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Abstract

In this paper, we construct formal analytical solutions for peridynamic models of transient
diffusion using the separation of variables technique. We show that the infinite series non-
local solutions can be obtained directly from corresponding classical solutions by inserting
“peridynamic (nonlocal) factors” in the time-exponential part of the solution. We find ana-
lytical expressions for the nonlocal factor. In 2D rectangular domains, these can be written
in terms of Bessel functions. The nonlocal factor depends on the horizon size and con-
verges to value one as the horizon size goes to zero, recovering the classical form of the
solution for the corresponding partial-differential equations. We also show that, as time
goes to infinity, the nonlocal solution converges to the classical one, for a fixed horizon.
We consider examples of transient diffusion problems with Dirichlet and Neumann bound-
ary conditions. Their analytical solutions are compared with the corresponding classical
solutions. While most of the analytical solutions we present here are formal, for a number
of cases, we are able to prove uniform convergence of the series solutions. This is the first
contribution that presents analytical (formal) solutions to peridynamic transient diffusion
problems in 1D or 2D finite domains by separation of variables, with arbitrary boundary
conditions, and shows their connections to the corresponding solutions to the classical/
local problem.

Keywords Peridynamics - Separation of variables - Analytical solutions - Nonlocal factor -
Diffusion - Transient heat transfer

P< Ziguang Chen
zchen @hust.edu.cn

P4 Siavash Jafarzadeh
sia.jafarzadeh @ gmail.com

P< Florin Bobaru
fbobaru2 @unl.edu
Department of Engineering Mechanics, School of Aerospace Engineering, Huazhong University

of Science and Technology, Wuhan 430074, China

Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, 1037 Luoyu
Road, Wuhan 430074, China

Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln,
NE 68588-0526, USA

@ Springer


http://orcid.org/0000-0002-5773-9469
http://crossmark.crossref.org/dialog/?doi=10.1007/s42102-022-00080-7&domain=pdf

304 Journal of Peridynamics and Nonlocal Modeling (2022) 4:303-335

1 Introduction

Two decades ago, Silling introduced the peridynamic (PD) theory, a spatial integral-type
alternative of the classical continuum mechanics [1]. Allowing displacement discontinui-
ties in the theory, the PD model can treat fracture and damage as natural parts of its solu-
tion process. A fundamental generalization of the original peridynamic theory beyond
pair-wise interaction between material points was published in 2007 [2]. Peridynamics is
particularly well suited for dealing with cracks and damage, especially in situations where
the crack paths are not known in advance. PD models have been successfully applied to
simulate dynamic fracture [3, 4], corrosion damage and stress corrosion cracking [5-7],
thermally driven cracks [8], multiphase transport [9], etc.

The PD formulation is based on nonlocal interactions between material points in a con-
tinuum. The interaction between a material point and its neighbors extends beyond the
nearest neighbors, over a region called “the horizon.” The relation between peridynamics
and the conventional differential formulation and convergence of the numerical computa-
tion of peridynamics itself have been analyzed mathematically [10-12]. Convergence in
PD can be defined in several ways: convergence in terms of the horizon size (§) going to
zero, with the limit being the classical, PDE-based formulation of the problem [12, 13],
and numerical convergence for a fixed horizon size, in terms of increasing the number of
nodes inside the horizon region [14]. The numerical PD approximation will converge to the
exact nonlocal PD solution for the given §, when the number of nodes inside the horizon
region goes to infinity.

It has long been thought that obtaining analytical solutions for peridynamic models is
more difficult than for corresponding PDE-based models, since the PD formulations lead
to integro-differential equations for which analytical solutions are not readily available. For
special types of peridynamic problems, analytical solutions have been reported in the liter-
ature. However, we found these solutions to be limited to problems set in infinite domains:
static and dynamic elastic response [15-18], propagation of solitary waves [19] and of
defects [20] in 1D infinite bars. We have not found analytical solutions to PD problems
posed in a finite domain in the literature.

In this paper, we show how to obtain formal analytical solutions of PD equations for
transient diffusion problems in finite 1D and 2D domains using the method of separation
of variables. In a few cases, we prove uniform convergence of solutions. The methodology
follows closely that used in obtaining series solutions for the classical, PDE-based models
of transient diffusion. The solutions to the PD equations satisfy the initial conditions and
the local boundary conditions (and a particular extension to nonlocal boundary conditions)
posed for the corresponding classical formulations of diffusion problems.

The paper is organized as follows: in Sects. 2 and 4, we show how the separation of var-
iables method can be used to generate analytical solutions to linear peridynamic transient
diffusion problems in finite one- and two-dimensional domains; Sects. 3 and 5 discuss con-
vergence properties of solutions obtained for 1D and 2D problems, respectively, with Dir-
ichlet and Neumann boundary conditions; we pay special attention to the nonlocal factor
and its role on convergence properties, and a detailed proof of uniform convergence for a
particular case is included in Appendix 2; in Sect. 6, we answer the question: given a non-
local factor, what is the kernel generated by it and what is the corresponding solution to the
transient diffusion problem defined by such a kernel? Sect. 7 contains concluding remarks.

In part IT of this work [21], we show how to obtain analytical solutions to peridynamic
models for elastodynamic problems.
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2 Analytical Solutions for 1D Linear Peridynamic Transient Diffusion
in a Finite Domain

2.1 Separation of Variables for 1D Peridynamic Diffusion

The 1D linear PD transient diffusion equation can be expressed as:

ou(x, t)

~— = DLsu(x1) (1)

where u(x, ) is the unknown function (e.g., temperature for heat transfer problems, con-
centration for mass diffusion) of position x, and time 7. D is the material diffusivity, and £;
denotes the PD Laplacian operator, defined by:

Lsu(x, 1) = / u(|x—x|) [u(?c\, 1) — u(x, t)]dic\ 2)
H

X

an integral over a finite size neighborhood of x: H, (the *“horizon region”), which, in 1D,
is a line segment centered at x of length 26. We refer to 6 as the horizon size or simply
the horizon. y is the kernel function with u = pu(|£]), that has the support H,; therefore,
u(|€)) = 0 for|&| > 8, where € =% — x.

Inspired by the derivation of formal analytical solutions for problems described by par-
tial differential equations (PDEs) [22], we use the method of separation of variables to find
analytical solutions for Eq. (1), subjected to initial and (local) boundary conditions. We seek,
therefore, a solution to Eq. (1) in the form of a product:

u(x,t) = Xx)T(2) 3)
Substituting Eq. (3) into Eq. (1) gives:
X@)T' (1) = DT()L5X(x) “)

where the prime denotes ordinary differentiation with respect to ¢. Dividing Eq. (4) by
X(x)T(z) leads to:

1T@ _ LX)
DTG X(x)

&)
Since the left-hand side of Eq. (5) is a function of # only, and the right-hand side is a func-

tion of x only, we conclude that:

1T _ LX@)
DT®H X

= constant in x and 7 = y* 6)

where the superscript 6 in y® denotes the dependency on . As a result, a solution for the
integro-differential equation (Eq. (1)) must be a solution to the following pair of equations,
an ordinary differential equation (ODE) and an integral equation:

T () — Dy’T@®) =0 )

L5X(x) - y’Xx) =0 ®)
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The general solution for the ODE (Eq. (7)) is:

_ E  Lify’=0
T = { Fexp(Dy?r) ,ify? #0 ©)

with E and F undetermined constants.

In the case of the integral equation (Eq. (8)), we search for a solution X with a form similar
to that obtained when using separation of variables for the corresponding classical (local) dif-
fusion PDE [22]. Then, y? is found by imposing that the integral equation (Eq. (8)) is satisfied
for this X.

For this purpose, we briefly review the form of the solutions for the 1D linear classical dif-
fusion equation, the local version of the nonlocal form in Eq. (1):

du(x,t)

- = DV%u(x, 1) (10)

Separation of variables for Eq. (10) leads to:

Cley — E we=0
T = { Fexp(Dy“t) w© # 0 an

crn Gx+H we=0
X<x)_{lsinkx+]coskxw”;é0 (12)

where G, H, I, J, and k are undetermined constants, and y¢ = —k? (see Appendix 1 and
[22] for derivation details). The superscript ¢ in T¢, X¢, and y° stands for the “classical”
solution.

We first show that X(x) = Gx + H satisfies Eq. (8) for w® = 0. Indeed:

LsX(x) = /H u(]® = x]) [X(R) — X(0)]dx

X

= [ (R-+)6E-x)6 )

2
- / nlehGeds =0

For nonzero y?, we assume the same form for the PD solution X(x) as that of the classical
solution shown in Eq. (12):

X(x) =1 sin kx + J cos kx (14)

We substitute Eq. (14) in Eq. (8) and solve for y%:

/ u(J® = x|)[(Z sin K&+ J cos k&) — (I sin kx + J cos kx)|d% — w° (I sin kx + J cos kx) =
H,\
6

/ u(JEDIU sin k(x + &) + J cos k(x + &) — (I sin kx + J cos kx)]dE — y/‘s(l sin kx + J cos kx) =
-5

) )
a sinkx+Jcoskx>{ / u(IEDcos(kEE — / u(|¢|>d¢—uﬁ} -0
5 )

15)
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We introduce the following simplifying notations: f° = f ‘iéy(|§|)d§, = ﬁ( Lk ) =

2
J 2 n(EDcos(k&)dE. Observe that /i, is the Fourier cosine transform of i computed at %
Then y? is obtained from Eq. (15) as:

vl =0, - (16)

As a result, we have the following forms for functions T and X for the PD solution:

_ E vl =0
T = { Fexp(Dy’t) w® #0 a7
_ Gx+H wl=0
X<x)_{lsinkx+]coskxq/5;é0 (1%)

We then write the “ansatz” solution of Eq. (1), u(x, t), as a superposition of these func-
tions for zero and nonzero y*:

ulx,t)=C; + Cx + (C3 sin kx + C, cos kx)exp(Dy/‘st) (19)

where C,,C,, C3, and C, are undetermined constants.

Similar to the procedure for classical PDEs [22], analytical solutions for specific linear
PD diffusion initial and boundary value problems (IBVPs) can be obtained by applying
first the boundary conditions and then the initial conditions to Eq. (19).

However, we observe that the formal solution in Eq. (19) is identical to the solution for
the classical problem, which, from Eqgs. (11) and (12), is:

u’(x, 1) = Cy + Cyx + (Cj sin kx + C, cos kx)exp(—Dk*t) (20)
with the only difference being the replacement of the y¢ = —k? factor with y?.
Therefore, by defining the “peridynamic factor” or the “nonlocal factor”:

5 5 _ o
"4 B — by
Ak,(S:—:

ko) ="% ="

2y

The formal analytical solution of the peridynamic diffusion IBVP can be written directly
Jfrom the solution of the corresponding classical (PDE-based) diffusion IBVP (Eq. (20)) by
replacing w*© = —k* with Ak, 8)y* in the time-exponential part of the solution. Note that
the further the PD factor is from value one, the stronger the nonlocal effect will be.

Remark 1: While in a classical BVP for a PDE, boundary conditions are used to define
a well-posed problem; for nonlocal equations, conditions need to be defined over a “thick”
region (of thickness &) at the domain’s frontier. These conditions are called nonlocal
boundary conditions, or volume-constraints (see [23]). In many PD applications however,
enforcing local boundary conditions is desired/needed since physical measurements are
usually available only at the surface, not through a layer inside the body. Such conditions
are described by local BCs. For these reasons, we will solve PD problems with associated
local boundary conditions, and particular types of extending those local conditions over a
fictitious layer of thickness equal to the horizon size, to generate corresponding nonlocal
BCs or volume constraints. Various methods for applying local BCs to PD models have
also been discussed in, for example, Aksoylu and Gazonas [24], D’Elia and Yu [25], Foss
et al. [26], and Zhao et al. [27].
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Remark 2: Given the convergence of PD solutions [28] to the classical solution as the non-
locality vanishes (6 goes to zero), one expects that a legitimate PD kernel function y, satisfies
}Sl_% A(k, 6) = 1(see Eq. (21)).

In what follows, we present examples for finding the analytical solution for several
PD IBVPs. We also study the properties of the nonlocal factor A(k, 6) for a class of ker-
nels often used in PD applications. This includes the kernel obtained using a constructive
approach (as shown in Chen and Bobaru [29] for diffusion problems, and Chen et al. [30]
for elasticity), as well as two other types of PD kernels often used in the literature (see,
e.g., [31-33].

3 Examples of Initial and Boundary Value Peridynamic Problems in 1D

First, we consider a nonlocal heat conduction IBVP (with Dirichlet boundary conditions)
in a bar of length L, with given initial temperature g(x) along the bar, and zero temperature
imposed at the ends of the bar:

D = DL T(x, 1)
T(x,0)=g(x),0<x<L (22)
TO,H=TL,1)=0,t>0

where T'(x, t) denotes the temperature at x and time . We assume further that the kernel
function (which specifies the PD Laplace operator) in this particular case has the form [29]:

o o 161 <8
u(lgh = 5“"6 |4|‘g|’> 5 ,withn =0, 1, or 2. (23)

In order to obtain the formal PD analytical solution for this problem, we first write the solu-
tion for the corresponding local problem:

% = DV2T(x,1)
T(x,0)=g(x),0<x<L (24)
TO,5)=TL,t)=0,t>0

The exact solution to this local IBVP can be written as [34]:

T.(x,1) = Z B, sin k,,x exp(—Dk,,’t) (25)
m=1
where B, =2/ gg(x)sin k,x dx, and k,, = '"T” with m being a positive integer. Note that
for other types of boundary conditions, the “wavenumber” k,, takes different forms (see
Sects. 3.3 and 3.4).
The PD nonlocal factor for this case is:
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8 n, —p°
Ak, ) = =~ Ha, — P

m>

R K2

1L [P3B=-n1
YA |§|n[cos(km(§) — 1dg (26)

1 —_—
_ _B-n) cos k,, 5n§ ldf
(km5)2 - &l

From Eq. (26), we observe that using kernels given by Eq. (23) leads to
A(km,é) :An(rm) where r,, =k, 6, and the subscript n in A, refers to the specific n
value in the employed kernel. By replacing k,,> with A, (rm)km2 in the classical solution
in Eq. (25), we arrive at:

Too(x,t) = ). B,, sin k,.x exp(=DA, (r,,)k,’) 27

m=1

The formula in Eq. (27) satisfies the PD problem in Eq. (22). Convergence of these
PD series solutions is discussed in Appendix 2.

In what follows, we will focus on a few points related to convergence properties for
the series solution and the nonlocal factor for the specific kernels shown in Eq. (23),
assuming the necessary properties for initial and boundary conditions for calculations to
be valid. In particular, we will investigate:

(a) Convergence to the classical solution when 6 goes to zero, which is equivalent to
showing that A, (r,,) converges to 1 when & goes to zero, and.
(b) Satisfaction of the initial and boundary conditions.

We examine the points for different n values in Eq. (27). In particular, when n=0, we
have

3 . 6[1 _ sinr(rm):l
Ao(r,) = ——/_l(cos P = 1)df = ——" = (28)

When n=1, we have,

1 ~ ;
2 cosr,x—1 4|Ci(r,,) —=In(r,,) — 7y
Ai(r,) = —2/ 21 A0 2(’”) ] (29)
rm2J 1 x| .
where Ci is the cosine integral function and Ci(x) = y + In(x) + / gwdz. y is the Euler-

z
Mascheroni constant, and

n

7 = lim[Ci()) - In(@)] = lim <(Z %) - ln(n)) ~ 0.577215664901537  (30)

k=1

When n=2, we have
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. cos(r,,)—1
~ 21Si(r, ) + —=—
1 Ucosr i—1 [ ( m) , ]

—— m /\= m 31

As(ry) )2/_1 = — (31)

( T m

where Si is the sine integral function, and Si(x) = / gsgdz.

3.1 Pointwise Convergence to the Classical Solution when 6 Goes to Zero

It is obvious that Ao(’m) converges to 1 when 6 goes to zero for any m value, and that it
converges to 0 when m goes to infinity for any 6 > 0. In Fig. 1, we plot the nonlocal factors
for different r,, = k,,6 values. This figure reveals that, similar to A, (rm), A, (rm) and A, (rm)
also approach 1 when 6 goes to zero, for any m value, and decay to 0 when m goes to infin-
ity for any 6 > 0. As expected, Fig. 1 also shows that the PD formulation corresponding
to the kernel with n=0 has a stronger nonlocal effect, while n=2 has the weakest, depart-
ing the least from the classical solution, because for a fixed r,, value, the nonlocal factor
departs more from 1 when n=0 than when n=2.

To better understand the dependence of the nonlocal factor, A, (r,,), on m and 6, respec-
tively, in Fig. 2, we plot the nonlocal factors with varying 6 /L for different m values. This
figure, again, shows that A, (rm) values are between 0 and 1. In Fig. 3, we compare the non-
local factors Ag(r,,), A, (r,,), and A,(r,,). The further these factors are from value one, the
stronger the nonlocal effect.

3.2 Initial and Boundary Conditions

Note that when =0, this solution is the same as the classical solution, so the PD solution
for =0 matches the given initial condition.

The imposition of local boundary conditions in PD can take different forms. For
example, to impose the local Dirichlet boundary condition (see Eq. (22)) in the PD
model, three possible options are shown in Fig. 4: mirror-type (temperature field in the
nonlocal boundary domain is related by mirror symmetry to the corresponding domain
in the bar, see Fig. 4A), naive-type (temperature field in the nonlocal boundary layer is

Fig. 1 The nonlocal factor versus 1.2
parameter r,,, for different peri-
dynamic kernels
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Fig.2 The nonlocal factor (for various terms (i) in the series) versus the normalized nonlocal size 6/L, for

different types of peridynamic kernels

constant and equal to the value of the local Dirichlet condition, see Fig. 4B), and inner-
type (temperature field in a finite layer inside the domain is fixed to be the local bound-
ary temperature, see Fig. 4C). Rigorous descriptions for imposing various local BCs
into nonlocal models are described in, for example, [24, 35-37].

Fig.3 The nonlocal factor for
different peridynamic kernels as
a function of horizon size, for
different terms m in the series

An(rm)

0.0

0.0

0.8
oL
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Fig.4 Three types of imposing
Dirichlet boundary conditions in
a 1D PD model: A mirror-type, B
naive-type, and C inner-type

While there is a single problem defined by the PD equation and the local boundary condi-
tions we aim to enforce, the different implementations of such conditions mentioned in Fig. 4
correspond, in general, to slightly different nonlocal problems: the PD equation and differ-
ent associated nonlocal boundary conditions (or “volume constraints”). The formal solution
obtained in Eq. (27), is just a particular way to satisfy the imposed initial and local boundary
conditions. We now observe the behavior of the PD analytical solution for the problem defined
by Eq. (22) in the nonlocal layer normally associated with the volume constraints of a nonlo-
cal problem.

On the left side boundary of the 1D bar, we have (see Eq. (24)):

Tog(=x.1) = )" B, sin k,(—x)exp(=DA,(r,,)k,’t) = —Tp(x, ) (32)
m=1

and,

T,40,n=0 (33)
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On the right side, since 2Lk,, = 2mx, we have:

TpyQL=x,1) =Y B, sin k, 2L — x)exp(=DA,(r,,)k,’t) = =Tpq(x,H)  (34)

m=1
and,
Tpd(L, H=0 35)

Therefore, the Dirichlet boundary conditions are automatically satisfied, and the nonlo-
cal boundary conditions are of the mirror-type.

Note that the constant profile for the influence function that defines the kernel is only
one option, and other profiles are possible [29, 38]. In this paper, we focus on the constant
profile only, and describe the formal, simple way to construct analytical peridynamic solu-
tions similar to the way series solutions are built using the separation of variables method
for classical PDEs. For other choices of the influence function profile, one can follow the
same procedure to construct formal solutions and check if the solution satisfies the initial
and boundary conditions. We also note that the approach discussed so far works only for a
constant horizon size used over the domain. If the horizon size changes over the domain,
then the nonlocal factor depends on location as well and separation of variables approach
may no longer work.

We apply this strategy of constructing analytical solutions to PD equations for tran-
sient diffusion problems with local boundary conditions in the examples below. The first
example has Dirichlet boundary conditions, while the second one has Dirichlet-Neumann
boundary conditions. For the first case, we give the detailed results for the n=2 selection,
but also compare with results from n=0 and n=1. For the second case, we only show
results for the PD formulation with a kernel that uses n=2.

3.3 Example 1: Solution for a 1D Diffusion Problem with Dirichlet Boundary
Conditions

Consider a rod of length L=10 cm with an initial temperature 100 °C. The left and right
sides of this rod are maintained at a temperature of 0 °C. The thermal diffusivity is D=1.14
cm?/s. Using these values in Eq. (27), we obtain the analytical PD solution as follows:

[se]
T, 1) = Z 4&sin k,x exp(—DA, (7, )k, ’t) (36)
m=135... M7
where 6, =100 °C.

Figure 5 shows the temperature profiles at three different times for the n = 2 case. Four
different horizon sizes are considered for the PD solution. The first 100 terms of the PD
series solution are used for this plot. The classical solution is treated as a special case (hori-
zon equal to zero) of the peridynamic solutions. Figure 5 reveals that even for a horizon
size-bar length ratio of 0.2, the PD analytical solution is close to the classical solution. Ini-
tially, there are heat flux singularities at the ends of the bar. These singularities disappear
instantly since the classical solution at any time after the initial time is infinitely smooth.
For a larger horizon size, for instance, 0.2L, the sharp gradient close to the left end is “aver-
aged” over a larger domain. This explains the relative large difference at time r=0.1 s.
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Fig.5 Example 1: temperature profiles at time r=0.1 s, t=4.0 s, and r=8.0 s, from analytical PD solutions
(for n=2) with four different ratios between the horizon sizes and the bar length: 0, 0.01, 0.1, and 0.2

Figure 6 compares the temperature profiles at three different times for PD formula-
tions with different n values. Due to the symmetry of the solutions, only half of their
profiles (x ranging from O to 5 cm) are shown in these plots. Similar to what we saw in
Fig. 1, the PD formulation corresponding to the kernel with n =0 has a stronger nonlo-
cal effect compared with the other two; the one with n=2, has the weakest nonlocal
effect.

An interesting observation about the solution curve at t=0.1 s corresponding to
n=0, is that the solution appears to be piecewise linear, and the extent of each linear
piece is the same as the length of the horizon size. As time progresses, smoothness of
the nonlocal temperature profile increases (see Fig. 6). Moreover, the ratio between
the exponential function in any term with m > 1 in Eq. (36) and the term with m =1
decays exponentially in time. Therefore, the nonlocal effect is expected to decay in
time, meaning that the nonlocal analytical solution gets closer and closer to the exact
classical solution as time marches on. We shall see in part II of this work [21] that this
property is characteristic only to diffusion processes, and that in elastic wave propaga-
tion problems, nonlocality’s influence does not necessarily decrease in time.
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Fig.6 Example 1: comparison, in time, of the solutions from PD formulations with different kernel (differ-
ent n values)

3.4 Example 2: Solution for a 1D Diffusion Problem with Dirichlet and Neumann
Boundary Conditions

Consider a rod of length L = m cm with an initial temperature 0 °C [39]. The left side of
this rod is maintained at a temperature of 20 °C. At the right end, a heat-flux -3 WD/cm? is
imposed (D is the thermal diffusivity). The thermal diffusivity is D=1.14 cm?%s. With the
classical solution available from Bobaru and Duangpanya [39], according to our discussion
in the beginning of Sect. 3, the analytical PD solution is:

Tp.0)=20+3x+ Y C,sink,xexp(-DA,(r,)k,) 37)
m=135...
where, given the Dirichlet-Neumann boundary conditions, k,, = %

C =
m 2 m2 2 m

m_2<40+6LCOS@_£i mL 40) (38)
L

Note that the nonlocal factor A, (r,,) is different from the one with Dirichlet-Dirichlet
boundary conditions, since k,, is different. We check to see if the boundary conditions are

satisfied. On the left side boundary (Dirichlet conditions), we have:
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Tp(—x,0)=20==3x= ' C,sink,xexp(=DA,(r,)k,’t) = 20 — Tyy(x.1)
m=1,35...
(39)
and,
T,4(0,1) =20 (40)

On the right side boundary, we have a Neumann condition. To check this, we compute
the spatial derivative:

aT 4(x,1) had
M 3y Z k,, C,y cos k,.x exp(—DA, (r,,)k, ) 41)
ox m=135...
Then:
oT ,(x, 1) S OT ,(x, 1)
2 3= Yk, G, cos kyxexp(=DA, (1, )k, 1) =3~ —C
0x 2L—x m=1,3,5... 0x x
(42)
and,
OT 4(x. 1)
pd
U 3
ox “43)
x=L

This shows that the PD analytical solution satisfies the given local Dirichlet and Neu-
mann boundary conditions.

Figure 7 shows the temperature profiles at three different times, for this heat transient
diffusion problem with Dirichlet-Neumann boundary condition. Only the PD formulation
with n=2 is considered in this case. Four different horizon sizes are considered. The clas-
sical solution is treated as a limiting case of the peridynamic solutions (by substituting
r,, = 0 into Eq. (37)). Figure 7 reveals that even with horizon size to bar-length ratio of
0.4, the PD analytical solution is close to the classical solution. Initially, there is a heat flux
singularity at the left end of the bar. The singularity disappears instantly since the classical
solution at any time after the initial time is infinitely smooth.

4 Analytical Solutions for 2D Transient Peridynamic Diffusion

In this section, we extend the approach introduced in the previous sections to construct
analytical PD solutions for 2D transient heat/mass transfer. Extensions to 3D problems
would follow a similar pathway.

The linear PD transient diffusion equation in 2D (or 3D) can be expressed as:

ou(x, t)
ot

= DL;u(x, 1) (44)

where the PD Laplacian operator:

Egu(x, t) = / M('f—xD [M(.;C\, t) - u(x, l)]dv:e (45)

x
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Fig.7 Example 2: temperature profiles at times r=0.1 s, 4.0 s, and 8.0 s, from PD analytical solutions
(n=2) with four different ratios between the horizon sizes and the bar length: 0, 0.02, 0.2, and 0.4

is the area/volume integral over H,. Boldfaced letters denote vector-valued quantities, e.g.,

X =

is the position vector in 2D. The neighborhood H, in 2D, is a disk centered at x

with the radius §. dV; is the volume of node X covered by the horizon of node x. 4 is the
kernel function with y = u(|&|), that has the support H,, therefore u(|&]) = 0 for |&| > 6,

where & = X — x is the bond vector.

Following the method of separation of variables in 2D, we seek a solution in the follow-

ing form:
u(x,y, 1) = SCx, y)T(1) = X(x)Y(»)T(2)
Substituting Eq. (46) into Eq. (44) gives:
S(r T (1) = DT()L5S(x,y)
and dividing Eq. (47) by ST yields:

1T @ _ L5S@.y)
DT® Sy

= constant in x, y, ¢ (depends on 6) = 1//5

(46)

47

(48)
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As aresult, the solution to the integro-differential equation Eq. (44) is the solution to the
following pair of equations, an ODE and an integral equation:

T (1) — Dy’T@#) =0 (49)

L5S(x,y) —w’S(x,y) =0 (50)

The ODE in Eq. (49) is identical to that from the 1D case, yielding solution for T as
given in Eq. (27).

For the integral equation Eq. (50), we choose S(x, y) to be the same as the spatial solu-
tions obtained when using separation of variables for the corresponding classical (local)
diffusion PDE (see Appendix 1). Then y? is found from requiring that Eq. (50) is satisfied
for this S(x, y).

For the 2D classical diffusion equation, separation of variables leads to the following
formal solutions (see Appendix 1):

com a, pe =0
ro= { arexp(Dyt) ye #0 GD

(a3 + a4x) (as + agy) y©=0
S (ry) = XOYS0) = (a7 sin kjx + ag'cos kyx) (ag sin kyy + ajg cos kyy) 1//‘: #0&k #0&k, #0
(as + agy) (ag sin kx + ag cos k;x) weE0& Kk £0&k, =0
(a3 + ayx)(ag sin kyy + ayg cos kyy) Y #0&k =0&k, £0
(52)
where a,,a,, ... ,a,y, and k, and k, are constants, and y¢ = —(k% + k;)

We first show that S(x,y) = (a3 + ax) (a5 + agy) satisfies the integral Eq. (50) for
5 — 0
W =0:

L;S(x,y) = / u(|® = x|) (a3 + aD)(as + asd) — (a3 + a,x)(as + agy)| dxdy
H

X

= / 1(|% = x|) [a4a5% + azaed + a,a63y — azasx — asagy — azagxy|didy
H

x

m 6
= / / u(R) [a4a5(R cos @) + asaq(R sin @)
0oJ o

+ayag (xR sin @ + YR cos ¢ + R? sin ¢ cos (p)]Rde(p =0
(53)
In the case of w? # 0, one can show that all of the corresponding S(x,y) terms in
Eq. (52) satisfy the PD integral (Eq. (50)) only if:

2n 6 52 r SR
vyl = / / u(R) [cos(kl R cos (p)cos(k2 R sin (p) - 1]Rde<p = 27[—2/ u(—)R[JO(R) - I]dR
0J o0 r 0 r

o
=2 J k2 + k2 )—1]d =2xp, — p°
”/OM(W)W[()(\/I oW w=2xjy — f

(54)
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where r = (k16)2 + (k26)2 = 64/—w¢, J, is the zeroth-order Bessel function of the first

kind, and therefore, /i, = [ 80 Hw)wJ,, <\ /k? + k%w dw is the Hankel transform of order

zero for y evaluated at \/k? + k3 = /—w°, and p° = 3“ / g,u(w)wdwd(p is the integral of
the kernel function. Note that for radially symmetric function such as y, Hankel transform
of order zero is equivalent to the 2D Fourier transform [40]. As a result, w? has a similar
relationship with g in 2D as it does in 1D (see Eq. (16)). Details for the derivation of
Eq. (54) are given in Appendix 3.

For conciseness, we only show that the terms in Eq. (52) satisfy the PD integral (Eq. (50))
for one of them. The process for the rest of the terms is similar. Let S(x, y) = sin k,x sin k,y,
then:

Ls(sin kyx sin kyy) = / (% — x|) (sin k, % sin k3 — sin k,x sin k,y)d¥dy
H

X

2n 8
— w0 sin kyx sin kyy = / / H(R) [sin (klx + kR cos (p)
0 0

sin (kzy +k, R sin (p) —sin k;x sinkzy]Rde(p

2n 8
— O sin kyx sin kyy = / / u(R)
0 0

{sin kyx sin kyy [cos (k1 R cos (p) cos (k2 R sin (p) - 1]
+sin k;x cos k,y cos (k; Reos @)sin (k, Rsin @)

+cos k,x sin k,y sin (kl R cos (p)cos (k2 R sin (p)

+cos kx cos kyy sin (k; R cos @)sin (k, R sin ¢) } RdRdp

— w° sin k,x sin k,y = sin k,x sin k,y

2n 13
{/ / u(R)[cos (k; R cos @)cos (k, R sin @) — 1]RdRde — y/é} =0
0oJo
(55)
which gives y° as expressed in Eq. (54).The PD nonlocal factor for 2D transient diffusion
is then:
) 2 T _ o 4 r
v T — P s / SR
Alk d,8) = = 28 5,0 ,u(—)RJ(R)—l dR
( 172 ) we —(k]2+k§) “J r [0 ] (56)
One can therefore find the analytical solution for a 2D peridynamic (nonlocal) diffusion
IBVP by directly using the analytical solution for the corresponding 2D classical (PDE-based)
diffusion IBVP and replacing y° = —(k% + k%) with A(kl, k,, 6)1//0 in the time-exponential
part of the solution. A similar analysis can be carried out for 3D problems.
Next, we present an example for finding analytical solutions to a 2D PD IBVP with Dir-
ichlet and Neumann BCs and also study the properties of the nonlocal factor A(kl, ky, 5) in
2D for the class of singular kernels most commonly used in PD modeling.
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5 Example of the Analytical Solution for an Initial Boundary Value
Peridynamic Problem in 2D

We consider peridynamic diffusion in 2D with mixed Dirichlet-Neumann boundary condi-
tions in a rectangular domain of length L and height H. The equation and corresponding Dir-
ichlet and Neumann BCs are:

T3 = DLT(x, y, 1)
TO,y,t)=T(L,y,t)=0

T(r,0.0)= 05522 =0 57
y=
T(x,y,0) =f(x,y)
with the kernel function that specifies the PD Laplacian operator to be of the form:
24-n) 1 |§| <5
p(lE) = =1 P andn=0,1,2 58
0, HED (58)

where the kernel function with n=2 was given in Bobaru and Duangpanya [41]. The ker-
nel functions with n=0, 1 are derived by following the same derivation process shown in
Bobaru and Duangpanya [41]: equating the PD flux to the classical flux through a surface
arising from a linear temperature profile.

To obtain the solution, we first find the solution to the classical diffusion equation subjected
to the same boundary and initial conditions. This is (see [34]):

T.(x,y,0) = Z Z B, sin(k,x) sin(k,y) exp(—(k,* + k,>)Dt) (59)
s=1 m=1
where,
4 [t
B, = — / / f(x, y)sin (k,,x)sin (k,y)dydx (60)
LH J o/ o
Nz
The “wavenumbers” in this 2D case are k,, = '"—L” and k, = # where m and s are posi-

tive integers.
‘We then compute the PD nonlocal factor from Eq. (56) for the kernel type in Eq. (58):

5424 —n) 1

A, (k. k. 8) = =2z R[Jy(R) — 1]dR

G st <_R>
g (61)
44 -n) ["JyR) -1
) o Rv1
where r = r(m, s) = (km5)2 + (kb.é)z, and J, is the zeroth-order Bessel function of the

first kind. Similar to the 1D case, we observe that with the kernels of the form in Eq. (58),
the PD analytical solution is obtained from the classical solution by replacing — (km2 + ksz)
with —A, (k. k.. 8) (k,,” + k;):

m> s
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, sin(k,x)sin(k,y)exp(—(k,,> + k)A, (k.. k., 8)Dt)  (62)

Tpd(x’yv t) 2

||M8

5.1 Convergence to the Classical Solution and PD Boundary Conditions

In this section, we check the pointwise convergence behavior of the formula in Eq. (62) and
whether it satisfies the initial and boundary conditions.
Since cos(k,,6%)cos(k,65) — 1 < O(see Eq. (55)), for the kernel type in Eq. (58),
(km,k 5) A, (r) > 0. Therefore, the exponential functions in Eq. (62) are between 0
and 1, for any ¢ > 0. Since Eq. (62) converges when the exponential functions are O or 1,
the 2D PD solution converges.

With n=0, 1 and 2 substituted in Eq. (61), we obtain:

= (r=24,(1), n=0
A =42(1-F,(L1,3,-Z n=1
AN =197 ol =3 ) ) = (63)
2
Fi(112.2.2-5), n=2

where J| is the first-order Bessel function of the first kind, F, and ,F; are hypergeometric
functions [42].

In the following, we check whether the solution converges to the classical solution when
o goes to zero (A, (r) needs to converge to 1 when 6 or r goes to zero). In Fig. 8, we plot the
nonlocal factors for various r values. The results show that A, () converge to 1 when r goes
to zero (6 goes to zero for any m and s.), and converge to O when r goes to infinity (m or s
goes to infinity for any none zero 6). Figure 8 also indicates that the PD formulation cor-
responding to the kernel with n=0, has a larger nonlocal effect compared to the other two,
and the one with n=2, has the smallest nonlocal effect.

For the analytical solutions in the form of infinite series (Eq. (62)), the terms with the
small (m, s) values dominate, especially when time ¢ gets larger. In Fig. 9, we plot the non-
local factors versus normalized horizon size, for three pairs of small m and s values. The

Fig.8 Comparison of the 2D 1.2
nonlocal factors for different peri-
dynamic kernels. 1.0 4
2 2 ) n=
k,6)" + (k6
( m ) ( s ) 08 n=1
= n=
~
<§ 0.6
0.4
0.2
0.0 T : e T
0 10 20 30 40 50
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Fig.9 The nonlocal factors ver- 1.0 =
sus normalized horizon size, for
three pairs of relatively small m
and s values: m=1,s=1; m=1, 0.8
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/;\ 0.6
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i
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term corresponding to the smallest m and s values has the lowest nonlocal effect. When
time 7 gets larger, the ratio between the exponential function in the first term (m=1, s=1)
of Eq. (62) and the one in any other term (m # 1, s # 1) grows exponentially. Therefore, the
nonlocal effect is expected to decay during the heat transient diffusion process. A similar
conclusion was noticed in the 1D case (see Sect. 3.4).

When =0, the PD solution is the same as the classical solution for any horizon size,
and the initial condition (T'(x,y,0) = f(x,y)) is automatically satisfied. We now check the
PD boundary conditions.

At the boundary x=0, we have:

T0,y,n=0 (64)

T(—x,y,1) 2 Z B, sin km)c)sin(kxy)exp(—(km2 + ksz)An(r)Dt) =-Tx,y,1)

s=1 m=

(65)
At the boundary x=L, we have:
T(L,y,t)=0 (66)
TQRL—-x,y,1) = 2 z:BmY 51n<—(2L x))sm( y)exp(— (km2 + k52)An(r)Dt) =-T(x,y,1)
s=1 m=1
(67)
At the boundary y=0, we have:
T(x,0,5)=0 (68)
T, =y,0) = Y D Bysin(k,x)sin(=ky)exp(—(k,” +k)A,()Dr) = =T(x,, 1)
s=1 m=1
(69)

At the boundary y=H, we have a Neumann boundary condition. We compute the cor-
responding partial derivative:
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aT(X y’ t) Z Z kamvsm k )C Cos(ksy)exp(_(kmz + ksz)An(r)Dt) (70)

s=1 m=
When y=H, we get:
0T (x,y,1) -0 a1
T |y (71)
oT(x,y,1) o s"%)”
0_’% =)' Y k, B, sin(k,x)cos g QH =) exp(=(k,> +k,2)A,(r)Dt)
y 2H-y

@

m=

Z k; B, sm k X cos((2s - D —k )exp(—(km2 +k52)A,,(r)Dt)

1 m=1

--3

5=

@
l

T (x,y,1)
dy

MS

k, B, sm k )c)cos(ksy)exp(—(km2 + ksz)An(r)Dz) =-

s

m=1

y
(72)

Therefore, the PD boundary conditions and initial condition are satisfied by the PD
solution shown in Eq. (62).

5.2 Example 3: Solution for a Particular 2D Diffusion Problem with Dirichlet-
Neumann Boundary Conditions

In this section, we consider a uniform initial condition 7'(x,y,0) = 100 °C. The boundary
conditions are shown in Eq. (57). Then,

400/ / sin (k,,x)sin (k,y)dydx = (2s 800 “Dn ——— (1= (=1)") (73)

The PD solution is:

Tog(x,y,1) = Z Z 1600, Zsin(k,,x)sin (k,y)exp (= (k,* + k*)A,(NDt) (74)
s=135... m=135

where k, = 2%, k, = £ and A,(r) is given in Eq. (63). r = \/ (k) + (k,6)". Note, k, in
Eq. (74) is different from the ones in other equations.

Let L=H=10 cm, and D=1.14 cm?s. The PD solutions at three different times
(t=0.5s,t=4.0 s, and t=8.0 s) are calculated and presented in Fig. 10. We used the first
2500 terms in the PD series solution (m and s = 1,2,...,50) for this example. In this figure,
the classical solution and PD solutions with a relatively large horizon size § = 0.4L are
shown. Matching with the prediction from Fig. 8§, the PD formulation corresponding to the
kernel with n=0, has a larger nonlocal effect compared with the other two cases; the one
with n=2 has the smallest nonlocal effect.

To further reveal the dependence of the nonlocal effect on the selection of the PD ker-
nels, in Fig. 11, we calculate and show the temperature difference between the results
from the PD solution with horizon size § = 0.4L and the classical solution (6 = 0). We
notice that the initial heat flux singularities at the Dirichlet boundaries lead to relative large
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Fig. 10 Example 3: the snapshots of temperature profiles at times t=0.5 s, 4.0 s, and 8.0 s, from the classi-
cal solutions (/L = 0) and PD solutions with horizon size 6 = 0.4L

difference at time r=0.5 s between the classical and the nonlocal models. The difference
becomes smaller as time progresses.

In Fig. 12, we quantitatively show the effect of horizon size on the nonlocal effect. Only
the PD formulation with n=2 is considered in this figure. Two horizon sizes, 0.1L and
0.01L, are used. For these two horizon sizes, the shapes of the temperature difference pro-
files are almost the same, for each time snapshot. However, the temperature differences
between the PD solutions corresponding to the 0.01L horizon size and the classical solu-
tion are about 100 times smaller than those corresponding to 0.1L horizon size.

6 Nonlocal Models Built Using Particular PD Nonlocal Factors

The PD analytical solutions obtained so far were based on a given kernel function. We
have seen that those solutions can be built using corresponding solutions of the clas-
sical model by simply inserting a PD nonlocal factor (A,(r), where r = k,,6 for 1D, and

=1/ (k,6 )2 + (ks5 )2 for 2D) obtained based on the given kernel. A natural question is:
given an arbitrary nonlocal factor (that converges to the classical solution when 6 goes to
zero), what is the corresponding kernel that is generated by it, and what are the properties
of solutions obtained by using such a kernel?
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Fig. 11 Example 3: contours of the temperature difference between PD solutions with horizon size § = 0.4L
and the classical solutions, at times r=0.5s,4.0 s, and 8.0 s

In this section, we answer these questions for a particular PD nonlocal factor in the 1D
case: A,(r) = @, r = k,,6. This particular nonlocal factor was selected to converge to
the classical solution when & goes to zero and be simple.

We employ this particular nonlocal factor into the 1D examples discussed in Sect. 3.
Figures 13 and 14 show the temperature profiles at three different times, obtained with this
particular nonlocal factor, for Examples 1 and 2 (Sects. 3.3 and 3.4), respectively. Four dif-
ferent horizon sizes are considered for the PD solutions. The classical solution is treated
as a special case (horizon equal to zero) of the peridynamic solutions. Interestingly, the
computed temperature profiles exhibit a step-wise behavior, in a double-level hierarchical
structure. These solutions track closely the classical solution. When L/4 is an integer, e.g.,
? = 0.05or 0.1 in Figs. 13 and 14, the widths of these steps match the corresponding hori-
zon size. When L/§ is not an integer, e.g. ? = 0.03 in Figs. 13 and 14, “sub-steps” appear
within the main steps, and three-level hierarchical temperature profiles form. This type of
dependencies on horizon size, domain geometry, and boundary conditions are also studied
for elasticity problems in part II of this work [21], where an interesting behavior reminis-
cent of chaos in dynamical systems is noticed.

In spite of the step-wise behavior, the PD solutions obtained with this nonlocal factor do
converge to the classical solution when the horizon size goes to zero, and the nonlocal effect
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o/L=0.01

Fig. 12 Example 3: contours of the temperature difference between PD solutions with n=2 and the classi-
cal solutions, at times t=0.5s, 4.0 s, and 8.0 s. Two horizon sizes are used: 0.1L and 0.01L
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Fig. 13 Example 1: temperature profiles at times r=0.1 s, 4.0 s, and 8.0 s, from a PD model generated by
the particular nonlocal factor A p() = @ Only left half of the bar is shown
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Fig. 14 Example 2: temperature profiles at times 1=0.1 s, 4.0 s and 8.0 s, from a PD solution generated by
the particular nonlocal factor A,,(r) = @

decays with time. Note that convergence of the infinite series solutions is slower with this non-
local factor (which leads to step-wise temperature profiles): we used the first 4000 terms in the
series to plot the results shown in Figs. 13 and 14. If a smaller number of terms are employed,
one would notice wavy profiles (Gibbs-like behavior) around the “steps” in the temperature
profile because of the stronger influence of the sine and cosine factors.

One can use Eq. (21) to now find the kernel function corresponding to the particular nonlo-
cal factor. We show that the kernel corresponding to this particular nonlocal factor is:

D(&—6)+D(E4+6) HE
U= L N (75)
0 gl >6
where D denotes the Dirac delta function. Indeed, to verify this we use Eq. (21):
s s _ 1 s
A el T D¢ —-6)+ D +9)
A(r) = v k—;n = E/—(S 5 [cos (k,,&) — 1]d&
76)

(1 — cosr)

)
_ 2
—r21 / [D(E - 8) + D + 8)l[cos (k,&) — 11dé =
-5

2
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This kernel function has singularities at the horizon’s edges and is zero elsewhere. The
physical implication of this kernel is that each point is influenced only by points that are
located exactly at the 6 distance, and is not affected by other neighboring points located inside
the horizon region. The unusual behavior observed in Figs. 13 and 14 is the result of this type
of nonlocal interactions.

Remark: These observations lead to the possibility of generating specific kernels for spe-
cific PD models of material behavior. Indeed, one could find a PD nonlocal factor (therefore
find a specific 6) by obtaining a best-fit of the analytical PD solution to a certain measured
material response. This would then generate a corresponding kernel function, or constitu-
tive relationship, that should be the best fit to that material behavior. This type of calibration
method for PD models [43, 44] will be investigated in the future.

7 Concluding Remarks

It was generally assumed that finding exact solutions to the integro-differential equations gen-
erated by peridynamic (nonlocal) models would be, if not an impossible task, certainly a more
complex proposition than finding solutions for corresponding classical partial-differential
equations. Here, we dispelled this and showed that the separation of variable technique can be
used for these nonlocal models in a very similar way to its use for finding exact solutions to
PDE-based initial-boundary-value problems for transient diffusion.

We demonstrated how to directly obtain formal analytical solutions of peridynamic (PD)
equations for transient diffusion problems (in 1D and 2D) based on existing series solutions
of the corresponding classical (PDE-based) formulation by inserting a nonlocal factor, named
here the “PD (nonlocal) factor,” in the time-dependent part of the local series solution. The
nonlocal factor depends on the horizon size and converges to one as the horizon size goes to
zero, recovering the classical form of the solution for the corresponding PDE-based model.

We presented computing PD analytical solutions, for example, problems in 1D and 2D
with Dirichlet and Neumann boundary conditions. We showed that, as time goes to infinity,
the nonlocal solution converges, pointwise, to the classical one. In a particular case, we were
able to show uniform convergence of the series solution using the Weierstrass test. We also
showed that one can start with a particular peridynamic factor and discover new PD kernels
with corresponding solutions that exhibit interesting horizon-scale structures.

The analytical peridynamic solutions derived here and their relations to the corresponding
classical solutions are useful in selecting the horizon size in PD models as well as verifying
computational methods for obtaining approximate PD solutions on simple domains.

Appendix 1. Separation of Variables for Classical Diffusion Initial
and Boundary Value Problems

In this appendix, we briefly review the method of separation of variables for finding solutions
to classical diffusion IBVPs, based on [22].
The 1D linear classical diffusion equation is:

ou(x, 1)
ot

= DV%u(x, 1) (77)
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We assume a solution in the form of the product u(x, r) = X(x)T(¢) and substitute in
Eq. (77):

X@T (1) = DT@OX" (x) (78)

where the single and double primes denote the first and the second order ordinary differen-
tiation. Diving Eq. (78) by XT leads to:

1T@0 _ X"()
DTG ~ X&)

(79)
Since the left-hand side of Eq. (79) is a function of ¢ only, and the right-hand side is
a function of x only, we conclude that:

1T@0 X"
DT ~ Xx)

= constant = —k? (80)

The minus sign in the constant comes from an educated guess, since a plus sign leads
to an unreasonable form for the solution.

According to Eq. (80), a solution for the partial differential Eq. (77) must be a solu-
tion to the following pair of the ordinary differential equations (ODE):

T'(t) + DK*T(t) = 0 (81)

X"(x) + kX(x) =0 (82)

The general solution for the ODEs is then:

E k=0
o= { Fexp(=Dk) k#0 83)
Gx+H k=0
X(x)z{lsinkx+Jcoskxk;é0 (84)

where E, F,G,H,1,J, and k are constants to be determined. We then write the formal solu-
tion as the superposition of the cases where k is zero and nonzero:

u(x, 1) = XT;_g + XTl;9 = C; + Cox + (C; sin kx + C, cos kx)exp(—Dk*t) (85)

where C,, C,, C;, Cy, and k are all constants to be determined from initial and boundary
conditions for a specific IBVP. Substituting BCs in Eq. (85) usually determines all possible
k values and some of the other constants. Then, the solution is expressed as the superstition
for all possible k’s (usually includes a series if there are infinite number of k’s). The initial
conditions determine the remaining constants (see [22] for examples).

The 2D linear classical diffusion equation is:

ou(x,y,t)

= DV2u(x,y, 1) (86)

We assume a solution in the form of the product u(x, f) = X(x)Y(y)T(¢) and substitute
in (86):
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X@T' (1) = DTO[X"(0) + Y" ()] (87)

Dividing by XYT leads to:

170 _ X'  Y'O) _ (122
DTw X Y@ Ccomuant=w= (Kl +43) (88)
And
X' _ Y (kf + k%) = constant = ¢ = —kf (89)

X YY)

Similar to the 1D case, only the negative signs for y and ¢ are used since the positive
signs lead to unphysical solution forms.
Equations (88) and (89) give the three ODEs:

T'() + DUk + k)T(@) =0 (90)
X"(x) + K X(x) =0 91)
Y'3) +kY(3) =0 92)

and the general solution for these ODEs are:

_ E w =0
0= { Fexp(~Dyt) y # 0 ©3)

_ Gx+H k=0
X = { I sin kyx+J cos kx k; # 0 94)

_ My + N ky=0
Y0= { P sin kyy + Q cos kyy k, # 0 (95)

where E, F,G,H,1,J, and k are constants to be determined. We then write the formal solu-
tion as the superposition of all possibilities for zero and nonzero y:

u(x,y,1) = XYTl, o+ XYT], 40
= XYTli 04,20 + XYTIg —04,20 (96)
+ XYTi 204,=0 + XY T 208,20

Similar to the 1D case, k;, k,, and other constants are determined from the initial and
boundary conditions for a specific IBVP.

Appendix 2. Proof of Uniform Convergence for PD Solutions

In this appendix, we discuss uniform convergence of the formal PD solutions discussed in
the paper. For the formal solutions shown in Eq. (27), we have:
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B,, sin k,x exp(—DAn(rm)kmzt)‘ < Cexp(-DA,(r,,)k,’t) =N,, 97

Here, we used the fact that the sequence B,, is bounded from above by the integral of the
absolute value of initial condition function g, which we assume is finite. C is a positive constant.
For n=2, we have,

5 r

m

Ay(r,)k,” = 2 [Sl( )+ M] (98)

When m — oo, we have r,, = o0, and,

lim Si(rm) = Si(c0), a positive constant
m—oo

_cos(r,)—1
lim — 2~

m—oo
rﬂl

=0 99)

Therefore, we can write:

lim Nm+l . Cexp(_DAn(rm+l)km+12t)

im = lim

mow N, — moc Cexp(—DA,(r,, )kmzt)

eXp{ —DpHus1 ’”*‘ [Sl Cos(rm“) ]}

lim e
noe exp{—DtT"‘ [Si(rm) + —ws(:m)_ ] } (100)

m

exp[—%Si(m)(ka - km)]
- exp[—%Sl(Oo)%] <1

The ratio test shows that the series Z:zl N,, is a convergent series of positive num-
bers. Now using Weierstrass M-test (see [22], page 875) in conjunction with the ine-
quality (Eq. (97)) and the convergence of the series Z  N,,» we conclude that the

series > B,, sin k,x exp(—DA,(r,, )k, ’t) converges un1formly
Interestingly, following the same procedure as above, we get lim 1% = 1, for the PD

m—oo Ny

solutions with n=0 or 1, so the ratio test for these cases is inconclusive, they may or
may not converge uniformly.

An example of a case for which we do get convergence of the PD series solution is, for
instance, when the initial condition function g is a constant, g,.. Indeed, if g(x) = g, we have:

L 28.
B,=2{ gsink,xdx=—(1-cosmr) (101)
0 km
which leads to
Em=1,35...
B,=1" (102)
om=1,3,5...
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and when n=0, we have

48 .
Tpa(x.1) = Zm=1,3,5.“ k—m”sm k,x exp(—DAy(r,, ) k2 1t) (103)
6[1_«"("",)
where A, (rm) = r—, As 4g.1s a constant, we only need to consider the convergence
of the series
sin k,,x ) sin k,,x
S, = - exp(—=DAy(r, )k.t) = ——E, (104)

m
m km

Substituting the expression of A, (rm), we get:

6 sin k,,x
E, =exp _D6_2 1- p t (105)
m

. 6Dt
Since whenm = o0, E,, — exp(—ﬁ—z) and k,, — oo, we have

. . sink,x
lim §,, = lim k—Em =0 (106)
. 6Dt
rlggoEm =exp(—5—2> 107)

sinkkmx converges. We apply Dirichlet’s

m

test to check the convergence of this series. Dirichlet’s test states that if series {am} and
{b } satisfy: (Da,, > a,,.; (2) llma =0; (3)| Zm_ | < M, where M is constant, then

the series Y
and (2) are easy to prove as follows:

We only need to prove that the series ), _ 55

, COnverges. Let us denote a,, = k— and b,, = sin k,,x. Requirements (1)

m

m=1 m

1 L S L 1
k, mr_ (m+ Dz ko, (108)
. L
(S}
For Requirement (3), we have:
. ax oN . MAX
N . N . max Smﬂf Em=1,3,5...smT7r
Z sin k,,x = Z sin—- = —
m=135... m=135... L sin™
L
N (m=Dyzx (m+l)zrx> (N+D)rx
COS——— — CO8"——— — cog WHDzx
_ 2m=l,3,5.4 ( L _ 1 Ccos L (110)
2sm— 25in”7x
1+1 1
’Z sm k,,x = —
m=13,5 2 sm— sin=
L
As shown above, the three requirements of Dirichlet’s test for 37 _ 55 M AT are all

m

satisfied for any x (x € (0, L)). Therefore, the PD solutions in Eq. (103) converge.
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The uniform convergence of PD solutions with n=0 or 1 remains to be further investi-
gated in the future.
Appendix 3. Simplification of Q% in 2D

To simplify yw? in 2D (Eq. (54)), we will transform the double integral in the 2D nonlocal
factor, w? (k. k,), into a single integral, by noticing that w°(k;,k,) is a symmetric func-

tion of r = r(k;, k) = (klé) (k2 = 6/—w*. Therefore, we can write y? (kj, k)
as o (r).
Letk;6 = r cos 0, and k,6 = r sin 6, we have Eq. (54) as:

2n
y = / / u(R) [cos(%cos 0 R cos w)cos(ésin 0 R sin <p> - I]Rdeq) (111)
0J o

To prove that y° (kl, kz) is a symmetric function of (k15)2 + (kzé)z, we only need to
show that w®(r, 6) is independent of §. Let X = R cos @, and 3 = R sin ¢. We have:

2z 8
wo(r,0) = / / u(R)R [cos(%Rcos @ cos 0>cos<%Rsin @ sin 0) - l]de(p
oJ o

= /Z”/;ﬂ(R)RKcos(%Rcos((o + «9)) + cos(%cos(q) - 9)) )/2 - 1]de(p
(112)
Since,

2z R 6+2n R
/ cos(—cos((p + 9))d(p = / cos(—cos (p)d(p
0 o 0 o
2r R 0+2r1 R
cos(—cos (p)d(p + cos(—cos (p)d(p
0 o 0

2z

/ cos(rgcos go)d(p / cos(%cos((p+27r)>d(p
=/ (:05(ﬂ )d(p+/ cos(ﬁcos (p)dgo
6 é
g rR
— d
/0 cos( 5 ) 17
(113)
and, similarly,
2 2
/ cos(%cos((p — 9)>d(p = / cos(%cos (p)d(p (114)
0 0

we have,

- R
we(r,0) = wl(r) = wi(r,0) = / / y(R)R[cos(Ecos go) - l]de(p (115)
0oJ o

Therefore, y°(r, ) is independent of 6.

@ Springer



334 Journal of Peridynamics and Nonlocal Modeling (2022) 4:303-335

We further simplify y®(r):

wo(r) = / / R[cos(R cos @) — 1]dRdg = 271'—/ )R[JO(R) —1]drR

(116)

where, J,, is the zeroth-order Bessel function of the first kind. A change of variable w = 5—rR

results in:
é
wo(r) = zn/OM(w)w [J()(\ [k + k§w> - l]dw = 2xfiy — p° (117)

where fij, = f So uwywl, <\ /k2 + k2w> dw is the Hankel transform of order zero for u eval-
vated at 1/k? + k3 = y/—y°, and p° = / oHwW)w dwde is the integral of the kernel

function.
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