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Abstract Dynamic brittle facture in materials with
many pores/perforations has been shown experimen-
tally to feature complex evolution of crack morpholo-
gies that include crack branching, micro-branches that
arrest, cracks restarting from pores and branching soon
after. Computational models of these problems need to
accurately account for the dynamic interactions
between strain waves and stress concentration zones
induced by the perforated geometry. In this paper, we
aim to improve the predictive capabilities of compu-
tational simulations of dynamic brittle/quasi-brittle
fracture in samples with complex geometries, like
perforated plates, by introducing a discretization
method using non-uniform grids near a boundary
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(NB-NUG) for 2D peridynamic fracture modeling.
The NB-NUG avoids the steps and the corresponding
artificial stress concentrations created in PD models
when using uniform grids over domains with curved
boundaries. The new method also reduces numerical
errors compared with general non-uniform grids used
for PD models. We apply the model for dynamic
fracture of thin PMMA plates with different arrange-
ments of periodic pores/perforations. The results
match the experimental observations for all of the
cases considered. Fine features observed in the
experiments (multiple cracks branching and cracks
that arrest soon after splitting, number of branching
events, etc.) are captured by the new approach and not
by the other PD models with different types of grids.
The results show that the high strain energy density
regions created around perforations attract a nearby
crack tip, deflecting the crack path, altering its
propagation velocity, and promoting crack branching
in its wake, thus dissipating more energy. Nonlocality
of damage helps here in allowing its unrestricted
evolution in problems in which complex crack mor-
phology is sensitive to small changes in the geomet-
rical arrangement of pores in the structure.
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1 Introduction

Brittle cracks start from defects, inclusions, pores present
in the material, or from larger geometrical features like
holes, notches, edges, where stress concentrations rise
sufficiently to activate small-scale defects or nucleate
micro-cracks into growing and propagating macro-
cracks. For peridynamic (PD) models of brittle fracture,
these holes and notches are regions where accuracy
drops, in general, because of the well-known peridy-
namic surface effect (PDSE) (Le and Bobaru 2018).
PDSE’s main source is the size of the nonlocality in the
model (the PD horizon size), but the discretization also
plays a role (see, e.g., (Li et al. 2018; Mei et al. 2021)).
While in some problems the PDSE (due to the nonlo-
cality size) can be used advantageously to capture some
real physical material behavior (Li et al. 2018; Jafarzadeh
et al. 2019) (for example in atomic-scale systems or in
corrosion damage), in other cases, especially those
involving fracture it needs to be reduced for correctly
predicting the material behavior. The simplest way to
sufficiently reduce the influence of the PDSE to the point
that it can be neglected is to use a sufficiently small PD
horizon size, but this implies costlier computations.
Other ways consist of using various strategies to define
different PD bond properties for nodes in the boundary
layer (of horizon size-thickness) than for points in the
bulk (Le and Bobaru 2018). Ref. (Le and Bobaru 2018)
summarized and compared all major correction methods
for the PDSE, including the volume method (Bobaru,
et al. 2016), the force density method (Madenci 2014;
Oterkus 2010; Madenci and Oterkus 2014), the energy
method (Oterkus 2010; Madenci and Oterkus 2014), the
force normalization method (Macek and Silling 2007),
and the fictitious nodes method (Madenci and Oterkus
2014; Oterkus et al. 2014; Oterkus 2015). In this paper,
we introduce a new method to generate non-uniform
grids that conform better to rounded shapes on the
boundary with the goal of improving the accuracy of the
results produced by peridynamic models of brittle
fracture problems.

Using uniform grids for discretizing domains with
round boundaries leads to artificial stress concentra-
tions (Li et al. 2018), leading to earlier fracture than
expected. Non-uniform grids for PD computations can
be generated using, for example, FEM meshers, as
done in Bobaru and Ha (2011), so that they conform
better to the curved boundaries. However, with the
meshfree discretization (the one preferred for
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problems with cracks), quadrature error is introduced
because the mid-point integration used in that method
loses accuracy on non-uniform grids and ghost forces
can appear. The objective of this paper is to improve
the predictive capabilities of computational simula-
tions of dynamic brittle/quasi-brittle fracture in sam-
ples with complex geometries, like perforated plates.
Such geometries exist in many instances, for example
in any system with rivets (airplane structures, bridges,
etc.), bolts, or micro-architectured brittle materials
(see Barthelat et al. (Mirkhalaf et al. 2014)).

A combination of uniform and non-uniform grids
for the meshfree discretization of PD models could
reduce the quadrature errors and improve the accuracy
around holes if one maintains a uniform grid in the
bulk and only uses non-uniform grids near round
boundaries, conforming to their shape. In this paper
we introduce and test a method for discretizing
domains in PD models using “near-boundary non-
uniform grids” (NB-NUG).

The paper is organized as follows: in Sect. 2, the
bond-based PD theory is briefly reviewed; the near-
boundary non-uniform grid (NB-NUG) method is
introduced in Sect. 3; in Sect. 4, static linear-elastic
deformations and dynamic brittle fracture simulations
of 2D perforated plates are used to compared peridy-
namic results computed using uniform grids, global
non-uniform grids, and the NB-NUG method; for
linear-elastic deformations we verify the method by
comparing with those from corresponding finite
element simulations; in Sects. 5 and 6, we use the
NB-NUG method to investigate the effect of multi-
pores on crack propagation in brittle samples and
explain how pores affect the crack propagation speed;
conclusions are drawn made in Sect. 7. Appendix 1
contains convergence results for dynamics fracture
problems; Appendix 2 describes how the crack tip is
track to compute the crack speed; Appendix 3 shows
the numerical equivalency between loading condi-
tions; Appendix D gives a detailed of the ANSYS
APDL commands used to generate the computational
PD grid for the proposed method.

2 Brief review of the bond-based peridynamic
model

Peridynamics, a nonlocal theory originally introduced
in Silling (2000), modifies the classical equations of
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motion from a spatial-differential equation to a spatial-
integral one, thus eliminating singularities at the crack
tip present in classical continuum mechanics. In PD,
each material point interacts with its surrounding
material points through PD bonds, within a finite
distance (see Fig. 1). The equation of motion for a
material pointx at time # in Bond-Based PeriDynamics
(BB-PD) is:

p(eii(x, 1) = / (.0~ (.0, % ~x)dv;

+b(x,1)
x€Qandt € [ty, ]

(1)

where Q is the material domain and ¢y is the initial
time, u represents the displacement vector, and b(x, ¢)
is the body force vector at location x and time 7. As
shown in Fig. 1, H, represents the integral region of
material point x, called the horizon region, and ¥
denotes a point belonging to the family of x, inside the
horizon region. Generally, the horizon region in 2D is
taken as a disk, and the radius of the circle called
horizon size (or horizon in short), represented as 6. In
some problems it is advantageous to use elliptic
horizons with high aspect ratios, see e.g.(Jafarzadeh
et al. 2022). f is a pairwise force function in the PD
bond connecting x and x. If the distance between x and
X in the original configuration is greater than J, there is
no interaction (or PD bond) between them.

Q

Fig. 1 In the horizon region H, (light blue colored disk) in
domain €, the central point x interacts directly with any point X

Let &€ = X — x represent the relative position vector
between ¥ and x, and § = # — u denote the relative
displacement, such that:

f(&m) =0if [[§]| >0 (2)

The pairwise force in a micro-elastic material is
derived from the micro-elastic potential (w) (Silling
2000):

ow(é,n)
— aLVA 3
f(&m) on (3)

For the linear micro-elastic material, we have the
micro-elastic potential (Hu et al. 2018; Ni et al. 2018;
Rashid 1998):

c(@)s*[€l

w(&n) = — (4)

where ¢ (&) is the bond micro-modulus function,s is the
relative elongation of the bond connecting ¥ and x,
given by:

_ &+l = lIell
T

Here we only consider the constant-profile micro-
modulus function (independent of the bond length),
which, when we setup a match of the strain energy
density with the classical theory for a homogeneous
deformation (Bobaru et al. 2009), leads to the follow-
ing form:
9k
1o
where k is the bulk modulus of material.

The Prototype Micro-elastic Brittle (PMB) model is

applied in this work for material damage. In the PMB
model, the pairwise force f(&, n, 1) is given as follows:

(5)

CcC =

(6)

E+n

flE 1) = {C(E)s(é,n)u(é,mt)m if |€|<é

0, otherwise
(7)

where p is used to describe the damage state of bond. If
the relative elongation of bond exceeds a critical
value, the bond breaks. Value 1 represents an intact
bond, while 0 represents a broken bond:
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S(éﬂ],l‘) SSO (8)

1
:u(éa']?t) = {0 S(f,}],t) > o

so s the critical relative elongation of a bond, which is
obtained from equating the PD strain energy required
to break all bonds across a unit fracture area with the
critical fracture energy per unit fracture area (Ha and
Bobaru 2010). Under plane stress conditions, its form
is:

47IGO
0=V ks ®)

where Gy is the critical fracture energy (energy per
unit area), a measurable quantity. A way to quantify
(useful for visualization of results) the degree of
material failure at a point in space and time in a PD
model is the damage index(see (Silling and Askari
2004)):

_ fo:u(ga n, t)dv;
Sy dVs

In PD, material points near the boundaries do not
have a full non-local neighborhood. This leads to
effective material properties near the surface of a PD
model being different from those in the bulk. Several
methods/algorithms have been proposed recently to
correct this PDSE. Ref. (Le and Bobaru 2018)
systematically investigated the efficiency and compu-
tational cost of various PD surface correction methods
when solving elasticity and fracture problems using
PD, and provided practical suggestions for reducing
the PDSE. Although the fictitious nodes method can
eliminate the PDSE, it is not easy to use for problems
defined over domains with complex boundaries. Ref.
(Zhao, et al. 2020) introduced a general algorithm that
automatically locates mirror nodes for fictitious nodes,
without requiring an explicit mathematical description
of the boundary. The surface correction method used
in this work is the energy method, selected here for its
simplicity and efficiency. The specific procedure is as
follows (Le and Bobaru 2018; Oterkus 2010; Madenci
and Oterkus 2014):

D(x,1) =1 (10)

a)  Compute the reference strain energy density Wy
at a point in the bulk (with a full neighborhood)
and very fine discretization (2 =25 in our
program) under uniaxial homogeneous defor-
mation (strain of 0.01% selected here).
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b)  Set the initial surface correction factor A; (at
node x;) as 1, for all nodes.

c¢)  Apply the same homogeneous deformation as in
step a) in the actual domain, and compute the
strain energy density W; for node x; by summing
up the strain energy density (w; for bond
connecting node x; and node x;) of all bonds
connecting node x;, corrected by average sur-
face  correction  factor % (4 +4):
Wi= 373wy (4i + %)

d Setl =4 % as the updated surface correction
factor of node x; for the next iteration.

e) Repeat the loop in step c) and step d) for all
nodes until all 4; converge (relative tolerance
error used here is 1077).

Using the one-point Gaussian integration, the
discretization form of PD motion equation can be
written as:

.. 1
pii; =y 5 (% + 24)f o5V + bi (11)

Xj eHJC,'

where x;eH,, denotes nodes inside the horizon region
of x;, V; is the nodal area (volume in 3D) of node x;, /;
is the surface correction factor for node x;, ®ij
represent the volume correction factor which esti-
mates the partial volume of node x; covered by the
horizon of x; [see (Seleson 2014)], f; is the bond force
between x; and x;, and b; is the body force exert on
node x;. The velocity-Verlet scheme is used to discrete
in time to obtain the numerical solution for dynamic
problems (see e.g. (Ha and Bobaru 2010) for the
details on the velocity-Verlet scheme), and the Non-
linear Conjugated Gradient (NCG) method based on
energy minimization is applied for quasi-static simu-
lations (see e.g. (Zhang et al. 2016) for the detail of the
NCG method).

When uniform grids are used, a partial-volume
correction algorithm (like the HHB method in Hu et al.
(2010)) is applied to improve the accuracy of the
midpoint quadrature scheme because the nodal area of
node x; may not be fully covered within the horizon of
node x;. In the HHB method, the volume correction
factor ¢ for uniform grids is:
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o Ax
1 iflel<o——,
Ax
_J o+l
e(IE+nl) = ( 2 ) . Ax Ax
0 iflIgl =0+

(12)

To conform to irregular or curved boundaries and
avoid the artificial stress concentration induced by the
zigzag boundary shape when using uniform grids to
discretize domains with curved boundaries, non-
uniform grids have been used in peridynamics (Li
etal. 2018; Henke and Shanbhag 2014; Mehrmashhadi
et al. 2019). Non-uniform grids, however, introduce
additional quadrature error as it is difficult to find an
algorithm for the volume correction factor like the one
used for uniform grids (see Eq. (12)). Obviously, the
HHB algorithm is no longer applicable to non-uniform
grids, since it is based on areas/volumes of nodes being
squares/cubes. It is necessary to find a new character-
istic grid spacing to substitute the uniform grid spacing
Ax (see Eq. (12)). There are two common ways to alter
the characteristic spacing and make it useable for non-
uniform grids: one is to use the diameter of a circular
disk whose area is the same to that of a given PD node
(Ni et al. 2018); the other is the length of a square
whose area is identical to that of a given PD node (Hu
et al. 2018). The latter leads to equivalent results with
those from Eq. (12), when using uniform grids. In this
work, we adopt this second approach to “correct” the
nodal areas and use @ to represent the area/volume
correction factor for non-uniform grids:

if el <o-2,
2
(I +nll) = M

1

0 if gl =0+

rj T
if 6 —2L < <6+2,
Fo-T <l <o+,

(13)

=V, (14)

To reduce quadrature error induced by the use of
non-uniform grids (which are needed around round
boundaries to reduce the artificial stress concentra-
tions, as discussed before), we introduce a discretiza-
tion method that is uniform everywhere except around
curved boundaries, and the non-uniform nodes have
similar areas. Another reason we introduce this semi-
uniform grid method is that valid peridynamic failure

criteria for irregular spatial discretization are still
under development and application of regular uniform
grid based failure criteria to problems with irregular
non-uniform spatial discretization is debatable (Chen
2019).

To realize the semi-uniform grid method, we obtain
local non-uniform grids utilizing the ANSYS Mesh
Tool. This is explained in detail in the next section.

3 A near-boundary non-uniform discretization
(NB-NUG) method for PD

Artificial stress concentrations can appear around
curved boundaries when a domain is discretized using
uniform grids. These concentrations are reduced or
eliminated by using “fitted” grids, which imply a non-
uniform discretization. However, non-uniform grids
increase quadrature error. In this section we introduce
a method in which non-uniform grids are used only
around curved boundaries, while the rest of the domain
is discretized uniformly. This mixed-grids discretiza-
tion method is implemented in ANSYS mesh tool.

For simulation domains containing curved bound-
aries, such as round boundaries, though the mapping
method can be used, the element shape is usually
rectangular with a large aspect ratio, which would lead
to significant errors when the volume correction
algorithm is used.

To reduce the errors caused by non-uniform grids,
our approach is to divide the original geometry into
several regular rectangular parts (isolate into rectan-
gular shapes regions with rounded boundaries) and use
non-uniform grids in those rectangles that contain
curved boundaries and uniform grids in the rest of the
domain (see Fig. 2). We construct the red edges box
(called a “non-uniform box”). The rectangles that do
not contain round features are meshed, uniformly,
using the mapping method, and the non-uniform box is
meshed using the free method. A “padding” of at least
one horizon size is recommended around the curved
boundaries and the edges of the non-uniform box, to
ensure the relative uniformity of the non-uniform
grids. The fineness of the non-uniform grids is
determined by the size of the features in the geometry
(e.g. size of holes, notches, etc.), in other words, the
grid has to be fine enough to be able to capture the
rough shape of the smallest geometrical features. With
the non-uniform grid set like that, the element size

@ Springer
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Fig. 2 Separating regions
with curved boundaries
(discretized with non-
uniform grid) from the rest
of the domain (discretized

WV

7

with uniform grids) using
rectangular sub-domains

WV

7 Y

used for the uniform grids is determined to match. In
the next section we test the method on a variety of
quasi-static and dynamic fracture problems.

4 Numerical results for the NB-NUG method
for static and dynamic brittle fracture

In this section, quasi-static elastic deformation and
fracture, as well as dynamic fracture in perforated
plates are calculated using peridynamic models with
uniform grids, global non-uniform grids, and the NB-
NUG, respectively. The results are also compared with
the ones from the finite element method (ANSYS and
LSDYNA3D), to verify the NB-NUG method for PD.

4.1 Quasi-static elastic deformations in a plate
with a central hole

As shown in Fig. 3, a 20mm x 20 mm square plate
with a circular hole in the center, under uniaxial
tension, is considered. A displacement-controlled
horizontal tension is applied, with displacement U, =
0.0001 mm (see Fig. 3). The top and bottom bound-
aries and the inner boundary are traction-free. Dis-
cretizations using global non-uniform grids (Fig. 4,
bottom panel) and the NB-NUG (Fig. 4, top panel),

H=20 mm
| —
g —>
«— £|]| {
U, |= — U,
«—
TN il —>
N —>

Fig. 3 Geometry and boundary conditions for a plate with a
hole under quasi-static horizontal deformation. The non-
uniform box is shown with the red dashed line
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are obtained with the ANSYS mesh module. To apply
the NB-NUG method, the perforated plate is divided
into several parts before meshing. For the part
containing curved surface or boundaries (the area
inside the dashed box shown in Fig. 3), the free mesh
type in the ANSYS mesh module is applied for the
discretization, while the remaining region is dis-
cretized by the mapped mesh method. More specifi-
cally, the element size is set to be 0.05 mm and the
length of the non-uniform box is 8.4 mm (which is the
diameter of the hole plus two horizon sizes, see
below). After meshing, we extract the centroid of each
element as the nodal point, and the element area serves
as the nodal area in PD. With this discretization,
elements out of the non-uniform box are all squares.
Inside the box, most elements are quads, except for a
few around the curved surface that are triangles
(Fig. 4, top panel, generated by the built-in algorithm
in ANSYS). This processing method can significantly
reduce the artificial stress concentrations and improve
quadrature accuracy. The parameters used in this
example is listed in Table 1.

In the PD simulations, the horizon size is set to be
0.2 mm, and the horizon factor (the ratio of horizon
size to the grid spacing) is 4. The displacement fields
(in the horizontal direction) calculated from FEM, PD
with global non-uniform grids, uniform grids, and NB-
NUG are shown in Fig. 5a—d, respectively. With the
same scalar bar, the displacements’ distributions are
all similar. Since uniform grids lead to artificial stress
concentrations when applied to curved boundaries, we
focus on non-uniform grids which conform to the
curved boundaries (the circular boundary for the case
shown in Fig. 3), and present the absolute and relative
differences between the PD models with non-uniform
grids methods and the corresponding FEM results
using the same grids as in the PD models (see Fig. 5e—
h). The results from the PD model with the NB-NUG
method leads to smaller differences from the FEM
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Fig. 4 Top: grid obtained
by the NB-NUG method.
Bottom: global non-uniform
grid obtained by free mesh
type method. Right

figures are zoom-in of the
areas in the black squares

Table 1 Parameters used in the simulation of quasi-static
elastic deformation

E Gy 0 Ax

3.24 GPa 200J/m? 0.2 mm 0.05 mm

results, compared with those from the free type
generated grid. Note that when calculating the differ-
ences, the FEM models adopt the same grids as the
global non-uniform grids and the NB-NUG, respec-
tively. The PD nodes’ positions are the centroids of the
elements in the ANSYS mesh. We compare the
displacement data at the PD nodes. For doing this,
we transfer the FEM displacements (calculated at the
FEM nodes) to the centroids of each element (the PD
nodes) by averaging (see Fig. Se-h).

Note that the relative difference plots in Figs. 5g
and h show sharp transition along the vertical
symmetry line. These are caused by the very small
horizontal displacement values (close to zero), which

lead to large round-off errors when computing relative
differences.

4.2 Quasi-static fracture in a plate with a central
hole

A quasi-static fracture problem for the same structure
is investigated in this section. The geometry, grids’
configuration and peridynamic parameters are the
same as above. Equal displacements are imposed on
both left and right boundaries along the normal
directions. Due to the stress concentrations, cracks
should initiate from the top and bottom symmetry
points on the hole, even in the absence of pre-notches.
Three kinds of grids (uniform grids, global non-
uniform grids, and NB-NUG) are used, respectively,
and we compare their performance in this quasi-static
fracture problem only in terms of the morphology of
failure and the relative difference for the “strain-at-
failure”.

@ Springer
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5.6E-05

3.3E-05

|

(b)

' -1.1E-05
’ = -3.3E-05

-5.6E-05
‘ ‘ -7.8E-05

() (d)

Fig. 5 Deformation (maps of horizontal displacements) of a
square plate with a hole obtained from a FEM, b PD model using
global non-uniform grids, ¢ PD model using uniform grid (zig-
zagged grid around the circular hole), and d PD model with the
NB-NUG method. Images e and g: the absolute and relative

Ris s

1.1E-05

—_
oo
~"

In order to increase computational efficiency, larger
displacement steps of 0.01 mm are used for the first
eight steps, followed by significantly smaller ones
(1 x107*,5 x 1073, or I x 107°) until full separation
of the sample occurs. We record the boundary
displacement when the crack initiates from the hole
edge and show these values on the top and bottom of
each damage map in Fig. 6. ¢, in Fig. 6 is the
horizontal strain increment in each step. With uniform
grids, due to the stress concentration caused by the
artificial zig-zagged boundary, four cracks initiate
from the hole, which should not happen. The upper
and lower cracks do initiate at the same load—
displacement value (as recorded in Fig. 6) because
of the symmetry in geometry, discretization, and
loading conditions. However, under quasi-static load-
ing, an experimental test of this type in a homogeneous
(fine grained) brittle/quasi-brittle material should have
cracks initiate from the stress concentration regions
(located at the highest and lowest points on the
circumference) and grow straight, as shown in Fig. 6,
columns 2 and 3.

With global non-uniform grids, two cracks initiate
from the hole (see Fig. 6). We notice that the boundary
load-displacements, at which the upper and lower
cracks initiate, are close to each other for all three

@ Springer

Abs_Diff (m)
i

1.0E-06

7.5E-07

5.0E-07

25E-07
i 0.0E+00
Rel Diff

j‘f 0.01

0.0075

0.005

Sy
(h)

difference of (b) to (a), respectively. Images f and h: the
absolute and relative difference of (d) to (a), respectively. The
scalar bar in the middle is for (a—d), in meters. The scalar bar on
the top-right is for (e) and (f), in meters. The scalar bar on the
bottom-right is for (g) and (h)

displacement steps considered. The magnitudes of the
critical enforced displacements (at which cracks
initiate) are slightly greater than those for the case
with the uniform grids. With the NB-NUG, also only
two cracks are produced. However, the critical
imposed displacement value, when the first crack
initiates, is slightly smaller than the ones obtained with
the global non-uniform grids, but closer to those
obtained with the uniform grids. The load—displace-
ment, when the second crack initiates, is very close to
ones obtained with the global non-uniform grids.

Note that if we perform an m-convergence for the
uniform grid we would, in the limit, eventually obtain
single cracks from the top and bottom stress concen-
tration zones. This will happen, however, at a very
high computational cost. The NB-NUG gives the
correct solution at a significantly reduced computa-
tional cost.

Note that with the PMB material model (in which
the critical bond-strain is calibrated to the fracture
toughness), under quasi-static loading (and for
domains without pre-cracks), ones obtains different
strength values when using different horizon sizes
(Niazi et al. 2021). One of those horizons will
eventually match the actual material strength, but its
size may be too small to allow for cost-effective
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Fig. 6 Damage maps from
PD models of plate with a
hole under displacement
boundary condition for three
different strains increments
and using three types of

grids. The numbers marked E = 1x107°

on the damage maps

represent the applied

displacement values at

which the top or bottom

cracks crack initiate
g =5x107°
g, =1x107°

computations. For a model that produces the same
strength value (and fracture toughness, at the same
time) independent of the horizon size, a two-parameter
bond-damage model needs to be used, see, e.g. (Niazi
et al. 2021). In dynamic fracture problems, however,
damage initiation and propagation are controlled
primarily by the interactions among elastic waves,
and damage evolution (initiation and propagation)
predicted by the PMB model (one-parameter bond-
damage model) converge, when decreasing the hori-
zon size in the PD model (Zhang et al. 2018; Wu et al.
2021), see Sect. 5. Since the focus of this work is
dynamic fracture, the PMB model is used here.

4.3 Dynamic fracture in a plate with an off-center
hole

In this subsection we test the method using a dynamic
fracture example: as shown in Fig. 7, a plate with a
lateral crack and an off-center circular hole is dynam-
ically loaded to fracture. The same problem has been
studied in Rashid (1998); Tabiei and Wu 2003), and
(Dipasquale et al. 2014). Mechanical properties for the
plate are as follows (also see Table 2):
E =71.4GPa, p = 2700kg/m?, Gy = 1,000] /m?.

The bottom boundary is clamped and a traction of
2 0MPa is suddenly applied on the top boundary and

uniform

global
non-uniform DMG

1.0

>

2 S T
NiE
. —
-

-

>

47 mm

10 mm

28 mm

30 mm

Fig. 7 Geometry and boundary conditions for the plate with a
lateral crack and an off-center hole

kept constant afterwards. A lateral crack placed a
distance A = 15, 10, or Smm from the bottom bound-
ary is considered, defining Cases A, B, and C,
respectively. The plate is discretized with element
size Ax = 0.1 mm. The plate is discretized with
element size 0.1 mm and the length of the non-
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Table 2 Parameters used in the simulation of dynamic
fracture

E P G() d Ax

714 GPa  2700kg/m?  1000J/m?> 04 mm 0.1 mm

uniform box is 15.8 mm. Horizon size and time step is
set to 6 = 0.4mm and At = 0.02us. Thus, the slack
between the edge of the non-uniform box and the
boundary (the hole) is J on each side.

The crack paths obtained from the PD simulations
with the NB-NUG are shown in Fig. 8, and compared
with corresponding ones from an explicit FEM code
DYNA3D given in Tabiei and Wu (2003). Note that
the simulations (cracking in thin plates) in Tabiei and
Wu (2003) were in 3D, and the results were shown
from the front left view (see Fig. 8), while the PD
results shown in Fig. 8 are in 2D under the plane-stress

Fig.8 Crack paths obtained
from PD models with the
NB-NUG (top) and from
DYNA3D (bottom) (Tabiei
and Wu 2003) for different
locations of the pre-crack:
ah=15mm,bi =10 mm,
¢ h =5 mm (see Fig. 7)

@ Springer

condition. The presence of the hole influences the
crack path, attracting it towards it, and this is well
captured by both methods. The PD and FEM results
show a similar crack-path behavior: with the nearest-
to-hole pre-crack, the propagating crack has the largest
deflection angle and ends in the hole, while when the
pre-crack farthest from the hole, the deflection angle is
the smallest.

Figure 9 shows the strain energy density distribu-
tion at 20us for Case A. The corresponding evolution
of the strain energy density distribution is shown in
Movie 1. High strain energy density is observed at the
crack tip and around the hole boundary. During
dynamic crack propagation, the crack direction is
sensitive to the surrounding strain energy distribution,
and moves towards a nearby location with high strain
energy density (Chen 2017). As shown in Figs. 8 and
9, the crack tip deviates from the horizontal line due to
the influence of the hole. The high strain energy
density zone around the hole rotates and attracts the
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Fig. 9 Strain energy density distribution at 20 us for Case A
(h = 15mm, see Fig. 7)

crack tip, and eventually the crack path deflects into
the hole in Case A (see Movie 1).

Figure 9 is taken from the early stages of the
deformation. Because of the pre-crack on the left side,
it is to be expected that strain energy density will be
concentrated at the location where the sample is “held
in place”, that would be right bottom corner more than
the left bottom corner because of the “weaker” left
side where the hole and the pre-crack are present. The
loading is dynamic, and the simulation movie shows
how the strain energy density evolves in time. Note
that the left bottom corner also gets, at times, higher
strain energy density than the right bottom corner (see
Movie 1), for example at the time when the second
crack is just about to nucleate from the right side of the
hole, as the loading on top starts to tilt (because of the
rotation due to the opening of the crack) and transfer
strains to that region.

Note that the DYNA3D simulation for Case A
shown in Ref (Tabiei and Wu 2003) (see Fig. 8a) did
not consider the crack re-initiation from the right side
of the pore. The prediction of crack growth direction in
the DYNA3D model (Tabiei and Wu 2003) depends
on a function of the stress intensity factors in Mode [
and Mode II. Therefore, the DYNA3D model in Ref
(Tabiei and Wu 2003) can only predict crack growth
(from an existing crack), and cannot be used to model
crack initiation or re-initiation from smooth surfaces.
PD models can simulate crack initiation. In PD, crack
evolution (initiation and propagation) is a

representation of the information of all broken bonds,
and, in the PMB model used here, bonds break when
reaching a critical bond-strain calibrated to the
material fracture toughness (see Egs. (8) and (9)).
The PMB model has been successfully applied to
simulate many dynamic fracture processes from
damage initiation to full failure, for instance, brittle
impact fracture in ceramics (Zhang et al. 2018).

In Fig. 10, we compare the crack patterns for Case
A (h = 15mm, see Fig. 7) calculated from the PD
models with the uniform grids, global non-uniform
grids, and NB-NUG, respectively. We focus on three
critical moments: crack reaching the hole (left column
in Fig. 10), crack re-starting from the side of the hole
(middle column in Fig. 10), and the plate fully
breaking (right column in Fig. 10). As seen from
Fig. 10, with a uniform grid, due to the artificial stress
concentrations around the hole, we get a lower
resistance to crack re-initiating from the hole, that
happens much sooner than in the other two models.

Fig. 10 Snapshots of damage maps for Case A obtained from
PD models with the uniform grids (a), global non-uniform grids
(b), and NB-NUG (c), respectively. Three moments for each
case are: crack reaches the hole, crack re-initiates from the hole,
and full failure
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The timelines for the results generated from the global
non-uniform grids and the NB-NUG are similar: the
times for the cracks reaching the hole are very close,
while the results from the NB-NUG show a slightly
delayed re-initiation from the hole.

We have verified the NB-NUG method for PD
modeling and showed that the NB-NUG leads to more
reliable results than when using uniform grids or
global non-uniform grids, for quasi-static elastic
deformations and quasi-static fracture, and dynamic
fracture in a plate with a hole. In the following
sections, we apply the PD model with NB-NUG to
investigate the interaction between propagating brittle
cracks and various arrangements of arrays of pores, to
demonstrate the ability of the new method in obtaining
results that match experimental results considerably
better than other available options.

5 Dynamic fracture in PMMA plates containing
periodic perforations/pores

The benchmark problem is a set of experiments carried
out in Carlsson and Isaksson (2019). Figure 11 shows
the geometries. Three styles of pores (Cases PMMA-
A, PMMA-B and PMMA-C, shown in Fig. 11) are
drilled on the plate with the size of
W x H=50mm x 25mm, and an edge crack with

the length of 2mm or 0.75mm is notched at the middle
of the left boundary. The pores have the same radii
R = 0.75mm, and the spacing between two adjacent
pores is D = W /9. The plate is made of PMMA, with
the Young’s modulus FE = 3.24GPa, density
p = 1190kg/m?, Poisson ratio v = 0.35, and energy
release rate at crack initiation Gy = 200J/ m? (see
Table 3). State-based peridynamics have been used to
simulate this problem and other forms of arresting
cracks using holes in Rahimi et al. (2020), but only for
the 2 mm pre-crack case, which is the case with crack
propagation at lower strain energy in the system.
However, uniform grids and relatively large grid
spacing used in those simulations inevitably led to low
numerical accuracy, which is especially critical for
cases with higher strain energy in the system.

A ramp-up velocity of 0.3m/s (see Appendix 3 and
(Rahimi et al. 2020) for using this velocity value) is
applied on the top and bottom boundaries (see
Fig. 12(a)), and we use a time step of 0.02 us for the
velocity-Verlet time integration. The ramp-up is
employed so as to alleviate the sharp wave that would
arise from suddenly enforcing the velocity boundary
condition. Over the first 200us the boundary velocity
is linearly increased from 0 to 0.3 m/s (see Fig. 12(b)),
after which its value is kept constant. The length of the
non-uniform box around each pore is 2 mm. We use
0.16mm as the horizon size (see a convergence study

w 2R
2R H i
]
G- O O O O
R B c S c S S = S = S o © 2 %t
| | —
— D
D
(a) (b)
2R
]
[
-5/—2? o) (e}
| |
—
D

Fig. 11 Geometry of plates with different arrangement of arrays of circular pores: a pore array on the midline (Case PMMA-A); b pore
array above the midline (Case PMMA-B); ¢ pore arrays symmetrical about the midline (Case PMMA-C)
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Table 3 Material properties of PMMA

E P Go v

3.24 GPa 1190kg/m? 200J /m? 0.35

for Cases PMMA-A and PMMA-B with a 2mm pre-
crack in Appendix 1), and select m =4 (m is the
horizon factor, i.e., the ratio between the horizon size
and the grid spacing).

Note that in the experiments, the top and bottom
boundaries of the plate were loaded quasi-statically
until a sudden crack occurred, after which a fixed
velocity condition is likely present (Carlsson and
Isaksson 2019). The specific loading details were not
provided in Carlsson and Isaksson (2019). Here, we
omit the static loading stage and use the dynamic
loading as shown in Fig. 12. To illustrate the feasibil-
ity of this simplification in modeling, in Appendix 3,
we compute and compare the evolutions of cracking
speed in an intact plate (no perforations) with pre-
cracks of 0.75 mm and 2 mm, respectively, subjected
to static-dynamic loading, and dynamic-only loading,
respectively. In Appendix 3, we show that the crack
propagation speeds obtained via models with the two
schemes are consistent over the entire crack propaga-
tion process. The crack patterns obtained from both
schemes are also consistent, for both cases with
different pre-cracks, respectively. In the following, we
use the dynamic-only loading scheme (shown in
Fig. 12) to approximate the experimental loading
conditions.

boundary velocity

I I D I

~ pre-crack
L~

(a)

Figures 13 and. 14 show the crack paths computed
by PD models with different grids, and from the phase-
field model and experimental observations in Carlsson
and Isaksson (2019). The simulation results from the
PD model with the NB-NUG have the best agreement
with the experimental results for all 6 scenarios (Cases
PMMA-A, PMMA-B, and PMMA-C with both 2 mm
and 0.75 mm pre-crack, respectively) considered (see
Figs. 13 and 14). In particular, the NB-NUG model-
based results captures interesting fine characteristics
seen in the experimental results: (a) short branched
cracks, that arrest soon after branching, are present in
all three cases; and (b) the number of branching events
and the crack path morphology.

Some differences are observed, but, considering
that the pores were not perfectly aligned and spaced in
the experimental samples (see (Carlsson 2023), and
that crack propagation is dynamic under the loading
conditions used in the experiments, such differences
are to be expected. All of the simulations and the
experimental results show that the sample with the
shorter pre-crack, features more crack-branching
events. This is because before the crack starts to
propagate, a higher strain energy density is accumu-
lated around the crack tip (and over the entire
structure) for the plate with a shorter pre-crack. Once
the crack propagates, the higher strain energy leads to
more branching (see Figs. 13 and 14).

Note that the experimental results for the PMMA-B
sample (offset row of holes, see middle column of
Fig. 14) shows a crack branch getting attracted to the
4th hole but continuing away from the holes. The NB-
NUG PD results for that case (see Fig. 14, row 3
column 2) also show the same branch getting attracted

V (m/s)

03 [F————— T

200

(b)

Fig. 12 a The loading boundary condition; b Imposed velocity on the top and bottom boundaries use a linear ramp-up stage over the

first 200 ps
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phase field

O Q0

experiment

Fig. 13 Damage maps for the 2mm pre-cracked sample with
different pore styles, for different grids and models. Phase-field
results and the experimental results are taken from Carlsson and
Isaksson (2019). The red ovals in the right panel of the global

to the same 4th hole, but it then continues through the
rest of the holes in an undulating crack path. Ref.
(Carlsson 2023) confirmed that they also found this
behavior in one of the samples they tested with this
geometry, not included in Carlsson and Isaksson
(2019). This is a great confirmation of the capability of
the proposed NB-NUG PD method.

By comparing the crack patterns simulated by using
different methods and measured experimentally (see
Figs. 13 and 14), we notice: (1) Dispersed damage
and discontinuities in the crack path are observed in
the results from the PD model with global non-
uniform grids. These features are induced by the non-
uniform grids-related numerical errors; (2) The dam-
age predicted by the phase field method shows
unrealistic thickening, most pronounced near branch-
ing locations. The full failure of the samples was not
shown in the phase field results in Carlsson and
Isaksson (2019). This could be due to the “leaking” of
damage around crack lines present in many such
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non-uniform indicate dispersed damage due to the non-uniform
discretization. The yellow rectangles denote some of the
locations where cracks arrest soon after branching

models (see discussion in Mehrmashhadi et al.
(2020)). The performance of different methods in
several aspects is listed in Table 4 to compare them
more intuitively.

Figure 15 shows the crack propagation speed using
the PD model with the NB-NUG method. When a
crack passes through the pore (see Fig. 15a,d, and f), a
slight increment of speed is observed just before the
crack reaches the left edge of a pore. One observes that
the normalized crack propagation speed at the edge of
the first pore is larger than 0.5 in (a) while it is less than
0.5 in (b) and (c). Similarly, the normalized crack
propagation speed at the edge of the first pore is about
0.75 in (e) while it is less than 0.75 in (f) and (g). The
crack propagation speed returns to its original level
rapidly after the crack restarts from the other side of
the pore. The same phenomena have been observed in
Carlsson and Isaksson (2019). For the cases shown in
Fig. 15b, ¢, and e, in which cracks do not pass through
pores (the lower branch in (e)), obvious fluctuations in
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uniform

Fig. 14 Damage maps for the 0.75mm pre-cracked sample with
different pore styles, for different grids and models. Phase-field
results and the experimental results are taken from Carlsson and

Isaksson (2019). The yellow rectangles denote some of the
locations where cracks arrest soon after branching

Table 4 Performance comparison between phase field model from (Carlsson and Isaksson 2019) and PD models with different

discretization schemes

Items Uniform Global non-uniform NB-NUG Phase
field

Quadrature accuracy \ Low (x) High (\/ ) \

Crack nucleation Artificial stress Correct stress Correct stress concentrations  \

concentrations (x) concentrations (/) W)
Crack initiation time Early Late Late (close to Global non- \
uniform)

Dispersed damage No (\/) Yes (x) No (\/) No (\/)
Nonphysical crack No (\/) No (\/) No (\/) Yes (x)

thickening

speed indicate that pores have an effect on crack
propagation. Moreover, pores’ locations are exactly
aligned with the “valleys” noticed in the crack speed
curves (see the dash lines in (b) and (c)), demonstrat-
ing their connections.

Figure 16 gives the horizontal locations of the
crack tips at different time steps. It is evident in the

zoom-ins that there is a short flat stage before the crack
tip jumps from the left side of a pore to re-initiate on
the other side. The time for the crack “trapped” in a
pore is the same as the crack propagating in the solid
for the distance of the pore diameter. This behavior is
as if an “invisible crack” propagates through pores
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Location (mm)

Location (mm)

Location (mm)

Location (mm)

Fig. 15 Normalized cracking speeds superposed on the damage maps for the long (2 mm, left column) and short (0.75 mm, right
column) pre-cracks for cases PMMA-A in (a) and (d), PMMA-B in (b) and (e), and PMMA-C in (c) and (f)

with a constant velocity (see the pink lines shown in
the zoom-ins in Fig. 16).

To explain why crack speeds are slightly lower
when the crack passes right below/above a pore (see
the valleys at the yellow dash lines in the left column
of Fig. 15b and c), in Fig. 17 we show the strain
energy density map for the moment when the crack tip
approaches the area right under a pore (at 311us for
Case PMMA-B with the long/2 mm pre-crack). This
map shows the mutual attraction of the strain energy
density zones around the crack tip and the pore edges.
The high strain energy concentration zones around the
pores deflect the crack tip and “trap” the crack for a
short while, leading to the observed fluctuations in
both crack paths and crack propagation speed. The
evolution of the strain energy density distribution for
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NB-NUG PD results are shown in Movies 2-7,
respectively.

6 Dynamic fracture in PMMA plates containing
random pores

To show the versatility of the PD model with the NB-
NUG in simulating fracture of plates with pores, in this
section, we simulate dynamic brittle crack propagation
in plates with randomly distributed pores of different
sizes. The geometry and material properties for the
plates in this section are the same as the ones
considered in the previous section, and the length of
the pre-crack is 2 mm. Pores are randomly generated
in the rectangular domains with radii varying from
0.75 mm to 1.5 mm. At this stage, for simplicity, we
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Fig. 16 The evolution of the horizontal coordinate of the crack tip for all six scenarios: PMMA-A, -B, and -C, with long (2 mm) and

short (0.75 mm) pre-cracks (see Fig. 11)

Fig. 17 The strain energy
density map for Case
PMMA-B with a long
(2 mm) pre-crack at 322us

avoid pores being generated on the boundary by
placing their centers at least one diameter away from
the boundary. Also, the distance between the centers
of any two pores is set to at least 0.3 mm greater than
the sum of their two radii to ensure that pores do not
overlap. These minor restrictions, however, are not
limitations of the discretization technique we intro-
duced here. The examples below use a length of the
non-uniform box of 0.15 mm larger than the corre-
sponding radius of the pores they encase. The plate is
divided and meshed using APDL commands in
ANSYS, as described in Appendix 4.

SED (10°J/m?)

'H 0.15

= 0.12
\ ‘& —1 0.09
Y

— 0.06

0.03

A 6 MPa tensile load is suddenly applied on the top
and bottom boundaries of the plate. Figure 18 displays
the snapshots of the crack patterns and the strain
energy density maps at the early stages of the cracking
processes. The results show that the crack is affected
by the pores and turns many times, but the pores’
influence is not apparent at the early propagation
stage. With continued loading, strain energy increases.
The distribution of strain energy density also depends
on the microstructure (hole size and distribution),
which causes the different crack responses in the path.
A common feature, however, is the attraction of the
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Fig. 18 Damage maps are all at 120us (top row) and strain
energy density maps (bottom row) at 48 us, 48 us and 24 us,
from left to right, respectively, for cases with a 10 random pores,

crack path toward the pores. By comparing the results
from the cases where different numbers of pores are
implemented, we observe that in Fig. 18a (fewer
pores), the crack branches at a location around the
center of the plate, and no contact between the crack
and pores is observed before branching, while in
Fig. 18b and c (more pores) the crack branches after
passing through pores (see Movies 8—10).

To remove the influence of the number of pores in
the structure, and study whether the presence of pores
along the potential path of a dynamic crack has an
effect on when a crack branches, we fix the number of
pores to 10 and generate three samples with this
configuration. The computed crack paths are shown in
Fig. 19. The first snapshot is the same as the case
shown in Fig. 18a, in which the crack does not meet a
pore before it branches, near the middle of the plate. In
the other two configurations, pores happen to be in the
path of the growing crack earlier, and we observe that
soon after it passes through them, the crack branches,
much earlier than in the first configuration. This
appears to indicate that pores along a crack path
promote crack branching. This earlier branching can
also be seen in Fig. 15a and d, and for the same reason.

(a)

b 20 random pores, and ¢ 30 random pores. The strain energy
density uses the same scalar bar as Fig. 9, while the damage
maps use the same color bar as in Fig. 6

An explanation for why cracks appear to branch
“easier” after passing through pores can then be
proposed, based also on the simulation movies (see
Movies 8-10): when the crack reaches a pore, its
propagation is “suspended”, and at the other end of the
pore, a much higher strain energy density (stress
concentration) builds progressively before a crack can
initiate from that location; the crack restarts its growth,
but from a higher strain energy density landscape,
prompting its branching soon after that (Bobaru and
Zhang 2015), therefore leading to more energy
dissipation.

7 Conclusions

This paper introduced a strategy to improve the
accuracy of peridynamic (PD) fracture simulations in
problems with notches, perforations, and other geo-
metrical features that may serve as stress concentra-
tion and crack initiation sites. The near-boundary non-
uniform grids (NB-NUG) discretization method uses
non-uniform grids only in regions close to the curved
boundaries, while in the rest of the domain, the

(©)

Fig. 19 Damage maps for three different random distributions of 10 pores (random location and radii). Snapshots taken at 120 us (a),

112 us (b), and 122 us (c) from the start of the simulation
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discretization is uniform. Nodes in the non-uniform
parts have associated volumes/areas similar to the
uniform ones. The NB-NUG in PD significantly
reduces artificial stress concentrations induced by
uniform grids approximating curved boundaries,
while minimizing quadrature error over the entire
domain.

We performed static and dynamic fracture simula-
tions for plates with a hole, using the PD with NB-
NUG and two other types of grids, to show the
effectiveness of the NB-NUG. We then applied these
models to dynamic fracture in PMMA plates contain-
ing periodic pores and investigated the effect of pores
on crack propagation. Fine details of the crack path
observed in experiments were well captured by the
new approach (PD with NB-NUG), including short
cracks that spring from pores but soon arrest, the
number of crack branching events, and the overall
crack morphology. We showed how pores “attract”
the crack path, and found that the crack propagation
speed is affected as well by the presence of pores. We
attributed the influence of the pores to the higher strain
energy density around the pores. We also noticed that
simulation results from the literature using the phase-
field model fail to reproduce significant characteristics
seen in the experiments. At the same time, PD models
using uniform grids or general non-uniform grids also
show features that are not present in the experiments.

We also simulated the crack propagation in plates
with randomly distributed pores. The simulation
results with different random pores revealed that pores
could promote crack branching, meaning that the
crack path can be changed artificially. These strategies
may be applied in the design of novel metamaterials,
mining and geomaterials extraction, nanomaterials
processing, and crack shielding.

The comparison between the results obtained with
the PD NB-NUG approach and the phase-field corre-
sponding ones taken from the literature explains why
having the most general nonlocal model for damage
leads to accurate results in these difficult dynamic
brittle fracture problems. While phase-field models
regularize classical fracture models by introducing a
scalar damage variable (the phase-field damage func-
tion), the PD model describes damage via an infinitely
richer representation: bonds fail at a node in any
direction, controlled by the particular loadings in the
near vicinity of the node. Nonlocality of damage is
critical here in allowing its unrestricted evolution in

such problems in which complex crack morphology is
sensitive to small changes in the geometrical arrange-
ment of pores in the structure.

The new discretization approach can be easily
extended to 3D problems, and this is planned as the
next step in this work.
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Appendix 1. Convergence study

When selecting an appropriate size of the PD horizon,
in addition to other factors, one has to take into
account the size of the smallest geometrical features,
relevant in the problem at hand, and also notice that a
relatively large horizon size enhances the nonlocal
effect while a small one leads to results that approach
the classical solution, for problems that admit a
classical solution (Wu et al. 2021; Bobaru and Hu
2012). The smaller the horizon size, however, the
costlier the computation. To find a “proper” horizon,
o-convergence analysis is conducted for Cases
PMMA-A and PMMA-B (Figs. 11a, b) with a 2mm
pre-crack to study the dependence of the crack
propagation speed on the horizon size we selected.
We use horizon sizes of 0.24, 0.20 and 0.16 mm,
significantly smaller than the pores’ radii, and select
m = 4 (m is the horizon factor, i.e., the ratio between
the horizon size and the grid spacing).

In Fig. 20, we compared the evolution of the crack
propagation speeds (see Appendix 2 for the method used
to track the crack tip and computing crack speed) obtained
from the PD models with different horizon sizes, in
simulating Case PMMA-B with a 2mm pre-crack (in
Fig. 11b, with the boundary conditions shown in

@ Springer



X. Peng et al.

0.8

6 =0.24 mm

1A 5§=024mm
074 —@=— 6=0.20 mm
1 =—8— 6=0.16 mm

& 0.4

V/C

6 =0.20 mm

6 =0.16 mm

160 180 200 220 240 260
T (us)

Fig. 20 The cracking speed versus time and crack paths for
Case PMMA-B (Fig. 11b) and the 2 mm pre-crack for different
horizon sizes: & = 0.24, 0.20, and 0.16 mm, respectively. The

Fig. 12). The results shown in Fig. 20 indicate that as
the horizon size decreases, the crack initiation time
does not change and the crack propagation speed
appears to converge. Therefore, for the rest of the
simulations, we use 0.16mm as the horizon size.

We also perform a d-convergence analysis for Case
PMMA-A (Fig. 11a) with a 2mm pre-crack to study
the dependence on the horizon size of the crack re-
initiation from pores. Movies 11-13 show the damage
evolutions for horizon sizes of 0.24, 0.20 and 0.16 mm,
respectively. Figure 21 shows the evolution of the
horizontal coordinate of the crack tip (before the
cracks pass the third pore) for different horizon sizes.
Movies 11-13 show a similar cracking process for the
solutions using different horizons. The crack “trap-
ping times” (from arriving at a pore to re-initiating
from the other side of the pore) in the pores are also
close to each other for the simulations with different
horizon sizes.
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crack propagation speed is normalized by the Rayleigh wave
speed. The corresponding damage maps are in the right panels

Appendix 2. Method for tracking the crack tip
and computing the crack speed

To calculate the crack speed at a time step, we track
the approximate crack tip and compute an average
speed for the crack tip moving from the current time
step to the next 30 time steps. For time step i, the
position of crack tip is a;. We define the average
velocity at i step as the ratio of distance between
a;+30 — a; and the time period between the i th step and
the (i + 30)th step. Since the time step is a constant Az,
the computed crack speed is:

Jp— |@i30—ail
Vi = T304

In test defined on simple domains and uniform
discretizations that lead to computationally-symmet-
ric problems, the crack tip, used to calculate the crack
speed, can be defined as, for example, the most upper
right node with a damage index greater than 0.35. For
problems considered in this section, the crack may
branch and multiple crack tips may appear around
pores, leading to a much more complex crack prop-
agation. In addition, when using non-uniform grids,



Accurate predictions of dynamic fracture in perforated plates

-6+ =& =-5=0.24 mm
] —=®=56=0.20 mm
| —8—§5=0.16 mm

x-coordinate (mm)

Gob L
[\ (=) o]
| I |

0
=
L

6 =0.24 mm

6 =0.20 mm

6 =0.16 mm

T T T T T T T T T T T T
200 220 240 260 280 300 320
T (ps)

Fig. 21 The evolution of the horizontal coordinate of the crack

tip for PMMA-A (Fig. 11a) and the long (2 mm) pre-cracks for

different horizon sizes: 6 = 0.24, 0.20, and 0.16 mm,
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respectively. The corresponding damage maps are in the right
panels (see Movies 11-13 for the damage evolution)

.(xzays)
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Fig. 22 Crack-tip tracking is limited to the dashed boxes bounded by coordinates xo, x1, yo, ¥, for branch A, and x;, x2, y,, y; for branch

B

computational symmetry is broken, and the above
strategy is bound to fail. In this paper, we simplify the
problem of determining the crack tip by splitting a
complex crack path into a few simpler paths. We first
run the problem once and from the damage map we
manually determine the “bounding boxes” for the
individual branches (see yellow boxes in Fig. 22) to
limit the calculation of crack speed to a single branch

at a time and avoid the possible jump between
branches. We can then post-process the results, or
re-run the problem with the bounding boxes coordi-
nates known to determine the crack propagation speed
with confidence.
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Fig. 23 Crack propagation speed superposed on damage maps
from PD models using the S + D (in white) and the dynamic-
only (in red) schemes, respectively: a 2 mm pre-crack, and

Appendix 3. Loading condition

To illustrate the feasibility of this simplification in
modeling, we compute and compare the evolutions of
cracking speed in an intact plate (no perforations) with
pre-cracks of 0.75 mm and 2 mm, respectively, sub-
jected to static-dynamic (S 4+ D) loading, and
dynamic-only loading (D), respectively. In the mod-
eling with S 4+ D loading condition, through multiple
trial calculations, we find the imposed displacements
at which the cracks are about to propagate and use
these displacements (0.042 mm for the case with a
2 mm pre-crack and 0.074 mm for the case with a
0.75 mm pre-crack) as the loads in a static loading
stage; we then switch from the static solver to the
dynamic solver, and apply displacement-controlled
condition with a fixed velocity of 0.3m/s on the
bottom and upper boundaries. The comparison
between the two loading schemes is shown in
Fig. 23. The crack propagation speeds obtained via
models with the two schemes are consistent over the
entire crack propagation process. The crack patterns
obtained from both schemes are also consistent, for
both cases with different pre-cracks, respectively. In
the following, we use the dynamic-only loading
scheme (shown in Fig. 12) to approximate the exper-
imental loading conditions.

Note that the value of 0.3 m/s was from a reference
on simulating the same problem (Rahimi et al. 2020).
We have also applied other two V values (0.1 m/s,
0.01 m/s) on the unperforated plate with a pre-crack
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(b)

b 0.75 mm pre-crack. Due to the symmetry, only half of the
damage map for each loading is shown in the background
(separated by the black dash horizontal midlines)

and compared the crack patterns. Under the displace-
ment-control loading with these three V values (load-
ing velocity), all the cracks branched, and the crack
patterns are close to each other except for a slight
difference in the crack branching locations, as
expected.

Appendix 4. APDL code used to generate NB-NUG

/clear

/prep7

*set,length,50 ! set the geometry,
*set,width,25 element size and the

non-uniform box length

*set,elementsize,0.04 larger than

radius(NBLLTR)
*set, NBLLTR,0.15
et,1,plane182
*dim,npores ! read the number of
*VREAD,npores,poresfile, pores from the first line
TXT,,ijk,1 in file “poresfile.txt’’
(F3.0)

*dim,pores,array,npores(1),3

*VREAD,pores,poresfile, TXT,,
jik,3,npores(1),,1

read coordinates and
radii of pores from file

(3F11.5) “poresfile.txt”’. Note
that the f t of dat
*voper,boxlength,pores(1,3),add, %hz(i)ul debeofzrgr?si:)ten:i a
NBLLTR i ;

with the code
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continued

continued

*voper,boxlength,
boxlength,mult, 2

blc5,0,0,length,width
*do,i,1,npores(1),1

cyl4,pores(i,1),pores(i,2),
pores(i,3)

*enddo

*do,i,1,npores(1),1

cyl4,pores(i,1),pores(i,2),pores(i,3)

*enddo
*do,i,1,npores(1),1

blc5,pores(i, 1),pores(i,2),
boxlength(i),boxlength(i)

*enddo

asel,s,area,,l1,,
cm,plate,area
asel,s,area,,2,npores(1) + 1
cm,porescm],area

asel,all

asel,s,area,,npores(1) + 2,
2*npores(1) + 1

cm,porescm2,area
asel,all

asel,s,area,,2*npores(1) +
2, 3*npores(1) + 1

cm,boxes,area
asel,all
asba,boxes,porescm?2

asba,plate,porescm1

aovlap,all
asel,all
asel,s,area,,1,npores(1)

asel,inve

wprota,0,0,-90
*do,i,1,npores(1)

wpave,pores(i,1) +
boxlength(i)/2,pores(i,2),0

asbw,all

wpave,pores(i,1) —
boxlength(i)/2,pores(i,2),0

asbw,all

*enddo
wprota,0,-90,0
*do,i,1,npores(1)

wpave,pores(i,1),pores(i,2) +
boxlength(i)/2,0

asbw,all

! compute the length of
non-uniform box

! create the plate
! create the pores

! create the non-uniform
box

! obtain the plate with
pores

! divide the plate to
regular area and
irregular areas

wpave,pores(i,1),pores(i,2) —
boxlength(i)/2,0

asbw,all

*enddo

allsel
lesize,all,elementsize,,,,,,0
asel,s,area,,1,npores(1)

asel,inve

aesize,all,elementsize
mshkey, 1

amesh,all

allsel

asel,s,area,, l,npores(1),,1
aesize,all,elementsize
lesize,all,elementsize,,,,,,0

mshkey,0
amesh,all
allsel

*get,emax,elem,,count

*dim,nodeid,array,emax,1,1
*vfill,nodeid,ramp,0,1,
*vget,aearl,elem,l,geom,,,2

*vget,xelem,elem, 1 ,cent,X,,,2
*vget,yelem,elem,l,cent,Y,,,2

*cfopen, ‘nodes’,‘dat’,”

*ywrite,nodeid(1),aear1(1),
xelem(1),yelem(1)

%1%16.6e%16.6e%16.6e
*cfclose

!

mesh the regular areas
with mapped meshing
method

! mesh the irregular areas

with free meshing
method

obtain the total number
of elements emax

create the nodeid array
with the size of emax

obtain the area of each
elements

obtain the x and y
coordinates of elements
centroid

output the node area, x
and y coordinates into
file “nodes.dat”.
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