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Graphical Abstract

Abstract

In this paper, a bond-based peridynamic (PD) advection–reaction–diffusion model is formulated to simulate processes
nvolving chemical reactions, flows, and diffusion. In the formulation, the reaction rate, represented by a body force-like local
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term, depends on the local concentrations of the reactants, and the dependence varies according to the reaction type. Both linear
and nonlinear dependencies are considered. A system of coupled PD equations for each substance is solved numerically. We
verify and validate the PD advection–reaction–diffusion model by comparing results with those from a corresponding classical
model and from experiments in both 1D and 2D, for a bimolecular reaction (A+B → AB) in a flowing aqueous environment,
similar to purifying polluted water flowing in a channel, via chemical reactions. The model is also used to simulate bimolecular
advection–reaction–diffusion in heterogeneous media with impermeable inclusions, and to simulate polymer degradation through
hydrolysis and diffusion, similar to how biodegradable polymer implants dissolve.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

The classical reaction–diffusion equation [1] describes the concentration evolution of one or more chemical
ubstances due to local chemical reactions and diffusion. Reaction–diffusion processes are universal in chemistry,
iology, and environmental sciences, exemplified by: changes in substance concentration in chemical reactions [2],
eat conduction and mass diffusion [3], and invasive species in biology [4]. The classical reaction–diffusion
quations have been used to describe the diffusion of pollutants in groundwater [5], transport of medication in human
issues, cell differentiation and growth [6], and other common practical problems [7]. When advection is important,
n advection term is included in the reaction–diffusion equation, leading to a more general form, the advection–
eaction–diffusion (ARD) equation [8]. A few special cases of ARD equations can be solved analytically. The rest
f the problems need to use numerical approximations to find solutions. Methods like the Finite Element Method
FEM) [9], the Finite Difference Method (FDM) [10], and the Boundary Element Method (BEM) [11,12] have been
ommonly used to obtain approximate numerical solutions for the ARD equations. The classical/local model for
RD problems, however, cannot capture some more general behavior, such as anomalous diffusion observed in
eterogeneous environments [13], long-range inhibition in biological pattern formation [6,14], and heat transport in
icroscale and nanoscale devices [15–17], in all of which nonlocal effects play an important role.
Peridynamics (PD), a new nonlocal theory introduced by Silling [18], has been increasingly gaining attention

rom academia and industry since its birth in 2000. In PD, each material point interacts with all surrounding points
ithin a certain distance, while in classical theory, material points only interact through direct contact. The region
f nonlocal interaction surrounding a material point is the PD “horizon region”, normally taken as a sphere in 3D,
circular disk in 2D, or a segment in 1D. The radius of the sphere or the disk is also called the “horizon”, and

rom the context it will be clear whether “horizon” refers to the region or its radius. Interactions between material
oints are represented by PD bonds: mechanical bonds transfer mechanical forces between points, thermal bonds
ransfer heat between their end points, etc. While there are many nonlocal theories, some use spatial derivatives
nder integral operators [19]. In PD, spatial derivatives are not used, in this way avoiding singularities that appear
hen discontinuities form in a body due to fracture and damage [20]. The integro-differential PD equations can be

olved analytically (using separation of variables, for example) in special cases set in simple domains, similar to
ow series solutions are obtained for corresponding partial differential equations [3,21]. For general PD problems,
ne needs to employ numerical methods. The one-point Gauss quadrature with direct summation has been the
referred method for discretizing PD models because it leads to a meshfree model, very well suited for capturing
he evolution of fracture and damage (or other types of discontinuities) in a material [22–24]. Faster algorithms have
een recently introduced based on the same discretization, but the quadrature is computed using the Fast Fourier
ransform (and its inverse), exploiting the convolutional structure of the PD integral operator [25,26].

Beyond its original applications in studying mechanical behavior of materials, such as fracture in brittle
aterials [27–30], damage in composites materials [31–35], plastic and visco-plastic deformation [36–38], hydraulic

racturing [39], rupture of films and nanofiber networks [40,41], interactions between dislocations and cracks [42],
he PD theory has been successfully applied to simulate various physical and chemical behaviors, such as heat and
ass transfer [43,44], corrosion in metallic materials [45–49], phase transformation [50]. Further progress on PD

iffusion models, including mathematical and theoretical analysis, has appeared [3,44,51,52].
While the original PD model was the bond-based model for elasticity and brittle damage, state-based PD models
ave been introduced to remove the fixed Poisson’s ratio limitation bond-based models have in elasticity [53]. A
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state-based PD model for diffusion [52] and for convective single-phase flow in heterogeneous porous media [54]
have also been proposed, but their advantage versus bond-based models in such problems is less clear. State-based
models tend to be costlier to compute, in general, than corresponding bond-based models [26]. The limitation to
a fixed Poisson’s ratio is the main reason for the state-based extension of bond-based PD theory in mechanical
problems. In reaction–diffusion problems, such limitations do not exist. In this paper, we focus on a bond-based
PD model for ARD.

Recently, Ref. [55] introduced an advection–diffusion PD model, as an extension to the PD model for
diffusion [3], that can treat complex geometries with ease. In the present paper, we consider extending the PD
advection–diffusion [55] model for solving ARD problems, to simulate more complex physico-chemical processes.
A local/classical model for steady-state ARD problems has been introduced before [2,8,56]. An example of 1D
bimolecular reactive transport flows through an isotropic and homogeneous medium was solved numerically using
the traditional Partial Differential Equations-based model, and the results were compared with experiments data.
These types of models, when extended to higher dimensions and applied to complex domains, have difficulties
tracking the evolving interfaces (e.g. between phases). While having more flexibility in tracking evolving interfaces,
phase-field models of reaction–diffusion problems [57,58] still have to employ preset functional variations across
an interface, which often do not correspond to the actual physics/chemistry taking place. In contrast, PD-based
models for damage or phase-change have no such restrictions, and have been shown to predict the evolution
of moving interfaces with accuracy [59]. Here, we introduce a new and general PD model for transient ARD
problems and use it to solve 1D and 2D problems for bimolecular reactions (A + B → AB) in a flowing aqueous
environment, similar to purifying, via chemical reactions, polluted water flowing in a channel. The model is also
used to simulate bimolecular ARD in heterogeneous media with impermeable inclusions, and to simulate polymer
degradation through hydrolysis and diffusion.

The paper is organized as follows: Section 2 shows the ARD PD formulation, followed by introducing the
numerical method used to discretize the problem in Section 3; in Section 4, we test and validate the model with
xamples in 1D and 2D, by comparing the PD model solutions with the corresponding classical solutions and
gainst experimental data, and we use the new model to simulate ARD problems in complex heterogeneous media
nd polymer implant degradation induced by hydrolysis; conclusions are given in Section 5.

. The advection–reaction–diffusion peridynamics formulation

The PD model for advection-diffusion can be written as [55]:

∂C (x, t)
∂t

=

∫
Hx

d
(
x, x′, t

) C
(
x′, t

)
− C (x, t)

∥x′ − x∥n dVx′ −

∫
Hx

(
v
(
x, x′, t

)
·

x′
− x

∥x′ − x∥

)
C
(
x′, t

)
− C (x, t)

∥x′ − x∥
dVx′ ,

(1)

where C(x, t) is the concentration at material point x at time t . Hx is the horizon region of x. Material point
x interacts with all of the material points (x′) inside its horizon Hx (see Fig. 1). Vx′ is the volume (area in 2D,
length in 1D) of x′ covered by Hx . Function d(x, x′, t) is the micro-diffusivity, while v

(
x, x′, t

)
is a weighted

flow velocity density at x over its horizon region (see Ref. [55]). Let v
(
x, x′, t

)
= v

(
x, x′, t

)
·

x′−x
∥x′−x∥

, be the

peridynamic micro-velocity, defined as the projection of the velocity vector along the
(
x, x′

)
bond. In Eq. (1), n

s usually taken to be an integer, 0, 1, or 2 [22,40,43]. Ref. [3] showed that only the integrand with n = 2, leads
o results that converge to the classical solution in the limit of the horizon size δ (the radius of Hx , see Fig. 1)
oing to zero when the relative grid-density m (the ratio between the horizon size and grid spacing) is kept as a
onstant (the so-called “δ–convergence”), for the PD computation with the one-point Gaussian spatial integration
ethod. For other forms, δ-convergence happens but the limit might not be the classical solution. In this paper we

se n = 2.
The micro-diffusivity function d

(
x, x′, t

)
and micro-velocity parameters v

(
x, x′, t

)
can have different forms

o reflect horizon-scale behaviors. The following two simple forms are commonly used. The “constant” micro-
iffusivity/micro-velocity:(

′
) (

′
)

d x, x , t = d0, v x, x , t = v0, (2)
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Fig. 1. Description of a PD body in 2D.

implies that the interaction between a material point and its neighboring family is independent of the bond length.
The “linear” or “triangular” micro-diffusivity/micro-velocity:

d
(
x, x′, t

)
= d1

(
1 −

x′
− x


δ

)
, v
(
x, x′, t

)
= v1

(
1 −

x′
− x


δ

)
, (3)

ssumes a linear dependence on the bond length. Eqs. (2) and (3) are for time-independent micro-diffusivity/
micro-velocity. Time-dependent parameters can also be considered in the PD model (see [60]). In the examples
of bimolecular synthesis reactions (see Sections 2.1, 4.1, and 4.2), we assume that all physical coefficients are
time-independent, including the reaction coefficient. For the case of hydrolysis reaction (see Sections 2.2 and 4.3),
he micro-diffusivity and the reaction coefficient depend on the concentration, which changes with time.

One way to determine the parameters defining the micro-diffusivity/micro-velocity in a PD model is to use
alibration to classical models. For example, according to Refs. [3,55], the relationship between the micro-diffusivity
and the given classical diffusivity D, and the relationship between the micro-velocity v and the given flow velocity
can be obtained by enforcing a match between the PD solution and the classical one for the case of a linear

oncentration profile of chemical in a flowing media. The relationships between the physical parameters and those
sed in the PD model are shown in Table 1. Note that the micro-diffusivity and micro-velocity are parameters for
PD bond, which connects two material points. Therefore, the micro-diffusivity (d

(
x, x′, t

)
) and micro-velocity

v
(
x, x′, t

)
) depend on the classical diffusivities (D(x, t), D

(
x′, t

)
) and flow velocities (V(x, t), V

(
x′, t

)
) at both

aterial points connected by the PD bond, respectively. If diffusivity and flow velocity are constant in the domain
see Sections 2.1, 4.1, and 4.2), i.e., D(x, t) = const, and V(x, t) = const, for any x, the micro-diffusivity and
icro-velocity are uniform/constant for all of the PD bonds connecting points in the bulk and their values are

alculated by the formulas shown in Table 1. If diffusivity, for example, is not uniform (see Sections 2.2 and 4.3),
ne can find the micro-diffusivity for each of the material points and then take, for example, their harmonic or
rithmetic average to compute the bond micro-diffusivity. In this work, the smaller micro-diffusivity is directly
sed as the micro-diffusivity for the PD bond (see Section 2.2). Note that when diffusivities at the ends of a bond
iffer by orders of magnitudes, the smaller of the two micro-diffusivities is close to the harmonic average.

The linear profiles for the micro-diffusivity and the micro-velocity lead to a faster convergence rate (convergence
f the nonlocal solution to the classical, local solution, in the limit of the horizon going to zero) than the constant
nes. Therefore, we use linear profiles for the calculations in this paper.

For the advection part, two basic schemes can be considered: the central scheme and the upwind scheme. In the
entral scheme, the integral region is the same as the horizon region of x. In the upwind scheme, the integral region
s only the “upwind” half of the horizon of x. As shown in [55], the central scheme may lead to instabilities in the
4
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Table 1
The micro-diffusivity and micro-velocity parameters for different horizon-scale behaviors (“constant” and “linear”) [55] in terms
of given input data (material diffusivity and velocity).

Function type Micro-diffusivity
parameters

Micro-velocity parameters
for the central kernel

Micro-velocity parameters
for the upwind kernel

1D
Constant d0 =

D
δ

v0 =
V
2δ

ṽ0 =
V
δ

linear d1 =
2D
δ

v1 =
V
δ

ṽ1 =
2V
δ

2D
Constant d0 =

4D
πδ2 v0 =

2V
πδ2 ṽ0 =

4V
πδ2

linear d1 =
12D
πδ2 v1 =

6V
πδ2 ṽ1 =

12V
πδ2

simulation, and the upwind scheme may lead to numerical diffusion. In this paper, a hybrid scheme is applied [55]:

∂C (x, t)
∂t

=

∫
Hx

d
(
x, x′, t

) C
(
x′, t

)
− C (x, t)

∥x′ − x∥2 dVx ′ − ω

∫
Hx

v
(
x, x′, t

) C
(
x′, t

)
− C (x, t)

∥x′ − x∥
dVx ′−

(1 − ω)

∫
H̃x

ṽ
(
x, x′, t

) C
(
x′, t

)
− C (x, t)

∥x′ − x∥
dVx ′ + R (x, t) , (4)

here ṽ
(
x, x′, t

)
is the micro-velocity for the upwind kernel. For all the PD calculations in this paper, we apply the

ybrid scheme. The hybrid formulation could suffer from both the instabilities in the simulation and the numerical
iffusion. Selecting a proper hybrid weight (ω) can lessen these two issues simultaneously. The optimal value of ω

n the hybrid scheme is related to the Peclet number, Pe =
V L
D , (see [61]), meaning that for different Peclet number,

ifferent ω should be used. According to the results shown in [55], when v = 0.0121 cm/s, d = 0.0017 cm2/s,
or an advection–diffusion process in a 30 cm-length region, ω = 0.8 is the optimal hybrid weight for stable
nd accurate PD solution. In this work, we applied the similar velocity and diffusion values for most of the 2D
imulations. Therefore, we fixed the hybrid weight to be 0.8.

Eq. (1) describes an advection-diffusion process in a domain. Suppose in the domain a series of chemical reactions
or other types of reactions, e.g. nuclear) are also taking place. The species concentration at a point changes also
ecause of these reactions and needs to be considered when solving for its evolution. Consider Ns species, with
oncentrations Ci , where i = 1,2,. . . Ns. The i th species is involved in Mi reactions with other species. Note that
he i th species can be a reactant or a product. The governing equation for the concentration of species i is:

∂Ci (x, t)
∂t

=

∫
Hx

d
(
x, x′, t

) Ci
(
x′, t

)
− Ci (x, t)

∥x′ − x∥2 dVx′ −

∫
Hx

v
(
x, x′, t

) Ci
(
x′, t

)
− Ci (x, t)

∥x′ − x∥
dVx′

+

Mi∑
j=1

Ri j (x, t) , (5)

here Ri j (x, t) is the j th ( j ∈ [1, Mi ]) reaction term. According to the role (reactant or product) of a species in the
eaction, Ri j (x, t) can be a negative or positive function. Since Ri j (x, t) is usually a function of the concentrations
f all species, we have to solve a coupled system of integro-differential equations (Eq. (5)) to obtain Ci (x, t).

In Eq. (5), the reaction terms can be identical to those used in the classical, local equations. Two reasons can
e found for adopting this form: (1) the local collision of molecules is essential in chemical reactions; (2) there
re no spatial derivatives in the reaction terms, eliminating the need for replacing them with integral operators
n order to maintain the strength of the model when dealing with spatial discontinuities. Nonlocality in the PD
eaction–diffusion model in Eq. (5) is present in the flow and diffusion terms. Nonlocality could be used in the

reaction terms if homogenization is intended to be used while preserving some small-scale properties and their
influence on the larger scale (see, e.g. [30,62]). Note that Ri j (x, t) takes different forms according to the reaction
type. In the following subsections, we discuss two types of reactions and the formulas for the corresponding reaction

terms.

5



C. Tian, S. Fan, J. Du et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116206

w
c
m
c
b

g
c
S

2.1. PD equations for advection–diffusion-and-bimolecular-reaction

In this section, we consider three substances (A, B, and AB) involved in an irreversible bimolecular synthesis
reaction: A+B → AB. These molecular species are solutes dissolved in the solvent, water. Species A and B react
to form species AB, and the solvent flows through a tube (1D problem). Therefore, to model the evolution of the
substances, we need to consider the diffusion of all three substances in water, the water flow, and the reaction. The
classical governing equations for this 1D ARD problem are [56]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂CA (x, t)
∂t

= D
∂2CA (x, t)

∂x2 − V
∂CA (x, t)

∂x
− RABCA (x, t) CB (x, t)

∂CB (x, t)
∂t

= D
∂2CB (x, t)

∂x2 − V
∂CB (x, t)

∂x
− RABCA (x, t) CB (x, t)

∂CAB (x, t)
∂t

= D
∂2CAB (x, t)

∂x2 − V
∂CAB (x, t)

∂x
+ RABCA (x, t) CB (x, t)

, (6)

here CA, CB, CAB are the concentrations of A, B, and AB, respectively; D is the diffusion coefficient; V is the
onstant velocity of the flow field; RAB is the reaction coefficient for the bimolecular synthesis reaction. This
odel assumes that all substances have the same diffusion coefficient. Different diffusion coefficients can easily be

onsidered for cases in which the species diffuse at different rates in the solvent. Referring to Eq. (5), Eq. (6) can
e written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂CA (x, t)
∂t

=

∫
Hx

d
(
x, x ′, t

) CA (x, t) − CA
(
x ′, t

)
|x ′ − x |2

dVx ′−∫
Hx

v
(
x, x ′, t

) CA (x, t) − CA
(
x ′, t

)
|x ′ − x |

dVx ′ − RABCA (x, t) CB (x, t)

∂CB (x, t)
∂t

=

∫
Hx

d
(
x, x ′, t

) CB (x, t) − CB
(
x ′, t

)
|x ′ − x |2

dVx ′−∫
Hx

v
(
x, x ′, t

) CB (x, t) − CB
(
x ′, t

)
|x ′ − x |

dVx ′ − RABCA (x, t) CB (x, t)

∂CAB (x, t)
∂t

=

∫
Hx

d
(
x, x ′, t

) CAB (x, t) − CAB
(
x ′, t

)
|x ′ − x |2

dVx ′−∫
Hx

v
(
x, x ′, t

) CAB (x, t) − CAB
(
x ′, t

)
|x ′ − x |

dVx ′ + RABCA (x, t) CB (x, t)

. (7)

These are three coupled integro-differential equations for three unknown functions, CA, CB, andCAB. With
iven initial and boundary conditions, the system can be solved numerically. The numerical discretization and
omputational method are explained in Section 3, and examples (including both 1D and 2D cases) are shown in
ections 4.1 and 4.2. The formulation for the 2D case is given in Section 4.2.

2.2. PD equation of hydrolysis reaction–diffusion problem

The reaction term (reaction rate) for the bimolecular synthesis reaction depends linearly on the reactants’
concentrations, as shown in the last section. For some reactions, this dependence could be more complicated. For
instance, the reaction rate of hydrolysis reaction (M → αm, a solid-state polymer changes to dissolvable monomers)
follows pseudo-first-order kinetics [63], and a stochastic hydrolysis model [64] is applied to represent this reaction
process. This section introduces a PD model for the hydrolysis reaction, a typical form of polymer degradation
process. The model can be applied to the degradation of polymeric biomaterials, simulating biodegradable implants,
and drug delivery systems.

The flow of hydrolytic monomers is ignored here. The reaction–diffusion equation for hydrolytic monomers can
be written as:

∂Cm (x, t)
=

∫
dm
(
x, x′, t

) Cm
(
x′, t

)
− Cm (x, t)

′ 2 dVx ′ + R (x, t) , (8)

∂t Hx ∥x − x∥

6
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where R(x, t) is the reaction term, the reaction rate at which the hydrolytic monomers are released from the
hydrolysis reaction, while dm

(
x, x′, t

)
is the micro-diffusivity function of hydrolyzate. The micro-diffusivity can

have different forms and the most common ones are the constant form and the linear form. Exponential ones are
also common but more expensive to compute. The 2D linear form is applied in this paper for a faster convergence
to classical solutions (see discussion on this topic in [3,44]):

dm
(
x, x′, t

)
=

12Dm

πδ2

(
1 −

x′
− x


δ

)
, (9)

Dm approximately expressed as an exponential function [64]:

Dm = D0
meSm(1−γ ), (10)

where Sm is a constant related to the polymer material, D0
m represents the measured diffusivity of hydrolyzate in the

corresponding polymer matrix, and γ , a function of time and position, indicates the hydrolytic state of the polymer.
γ = 1 represents the state of the polymer without hydrolysis, γ = 0.001 represents the state of a monomer that has
been hydrolyzed, and γ = 0 represents the state of water [64]. Note that the ends of the bond

(
x, x′

)
may locate

at material points with different hydrolytic states. In this case, the smaller micro-diffusivity is directly used as the
micro-diffusivity for the PD bond.

R (x, t), the source term of hydrolyzed monomer, is determined by the hydrolysis, and the conditions are as
follows [64]:

R (x, t) =

{
0 , PR ≥ PH

R0 , PR < PH ,
PH =

λ0e−λ0t
(
1 + β

(
eCm−1

))
F0 F (t)

, 0 < PR < 1, (11)

here R0 is the value of the source term when hydrolysis occurs, PH is a hydrolytic probability function considering
he autocatalytic effect, λ0 is the degradation rate constant, and β is a constant that represents the strength of the
utocatalytic effect. F0 and F (t) represent the initial volume fraction of the polymer and the volume fraction at
ime t, respectively. PR is a random number, generated in between 0 and 1 from a uniform probability distribution
unction. If PR is less than PH, the hydrolysis occurs, meaning that the polymer at that material point converts into
certain concentration of hydrolyzed monomer.

. Numerical discretization

Although some PD equations set in simple domains can be solved analytically [21,65,66], for the rest we have
o employ numerical approximation schemes. To numerically discretize Eq. (5), we use the mid-point (or one-point

Gaussian) quadrature scheme for the integral operators. We generate a uniform grid with grid spacing ∆x (see
ig. 2) to discretize the domain. Each node has a “volume” (length in 1D and area in 2D). Fig. 2 shows the 2D
iscretization around a node at x p, x j is any point within the horizon of x p, e p j is the direction vector of the
x p, x j

)
bond, α is the angle between e p j and the flow direction.

Eq. (5) can be spatially discretized with the mid-point algorithm as follows:

∂Ci
(
x p, t

)
∂t

=

∑
q

d
(
x p, xq, t

) Ci
(
xq, t

)
− Ci

(
x p, t

)xq − x p
2 Vpq −

∑
l

v
(
x p, x l , t

) Ci (x l , t) − Ci
(
x p, t

)x l − x p
 Vpl

+

Mi∑
j

Ri j
(
x p, t

)
=

∑
q

Qd,pq −

∑
l

Qv,Pl +

Mi∑
j

Ri j
(
x p, t

)
(12)

where,

Qd,pq = d
(
x p, xq, t

) Ci
(
xq, t

)
− Ci

(
x p, t

) 2 Vpq , (13)

xq − x p

7
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Fig. 2. Numerical discretization around node x p [55]. The circular region is the horizon region of x p. The ARD in its own volume (small
quare) includes the nearest-neighbor nodes of the node x p.

Qv,pl = v
(
x p, x l , t

) Ci (x l , t) − Ci
(
x p, t

)x l − x p
 Vpl , (14)

In Eq. (12), the first two summations include all nodes xq or x l inside the horizon of node x p, and Vpq (Vpl)
s the portion of the volume of node xq (x l ) covered by the horizon of node x p. The HHB algorithm [23,67] for
he partial volume integration is used to approximate the covered portion of Vpq and Vpl . Note that the second
ummation, corresponding to the advection terms, differs between the central and upwind schemes. Only those
odes located in the upwind region are included in the upwind scheme.

Special care should be taken when computing the term for q = p or l = p. Mathematically, this term can be
omputed by taking the limit xq → x p or xl → x p, but note that this implies that the corresponding volumes of
hese nodes tend to zero, otherwise, it violates the principle of non-interpenetration of matter. Instead of the limit
pproach for these values, we approximate them by the average value from the nearest neighbors [44].

For the diffusion term in 1D,

Qd,pp =
1
2

[
d
(
x p−1, x p

) C
(
x p−1, t

)
− C

(
x p, t

)(
x p−1 − x p

)2 Vp,p−1 + d
(
x p+1, x p

) C
(
x p+1, t

)
− C

(
x p, t

)(
x p+1 − x p

)2 Vp,p+1

]
,

(15)

n 2D,

Qd,pp =
1
8

8∑
j=1

d
(
x j , x p

) C
(
x j , t

)
− C

(
x p, t

)x j − x p
2 Vpj , (16)

or the advection term, different integration schemes should to be considered. For the central scheme in 1D,

Qv,pp =
1
2

[
v
(
x p−1, x p

) C
(
x p−1, t

)
− C

(
x p, t

)
x p−1 − x p

Vp,p−1 + v
(
x p+1, x p

) C
(
x p+1, t

)
− C

(
x p, t

)
x p+1 − x p

Vp,p+1

]
, (17)

hile for the upwind scheme in 1D,

Qv,pp =
1
2

[
ṽ
(
x p−1, x p

) C
(
x p−1, t

)
− C

(
x p, t

)
x p−1 − x p

Vp,p−1

]
, (18)

In Eq. (18), we consider the flow direction is from left to right. If the flow direction is from right to left, the
x p−1 in the third term of Eq. (18) should be replaced by x p+1. In a body that undergoes damage, if one of the
mechanical bonds (x p−1, x p) or (x p, x p+1) gets broken and the advection or diffusion interrupts, then the term of

= p is computed to be the same as the term of q = p − 1 or q = p + 1.

8
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For the 2D case with the central scheme, we have

Qv,pp =
1
8

8∑
j=1

v
(
x j , x p

) C
(
x j , t

)
− C

(
x p, t

)x j − x p
 cos (α) Vpj , (19)

where α is the angle between PD bond and flow velocity v. For the upwind scheme,

Qv,pp =
1
3

3∑
j=1

ṽ
(
x j , x p

) C
(
x j , t

)
− C

(
x p, t

)x j − x p
 cos (α) Vpj . (20)

This discretization method can be easily extended to the 3D case.
For time integration we use the forward Euler’s method:

Cn+1
p = Cn

p +∆tĊn
p, (21)

where Cn
p represents the concentration at nodal point x p and the nth time step, ∆t is the time step, and the dot on

the top of Cn
p means the time derivative. Euler’s method has first-order accuracy, and it is conditionally stable. To

analyze the computational stability, we first ignore the inhomogeneous term (the reaction term) in Eq. (12), leading
to:

∂Ci
(
x p, t

)
∂t

=

∑
q

d
(
x p, xq, t

) Ci
(
xq, t

)
− Ci

(
x p, t

)xq − x p
2 Vpq −

∑
l

v
(
x p, xl , t

) Ci (x l , t) − Ci
(
x p, t

)x l − x p
 Vpl . (22)

In the following, we derive the stability condition for applying the forward Euler’s method to numerically solve
q. (22) considering both diffusion and advection terms. We use the von Neumann stability analysis [27]. Let:

εn
p = ζ neiκp, (23)

e the solution error for Eq. (21) at nodal point p and the nth time step, where κ is a positive value, and ζ is a
omplex value. Note that from Eq. (23) to Eq. (33), i =

√
−1 is the imaginary unit. The allowable ∆t is found by

requiring that ∥ζ∥ ≤ 1 for any κ . εn
p should also satisfy Eqs. (21) and (22). Substituting Eq. (23) into Eq. (22), we

have:
ζ − 1
∆t

=

∑
q

dxq − x p
2

(
eiκ(q−p)

− 1
)

Vpq −

∑
l

vx l − x p
 (eiκ(l−p)

− 1
)

Vpl , (24)

Then,

∥ζ∥ =

1 +∆t

(∑
q

dxq − x p
2

(
eiκ(q−p)

− 1
)

Vpq −

∑
l

vx l − x p
 (eiκ(l−p)

− 1
)

Vpl

) ≤ 1, (25)

here,

ei x
= cos x − i sin x . (26)

For the central scheme, Eq. (25) can be written as (the summation of the terms containing the sine function is
ero):

∥ζ∥ =

1 +∆t
∑

q

(
vxq − x p

 −
dxq − x p

2

)
(1 − cos κ (q − p)) Vpq

 ≤ 1. (27)

The inequality in Eq. (27) leads to:

−2 ≤ ∆t
∑

q

(
vxq − x p

 −
dxq − x p

2

)
(1 − cos κ (q − p)) Vpq ≤ 0. (28)

The no-more-than-zero condition cannot be satisfied if d < v
xq − x p

 for all PD bonds. We assume that
≥ v

xq − x p
. Eq. (24) can be written as:

∆t ≤
2∑

q

(
d

2 −
v

x −x

)
(1 − cos κ (q − p)) Vpq

. (29)
∥xq−x p∥ ∥ q p∥

9
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Since |1 − cos κ (q − p)| ≤ 2, to satisfy Eq. (29) is sufficient to have:

∆t ≤
1∑

q

(
d

∥xq−x p∥
2 −

v

∥xq−x p∥

)
Vpq

. (30)

Therefore, Eq. (30) and d ≥ v
xq − x p

 are a set of sufficient conditions for applying the central scheme with
he forward Euler’s method to solve Eq. (22).

For the upwind scheme, Eq. (25) can be written as:

∥ζ∥ =

1 +∆t
∑

q

(
0.5vxq − x p

 −
dxq − x p

2

)
(1 − cos κ (q − p)) Vpq

+∆t
∑

l

vx l − x p
 (i sin κ (l − p)) Vpl

 ≤ 1. (31)

Note that in the second summation term, only the family nodes (the points included in the horizon) in the upwind
egion are considered. Since |1 − cos κ (q − p)| ≤ 2 and ∥i sin κ (l − p)∥ ≤ 1, we have:1 +∆t

∑
q

(
0.5vxq − x p

 −
dxq − x p

2

)
(1 − cos κ (q − p)) Vpq +∆t

∑
l

vx l − x p
 (i sin κ (l − p)) Vpl


≤

1 +∆t
∑

q

2

(
0.5vxq − x p

 −
dxq − x p

2

)
Vpq +∆t

∑
l

vx l − x p
Vpl


≤

1 +∆t
∑

q

(
2

(
0.5vxq − x p

 −
dxq − x p

2

)
+

0.5vx p − x p

)

Vpq


=

1 +∆t
∑

q

(
1.5vxq − x p

 −
2dxq − x p

2

)
Vpq

 ≤ 1, (32)

Therefore, we obtain a set of sufficient conditions for applying the upwind scheme with the forward Euler’s
ethod to solve Eq. (22): d ≥ 0.75v

xq − x p
, and,

∆t ≤
1∑

q

(
d

∥xq−x p∥
2 −

0.75v

∥xq−x p∥

)
Vpq

, (33)

Obviously, the sufficient conditions for the central scheme are also sufficient conditions for the upwind scheme,
hich is consistent with the conclusion in Ref. [55]: the central scheme is more likely to lead to numerical

nstabilities. Note that the stability condition given in [55] only considered the diffusion term, while in this work,
he stability conditions are obtained considering diffusion and advection terms, concurrently.

Note that it is difficult to directly compare the stability conditions between Euler’s method for PD and for the
orresponding PDE, because of the length-scale introduced by the horizon size in PD, in addition to the grid spacing
sed for the discretization. The conditions given in Eqs. (29) and (33) are sufficient conditions which depend on
he horizon size (summations of grid spacings over the horizon region). For convergence of analytical solutions
f transient diffusion PD models to corresponding classical ones, please see [66]. Comparing stability conditions
etween discretizations of PD models and their corresponding PDE-based discretizations has been recently studied
n [68] for transient diffusion. Similar developments for ARD problems are planned for the future.

The stability conditions for using Euler’s method to solve Eq. (12) also depend on the relationship between
Ri j

(
x p, t

)
and Ci

(
x p, t

)
. For a fixed time step, if the reaction rate is large enough, within one time step of

alculation, the reactant concentration could drop to below zero which is unphysical. To avoid this numerical
ituation, a sufficient condition is: for all reactants (for which the reaction rates are negative, see Eq. (7)) we
nforce the following inequality: −∆t

∑Mi
j Ri j

(
x p, t

)
≤ Ci

(
x p, t

)
. This condition prevents ending up with

egative concentrations at a particular time-step. For example, in the bimolecular reaction considered in Section 2.1,
e impose ∆t ≤

1
RABCA

and ∆t ≤
1

RABCB
. By substituting the reaction coefficient, and the initial maximum

oncentration for the reactants A and B, we can estimate a maximum value for ∆t . However, R
(
x , t

)
could
i j p

10
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Fig. 3. Graphical illustration of the peridynamic ARD solver for hydrolysis and bimolecular reactions. See Appendix A for details of the
umerical implementation.

ave a much more complex form (see Section 2.2). In such cases, a convergence study in terms of ∆t going to
ero, starting from the value given by Eq. (30), can be used.

For the uniform discretization mentioned at the beginning of this section, the Dirichlet boundary conditions can
e imposed by assigning the given concentration to the end node/nodes, which is the so-called inner-type method.
nother type of method, “fictitious nodes methods (FNM)” [21,69], is adding a boundary layer (with a thickness
f δ) outside the real boundary. On the boundary layer, the concentration field is either related by mirror symmetry
o the corresponding domain in the deformable body (mirror-type), or constant and equal to the value of the local
irichlet condition (naı̈ve-type). Both inner-type and fictitious nodes methods show little difference when m (horizon

factor, the ratio between the horizon size and the grid spacing) is not large, and node spacing is relatively small, but
when m is larger than 4, the FNM gives more accurate results (if we set the classical solutions as the reference) [3].
With the horizon size approaching zero (in a δ-convergence study, which induces the nodal volumes to go to zero
in concert with the horizon size), the PD Dirichlet condition converges to the classical boundary condition.

The computation time for PD simulation mainly include the computer time for the family search (the search
for the points included in the horizon region) and for the iteration of the PD dynamic solver. The computer times
for both the family search and the iteration of the PD dynamic solver depend on the total nodal number and the
horizon factor (m, the ratio between the horizon size and the grid spacing, which determines the number of nodes
inside a full horizon region). The computer time for the family search is usually longer than one iteration of the PD
dynamic solver. For a 2D ARD model with m = 4 and 10,000 nodes, with an Intel(R) Core(TM) i7-7700K CPU
(4.20 GHz), it takes 137.7 s computer time to calculate 10,000 steps (including the family search time), while the
family search itself takes 4.3 s computer time.

Compared to the work in [55], we provide a new nonlocal platform for ARD problems, and a new way of treating
multiple reactions, as coupled equations (note that in [55,70], reactions were not considered); we also provide new
numerical algorithms for solving these coupled integral–differential equations. Fig. 3 and Appendix A shows the
calculation flow for the peridynamic ARD solver for the model in Eq. (5) for certain boundary and initial conditions.
In the next section, we apply this calculation to several tests to verify the new PD-ARD model.

4. Numerical examples

In this section, a 1D ARD example with bimolecular reaction (A + B → AB) is simulated with the PD model
introduced in the previous sections. The numerical results are compared with experimental data and analytical
solutions of the corresponding classical model. In this case, the reaction rate is assumed to be very large, in order to
obtain the analytical solution for the classical model, meaning that molecules A and B react instantly and completely

once they encounter each other. After validation of the 1D model, some parametrical studies are performed to reveal

11
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Fig. 4. Initial and boundary conditions for a 1D ARD process in a semi-infinite tube.

the quantitative effects of advection, reaction, and diffusion. Then, with the same type of reaction as in the 1D case,
the model is applied to simulate ARD in 2D domains, in both homogeneous and heterogeneous media. In the last
subsection, the model is used to simulate polymer implant degradation induced by the hydrolysis reaction, with a
stochastic hydrolysis model. Note that to implement boundary conditions in PD models, a fictitious boundary layer
with thickness δ is added to the actual boundary to eliminate the surface effect [71].

.1. A 1D bimolecular reaction problem

For 1D ARD problems with bimolecular reaction (A + B → AB) described in Eq. (6), we consider a case with
initial and boundary conditions shown in Fig. 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

CA (x, 0) = C0 x ≥ 0

CB (x, 0) = 0 x > 0

CAB (x, 0) = 0 x ≥ 0

CB (0, t) = C0 t ≥ 0

CB (∞, 0) = 0 t ≥ 0

, (34)

where C0 = 0.02 mol/L, is applied for the tests shown in this subsection and Section 4.2.
The case shown in Fig. 4 was studied analytically and experimentally in [56]. The analytical solution of the

concentration CA+AB (the sum of concentrations of A and AB) evolution for the 1D case shown in Fig. 4 can be
obtained via Standard Pore-Scale Mixed (SPSM) method as [56]:

CA+AB

C0
=

1
2

erfc
(

x − V t

2
√

Dt

)
+

√
V 2t
π D

exp

[
−

(x − V t)2

4Dt

]
−

1
2

(
1 +

V x
D

+
V 2t
D

)
exp

(
V x
D

)
erfc

(
x + V t

2
√

Dt

)
,

(35)

where erfc (x) =
2

√
π

∫
∞

x e−η2
dη is the complementary error function. When the value of D is much smaller than

x, the solution can be approximately expressed as:

CA+AB

C0
=

1
2

erfc
(

x − V t

2
√

Dt

)
, (36)

nd for the case we simulated, the difference between the results calculated by Eqs. (35) and (36) is less than 1.5%.
rom Eq. (36) we find [56]:

CAB

C0
=

1
2

erfc
(
|x − V t |

2
√

Dt

)
. (37)

In a 1D experiment shown in [56], the diffusion coefficient D = 0.0017 cm2/s, the flow velocity V =

.0121 cm/s. The focus, in the literature [56] and in our paper, is on behavior at the centimeter scale. At this
cale, D is much smaller than Vx, and the reaction rate is also sufficiently large, meaning that Eq. (37) is a valid
pproximation of the solution to Eqs. (6) and (34). Note that the approximate analytical solution is for a process in
semi-infinite tube, while in the PD model simulation, the tube length L is finite with L = 30 cm.
The PD solution, approximate analytical solution, and the experimental data [8,56] of the product species (AB)

istribution at t = 916 s are shown in Fig. 5. For the PD simulations, the reaction rate RAB = 4.1 L/(mol s) is

pplied. The results shown from the PD model were obtained using a horizon size δ = 0.5 cm (see Appendix B

12
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Fig. 5. Comparison between the SPSM prediction, experimental data [56] and PD solution for the 1D example at t = 916 s: (a)
m = 4, δ = L/120; (b) m = 8, δ = L/120. We use iteration time step ∆t = 0.01 s for all 1D cases.

or a convergence study) and m = 4 (Fig. 5(a), m is the ratio between the horizon size and the grid spacing)
r m = 8 (Fig. 5(b)). Fig. 5 shows that the PD solution quantitatively matches the experimental measurements
n terms of both the profile and peak location. The peak value of the product concentration obtained from the PD
odel is closer to the experimental data than the approximate analytical value of the corresponding classical model,

ince the classical model assumes that molecules A and B react instantly and completely once they encounter each
ther, while this assumption is not valid in experiments, and is not used in the PD model. The peak value from
he approximate analytical solution is higher than the other two because the analytical solution assumes an infinite
eaction rate. As expected, when the reaction rate decreases, the peak value obtained from the PD simulation also
ecreases (see Fig. 6(a)). The comparison shown in Fig. 5 indicates that the PD model can be used to simulate
nd predict the ARD processes. Although m = 8 leads to higher computational accuracy, in seeking of a higher
omputational efficiency, we select m = 4 for the rest of the 1D and 2D calculations. The accuracy for the case with
= 4 is acceptable for engineering applications, as shown in Fig. 5 and Appendix B. Therefore, in the following

alculations for the 1D case, we use m = 4, δ = L/120 and the grid spacing ∆x = δ/m = L/480.
To further verify our PD model, we next perform a parametric study to investigate the effect of D, V, and RAB

arameters on the evolution of the product AB, respectively. We monitor the AB concentration evolution at the
idpoint (x = 15 cm) along the tube. The results corresponding to the effect of these ARD parameters are shown

n Figs. 6–8. Note that the results shown in Figs. 7 and 8 cover the range of Peclet number values from 0.056 to
.78 (with LPe = ∆x = 0.0625 cm). With the fixed hybrid weight ω = 0.8, the PD solutions are smooth and stable
See Figs. 7 and 8).

From Fig. 6, we notice that the higher reaction rate RAB leads to higher peaks on the product concentration curves
at the mid-point, but this increase tends to saturate at the higher reaction rate values. Combined with Fig. 5, we know
that the concentration peak cannot reach 0.01 mol/L (the maximum happens when RAB tends to infinity). This is
because the liquid is incompressible. Both A and B will be diluted when B flows into the tube, so that the maximum
concentration of AB happens at the position where A and B are fully mixed and fully reacted. In other words, the
concentrations of A and B cannot reach 0.01mol/L simultaneously, which means that the AB concentration cannot
reach 0.01 mol/L. Fig. 6(a) also shows that the reaction rate has no effect on the time when the concentration
reaches its peak value or when the product appears and vanishes at that location. A higher flow rate v makes the
peak concentration happen earlier and earlier, as seen from Fig. 7, with the time (tp) for the concentration to reach
its maximum at the tube’s midpoint varies as x/V (x = 15 cm is the position of the midpoint), which is consistent
with the analytical solution of the SPSM model shown in Eq. (37).
13
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Fig. 6. (a) Time-evolution of the product AB’s concentration at the midpoint (x = 15 cm) for different reaction rate RAB values.
D = 0.0017 cm2/s, and V = 0.0121 cm/s. (b) The AB concentration peak values at the midpoint versus the reaction rate.

Fig. 7. (a) Time-evolution of the product AB’s concentration at the midpoint (x = 15 cm) for different flow rates V. D = 0.0017 cm2/s,
and RAB = 16.4 L/(mol s). (b) The variation of time for AB concentration at the midpoint to reach its maximum as a function of the flow
rate.

Fig. 8 reveals that a higher diffusion coefficient D leads to a faster-moving rate of the highest AB concentration
location, and tp linearly depends on the diffusion coefficient. Figs. 15 and 16 in Appendix B imply that tp
is independent on δ, but inversely proportional with m. The dotted line in Fig. 8(b) corresponds to the time
x/V = 1239.7 s (x = 15 cm is the position of the midpoint). We expect that when D is much smaller than
Vx and m goes to infinity, tp will converge to x/V , which would be consistent with the SPSM method.

4.2. Examples of 2D bimolecular reactions

In Section 4.1, we have validated the PD reaction–diffusion model in 1D by comparing the simulated results

against experimental measurements and the SPSM prediction. In this section, we use the model to solve bimolecular

14



C. Tian, S. Fan, J. Du et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116206

A
s
p

w
i
s
s
o
h

4

s
w
t
i
b
i
s
s
i
s
s

Fig. 8. (a) Evolution of the product AB’s concentration at the midpoint (x = 15 cm) with different diffusion coefficient D. V = 0.0121 cm/s,
RAB = 16.4 L/(mol s). (b) The time for AB concentration at the middle point to reach its maximum versus the diffusion coefficient.

RD problems in 2D. The tests shown in this section are extensions of the advection-diffusion examples for a single
olute shown in Ref. [55], to a bimolecular reaction with three solutes: two reactants and one product. The classical
artial differential equations for the ARD problem for bimolecular reaction in 2D are [55,56]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂CA

∂t
= Dx

∂2CA (x, y, t)
∂x2 + Dy

∂2CA (x, y, t)
∂y2 − Vx

∂CA (x, y, t)
∂x

− RABCA (x, y, t) CB (x, y, t)

∂CB

∂t
= Dx

∂2CB (x, y, t)
∂x2 + Dy

∂2CB (x, y, t)
∂y2 − Vx

∂CB (x, y, t)
∂x

− RABCA (x, y, t) CB (x, y, t)

∂CAB

∂t
= Dx

∂2CAB (x, y, t)
∂x2 + Dy

∂2CAB (x, y, t)
∂y2 − Vx

∂CAB (x, y, t)
∂x

+ RABCA (x, y, t) CB (x, y, t)

, (38)

here Dx andDy are the diffusion coefficients in the direction of x and y, respectively, Vx is the uniform flow rate
n x-direction, and RAB is the reaction rate. For all the examples (in square domains of side length L = 30 cm)
hown in this section, we set the diffusion coefficient in the x and y directions as Dx = Dy = 0.017 cm2/s; the
teady flow velocity in the x-direction as V = Vx = 0.0121 cm/s; the reaction rate is RAB = 8.2 L/(mol s); based
n the δ-convergence and m-convergence studies shown in Appendix B, we use the horizon size δ = L/60 and
orizon factor m = 4 and the grid spacing ∆x = δ/m = L/240.

.2.1. ARD examples in 2D homogeneous media
First, we consider ARD processes in homogeneous media. Two cases are considered: in Case 1, from the left

ide, reactant B invades a square domain filled with reactant A and reacts with it to produce AB (see Fig. 9(a)),
hich is similar to the process of constantly pouring a purifying chemical into a polluted water flow; in Case 2, from

he left side, reactants A and B simultaneously enter a square domain via different openings (see Fig. 9 (b)), which
s similar to the reaction between a pollutant and a purifying chemical entering simultaneously into a water flow. In
oth cases, the top and bottom sides have zero-flux boundary conditions (the spatial derivatives of concentrations
n the vertical direction are zero). In the PD nonlocal model, the zero-flux boundary conditions are automatically
atisfied since there are no PD bonds across the zero-flux boundaries to exchange mass with. In both cases, the
olvent, flowing in from the left side and flowing out on the right side, has a uniform flow rate imposed at all times
n the x-direction. Under this directional flow setting, the chemicals on the right side keep flowing out from the
quare domain, and thus do not affect the concentration field inside the domain. Therefore, in the simulation, we
et the right boundary to be free. The classical boundary conditions that the PD model will try to enforce on the
15
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Fig. 9. Classical boundary and initial conditions for two bimolecular reaction cases of ARD: (a) reactant B flows into the square domain
filled with A; (b) A and B flow into the square domain simultaneously with the same velocity. Top and bottom boundaries have zero flux,
left and right boundaries have constant fluid velocity.

left side and the initial conditions for the case shown in Fig. 9(a) are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CA (0, y, t) = 0, CB (0, y, t) = 0, CAB (0, y, t) = 0 −

L
2
≤ y ≤ −

L
6

or
L
6
≤ y ≤

L
2

, t > 0

CA (0, y, t) = 0, CB (0, y, t) = C0, CAB (0, y, t) = 0 −
L
6

< y <
L
6

, t > 0

CA (x, y, t) = C0, CB (x, y, t) = CAB (x, y, t) = 0 t = 0

. (39)

The boundary conditions on the left side and the initial conditions for the case shown in Fig. 9(b) are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CA (0, y, t) = C0, CB (0, y, t) = 0, CAB (0, y, t) = 0 −

L
2
≤ y ≤ −

L
6

or
L
6
≤ y ≤

L
2

, t > 0

CA (0, y, t) = 0, CB (0, y, t) = C0, CAB (0, y, t) = 0 −
L
6

< y <
L
6

, t > 0

CA (x, y, t) = CB (x, y, t) = CAB (x, y, t) = 0 t = 0

. (40)

Fig. 10(a–c) show the results corresponding to Case 1, Fig. 9(a), and Fig. 10 (d–f) display the results
orresponding to Case 2, Fig. 9(b).

Fig. 10(a) shows that reactant A (originally present in the domain) forms a concentration distribution with gradient
ue to flow, diffusion, and its consumption due to reaction in regions where it comes in contact with reactant
. Fig. 10(c) and Movie 1 shows that the product AB is generated where the two reactants meet, and the peak
oncentration of the product AB occurs near x = Vx t, y = 0, where the two reactants are consumed rapidly. This
s consistent with our inference in Section 4.1 and the results for the 1D problems. But, in the 2D model, the
pecies diffuse in two directions, leading to a much lower concentration peak value for the AB product. If reactant

(invading into the domain) were to enter the domain over the entire right side, the concentration peak of product
B would match the 1D results obtained in Section 4.1.
Fig. 10(d–f) shows the results from Case 2. Different from Case 1, Case 2 is similar to the process of purifying

owing polluted water, for which both reactant A and B flow into the region continuously from the left boundary,
rom different regions. Fig. 10(f) shows that the peak concentration of product AB occurs near the left boundary
ll the time. It should be noted that the peak concentration of product AB does not decrease with time. The results
hown in Fig. 10(f) and Movie 2, indicate that the peak concentration range of product AB in the domain will
ontinue to broaden, and the reactants A and B will be used up far from the left boundary.

These 2D tests of ARD show that the PD model can conveniently simulate bimolecular reaction processes in

owing media.

16



C. Tian, S. Fan, J. Du et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116206

fl
c
o
f
c
e

m
s

Fig. 10. Concentration distributions obtained by the new PD model at t = 916 s for Case 1 (top row) and Case 2 (bottom row): reactant A
in (a) and (d), reactant B in (b) and (e), and reaction product AB in (c) and (f). Iteration time step ∆t = 0.1 s. See also Movies 1 and 2.

Fig. 11. Descriptions of 2D domains and initial and boundary conditions for ARD in heterogeneous media: (a) a domain with impermeable
inclusions; (b–d) domains with different types of slit-like sinks (from which the solution can flow out).

4.2.2. Examples of ARD in 2D heterogeneous media
Most ARD processes in real life take place in complex, heterogeneous media. For instance, when polluted water

ows underground, pollutants react or interact with chemicals in the ground with impermeable stones/rocks, which
an significantly affect the advection-diffusion process of the polluted water and products. Another example is that
f formaldehyde released from new furniture: as it diffuses into the indoor environment, reacts with oxygen, the
urniture itself is a heterogeneous domain, while packages of activated carbon can be used to absorb the dangerous
hemical, effectively acting as sinks for the hazardous specie. Metabolic processes in live organisms are further
xamples of ARD in heterogeneous media.

In this subsection, we show that the PD model can be applied to simulate ARD processes in heterogeneous
edia, including media with impermeable blocks and media with slit-like sinks. Four scenarios are considered, as

hown in Fig. 11. All four cases share the same boundary and initial conditions: the top, bottom and right sides
17
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b
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Fig. 12. Concentration distributions obtained by the PD model for the AB product at 1,000 s for the setups shown in Fig. 11: (a) ARD
process in a domain with impermeable inclusions; (b–d) ARD process in domains with different types of crack-like sinks (from which the
solution can flow out of the domain). Iteration time step ∆t = 0.1 s. See also Movies 3–6.

have the same boundary conditions as the ones applied in the cases shown in Section 4.2.1; the boundary conditions
on the left side and the initial conditions are:{

CA (0, y, t) = 0, CB (0, y, t) = C0, CAB (0, y, t) = 0 t > 0

CA (x, y, t) = C0, CB (x, y, t) = CAB (x, y, t) = 0 t = 0
. (41)

In the simulations, with a uniform grid used over the entire domain, the impermeable blocks are implemented
y breaking all PD diffusion bonds connected with the nodes of “stones”; the slit-like sinks are implemented by
reaking all PD diffusion bonds across the sinks and setting all the concentrations of the nodes of sinks to be zero.
n our examples, the width of the sinks is half of the horizon size.

Fig. 12 shows the snapshots of the product AB’s concentration profile after 1,000 s, for all four cases shown
n Fig. 11. The results (see also Movies 3–6) demonstrate that the PD model introduced here can easily address
RD processes in heterogeneous media, independent of the complexity of geometry and boundary conditions. The

trong influence of impermeable blocks or crack-like sinks on the ARD process can help one design such features

o eventually obtain desired reaction patterns.

18
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Fig. 13. Initial and boundary conditions for the hydrolysis reaction (following [64]).

4.3. Application to simulating the hydrolysis reaction

In Sections 4.1 and 4.2 we have seen how the PD model simulates ARD processes in which the reaction rate
epends linearly on the local concentrations of the reactants. In this section, we investigate a hydrolysis reaction–
iffusion example, in which a nonlinear dependence between the reaction rate and the local concentrations of the
eactants (see Section 2.2) exists. Hydrolysis is the process of decomposition of macromolecular polymer into
ydrolyzed monomers with smaller molecular weight under the action of water. Given the randomness of molecular
eights of polymer chains, hydrolysis is a stochastic process in space.
Consider a square cross-section of a biodegradable implant, initially composed of some solid polymer (see

ig. 13, and [64]). The concentration of the reaction product (hydrolysis monomer) at the boundary of the domain is
ept at zero at all times. The reaction happens at all points in the domain, but because of the stochastic process, some
arts are fully reacted at different times compared with other locations. The concentration of hydrolysis monomer
eleased by the node meeting the hydrolysis conditions is set to a dimensionless value of 1, namely the value of

R0 in Eq. (11) is 1. The following input data is used in the simulations shown below (see [64]): degradation rate
onstant λ0 = 8.41 × 10−3day−1, diffusivity of hydrolyzate D0

m = 0.87 × 10−7 mm2s−1, constant Sm = 8.52, and
= 3. Substituting these parameters into Eq. (11), the reaction term can be described as:

R (x, t) =

{
0 , PR ≥ PH

1 , PR < PH
, PH =

0.00841e−0.00841t
(
1 + 3

(
eCm−1

))
V0V (t)

, 0 < PR < 1, (42)

Note that, as discussed in Section 2.2, PR is a randomly generated number 0 and 1 (from a uniform probability
istribution function), which mimics the randomness of molecular weight of polymer chains in a polymeric material.
ifferent polymer systems may have specific probability distribution functions for their molecular structures of their

hains, and in such cases, one simply uses those specific functions to generate the PR values mentioned above to
pply the model introduced here.

To study size effects, we consider two different matrix sizes for hydrolysis: Case 1: 3 mm × 3 mm and Case
: 0.2 mm × 0.2 mm. For both cases, ∆t = 86.4 s. For Case 1, δ = 0.05 mm and m = 2; For Case 2, δ = 0.01
m and m = 2. Fig. 14 shows the evolution of the degradation processes. The monomers are unevenly distributed

cross the domain at the early hydrolysis stage due to the stochastic reaction term, and later by the blocking from
he remaining unhydrolyzed matrix. Along with the hydrolysis, the monomers have more pathways to diffuse out

o that the concentration distribution of the monomers becomes smoother in time due to their faster out-diffusion.
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Fig. 14. PD simulation results of hydrolysis process of the hydrolyzable polymer matrix. In each set of PD results, the left column is the
evolution of the remaining un-hydrolyzed matrix (solid polymer is black), and the right column is the evolution of the monomer concentration
distribution. Iteration time step ∆t = 86.4 s. See also Movies 7 and 8.

As expected, by comparing hydrolysis with different cross-section sizes, we notice that the matrix with smaller
ross-section hydrolyze faster. This is because the specific surface area decreases with increased cross-section.
ote also that before hydrolysis, the polymer implant would undergo swelling, during which water diffuses into the
olymer matrix. The current PD model does not, at this point, consider swelling of the implant, but this process
an easily be incorporated.

The hydrolysis processes predicted by the PD model, as shown in Fig. 14, are in good agreement with the
odeling results shown in Ref. [64], meaning that the PD model can also be applied to simulate the hydrolysis

eaction. Comparing with the model shown in Ref. [64], the PD model can be used to treat the hydrolysis of polymer
olids with damage and cracks.

While the flow simulations in the examples shown in this work used constant velocity flows, one could instead use
he PD formulation of the Navier–Stokes equations from the recently published [72] and solve the fluid velocity as
ell. However, the focus of this work is on the reaction part of the general advection–reaction–diffusion problems,
ith specific applications to reactions between pollutants and cleaning agents in (underground) water flows and

eactions related to polymer breakdown/degradation (hydrolysis). For many such problems, the assumption of
onstant fluid velocity seems a reasonable one. In the future, we are planning to use the formulations in [72]
or the complete set of equations including the full Navier–Stokes equations solving for the fluid velocity field.
20
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5. Conclusions

In this paper, a peridynamic (PD) model was introduced for simulating advection–reaction–diffusion (ARD)
processes. This expands an existing advection-diffusion model. The new model is very general, and depending on the
type of chemical reactions, the reactions terms can be linear or nonlinear functions of the reactants’ concentrations.
The PD computational model can be applied to solve ARD problems in homogeneous and complex heterogeneous
media, including cases with presence of obstacles, while using simple, uniform discretization grids.

We validated the model by comparing the PD results for an ARD example in 1D with a bimolecular reaction
(A+B → AB) with the corresponding experimental measurements and the approximate analytical solutions of the
corresponding classical model. The model was then applied to simulate ARD processes in 2D domains (similar to
purifying polluted flowing water via chemical reactions), including chemical reactions in heterogeneous media with
impermeable inclusions.

The model can also be used to simulate and predict degradation of polymers (as in the case of dissolution of
bio-degradable implants) induced by the hydrolysis reaction (M → αm). The reaction involves a solid-to-liquid
phase change, and the stochastic model was verified against published results on hydrolysis.

This paper aimed to provide a nonlocal platform for ARD simulations. Without presetting any functional
variations across an interface, PD-based models can autonomously capture evolving interfaces with accuracy and
ease. Besides the reactions presented in this paper, the PD platform can be applied for other physical-chemistry
processes, such as corrosion of metal, solidification, charging and discharging in lithium batteries, etc.
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Appendix A. A dynamic solver for the peridynamic ARD equations

Dynamic solver for the peridynamic ARD equations
1. (*Euler method, iterative loop, nt is the total number of iteration steps*)
2. for t = 1 to nt do
3. (*To solve the computing domain, n is the total number of nodes *)
4. for j = 1 to n do
5. for i = 1 to m do
6. (*Initialize ∆Ci , m is the number of species of matter*)
7. ∆Ci = 0
8. (*Determine the type of substance*)
9. α = 1
10. if (resultant) then
11. α = 0
12. end
13. End
21
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t

δ

o

14. (*obtaining the diffusion and advection term in the horizon*)
15. (*fam is the number of nodes in the horizon*)
16. for k = 1 to fam do
17. for i = 1 to m do
18. ∆Ci = ∆Ci + fd

(
C t−1

i

)
+ fv(C t−1

i )
19. end
20. End
21. (*Solve for the reaction terms*)
22. for i = 1 to m do
23. (* fR is related to the actual reaction*)
24. (*For example, for the bimolecular reaction, fR = RABCACB*)
25. ∆Ci = ∆Ci + (−1)α fR(C t−1)
26. End
27. end
28. (*Update Ci , ∆t is the time step size*)
29. for i = 1 to m do
30. C t

i = C t−1
i +∆Ci∆t

31. End
32. End

Appendix B. Convergence analysis

m-convergence: With a fixed horizon size, L/60, we perform simulations with different m values. Fig. 15 shows
he concentration distributions of product AB.

-convergence: For m = 4, we perform the δ-convergence tests. In Fig. 16, we plot the concentration distributions
f product AB, for horizon sizes L/60, L/80, L/120, L/180, and L/240.

As shown in Figs. 15 and 16, the PD solutions fit well with the experimental measurements.

Fig. 15. The m-convergence study of 1D example.
22
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Fig. 16. The δ-convergence study of 1D example (m = 4).

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2023.116206.
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