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Abstract
In this paper, we construct formal analytical solutions for peridynamic models of transient 
diffusion using the separation of variables technique. We show that the infinite series non-
local solutions can be obtained directly from corresponding classical solutions by inserting 
“peridynamic (nonlocal) factors” in the time-exponential part of the solution. We find ana-
lytical expressions for the nonlocal factor. In 2D rectangular domains, these can be written 
in terms of Bessel functions. The nonlocal factor depends on the horizon size and con-
verges to value one as the horizon size goes to zero, recovering the classical form of the 
solution for the corresponding partial-differential equations. We also show that, as time 
goes to infinity, the nonlocal solution converges to the classical one, for a fixed horizon. 
We consider examples of transient diffusion problems with Dirichlet and Neumann bound-
ary conditions. Their analytical solutions are compared with the corresponding classical 
solutions. While most of the analytical solutions we present here are formal, for a number 
of cases, we are able to prove uniform convergence of the series solutions. This is the first 
contribution that presents analytical (formal) solutions to peridynamic transient diffusion 
problems in 1D or 2D finite domains by separation of variables, with arbitrary boundary 
conditions, and shows their connections to the corresponding solutions to the classical/
local problem.
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1  Introduction

Two decades ago, Silling introduced the peridynamic (PD) theory, a spatial integral-type 
alternative of the classical continuum mechanics [1]. Allowing displacement discontinui-
ties in the theory, the PD model can treat fracture and damage as natural parts of its solu-
tion process. A fundamental generalization of the original peridynamic theory beyond 
pair-wise interaction between material points was published in 2007 [2]. Peridynamics is 
particularly well suited for dealing with cracks and damage, especially in situations where 
the crack paths are not known in advance. PD models have been successfully applied to 
simulate dynamic fracture [3, 4], corrosion damage and stress corrosion cracking [5–7], 
thermally driven cracks [8], multiphase transport [9], etc.

The PD formulation is based on nonlocal interactions between material points in a con-
tinuum. The interaction between a material point and its neighbors extends beyond the 
nearest neighbors, over a region called “the horizon.” The relation between peridynamics 
and the conventional differential formulation and convergence of the numerical computa-
tion of peridynamics itself have been analyzed mathematically [10–12]. Convergence in 
PD can be defined in several ways: convergence in terms of the horizon size (δ) going to 
zero, with the limit being the classical, PDE-based formulation of the problem [12, 13], 
and numerical convergence for a fixed horizon size, in terms of increasing the number of 
nodes inside the horizon region [14]. The numerical PD approximation will converge to the 
exact nonlocal PD solution for the given δ, when the number of nodes inside the horizon 
region goes to infinity.

It has long been thought that obtaining analytical solutions for peridynamic models is 
more difficult than for corresponding PDE-based models, since the PD formulations lead 
to integro-differential equations for which analytical solutions are not readily available. For 
special types of peridynamic problems, analytical solutions have been reported in the liter-
ature. However, we found these solutions to be limited to problems set in infinite domains: 
static and dynamic elastic response [15–18], propagation of solitary waves [19] and of 
defects [20] in 1D infinite bars. We have not found analytical solutions to PD problems 
posed in a finite domain in the literature.

In this paper, we show how to obtain formal analytical solutions of PD equations for 
transient diffusion problems in finite 1D and 2D domains using the method of separation 
of variables. In a few cases, we prove uniform convergence of solutions. The methodology 
follows closely that used in obtaining series solutions for the classical, PDE-based models 
of transient diffusion. The solutions to the PD equations satisfy the initial conditions and 
the local boundary conditions (and a particular extension to nonlocal boundary conditions) 
posed for the corresponding classical formulations of diffusion problems.

The paper is organized as follows: in Sects. 2 and 4, we show how the separation of var-
iables method can be used to generate analytical solutions to linear peridynamic transient 
diffusion problems in finite one- and two-dimensional domains; Sects. 3 and 5 discuss con-
vergence properties of solutions obtained for 1D and 2D problems, respectively, with Dir-
ichlet and Neumann boundary conditions; we pay special attention to the nonlocal factor 
and its role on convergence properties, and a detailed proof of uniform convergence for a 
particular case is included in Appendix 2; in Sect. 6, we answer the question: given a non-
local factor, what is the kernel generated by it and what is the corresponding solution to the 
transient diffusion problem defined by such a kernel? Sect. 7 contains concluding remarks.

In part II of this work [21], we show how to obtain analytical solutions to peridynamic 
models for elastodynamic problems.
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2 � Analytical Solutions for 1D Linear Peridynamic Transient Diffusion 
in a Finite Domain

2.1 � Separation of Variables for 1D Peridynamic Diffusion

The 1D linear PD transient diffusion equation can be expressed as:

where u(x, t) is the unknown function (e.g., temperature for heat transfer problems, con-
centration for mass diffusion) of position x , and time t . D is the material diffusivity, and L� 
denotes the PD Laplacian operator, defined by:

an integral over a finite size neighborhood of x : Hx (the “horizon region”), which, in 1D, 
is a line segment centered at x of length 2 � . We refer to � as the horizon size or simply 
the horizon. � is the kernel function with � = �(|�|) , that has the support Hx ; therefore, 
�(|�|) = 0 for |𝜉| > 𝛿 , where � = x̂ − x.

Inspired by the derivation of formal analytical solutions for problems described by par-
tial differential equations (PDEs) [22], we use the method of separation of variables to find 
analytical solutions for Eq. (1), subjected to initial and (local) boundary conditions. We seek, 
therefore, a solution to Eq. (1) in the form of a product:

Substituting Eq. (3) into Eq. (1) gives:

where the prime denotes ordinary differentiation with respect to t . Dividing Eq.  (4) by 
X(x)T(t) leads to:

Since the left-hand side of Eq. (5) is a function of t only, and the right-hand side is a func-
tion of x only, we conclude that:

where the superscript � in �� denotes the dependency on � . As a result, a solution for the 
integro-differential equation (Eq. (1)) must be a solution to the following pair of equations, 
an ordinary differential equation (ODE) and an integral equation:

(1)
�u(x, t)

�t
= DL�u(x, t)

(2)L�u(x, t) = ∫
Hx

�
(||̂x − x||

)[
u
(
x̂, t

)
− u(x, t)

]
dx̂

(3)u(x, t) = X(x)T(t)

(4)X(x)T�(t) = DT(t)L�X(x)

(5)1

D

T(t)�

T(t)
=

L�X(x)

X(x)

(6)1

D

T(t)�

T(t)
=

L�X(x)

X(x)
= constant in x and t = ��

(7)T
�

(t) − D��T(t) = 0

(8)L�X(x) − ��X(x) = 0
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The general solution for the ODE (Eq. (7)) is:

with E and F undetermined constants.
In the case of the integral equation (Eq. (8)), we search for a solution X with a form similar 

to that obtained when using separation of variables for the corresponding classical (local) dif-
fusion PDE [22]. Then, �� is found by imposing that the integral equation (Eq. (8)) is satisfied 
for this X.

For this purpose, we briefly review the form of the solutions for the 1D linear classical dif-
fusion equation, the local version of the nonlocal form in Eq. (1):

Separation of variables for Eq. (10) leads to:

where G , H , I , J , and k are undetermined constants, and �c = −k2 (see Appendix 1 and 
[22] for derivation details). The superscript c in Tc , Xc , and �c stands for the “classical” 
solution.

We first show that X(x) = Gx + H satisfies Eq. (8) for �� = 0 . Indeed:

For nonzero �� , we assume the same form for the PD solution X(x) as that of the classical 
solution shown in Eq. (12):

We substitute Eq. (14) in Eq. (8) and solve for ��:

(9)T(t) =

{
E , if�� = 0

Fexp
(
D��t

)
, if�� ≠ 0

(10)
�u(x, t)

�t
= D∇2u(x, t)

(11)Tc(t) =

{
E �c = 0

Fexp(D�ct) �c ≠ 0

(12)Xc(x) =

{
Gx + H �c = 0

I sin kx + J cos kx �c ≠ 0

(13)

L�X(x) = ∫
Hx

�
(||̂x − x||

)[
X
(
x̂
)
− X(x)

]
dx̂

= ∫
Hx

�
(||̂x − x||

)
G
(
x̂ − x

)
dx̂

= ∫
�

−�

�(|�|)G�d� = 0

(14)X(x) = I sin kx + J cos kx

(15)

∫
Hx

�
(||̂x − x||

)[(
I sin kx̂ + J cos kx̂

)
− (I sin kx + J cos kx)

]
dx̂ − ��(I sin kx + J cos kx) =

∫
�

−�

�(|�|)[(I sin k(x + �) + J cos k(x + �)) − (I sin kx + J cos kx)]d� − ��(I sin kx + J cos kx) =

(I sin kx + Jcoskx)

{
∫

�

−�

�(|�|)cos(k�)d� − ∫
�

−�

�(|�|)d� − ��

}
= 0
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We introduce the following simplifying notations: �� = ∫ �

−�
�(|�|)d� , �̂

k
= �̂

(
Lk

2�

)
=

∫ ∞

−∞
�(|�|)cos(k�)d� . Observe that �̂k is the Fourier cosine transform of � computed at Lk

2�
 . 

Then �� is obtained from Eq. (15) as:

As a result, we have the following forms for functions T and X for the PD solution:

We then write the “ansatz” solution of Eq. (1), u(x, t) , as a superposition of these func-
tions for zero and nonzero ��:

where C1,C2 , C3 , and C4 are undetermined constants.
Similar to the procedure for classical PDEs [22], analytical solutions for specific linear 

PD diffusion initial and boundary value problems (IBVPs) can be obtained by applying 
first the boundary conditions and then the initial conditions to Eq. (19).

However, we observe that the formal solution in Eq. (19) is identical to the solution for 
the classical problem, which, from Eqs. (11) and (12), is:

with the only difference being the replacement of the �c = −k2 factor with ��.
Therefore, by defining the “peridynamic factor” or the “nonlocal factor”:

The formal analytical solution of the peridynamic diffusion IBVP can be written directly 
from the solution of the corresponding classical (PDE-based) diffusion IBVP (Eq. (20)) by 
replacing �c = −k2 with A(k, �)�c in the time-exponential part of the solution. Note that 
the further the PD factor is from value one, the stronger the nonlocal effect will be.

Remark 1: While in a classical BVP for a PDE, boundary conditions are used to define 
a well-posed problem; for nonlocal equations, conditions need to be defined over a “thick” 
region (of thickness � ) at the domain’s frontier. These conditions are called nonlocal 
boundary conditions, or volume-constraints (see [23]). In many PD applications however, 
enforcing local boundary conditions is desired/needed since physical measurements are 
usually available only at the surface, not through a layer inside the body. Such conditions 
are described by local BCs. For these reasons, we will solve PD problems with associated 
local boundary conditions, and particular types of extending those local conditions over a 
fictitious layer of thickness equal to the horizon size, to generate corresponding nonlocal 
BCs or volume constraints. Various methods for applying local BCs to PD models have 
also been discussed in, for example, Aksoylu and Gazonas [24], D’Elia and Yu [25], Foss 
et al. [26], and Zhao et al. [27].

(16)�� = �̂k − ��

(17)T(t) =

{
E �� = 0

Fexp
(
D��t

)
�� ≠ 0

(18)X(x) =

{
Gx + H �� = 0

I sin kx + J cos kx �� ≠ 0

(19)u(x, t) = C1 + C2x +
(
C3 sin kx + C4 cos kx

)
exp

(
D��t

)

(20)uc(x, t) = C1 + C2x +
(
C3 sin kx + C4 cos kx

)
exp

(
−Dk2t

)

(21)A(k, �) =
��

�c
=

�� − �̂k

k2
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Remark 2: Given the convergence of PD solutions [28] to the classical solution as the non-
locality vanishes ( � goes to zero), one expects that a legitimate PD kernel function � , satisfies 
lim
�→0

A(k, �) = 1 (see Eq. (21)).
In what follows, we present examples for finding the analytical solution for several 

PD IBVPs. We also study the properties of the nonlocal factor A(k, �) for a class of ker-
nels often used in PD applications. This includes the kernel obtained using a constructive 
approach (as shown in Chen and Bobaru [29] for diffusion problems, and Chen et al. [30] 
for elasticity), as well as two other types of PD kernels often used in the literature (see, 
e.g., [31–33].

3 � Examples of Initial and Boundary Value Peridynamic Problems in 1D

First, we consider a nonlocal heat conduction IBVP (with Dirichlet boundary conditions) 
in a bar of length L , with given initial temperature g(x) along the bar, and zero temperature 
imposed at the ends of the bar:

where T(x, t) denotes the temperature at x and time t . We assume further that the kernel 
function (which specifies the PD Laplace operator) in this particular case has the form [29]:

In order to obtain the formal PD analytical solution for this problem, we first write the solu-
tion for the corresponding local problem:

The exact solution to this local IBVP can be written as [34]:

where Bm = 2∫ L

0
g(x)sin kmx dx , and km =

m�

L
 with m being a positive integer. Note that 

for other types of boundary conditions, the “wavenumber” km takes different forms (see 
Sects. 3.3 and 3.4).

The PD nonlocal factor for this case is:

(22)

⎧⎪⎨⎪⎩

𝜕T(x,t)

𝜕t
= DL𝛿T(x, t)

T(x, 0) = g(x), 0 ≤ x ≤ L

T(0, t) = T(L, t) = 0, t > 0

(23)𝜇(|𝜉|) =
{

(3−n)

𝛿(3−n)
1

|𝜉|n , |𝜉| ≤ 𝛿

0, |𝜉| > 𝛿
,with n = 0, 1, or 2.

(24)

⎧⎪⎨⎪⎩

𝜕T(x,t)

𝜕t
= D∇2T(x, t)

T(x, 0) = g(x), 0 ≤ x ≤ L

T(0, t) = T(L, t) = 0, t > 0

(25)Tc(x, t) =

∞∑
m=1

Bm sin kmx exp
(
−Dkm

2t
)
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From Eq.  (26), we observe that using kernels given by Eq.  (23) leads to 
A
(
km, �

)
= An

(
rm
)
 where rm = km� , and the subscript n in An refers to the specific n 

value in the employed kernel. By replacing km2 with An

(
rm
)
km

2 in the classical solution 
in Eq. (25), we arrive at:

The formula in Eq. (27) satisfies the PD problem in Eq. (22). Convergence of these 
PD series solutions is discussed in Appendix 2.

In what follows, we will focus on a few points related to convergence properties for 
the series solution and the nonlocal factor for the specific kernels shown in Eq.  (23), 
assuming the necessary properties for initial and boundary conditions for calculations to 
be valid. In particular, we will investigate:

(a) Convergence to the classical solution when � goes to zero, which is equivalent to 
showing that An

(
rm
)
 converges to 1 when � goes to zero, and.

(b) Satisfaction of the initial and boundary conditions.

We examine the points for different n values in Eq. (27). In particular, when n = 0, we 
have

When n = 1, we have,

where Ci is the cosine integral function and Ci(x) = � + ln(x) + ∫ x

0

cosz−1

z
dz . � is the Euler-

Mascheroni constant, and

When n = 2, we have

(26)

A
(
km, �

)
=

−��

k2
m

= −
�̂km

− ��

k2
m

= −
1

k2
m
∫

�

−�

(3 − n)

�(3−n)
1

|�|n [cos
(
km�

)
− 1]d�

= −
(3 − n)(
km�

)2 ∫
1

−1

cos km �� − 1

|�|n d�

(27)Tpd(x, t) =

∞∑
m=1

Bm sin kmx exp
(
−DAn

(
rm
)
km

2t
)

(28)A0

(
rm
)
= −

3

rm
2 ∫

1

−1

(
cos rmx̂ − 1

)
dx̂ =

6

[
1 −

sin(rm)
rm

]

rm
2

(29)A1

(
rm
)
= −

2

rm
2 ∫

1

−1

cos rmx̂ − 1

||̂x||
dx̂ = −

4
[
Ci
(
rm
)
− ln

(
rm
)
− �

]
rm

2

(30)� = lim
z→0

[Ci(z) − ln(z)] = lim
n→∞

((
n∑

k=1

1

k

)
− ln(n)

)
≈ 0.577215664901537
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where Si is the sine integral function, and Si(x) = ∫ x

0

sinz

z
dz.

3.1 � Pointwise Convergence to the Classical Solution when ı Goes to Zero

It is obvious that A0

(
rm
)
 converges to 1 when � goes to zero for any m value, and that it 

converges to 0 when m goes to infinity for any 𝛿 > 0 . In Fig. 1, we plot the nonlocal factors 
for different rm = km� values. This figure reveals that, similar to A0

(
rm
)
 , A1

(
rm
)
 and A2

(
rm
)
 

also approach 1 when � goes to zero, for any m value, and decay to 0 when m goes to infin-
ity for any 𝛿 > 0 . As expected, Fig. 1 also shows that the PD formulation corresponding 
to the kernel with n = 0 has a stronger nonlocal effect, while n = 2 has the weakest, depart-
ing the least from the classical solution, because for a fixed rm value, the nonlocal factor 
departs more from 1 when n = 0 than when n = 2.

To better understand the dependence of the nonlocal factor, An

(
rm
)
 , on m and � , respec-

tively, in Fig. 2, we plot the nonlocal factors with varying �∕L for different m values. This 
figure, again, shows that An

(
rm
)
 values are between 0 and 1. In Fig. 3, we compare the non-

local factors A0

(
rm
)
 , A1

(
rm
)
, and A2

(
rm
)
 . The further these factors are from value one, the 

stronger the nonlocal effect.

3.2 � Initial and Boundary Conditions

Note that when t = 0, this solution is the same as the classical solution, so the PD solution 
for t = 0 matches the given initial condition.

The imposition of local boundary conditions in PD can take different forms. For 
example, to impose the local Dirichlet boundary condition (see Eq.  (22)) in the PD 
model, three possible options are shown in Fig. 4: mirror-type (temperature field in the 
nonlocal boundary domain is related by mirror symmetry to the corresponding domain 
in the bar, see Fig. 4A), naïve-type (temperature field in the nonlocal boundary layer is 

(31)A2

(
rm
)
= −

1(
rm
)2 ∫

1

−1

cos rmx̂ − 1

||̂x||2
dx̂ =

2

[
Si
(
rm
)
+

cos(rm)−1
rm

]

km�

Fig. 1   The nonlocal factor versus 
parameter rm , for different peri-
dynamic kernels

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n = 2

n = 1

n = 0

rm

�
n(
r m
)
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constant and equal to the value of the local Dirichlet condition, see Fig. 4B), and inner-
type (temperature field in a finite layer inside the domain is fixed to be the local bound-
ary temperature, see Fig.  4C). Rigorous descriptions for imposing various local BCs 
into nonlocal models are described in, for example, [24, 35–37].

Fig. 2   The nonlocal factor (for various terms (m) in the series) versus the normalized nonlocal size �∕L , for 
different types of peridynamic kernels

Fig. 3   The nonlocal factor for 
different peridynamic kernels as 
a function of horizon size, for 
different terms m in the series

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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0.4

0.6

0.8
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n = 0
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m = 4

�
n(
r m
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While there is a single problem defined by the PD equation and the local boundary condi-
tions we aim to enforce, the different implementations of such conditions mentioned in Fig. 4 
correspond, in general, to slightly different nonlocal problems: the PD equation and differ-
ent associated nonlocal boundary conditions (or “volume constraints”). The formal solution 
obtained in Eq. (27), is just a particular way to satisfy the imposed initial and local boundary 
conditions. We now observe the behavior of the PD analytical solution for the problem defined 
by Eq. (22) in the nonlocal layer normally associated with the volume constraints of a nonlo-
cal problem.

On the left side boundary of the 1D bar, we have (see Eq. (24)):

and,

(32)Tpd(−x, t) =

∞∑
m=1

Bm sin km(−x)exp
(
−DAn

(
rm
)
km

2t
)
= −Tpd(x, t)

(33)Tpd(0, t) = 0

Fig. 4   Three types of imposing 
Dirichlet boundary conditions in 
a 1D PD model: A mirror-type, B 
naïve-type, and C inner-type

A

B

C
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On the right side, since 2Lkm = 2m� , we have:

and,

Therefore, the Dirichlet boundary conditions are automatically satisfied, and the nonlo-
cal boundary conditions are of the mirror-type.

Note that the constant profile for the influence function that defines the kernel is only 
one option, and other profiles are possible [29, 38]. In this paper, we focus on the constant 
profile only, and describe the formal, simple way to construct analytical peridynamic solu-
tions similar to the way series solutions are built using the separation of variables method 
for classical PDEs. For other choices of the influence function profile, one can follow the 
same procedure to construct formal solutions and check if the solution satisfies the initial 
and boundary conditions. We also note that the approach discussed so far works only for a 
constant horizon size used over the domain. If the horizon size changes over the domain, 
then the nonlocal factor depends on location as well and separation of variables approach 
may no longer work.

We apply this strategy of constructing analytical solutions to PD equations for tran-
sient diffusion problems with local boundary conditions in the examples below. The first 
example has Dirichlet boundary conditions, while the second one has Dirichlet–Neumann 
boundary conditions. For the first case, we give the detailed results for the n = 2 selection, 
but also compare with results from n = 0 and n = 1. For the second case, we only show 
results for the PD formulation with a kernel that uses n = 2.

3.3 � Example 1: Solution for a 1D Diffusion Problem with Dirichlet Boundary 
Conditions

Consider a rod of length L = 10 cm with an initial temperature 100 °C. The left and right 
sides of this rod are maintained at a temperature of 0 °C. The thermal diffusivity is D = 1.14 
cm2/s. Using these values in Eq. (27), we obtain the analytical PD solution as follows:

where �o = 100 °C.
Figure 5 shows the temperature profiles at three different times for the n = 2 case. Four 

different horizon sizes are considered for the PD solution. The first 100 terms of the PD 
series solution are used for this plot. The classical solution is treated as a special case (hori-
zon equal to zero) of the peridynamic solutions. Figure 5 reveals that even for a horizon 
size-bar length ratio of 0.2, the PD analytical solution is close to the classical solution. Ini-
tially, there are heat flux singularities at the ends of the bar. These singularities disappear 
instantly since the classical solution at any time after the initial time is infinitely smooth. 
For a larger horizon size, for instance, 0.2L, the sharp gradient close to the left end is “aver-
aged” over a larger domain. This explains the relative large difference at time t = 0.1 s.

(34)Tpd(2L − x, t) =

∞∑
m=1

Bm sin km(2L − x)exp
(
−DAn

(
rm
)
km

2t
)
= −Tpd(x, t)

(35)Tpd(L, t) = 0

(36)Tpd(x, t) =

∞∑
m=1,3,5…

4�o
m�

sin kmx exp
(
−DAn

(
rm
)
km

2t
)
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Figure 6 compares the temperature profiles at three different times for PD formula-
tions with different n values. Due to the symmetry of the solutions, only half of their 
profiles (x ranging from 0 to 5 cm) are shown in these plots. Similar to what we saw in 
Fig. 1, the PD formulation corresponding to the kernel with n = 0 has a stronger nonlo-
cal effect compared with the other two; the one with n = 2, has the weakest nonlocal 
effect.

An interesting observation about the solution curve at t = 0.1  s corresponding to 
n = 0, is that the solution appears to be piecewise linear, and the extent of each linear 
piece is the same as the length of the horizon size. As time progresses, smoothness of 
the nonlocal temperature profile increases (see Fig.  6). Moreover, the ratio between 
the exponential function in any term with m > 1 in Eq. (36) and the term with m = 1 
decays exponentially in time. Therefore, the nonlocal effect is expected to decay in 
time, meaning that the nonlocal analytical solution gets closer and closer to the exact 
classical solution as time marches on. We shall see in part II of this work [21] that this 
property is characteristic only to diffusion processes, and that in elastic wave propaga-
tion problems, nonlocality’s influence does not necessarily decrease in time.

Fig. 5   Example 1: temperature profiles at time t = 0.1 s, t = 4.0 s, and t = 8.0 s, from analytical PD solutions 
(for n = 2) with four different ratios between the horizon sizes and the bar length: 0, 0.01, 0.1, and 0.2
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3.4 � Example 2: Solution for a 1D Diffusion Problem with Dirichlet and Neumann 
Boundary Conditions

Consider a rod of length L = π cm with an initial temperature 0 °C [39]. The left side of 
this rod is maintained at a temperature of 20 °C. At the right end, a heat-flux -3 WD/cm2 is 
imposed ( D is the thermal diffusivity). The thermal diffusivity is D = 1.14 cm2/s. With the 
classical solution available from Bobaru and Duangpanya [39], according to our discussion 
in the beginning of Sect. 3, the analytical PD solution is:

where, given the Dirichlet–Neumann boundary conditions, km =
m�

2L
.

Note that the nonlocal factor An

(
rm
)
 is different from the one with Dirichlet-Dirichlet 

boundary conditions, since km is different. We check to see if the boundary conditions are 
satisfied. On the left side boundary (Dirichlet conditions), we have:

(37)Tpd(x, t) = 20 + 3x +

∞∑
m=1,3,5…

Cm sin kmx exp
(
−DAn

(
rm
)
km

2t
)

(38)Cm =
2

L

(
40 + 6L

m
cos

mL

2
−

12

m2
sin

mL

2
−

40

m

)

Fig. 6   Example 1: comparison, in time, of the solutions from PD formulations with different kernel (differ-
ent n values)
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and,

On the right side boundary, we have a Neumann condition. To check this, we compute 
the spatial derivative:

Then:

and,

This shows that the PD analytical solution satisfies the given local Dirichlet and Neu-
mann boundary conditions.

Figure 7 shows the temperature profiles at three different times, for this heat transient 
diffusion problem with Dirichlet–Neumann boundary condition. Only the PD formulation 
with n = 2 is considered in this case. Four different horizon sizes are considered. The clas-
sical solution is treated as a limiting case of the peridynamic solutions (by substituting 
rm = 0 into Eq.  (37)). Figure 7 reveals that even with horizon size to bar-length ratio of 
0.4, the PD analytical solution is close to the classical solution. Initially, there is a heat flux 
singularity at the left end of the bar. The singularity disappears instantly since the classical 
solution at any time after the initial time is infinitely smooth.

4 � Analytical Solutions for 2D Transient Peridynamic Diffusion

In this section, we extend the approach introduced in the previous sections to construct 
analytical PD solutions for 2D transient heat/mass transfer. Extensions to 3D problems 
would follow a similar pathway.

The linear PD transient diffusion equation in 2D (or 3D) can be expressed as:

where the PD Laplacian operator:

(39)

Tpd(−x, t) − 20 = −3x −

∞∑
m=1,3,5…

Cm sin kmx exp
(
−DAn

(
rm
)
km

2t
)
= 20 − Tpd(x, t)

(40)Tpd(0, t) = 20

(41)
�Tpd(x, t)

�x
= 3 +

∞∑
m=1,3,5…

km Cm cos kmx exp
(
−DAn

(
rm
)
km

2t
)

(42)

�Tpd(x, t)

�x

|||||2L−x
− 3 = −

∞∑
m=1,3,5…

km Cm cos kmx exp
(
−DAn

(
rm
)
km

2t
)
= 3 −

�Tpd(x, t)

�x

|||||x

(43)
�Tpd(x, t)

�x

|||||x=L
= 3

(44)
�u(x, t)

�t
= DL�u(x, t)

(45)L�u(x, t) = ∫
Hx

�
(||x̂ − x||

)[
u
(
x̂, t

)
− u(x, t)

]
dV

x̂
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is the area/volume integral over Hx . Boldfaced letters denote vector-valued quantities, e.g., 

x =

{
x

y

}
 is the position vector in 2D. The neighborhood H

x
 in 2D, is a disk centered at x 

with the radius � . dV
x̂
 is the volume of node x̂ covered by the horizon of node x. � is the 

kernel function with � = �(|�|) , that has the support H
x
 , therefore �(|�|) = 0 for |�| > 𝛿 , 

where � = x̂ − x is the bond vector.
Following the method of separation of variables in 2D, we seek a solution in the follow-

ing form:

Substituting Eq. (46) into Eq. (44) gives:

and dividing Eq. (47) by ST yields:

(46)u(x, y, t) = S(x, y)T(t) = X(x)Y(y)T(t)

(47)S(x, y)T
�

(t) = DT(t)L�S(x, y)

(48)1

D

T
�

(t)

T(t)
=

L�S(x, y)

S(x, y)
= constant in x, y, t (depends on �) = ��

Fig. 7   Example 2: temperature profiles at times t = 0.1  s, 4.0  s, and 8.0  s, from PD analytical solutions 
(n = 2) with four different ratios between the horizon sizes and the bar length: 0, 0.02, 0.2, and 0.4
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As a result, the solution to the integro-differential equation Eq. (44) is the solution to the 
following pair of equations, an ODE and an integral equation:

The ODE in Eq.  (49) is identical to that from the 1D case, yielding solution for T as 
given in Eq. (27).

For the integral equation Eq. (50), we choose S(x, y) to be the same as the spatial solu-
tions obtained when using separation of variables for the corresponding classical (local) 
diffusion PDE (see Appendix 1). Then �� is found from requiring that Eq. (50) is satisfied 
for this S(x, y).

For the 2D classical diffusion equation, separation of variables leads to the following 
formal solutions (see Appendix 1):

where a1, a2,… , a10 , and k1 and k2 are constants, and �c = −
(
k2
1
+ k2

2

)
.

We first show that S(x, y) =
(
a3 + a4x

)(
a5 + a6y

)
 satisfies the integral Eq.  (50) for 

�� = 0:

In the case of �� ≠ 0, one can show that all of the corresponding S(x, y) terms in 
Eq. (52) satisfy the PD integral (Eq. (50)) only if:

(49)T
�

(t) − D��T(t) = 0

(50)L�S(x, y) − ��S(x, y) = 0

(51)Tc(t) =

{
a1 �c = 0

a2exp(D�
ct) �c ≠ 0

(52)

S
c
(x, y) = X

c
(x)Yc

(y) =

⎧
⎪⎪⎨⎪⎪⎩

�
a3 + a4x

��
a5 + a6y

�
�c

= 0�
a7 sin k1x + a8 cos k1x

��
a9 sin k2y + a10 cos k2y

�
�c ≠ 0 & k1 ≠ 0 & k2 ≠ 0�

a5 + a6y
��
a7 sin k1x + a8 cos k1x

�
�c ≠ 0 & k1 ≠ 0 & k2 = 0

(a3 + a4x)
�
a9 sin k2y + a10 cos k2y

�
�c ≠ 0 & k1 = 0 & k2 ≠ 0

(53)

L�S(x, y) = ∫
Hx

�
(||x̂ − x||

)[
(a3 + a4x̂)(a5 + a6ŷ) − (a3 + a4x)(a5 + a6y)

]
dx̂dŷ

= ∫
Hx

�
(||x̂ − x||

)[
a4a5x̂ + a3a6ŷ + a4a6x̂ŷ − a4a5x − a3a6y − a4a6xy

]
dx̂dŷ

= ∫
2�

0
∫

�

0

�(R)
[
a4a5(R cos �) + a3a6(R sin �)

+a4a6
(
xR sin � + yR cos � + R2 sin � cos �

)]
RdRd� = 0

(54)

�� = ∫
2π

0
∫

�

0

�(R)
[
cos

(
k1 R cos �

)
cos

(
k2 R sin �

)
− 1

]
RdRd� = 2�

�2

r2 ∫
r

0

�
(
�R

r

)
R
[
J0(R) − 1

]
dR

= 2�∫
�

0

�(w)w

[
J0

(√
k
2

1
+ k

2

2
w

)
− 1

]
dw = 2��̂k − ��
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where r =
��

k1�
�2

+
�
k2�

�2
= �

√
−�c , J0 is the zeroth-order Bessel function of the first 

kind, and therefore, �̂k
= ∫ ∞

0
�(w)wJ0

(√
k2
1
+ k2

2
w

)
dw is the Hankel transform of order 

zero for � evaluated at 
�

k2
1
+ k2

2
=
√
−�c , and �� = ∫ 2π

0
∫ �

0
�(w)wdwd� is the integral of 

the kernel function. Note that for radially symmetric function such as � , Hankel transform 
of order zero is equivalent to the 2D Fourier transform [40]. As a result, �� has a similar 
relationship with � in 2D as it does in 1D (see Eq.  (16)). Details for the derivation of 
Eq. (54) are given in Appendix 3.

For conciseness, we only show that the terms in Eq. (52) satisfy the PD integral (Eq. (50)) 
for one of them. The process for the rest of the terms is similar. Let S(x, y) = sin k1x sin k2y , 
then:

which gives �� as expressed in Eq. (54).The PD nonlocal factor for 2D transient diffusion 
is then:

One can therefore find the analytical solution for a 2D peridynamic (nonlocal) diffusion 
IBVP by directly using the analytical solution for the corresponding 2D classical (PDE-based) 
diffusion IBVP and replacing �c = −

(
k2
1
+ k2

2

)
 with A

(
k1, k2, �

)
�

c in the time-exponential 
part of the solution. A similar analysis can be carried out for 3D problems.

Next, we present an example for finding analytical solutions to a 2D PD IBVP with Dir-
ichlet and Neumann BCs and also study the properties of the nonlocal factor A

(
k1, k2, �

)
 in 

2D for the class of singular kernels most commonly used in PD modeling.

(55)

L�

(
sin k1x sin k2y

)
= ∫

Hx

�
(||x̂ − x||

)(
sin k1x̂ sin k2ŷ − sin k1x sin k2y

)
dx̂dŷ

− �� sin k1x sin k2y = ∫
2π

0
∫

�

0

�(R)
[
sin

(
k1x + k1R cos �

)

sin
(
k2y + k2 R sin �

)
− sin k1x sink2y

]
RdRd�

− �� sin k1x sin k2y = ∫
2π

0
∫

�

0

�(R)

{
sin k1x sin k2y

[
cos

(
k1 R cos �

)
cos

(
k2 R sin �

)
− 1

]

+sin k1x cos k2y cos
(
k1 Rcos �

)
sin

(
k2 Rsin �

)

+cos k1x sin k2y sin
(
k1 R cos �

)
cos

(
k2 R sin �

)

+cos k1x cos k2y sin
(
k1 R cos �

)
sin

(
k2 R sin �

)}
RdRd�

− �� sin k1x sin k2y = sin k1x sin k2y{
∫

2π

0
∫

�

0

�(R)
[
cos

(
k1 R cos �

)
cos

(
k2 R sin �

)
− 1

]
RdRd� − ��

}
= 0

(56)A
(
k1, k2, �

)
=

��

�c
=

2��̂
k
− ��

−
(
k2
1
+ k2

2

) = −2�
�4

r4 ∫
r

0

�
(
�R

r

)
R
[
J0(R) − 1

]
dR
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5 � Example of the Analytical Solution for an Initial Boundary Value 
Peridynamic Problem in 2D

We consider peridynamic diffusion in 2D with mixed Dirichlet–Neumann boundary condi-
tions in a rectangular domain of length L and height H. The equation and corresponding Dir-
ichlet and Neumann BCs are:

with the kernel function that specifies the PD Laplacian operator to be of the form:

where the kernel function with n = 2 was given in Bobaru and Duangpanya [41]. The ker-
nel functions with n = 0, 1 are derived by following the same derivation process shown in 
Bobaru and Duangpanya [41]: equating the PD flux to the classical flux through a surface 
arising from a linear temperature profile.

To obtain the solution, we first find the solution to the classical diffusion equation subjected 
to the same boundary and initial conditions. This is (see [34]):

where,

The “wavenumbers” in this 2D case are km =
m�

L
 , and ks =

(
s−

1

2

)
�

H
 , where m and s are posi-

tive integers.
We then compute the PD nonlocal factor from Eq. (56) for the kernel type in Eq. (58):

where r = r(m, s) =

√(
km�

)2
+
(
ks�

)2 , and J0 is the zeroth-order Bessel function of the 
first kind. Similar to the 1D case, we observe that with the kernels of the form in Eq. (58), 
the PD analytical solution is obtained from the classical solution by replacing −

(
km

2 + ks
2
)
 

with −An

(
km, ks, �

)(
km

2 + ks
2
)
:

(57)

⎧⎪⎪⎨⎪⎪⎩

�T(x,y,t)

�t
= DL�T(x, y, t)

T(0, y, t) = T(L, y, t) = 0

T(x, 0, t) = 0;
�T(x,y,t)

�y

���y=H = 0

T(x, y, 0) = f (x, y)

(58)𝜇(|�|) =
{

2(4−n)

𝜋𝛿(4−n)
1

|�|n , |�| ≤ 𝛿

0, |�| > 𝛿
, and n = 0, 1, 2

(59)Tc(x, y, t) =

∞∑
s=1

∞∑
m=1

Bms sin
(
kmx

)
sin

(
ksy

)
exp

(
−
(
km

2 + ks
2
)
Dt

)

(60)Bms =
4

LH∫
L

0
∫

H

0

f (x, y)sin
(
kmx

)
sin

(
ksy

)
dydx

(61)

An

(
km, ks, �

)
= −2�

�4

r4

2(4 − n)

��(4−n) ∫
r

0

1(
�R

r

)n R
[
J0(R) − 1

]
dR

= −
4(4 − n)

r(4−n) ∫
r

0

J0(R) − 1

Rn−1
dR
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5.1 � Convergence to the Classical Solution and PD Boundary Conditions

In this section, we check the pointwise convergence behavior of the formula in Eq. (62) and 
whether it satisfies the initial and boundary conditions.

Since cos
(
km�x̂

)
cos

(
ks�ŷ

)
− 1 ≤ 0(see Eq.  (55)), for the kernel type in Eq.  (58), 

An

(
km, ks, 𝛿

)
= An(r) > 0 . Therefore, the exponential functions in Eq. (62) are between 0 

and 1, for any t ≥ 0 . Since Eq. (62) converges when the exponential functions are 0 or 1, 
the 2D PD solution converges.

With n = 0, 1 and 2 substituted in Eq. (61), we obtain:

where J1 is the first-order Bessel function of the first kind,1F2
 and 2F3

 are hypergeometric 
functions [42].

In the following, we check whether the solution converges to the classical solution when 
δ goes to zero ( An(r) needs to converge to 1 when δ or r goes to zero). In Fig. 8, we plot the 
nonlocal factors for various r values. The results show that An(r) converge to 1 when r goes 
to zero ( � goes to zero for any m and s.), and converge to 0 when r goes to infinity (m or s 
goes to infinity for any none zero � ). Figure 8 also indicates that the PD formulation cor-
responding to the kernel with n = 0, has a larger nonlocal effect compared to the other two, 
and the one with n = 2, has the smallest nonlocal effect.

For the analytical solutions in the form of infinite series (Eq. (62)), the terms with the 
small (m, s) values dominate, especially when time t gets larger. In Fig. 9, we plot the non-
local factors versus normalized horizon size, for three pairs of small m and s values. The 

(62)Tpd(x, y, t) =

∞∑
s=1

∞∑
m=1

Bms sin
(
kmx

)
sin

(
ksy

)
exp

(
−
(
km

2 + ks
2
)
An

(
km, ks, �

)
Dt

)

(63)An(r) =

⎧
⎪⎪⎨⎪⎪⎩

8

r3

�
r − 2J1(r)

�
, n = 0

12

r2

�
1−1F2

�
1

2
;1,

3

2
; −

r2

4

��
, n = 1

2F3

�
1, 1;2, 2, 2; −

r2

4

�
, n = 2

Fig. 8   Comparison of the 2D  
nonlocal factors for different peri- 
dynamic kernels. 
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term corresponding to the smallest m and s values has the lowest nonlocal effect. When 
time t gets larger, the ratio between the exponential function in the first term (m = 1, s = 1) 
of Eq. (62) and the one in any other term (m ≠ 1, s ≠ 1) grows exponentially. Therefore, the 
nonlocal effect is expected to decay during the heat transient diffusion process. A similar 
conclusion was noticed in the 1D case (see Sect. 3.4).

When t = 0, the PD solution is the same as the classical solution for any horizon size, 
and the initial condition ( T(x, y, 0) = f (x, y) ) is automatically satisfied. We now check the 
PD boundary conditions.

At the boundary x = 0, we have:

At the boundary x = L, we have:

At the boundary y = 0, we have:

At the boundary y = H, we have a Neumann boundary condition. We compute the cor-
responding partial derivative:

(64)T(0, y, t) = 0

(65)

T(−x, y, t) =

∞∑
s=1

∞∑
m=1

Bms sin
(
−kmx

)
sin

(
ksy

)
exp

(
−
(
km

2 + ks
2
)
An(r)Dt

)
= −T(x, y, t)

(66)T(L, y, t) = 0

(67)

T(2L − x, y, t) =

∞∑
s=1

∞∑
m=1

Bms sin
(
m�

L
(2L − x)

)
sin

(
ksy

)
exp

(
−
(
km

2 + ks
2
)
An(r)Dt

)
= −T(x, y, t)

(68)T(x, 0, t) = 0

(69)

T(x,−y, t) =

∞∑
s=1

∞∑
m=1

Bmssin
(
kmx

)
sin

(
−ksy

)
exp

(
−
(
km

2 + ks
2
)
An(r)Dt

)
= −T(x, y, t)

Fig. 9   The nonlocal factors ver-
sus normalized horizon size, for 
three pairs of relatively small m 
and s values: m = 1, s = 1; m = 1, 
s = 4; m = 4, s = 4
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When y = H, we get:

Therefore, the PD boundary conditions and initial condition are satisfied by the PD 
solution shown in Eq. (62).

5.2 � Example 3: Solution for a Particular 2D Diffusion Problem with Dirichlet–
Neumann Boundary Conditions

In this section, we consider a uniform initial condition T(x, y, 0) = 100 °C. The boundary 
conditions are shown in Eq. (57). Then,

The PD solution is:

where km =
m�

L
 , ks =

s�

2H
 , and An(r) is given in Eq. (63). r =

√(
km�

)2
+
(
ks�

)2 . Note, ks in 
Eq. (74) is different from the ones in other equations.

Let L = H = 10  cm, and D = 1.14 cm2/s. The PD solutions at three different times 
(t = 0.5 s, t = 4.0 s, and t = 8.0 s) are calculated and presented in Fig. 10. We used the first 
2500 terms in the PD series solution ( m and s = 1,2,…,50) for this example. In this figure, 
the classical solution and PD solutions with a relatively large horizon size � = 0.4L are 
shown. Matching with the prediction from Fig. 8, the PD formulation corresponding to the 
kernel with n = 0, has a larger nonlocal effect compared with the other two cases; the one 
with n = 2 has the smallest nonlocal effect.

To further reveal the dependence of the nonlocal effect on the selection of the PD ker-
nels, in Fig.  11, we calculate and show the temperature difference between the results 
from the PD solution with horizon size � = 0.4L and the classical solution ( � = 0 ). We 
notice that the initial heat flux singularities at the Dirichlet boundaries lead to relative large 

(70)
�T(x, y, t)

�y
=

∞∑
s=1

∞∑
m=1

ksBmssin
(
kmx

)
cos

(
ksy

)
exp

(
−
(
km

2 + ks
2
)
An(r)Dt

)

(71)
�T(x, y, t)

�y

||||y=H = 0

(72)

�T(x, y, t)

�y

����2H−y

=

∞�
s=1

∞�
m=1

ks Bms sin
�
kmx

�
cos

⎛
⎜⎜⎜⎝

�
s −

1

2

�
�

H
(2H − y)

⎞
⎟⎟⎟⎠
exp

�
−
�
km

2 + ks
2
�
An(r)Dt

�

=

∞�
s=1

∞�
m=1

ks Bms sin
�
kmx

�
cos

�
(2s − 1)� − ksy

�
exp

�
−
�
km

2 + ks
2
�
An(r)Dt

�

= −

∞�
s=1

∞�
m=1

ks Bms sin
�
kmx

�
cos

�
ksy

�
exp

�
−
�
km

2 + ks
2
�
An(r)Dt

�
= −

�T(x, y, t)

�y

����y

(73)Bms =
400

LH ∫
L

0
∫

H

0

sin
(
kmx

)
sin

(
ksy

)
dydx =

800

m(2s − 1)�2
(1 − (−1)m)

(74)Tpd(x, y, t) =

∞∑
s=1,3,5…

∞∑
m=1,3,5…

1600

ms�2
sin

(
kmx

)
sin

(
ksy

)
exp

(
−
(
km

2 + ks
2
)
An(r)Dt

)
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difference at time t = 0.5 s between the classical and the nonlocal models. The difference 
becomes smaller as time progresses.

In Fig. 12, we quantitatively show the effect of horizon size on the nonlocal effect. Only 
the PD formulation with n = 2 is considered in this figure. Two horizon sizes, 0.1L and 
0.01L , are used. For these two horizon sizes, the shapes of the temperature difference pro-
files are almost the same, for each time snapshot. However, the temperature differences 
between the PD solutions corresponding to the 0.01L horizon size and the classical solu-
tion are about 100 times smaller than those corresponding to 0.1L horizon size.

6 � Nonlocal Models Built Using Particular PD Nonlocal Factors

The PD analytical solutions obtained so far were based on a given kernel function. We  
have seen that those solutions can be built using corresponding solutions of the clas- 
sical model by simply inserting a PD nonlocal factor ( An(r) , where r = km� for 1D, and 

r =

√(
k
m
�
)2

+

(
k
s
�
)2 for 2D) obtained based on the given kernel. A natural question is:  

given an arbitrary nonlocal factor (that converges to the classical solution when � goes to 
zero), what is the corresponding kernel that is generated by it, and what are the properties 
of solutions obtained by using such a kernel?

Fig. 10   Example 3: the snapshots of temperature profiles at times t = 0.5 s, 4.0 s, and 8.0 s, from the classi-
cal solutions ( �∕L = 0 ) and PD solutions with horizon size � = 0.4L
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In this section, we answer these questions for a particular PD nonlocal factor in the 1D 
case: Ap(r) =

2(1−cos r)

r2
 , r = km� . This particular nonlocal factor was selected to converge to 

the classical solution when δ goes to zero and be simple.
We employ this particular nonlocal factor into the 1D examples discussed in Sect. 3. 

Figures 13 and 14 show the temperature profiles at three different times, obtained with this 
particular nonlocal factor, for Examples 1 and 2 (Sects. 3.3 and 3.4), respectively. Four dif-
ferent horizon sizes are considered for the PD solutions. The classical solution is treated 
as a special case (horizon equal to zero) of the peridynamic solutions. Interestingly, the 
computed temperature profiles exhibit a step-wise behavior, in a double-level hierarchical 
structure. These solutions track closely the classical solution. When L∕� is an integer, e.g., 
�

L
= 0.05 or 0.1 in Figs. 13 and 14, the widths of these steps match the corresponding hori-

zon size. When L∕� is not an integer, e.g. �
L
= 0.03 in Figs. 13 and 14, “sub-steps” appear 

within the main steps, and three-level hierarchical temperature profiles form. This type of 
dependencies on horizon size, domain geometry, and boundary conditions are also studied 
for elasticity problems in part II of this work [21], where an interesting behavior reminis-
cent of chaos in dynamical systems is noticed.

In spite of the step-wise behavior, the PD solutions obtained with this nonlocal factor do 
converge to the classical solution when the horizon size goes to zero, and the nonlocal effect 

Fig. 11   Example 3: contours of the temperature difference between PD solutions with horizon size � = 0.4L 
and the classical solutions, at times t = 0.5 s, 4.0 s, and 8.0 s
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Fig. 12   Example 3: contours of the temperature difference between PD solutions with n = 2 and the classi-
cal solutions, at times t = 0.5 s, 4.0 s, and 8.0 s. Two horizon sizes are used: 0.1L and 0.01L

Fig. 13   Example 1: temperature profiles at times t = 0.1 s, 4.0 s, and 8.0 s, from a PD model generated by 
the particular nonlocal factor Ap(r) =

2(1−cos r)

r2
 . Only left half of the bar is shown
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decays with time. Note that convergence of the infinite series solutions is slower with this non-
local factor (which leads to step-wise temperature profiles): we used the first 4000 terms in the 
series to plot the results shown in Figs. 13 and 14. If a smaller number of terms are employed, 
one would notice wavy profiles (Gibbs-like behavior) around the “steps” in the temperature 
profile because of the stronger influence of the sine and cosine factors.

One can use Eq. (21) to now find the kernel function corresponding to the particular nonlo-
cal factor. We show that the kernel corresponding to this particular nonlocal factor is:

where D denotes the Dirac delta function. Indeed, to verify this we use Eq. (21):

(75)𝜇 =

{
D(𝜉−𝛿)+D(𝜉+𝛿)

𝛿2
|𝜉| ≤ 𝛿

0 |𝜉| > 𝛿

(76)
A(r) =

��

�c
=

�� − �̂k

k2
m

=
−1

k2
m
∫

�

−�

D(� − �) +D(� + �)

�2
[cos

(
km�

)
− 1]d�

=
−1

r2 ∫
�

−�

[D(� − �) +D(� + �)][cos
(
km�

)
− 1]d� =

2(1 − cosr)

r2

Fig. 14   Example 2: temperature profiles at times t = 0.1 s, 4.0 s and 8.0 s, from a PD solution generated by 
the particular nonlocal factor A

p
(r) =

2(1−cosr)

r2
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This kernel function has singularities at the horizon’s edges and is zero elsewhere. The 
physical implication of this kernel is that each point is influenced only by points that are 
located exactly at the � distance, and is not affected by other neighboring points located inside 
the horizon region. The unusual behavior observed in Figs. 13 and 14 is the result of this type 
of nonlocal interactions.

Remark: These observations lead to the possibility of generating specific kernels for spe-
cific PD models of material behavior. Indeed, one could find a PD nonlocal factor (therefore 
find a specific � ) by obtaining a best-fit of the analytical PD solution to a certain measured 
material response. This would then generate a corresponding kernel function, or constitu-
tive relationship, that should be the best fit to that material behavior. This type of calibration 
method for PD models [43, 44] will be investigated in the future.

7 � Concluding Remarks

It was generally assumed that finding exact solutions to the integro-differential equations gen-
erated by peridynamic (nonlocal) models would be, if not an impossible task, certainly a more 
complex proposition than finding solutions for corresponding classical partial-differential 
equations. Here, we dispelled this and showed that the separation of variable technique can be 
used for these nonlocal models in a very similar way to its use for finding exact solutions to 
PDE-based initial-boundary-value problems for transient diffusion.

We demonstrated how to directly obtain formal analytical solutions of peridynamic (PD) 
equations for transient diffusion problems (in 1D and 2D) based on existing series solutions 
of the corresponding classical (PDE-based) formulation by inserting a nonlocal factor, named 
here the “PD (nonlocal) factor,” in the time-dependent part of the local series solution. The 
nonlocal factor depends on the horizon size and converges to one as the horizon size goes to 
zero, recovering the classical form of the solution for the corresponding PDE-based model.

We presented computing PD analytical solutions, for example, problems in 1D and 2D 
with Dirichlet and Neumann boundary conditions. We showed that, as time goes to infinity, 
the nonlocal solution converges, pointwise, to the classical one. In a particular case, we were 
able to show uniform convergence of the series solution using the Weierstrass test. We also 
showed that one can start with a particular peridynamic factor and discover new PD kernels 
with corresponding solutions that exhibit interesting horizon-scale structures.

The analytical peridynamic solutions derived here and their relations to the corresponding 
classical solutions are useful in selecting the horizon size in PD models as well as verifying 
computational methods for obtaining approximate PD solutions on simple domains.

Appendix 1. Separation of Variables for Classical Diffusion Initial 
and Boundary Value Problems

In this appendix, we briefly review the method of separation of variables for finding solutions 
to classical diffusion IBVPs, based on [22].

The 1D linear classical diffusion equation is:

(77)
�u(x, t)

�t
= D∇2u(x, t)
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We assume a solution in the form of the product u(x, t) = X(x)T(t) and substitute in 
Eq. (77):

where the single and double primes denote the first and the second order ordinary differen-
tiation. Diving Eq. (78) by XT leads to:

Since the left-hand side of Eq. (79) is a function of t  only, and the right-hand side is 
a function of x only, we conclude that:

The minus sign in the constant comes from an educated guess, since a plus sign leads 
to an unreasonable form for the solution.

According to Eq. (80), a solution for the partial differential Eq. (77) must be a solu-
tion to the following pair of the ordinary differential equations (ODE):

The general solution for the ODEs is then:

where E,F,G,H, I, J , and k are constants to be determined. We then write the formal solu-
tion as the superposition of the cases where k is zero and nonzero:

where C1,C2,C3,C4 , and k are all constants to be determined from initial and boundary 
conditions for a specific IBVP. Substituting BCs in Eq. (85) usually determines all possible 
k values and some of the other constants. Then, the solution is expressed as the superstition 
for all possible k ’s (usually includes a series if there are infinite number of k’s). The initial 
conditions determine the remaining constants (see [22] for examples).

The 2D linear classical diffusion equation is:

We assume a solution in the form of the product u(x, t) = X(x)Y(y)T(t) and substitute 
in (86):

(78)X(x)T�(t) = DT(t)X��(x)

(79)
1

D

T�(t)

T(t)
=

X��(x)

X(x)

(80)
1

D

T�(t)

T(t)
=

X��(x)

X(x)
= constant = −k2

(81)T�(t) + Dk2T(t) = 0

(82)X��(x) + k2X(x) = 0

(83)T(t) =

{
E k = 0

Fexp
(
−Dk2t

)
k ≠ 0

(84)X(x) =

{
Gx + H k = 0

I sin kx + J cos kx k ≠ 0

(85)u(x, t) = XT|k=0 + XT|k≠0 = C1 + C2x +
(
C3 sin kx + C4 cos kx

)
exp

(
−Dk2t

)

(86)
�u(x, y, t)

�t
= D∇2u(x, y, t)
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Dividing by XYT leads to:

And

Similar to the 1D case, only the negative signs for � and � are used since the positive 
signs lead to unphysical solution forms.

Equations (88) and (89) give the three ODEs:

and the general solution for these ODEs are:

where E,F,G,H, I, J , and k are constants to be determined. We then write the formal solu-
tion as the superposition of all possibilities for zero and nonzero �:

Similar to the 1D case, k1 , k2 , and other constants are determined from the initial and 
boundary conditions for a specific IBVP.

Appendix 2. Proof of Uniform Convergence for PD Solutions

In this appendix, we discuss uniform convergence of the formal PD solutions discussed in 
the paper. For the formal solutions shown in Eq. (27), we have:

(87)X(x)T�(t) = DT(t)
[
X��(x) + Y��(y)

]

(88)
1

D

T�(t)

T(t)
=

X��(x)

X(x)
+

Y��(y)

Y(y)
= constant = � = −

(
k2
1
+ k2

2

)

(89)
X��(x)

X(x)
= −

Y��(y)

Y(y)
−
(
k2
1
+ k2

2

)
= constant = � = −k2

1

(90)T�(t) + D(k2
1
+ k2

2
)T(t) = 0

(91)X��(x) + k2
1
X(x) = 0

(92)Y��(y) + k2
2
Y(y) = 0

(93)T(t) =

{
E � = 0

Fexp(−D� t) � ≠ 0

(94)X(x) =

{
Gx + H k1 = 0

I sin k1x + J cos k1x k1 ≠ 0

(95)Y(y) =

{
My + N k2 = 0

P sin k2y + Q cos k2y k2 ≠ 0

(96)

u(x, y, t) = XYT|�=0 + XYT|�≠0
= XYT|k1=0,k2=0 + XYT|k1=0,k2≠0
+ XYT|k1≠0,k2=0 + XYT|k1≠0,k2≠0



331Journal of Peridynamics and Nonlocal Modeling (2022) 4:303–335	

1 3

Here, we used the fact that the sequence Bm is bounded from above by the integral of the 
absolute value of initial condition function g, which we assume is finite. C is a positive constant.

For n = 2, we have,

When m → ∞ , we have rm → ∞ , and,

Therefore, we can write:

The ratio test shows that the series 
∑∞

m=1
Nm is a convergent series of positive num-

bers. Now using Weierstrass M-test (see [22], page 875) in conjunction with the ine-
quality (Eq. (97)) and the convergence of the series 

∑∞

m=1
Nm , we conclude that the 

series 
∑∞

m=1
Bm sin kmx exp

�
−DAn

�
rm
�
km

2t
�
 converges uniformly.

Interestingly, following the same procedure as above, we get lim
m→∞

Nm+1

Nm

= 1 , for the PD 
solutions with n = 0 or 1, so the ratio test for these cases is inconclusive, they may or 
may not converge uniformly.

An example of a case for which we do get convergence of the PD series solution is, for 
instance, when the initial condition function g is a constant, gc . Indeed, if g(x) = gc we have:

which leads to

(97)
|||Bm sin kmx exp

(
−DAn

(
rm
)
km

2t
)||| ≤ Cexp

(
−DAn

(
rm
)
km

2t
) ≡ Nm

(98)A2

(
rm
)
km

2 =
2km

�

[
Si
(
rm
)
+

cos
(
rm
)
− 1

rm

]

lim
m→∞

Si
(
rm
)
= Si(∞), a positive constant

(99)lim
m→∞

cos
(
rm
)
− 1

rm
= 0

(100)

lim
m→∞

Nm+1

Nm

= lim
m→∞

Cexp
(
−DAn

(
rm+1

)
km+1

2t
)

Cexp
(
−DAn

(
rm
)
km

2t
)

= lim
m→∞

exp
{
−Dt

2km+1

𝛿

[
Si
(
rm+1

)
+

cos(rm+1)−1
rm+1

]}

exp
{
−Dt

2km

𝛿

[
Si
(
rm
)
+

cos(rm)−1
rm

]}

= exp
[
−
2Dt

𝛿
Si(∞)

(
km+1 − km

)]

= exp
[
−
2Dt

𝛿
Si(∞)

𝜋

L

]
< 1

(101)Bm = 2∫
L

0

gcsin kmx dx =
2gc

km
(1 − cos m �)

(102)Bm =

⎧⎪⎨⎪⎩

4gc

km
m = 1, 3, 5…

0m = 1, 3, 5…
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and when n = 0, we have

where A0

(
rm
)
=

6

[
1−

sin(rm)
rm

]

r2
m

 . As 4 gc is a constant, we only need to consider the convergence 
of the series

Substituting the expression of A0

(
rm
)
 , we get:

Since when m → ∞ , Em → exp
(
−

6Dt

�2

)
 and km → ∞ , we have

We only need to prove that the series 
∑

m=1,3,5…

sin kmx

km
 converges. We apply Dirichlet’s 

test to check the convergence of this series. Dirichlet’s test states that if series 
{
am

}
 and {

bm
}
 satisfy: (1)am ≥ am+1 ; (2) lim

m→∞
am = 0 ; (3)��

∑∞

m=1
bm

�� ≤ M , where M is constant, then 
the series 

∑∞

m=1
ambm converges. Let us denote am =

1

km
 and bm = sin kmx . Requirements (1) 

and (2) are easy to prove as follows:

For Requirement (3), we have:

As shown above, the three requirements of Dirichlet’s test for 
∑

m=1,3,5…

sin kmx

km
 are all 

satisfied for any x ( x ∈ (0, L) ). Therefore, the PD solutions in Eq. (103) converge.

(103)Tpd(x, t) =
∑

m=1,3,5…

4gc

km
sin kmx exp

(
−DA0

(
rm
)
k2
m
t
)

(104)Sm =
sin kmx

km
exp

(
−DA0

(
rm
)
k2
m
t
)
=

sin kmx

km
Em

(105)Em = exp

(
−D

6

�2

(
1 −

sin kmx

rm

)
t

)

(106)lim
m→∞

Sm = lim
m→∞

sin kmx

km
Em = 0

(107)lim
m→∞

Em = exp
(
−
6Dt

�2

)

(108)
1

km
=

L

m𝜋
>

L

(m + 1)𝜋
=

1

km+1

(109)lim
m→∞

L

m�
= 0

(110)

�N

m=1,3,5…
sin kmx =

�N

m=1,3,5…
sin

m�x

L
=

sin
�x

L

∑N

m=1,3,5…
sin

m�x

L

sin
�x

L

=

∑N

m=1,3,5…

�
cos

(m−1)�x

L
− cos

(m+1)�x

L

�

2sin
�x

L

=
1 − cos

(N+1)�x

L

2sin
�x

L

⇒

����
�N

m=1,3,5…
sin kmx

���� ≤
1 + 1

2 sin
�x

L

=
1

sin
�x

L
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The uniform convergence of PD solutions with n = 0 or 1 remains to be further investi-
gated in the future.

Appendix 3. Simplification of  ı in 2D

To simplify �� in 2D (Eq. (54)), we will transform the double integral in the 2D nonlocal  
factor, ��

(
k1, k2

)
 , into a single integral, by noticing that ��

(
k1, k2

)
 is a symmetric func- 

tion of r = r
�
k1, k2

�
=

��
k1�

�2
+
�
k2�

�2
= �

√
−�c . Therefore, we can write ��

(
k1, k2

)
  

as ��(r).
Let k1� = r cos � , and k2� = r sin � , we have Eq. (54) as:

To prove that ��
(
k1, k2

)
 is a symmetric function of 

√(
k1�

)2
+
(
k2�

)2 , we only need to 
show that ��(r, �) is independent of � . Let x̂ = R cos � , and ŷ = R sin � . We have:

Since,

and, similarly,

we have,

Therefore, ��(r, �) is independent of �.

(111)�� = ∫
2π

0
∫

�

0

�(R)
[
cos

(
r

�
cos � R cos �

)
cos

(
r

�
sin � R sin �

)
− 1

]
RdRd�

(112)

��(r, �) = ∫
2�

0
∫

�

0

�(R)R
[
cos

(
rR

�
cos � cos �

)
cos

(
rR

�
sin � sin �

)
− 1

]
dRd�

= ∫
2�

0
∫

r

0

�(R)R
[(

cos
(
rR

�
cos(� + �)

)
+ cos

(
rR

�
cos(� − �)

))
∕2 − 1

]
dRd�

(113)

∫
2�

0

cos
(
rR

�
cos(� + �)

)
d� = ∫

�+2�

�

cos
(
rR

�
cos �

)
d�

= ∫
2�

�

cos
(
rR

�
cos �

)
d� + ∫

�+2�

2�

cos
(
rR

�
cos �

)
d�

= ∫
2�

�

cos
(
rR

�
cos �

)
d� + ∫

�

0

cos
(
rR

�
cos(� + 2�)

)
d�

= ∫
2�

�

cos
(
rR

�
cos �

)
d� + ∫

�

0

cos
(
rR

�
cos �

)
d�

= ∫
2�

0

cos
(
rR

�
cos �

)
d�

(114)∫
2�

0

cos
(
rR

�
cos(� − �)

)
d� = ∫

2�

0

cos
(
rR

�
cos �

)
d�

(115)��(r, �) = ��(r) = ��(r, 0) = ∫
2�

0
∫

�

0

�(R)R
[
cos

(
rR

�
cos �

)
− 1

]
dRd�
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We further simplify ��(r):

where, J0 is the zeroth-order Bessel function of the first kind. A change of variable w =
�R

r
 

results in:

where �̂k
= ∫ ∞

0
�(w)wJ0

(√
k2
1
+ k2

2
w

)
dw is the Hankel transform of order zero for � eval-

uated at 
�

k2
1
+ k2

2
=
√
−�c , and �� = ∫ 2π

0
∫ �

0
�(w)w dwd� is the integral of the kernel 

function.
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