case, the structure, like the one shown in Fig. 4, can also be divided into two regions (Q1 andQ2, in Fig. 16). As shown in Fig. 16, a 
relative rigid displacement between these two regions is induced after the dislocation glides out from the surface. The computational 
flow to implement the relative rigid displacement induced by a dislocation gliding out from the crack surface is shown in Appendix B. 

6.2. Size effect 

In this subsection, we apply the DDD-PD model to study Mode I elastoplastic fracture in a single crystal. The numerical parameters 
and boundary conditions are shown in Fig. 17. Square specimens with sides L of 2.5, 4.3, and 6.0 μm are considered. A pre-crack is set 
in all specimens, and the ratios of pre-crack length to side length L are fixed at 0.3. Young’s modulus E, Poisson’s ratioν and DDD 
parameters are the same as those in Section 3 for single-crystal aluminum. We set the critical bond strain to 0.009. Three slip systems 
intersecting with the x-axis positive direction at angles of 0◦, 60◦, 120◦ are assigned. The distance between neighboring slip planes of 
the same slip system is 25 nm. In the PD model, the horizon sizeδ = 0.0804 μm. 

Fig. 16. Displacement produced by a dislocation gliding out from the upper surface of a crack in a single crystal.  
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A displacement boundary condition with a strain rate ofε̇ = 1000/s is applied in the Y direction of the upper and lower boundary of 
the model, the left and right boundaries are free boundaries, and the transverse coordinates of the upper and lower center points of the 
model are fixed. 

The pre-defined crack shown in Fig. 17 is applied to mimic the pre-crack set in the experiments. With a pre-crack, one is assured that 
the crack will grow from the tip of the pre-crack. Other methods (Curtin et al., 2010; Liang et al., 2019) require a pre-defined path, 
usually set as straight line, for the growing crack (which will grow from the tip of the pre-crack). The DDD-PD model does not require a 
preset path for the growing crack. PD models, by embedding simple bond-damage rules, are general enough to be able to reproduce, 
autonomously, complex evolution paths for damage or crack propagation without any explicit tracking of 
interfaces/cracks/boundaries. 

Fig. 18 shows the final damage map for the specimen with a side length of 4.3 μm with dislocations and without dislocations, 
respectively. Mode I brittle cracks (in a homogeneous material) are generally straight, unless crack branching occurs. The final crack 
path shown in Fig. 18a is not straight. The reason is that dislocations nucleated from a random distribution of dislocation sources affect 
the stress field and thus the crack propagation path. Once the crack propagates out from the rectangle-labeled region in Fig. 18a, the 
crack enters into the brittle fracture phase and appears as a straight line. The tortuous geometry of the elastoplastic crack path found by 
our model matches well with experimentally-observed cracks formed in single-crystal materials. For instance, (Creuziger et al., 2008; 
Kalácska et al., 2020; Sumigawa et al., 2018) showed that tension-induced fracture surfaces in single crystals such as copper, tungsten 
and NiAl are not straight or zig-zaged, but smooth and undulating, indicating that dislocations are critical, not crystal anisotropy. The 
departure from a straight crack is not captured in the other DDD simulations of Mode I elastoplastic fracture in a single crystal. To 
simulate elastoplastic fracture by using the traditional DDD methods, the fracture propagation paths need to be preset, usually, as 
straight lines (Liang et al., 2019), and a cohesive zone implemented. With the present SP DDD-PD model, autonomous crack growth 
can be easily simulated, and the crack path can take any arbitrary shape (even become a “diffuse”, or distributed damage region, 
instead of a “path”), depending on the conditions present in the system. This enables simulating the interaction between dislocations 
and cracks with high fidelity. 

Note that the asymmetry of the crack path (see Fig. 18a) is induced by the higher density of active glides on one side, ahead of the 
crack tip, than the other. The gliding of dislocations “attracts” the crack path towards that region. The original source of break of 
symmetry is the random distribution of locations and strength of dislocations used here. See Movie 2 in Supplementary Materials. 

Fig. 19 shows the stress-strain curves during the whole loading process (from the beginning to full sample splitting) for all three 
geometry cases. The plotted stress is computed by the average of all node stresses on the top side. For the case with L = 4.3 μm, several 
snapshots of damage maps are given as insets in Fig. 19. Damage evolution and crack propagation are similar for all three cases 
considered. Because of this, only damage maps for the case with a medium side length are shown. At an applied strain of 0.000863, 
dislocations start to nucleate near the crack tip. As the loading increases, more and more dislocations nucleate. When the applied strain 
reaches 0.0015, peridynamic bonds start to break at the crack tip. At this moment, the crack propagation rate is low. The crack grows 

Fig. 17. Slip planes setting of a model with pre-crack. The green dash square at the center represents the path for J-integral (see Appendix C). The 
square side length are 2 μm. 
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Fig. 18. The final damage map from Mode I fracture in a pre-cracked specimen with side length L = 4.3 μm (a) with dislocations and (b) without dislocations (brittle fracture), respectively. In (a), the 
superposed white dots indicating the traces of all dislocations during the fracture process, and the tip of the pre-crack is at the middle of the left side of the Red Box. The departure from a straight crack is 
most pronounced in the region inside the Red Box. Units on the axes are μm. 
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faster around time t = 2820 ns when strain approaches 0.00282. When time t = 3900 ns and strain reaches 0.0039, the stable ductile 
fracture transitions to brittle fracture, and the sample breaks instantly. 

Fig. 20a shows the normalized crack length as a function of the applied strain, for the three specimen sizes. The figure reveals that 
under the same tensile strain rate, the larger the crystal specimen size is, the earlier the cracking occurs. After fracture initiates, there is 
a stable crack growth regime, followed by a transition to sudden, unstable crack growth. By using linear curve fits over the stable crack 
growth stage, we extract crack speeds of 0.11383, 0.64358, and 1.13085 m/s for specimens with L = 2.5, 4.3, and 6.0 μm, respectively. 
This indicates that in the stable crack growth stage, the smaller the single crystalline specimen size is, the lower the crack propagation 
speed and the higher the tensile fracture resistance are Fig. 20b shows the evolution of the normalized stress intensity factor (SIF) for 

different cases (see Appendix C for the way to calculate SIF in PD). In Fig. 20b, the critical SIF isK0 =
̅̅̅̅̅̅̅̅̅̅̅

G0E
(1−ν2)

√
, whereG0 is the material’s 

fracture energy. Notice that the trends are very similar to what (Cleveringa et al., 2000) also found, while using imposed values of KI 
and only computing the corresponding crack advancement in a model with a preset crack-path. In our model, the crack growth is 
autonomous, and found to follow towards the regions of higher density of active gliding dislocations. 

Fig. 19. The stress/strain curves from Mode I fracture of pre-cracked square specimens of different sizes. The insets are snapshots of damage maps 
for the specimen with L = 4.3 μm and taken at strains corresponding to the locations pointed to by the arrows, respectively. 

Fig. 20. (a) Normalized crack length versus strain for the different size specimens. (b) The normalized stress intensity factor KI /K0 computed by the 
DDD-PD model vs. the obtained crack extension for the different samples, with or without considering dislocations. 

W. Dong et al.                                                                                                                                                                                                          



International Journal of Plasticity 159 (2022) 103462

19

For the specimen with a smaller size, the number of dislocations is fewer, leading to an effective higher stress to initiate the dis
locations and a larger slope on the post-yield stress-strain curve (see Fig. 19). The dislocations moving distance from the nucleation 
sites to the boundary are statistically shorter for the smaller specimen, making it easier to dissipate energy via dislocation-induced 
plasticity. Therefore, both the toughness (i.e., the area surrounded by the stress/strain curve and the strain-axis, in Fig. 19) and the 
strain-to-failure increase with decreasing the sample size, indicating that the ability to resist damage is enhanced with a decrease of the 
sample size. 

Movies 1–6 show how the sample size affects the behavior: given the proximity of the imposed boundary conditions (fixed values 
for vertical displacements, that grow at a constant rate in time) to the crack tip (the main “defect” in the sample), we notice a higher 
density of pinned dislocations in the smaller sample than in the larger ones. In the larger samples, the constraint imposed by the 
boundary conditions is sufficiently far away from the high stress-intensity region to allow for less dislocations nucleation away from 
the crack tip. This explains the ductile fracture part of the observed behavior. Note that some dislocations are nucleated, as expected, 
from the constraints on the top and bottom boundaries, likely being influenced by the slight PD surface effect still present there. The 
reason for the transition from ductile to brittle fracture is the presence of the free boundary on the right. If the crystal analyzed here 
were part of a polycrystal, this is could still happen in two possible scenarios: (1) if the growing crack approaches an existing 
microcrack that sits at a grain boundary, or (2) if dislocations pile up at a grain boundary, leading to increased stress-intensity and 
eventually to a brittle, more catastrophic failure. 

The above results showed that the SP DDD-PD scheme can simulate elastoplastic fracture problems: interactions between dislo
cation evolution and autonomous crack propagation are obtained by combining a brittle fracture model with dislocation-based 
plasticity, without the need of a cohesive zone model. In the PD module, the damage is brittle. For linear elastic and brittle 

Fig. 21. The stress/strain curves for different critical PD bond strains for the model of size L = 2.5 μm.  

Fig. 22. The linear curve-fit for different critical bond strains s0 and the PD-computed corresponding strain-to-failure.  
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fracture behavior, the critical bond strain has a square root dependence on the critical fracture energy. However, in elastoplastic 
fracture, the total energy dissipated contains the energy consumed by plastic deformation, induced by dislocation motion/evolution. 
An analytical formulation for the relationship between the critical bond strain and the critical fracture energy in elastoplastic fracture 
is the subject of future studies. In the next section, we study this dependence numerically, using the PD model we introduced and 
setting different critical bond strains (beyond which the PD bonds break) and computing the corresponding strain-to-failure. 

6.3. The dependence between strain-to-failure and critical bond strain 

By using the same numerical parameters and boundary conditions as above, we employed the SP DDD-PD scheme to simulate 

Fig. 23. Loading conditions and slip planes distribution in the uniaxial tension test of aluminum crystal with three rigid grain boundaries.  

Fig. 24. Horizontal (a) and vertical displacements (b) at applied vertical strain ε = 1.5%, obtained from the DDD-PD and DDD-FEM models for the 
crystal with three rigid grain boundaries. Strain rate ε̇ = 500/s. 
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Mode-I fracture of the specimen with side length L = 2.5 μm for different critical bond strainss0 (see Eq. (6)), to observe the influence of 
this parameter (related to material’s fracture energy) on the failure response. Fig. 21 shows the stress-strain curves for cases with 
different critical bond strains between 0.0059 and 0.0149. When the critical bond strain is smallest (0.0059), the stress-strain curve 
post-yield does not show any hardening, in contrast with the curves from the other values ofs0. Those curves all have a similar 
hardening rate. We suspect this happens because for the smallests0 value, the failure behavior is approaching quasi-brittle one. With 
largers0, more dislocations have a chance to initiate, leading to the noticeable hardening behavior before brittle failure. 

The computed strain-to-failure values corresponding to each of the critical bond strains used above are recorded and presented in 
Fig. 22. A linear relationship between the strain-to-failure and the critical bond strain is revealed. Although an analytical relationship 
between the critical bond strain and the material’s fracture toughness (or critical fracture energy) is not yet available, one could use 
this numerically-obtained linear relationship to calibrate the SP DDD-PD fracture model to experimental data. For example, with only 
two runs of the SP DDD-PD model (for a sample size on which experiments are performed) using two differents0 values, one can 
determine the linear dependency, then using the experimental strain-to-failure data, the correspondings0 that needs to be used in the 
model is found. 

Although extending the present 2D model to 3D is straightforward, the main difficulty for the 3D simulation is the much higher 
computational cost. As we commented in Part I of this work (Dong et al., 2022), coupling PD (with the meshfree discretization 
method), used where damage/cracking happens, with a local model (discretized with FEM, for example) used outside of areas (see 

Fig. 25. Normal (in (a) and (b)) and shear (in (c)) stress componenets at imposed vertical strain ε = 1.5%, obtained from the DDD-PD and DDD- 
FEM models for the crystal with three rigid grain boundaries. Strain rate ε̇ = 500/s. 

Fig. 26. The stress/strain curves and the traces of all dislocations during uniaxial tension for the crystal with three rigid boundaries.  
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Galvanetto et al. 2016, Pagani and Carrera 2020) where damage takes place, can lead to numerical approaches that combine the 
advantages of the local and nonlocal models while reducing their respective disadvantages: FEM solvers for local models are fast, but 
cannot always correctly represent fracture/damage evolution, while PD models with meshfree discretization get the correct failure 
mechanisms but are computationally very expensive. Another promising way is the convolution-based method (Jafarzadeh et al., 
2020, 2022), which can reduce the computational complexity of PD models from O(N2) to O(Nlog2N), with N being the total number of 
discretization nodes. We plan to explore solving 3D DDD-PD models in the future using these new techniques. 

Fig. 27. A local coordinate system with its origin at a dislocation core.  

Fig. 28. Algorithm for implementing the permanent displacements at nodes affected by dislocations gliding out from a crack surface.  

Fig. 29. Scheme of the path for PD J-integral calculation.  
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7. Conclusions 

In the first part of this work (Dong et al., 2022), we introduced an SP version of DDD-PD coupling scheme. The scheme has been 
verified on several BVPs with stationary dislocations: simply-supported single crystal with single edge dislocation, multiple edge 
dislocations, dislocation emitted from a crack tip, and interaction between dislocation and void. 

In the present second part of this work, we extended the SP DDD-PD scheme to consider nucleation, glide, annihilation, and motion 
of dislocations. Moreover, we enhanced the model to include bond-breaking, allowing us to consider problems with dislocations and 
growing cracks. The SP DDD-PD framework includes two major parts: the DDD and the PD modules. The DDD part models the 
dislocation evolution, which is transferred to the PD module. The PD module is employed to satisfy the boundary conditions. The stress 
field obtained by PD module is transferred back to the DDD module, driving the evolution of dislocations. 

Using the SP DDD-PD scheme, we studied the uniaxial tension of single crystal and polycrystalline aluminum. Results were 
compared with those obtained from SP DDD-FEM (the case with single-crystal specimen) and DDD-XFEM (the case with polycrystal 
aluminum) schemes, verifying the SP DDD-PD scheme for corresponding plasticity problems. The famous Hall-Petch relation between 
the grain size and the nominal yield stress in a polycrystal has been captured successfully. Elastoplastic indentation was also simulated 
with the present SP DDD-PD scheme, and the well-known "pop-in" behavior was captured correctly. 

We showed that the present SP DDD-PD scheme can simulate elastoplastic fracture by considering the autonomous interactions 
between dislocations and crack growth. For obtaining these results, neither a preset cracking path nor a cohesive zone model is needed. 
Using the new model, Mode I elastoplastic fracture in a single crystal is simulated. We noticed that the crack path is “attracted” towards 
regions of high density of gliding dislocations, leading to an undulating crack paths, as observed in experiments but never replicated by 
continuum-level computational models before. Tests on different sample sizes showed how the proximity of constraints to the crack tip 
can lead to plastic hardening. Ductile-to-brittle transition can happen naturally in the model when the crack, under Mode I 
displacement-controlled loading, approaches a free edge.The numerical results found a linear relationship between the strain-to- 
failure and the critical bond strain. This could be used in the future to calibrate the DDD-PD fracture model to experimental data. 
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Appendix A. Uniaxial tension of a crystal with three rigid boundaries 

In this appendix, we consider the same problem shown in Fig. 2, but with three rigid boundaries in the crystal (see Fig. 23). 
Figs. 24–26 show the numerical results for displacement and stress fields at the applied vertical strain ε = 1.5%, and the stress/ 

strain curves obtained with the SP DDD-PD and the SP DDD-FEM schemes. 

Appendix B. An algorithm to implement the relative rigid displacements at nodes induced by dislocations gliding out 
from a crack surface 

When a dislocation j glides out from a crack surface (see Fig. 16), rotate the global coordinate (Oxy) of the dislocation and all nodes 
to a local coordinate system (Ox’y’, the dislocation coordinates are taken as the origin, and the slip plane is the x’-axis, as shown in 
Fig. 27). Fig. 28 shows the computational flow to obtain the relative rigid displacement(dix, diy) of node i in the local coordinate system 
due to the dislocation j. The global displacement(Dix, Diy) of node i due to the dislocation j can be calculated from:Dix= dixcosθ 
andDiy= dixsinθ, whereθ is the angle between the slip plane and the x-axis (see Fig. 28). Note that the final displacements need to be 
multiplied by the sign of the dislocation. 

Appendix C. Calculation of the stress intensity factor 

The use of the J integral inside the sample (where dislocations are being nucleated and gliding) is to be taken here only as an 
approximation. Since we are not modeling the elastic region far from the process zone, like it is done in, for example, Cleveringa et al. 
(2000), where a given K-field is imposed in the model, the only option is to try contours like the ones shown in Fig. 17 and compute K 
based on the J-integral value. While changing the contour will likely change the J-value, we think that the overall trends seen from the 
results shown in Fig. 20b are not affected in a significant way. 

The peridynamic J-integral formula in 2D is (see Hu et al. 2012): 

Jperi =

∮

∂R

WnxdS −
1
2

∮

R2

∮

R3

f(û − u, x̂ − x) ⋅
(

∂û
∂x

+
∂u
∂x

)

dAx̂ dAx 

One-point Gaussian quadrature and uniform grids with a grid spacing Δ are adopted to discretize the PD models. The above 
equation can be approximated as: 

Jperi ≈
∑k∂R

i=1
WinxΔ −

1
2

∑kR2

i=1

∑kR3

j=1
[f(ujx − uix, xj − xi)(

∂ux

∂x
+

∂ûx

∂x̂

)

+ f(ujy − uiy, yj − yi)(
∂uy

∂x
+

∂ûy

∂x̂
)]AjAi  

where W is the strain energy density, ∂R is the integral contour,nx is the magnitude of the unit vector normal to the tangent of the 
contour. The setsR2 andR3 are the “bands” with a thickness ofδ inside and outside the contour∂R, respectively (see Fig. 29). f is the 
pairwise force in a PD bond connecting material pointsx andx̂. A is the nodal area and u is the displacement vector.kall is the total 
number of nodes,k∂R is the number of nodes along the contour∂R,kR2 andkR3 are the number of nodes in the regionR2 andR3 
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respectively. The domain H is the horizon region. 
The calculation flow for the PD J-integral is shown in Fig. 30. Given the connection between the stress intensity factor (SIF) and J (J- 

integral),KI =
̅̅̅̅̅̅̅̅̅̅̅

JE
(1−ν2)

√
, where E andν are Young’s modulus and Poisson’s ratio, respectively, we can calculate the SIF by using the J- 

integral values obtained from the PD model. 
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