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Abstract—The growing integrated circuit complexity has led
to a compelling need for design efficiency improvement through
new electronic design automation (EDA) methodologies. In recent
years, many unprecedented efficient EDA methods have been
enabled by machine learning (ML) techniques. While ML demon-
strates its great potential in circuit design, however, the dark side
about potential security and model reliability problems, is sel-
domly discussed. This article gives a comprehensive and impartial
summary of all security and reliability concerns we have observed
in ML for EDA. Many of them are hidden or neglected by practi-
tioners in this field. In this article, we first provide our taxonomy
to define four major types of concerns, then we analyze differ-
ent application scenarios and special properties in ML for EDA.
After that, we present our detailed and impartial analysis of each
type of concern with experiments.

Index Terms—Design privacy, machine learning (ML), model
reliability, physical design, security.

I. INTRODUCTION

RIVEN by the continuously growing complexity in
integrated circuits (ICs), design companies are in increas-
ingly greater demand for experienced manpower and stressed
with unprecedented longer turnaround time. The nonrecur-
ring engineering (NRE) cost associated with chip design
also keeps skyrocketing accordingly [1]. Therefore, there is
a compelling need for essential improvement on IC design
efficiency through new methodologies and design automation
techniques. To solve this, machine learning (ML) techniques
are considered a highly promising direction.
In recent years, ML for EDA has become a trending
topic [2], [3]. ML models are developed to improve the pre-
dictability in chip design flows, by providing early feedback on
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downstream design quality or accelerating the solution of EDA
problems. These ML models learn from prior design solutions
and typically perform orders-of-magnitude faster design qual-
ity evaluations or optimizations. We have witnessed ML solu-
tions targeting various design objectives, covering all major
design stages for both analog and digital designs [2], [3]. Some
techniques are further adopted in commercial EDA tools [4],
[5]. In both EDA academia and industry, ML for EDA has
made an impressive impact. We have strong reasons to believe
ML models will be more widely adopted in design automation
in the future.

Existing ML for EDA techniques seek various attractive
properties, such as better design quality, shorter turn-around
time, and a higher level of automation. A significant amount of
research and engineering efforts have been invested in these
targets. However, these properties are no longer desirable if
fundamental security and model reliability requirements are
not first satisfied. In this study, we focus on the seldomly
discussed dark side by trying to cover all measures about
causing and preventing unforeseen consequences in ML for
EDA.

Actually, as ML is introduced in design automation,
unprecedented security, and model reliability concerns arise,
but most practitioners are not fully aware of them. According
to our study, the negligence of these potential problems
can lead to serious consequences for both model providers
and users. Possible consequences include misleading results,
design information leakage, model information leakage, etc.
While a few previous works [6], [7], [8], [9] studied possible
adversarial attacks on ML models targeting lithography prob-
lems, they only account for a very small portion of potential
challenges we observed in ML for EDA. In this article, we try
to give a more comprehensive and impartial study on all iden-
tified challenges in ML for EDA. We propose our taxonomy
to first define three major types of security concerns, which
are all caused by malicious attacks.

1) Attacks against data privacy, e.g., attacks that try to infer
private information about design data. The victims, in
this case, are the data providers who expect protections
of their data. The attackers can be malicious competitors
targeting access to private data by exploring their access
to ML models.

2) Attacks against competitive advantage, e.g., attacks that
construct similar substitute models, which impair the
competitive advantage of the original model. The victims
are the model providers who wish to make profit, and
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Fig. 1. Tllustration of one typical ML for EDA flow.

the attacker can be malicious users who try to construct
substitute ML models.

3) Attacks against ML performance, e.g., adversarial or poi-
soning backdoor attacks that cause accuracy degradation
on specific testing samples. Victims are model users, and
attackers can be someone who wish to fool the model
and introduce design deficiencies.

In addition, malicious attacks are not the only source of
concern in this article. We also pay attention to model unre-
liability problems, which cause unforeseen consequences in
many scenarios and are, especially, serious in EDA and chip
design. It constitutes the fourth concern studied in this article.

4) Inherent unreliability in ML performance, e.g., unex-
pected accuracy degradation on new testing samples.
Victims are model users, and there are no attackers in
this concern.

Fig. 1 illustrates a typical ML for EDA development and
usage flow, and corresponding concerns. According to our
taxonomy, all aforementioned previous studies [6], [7], [8],
[9] can be categorized into the third type. In addition, a
recent survey [3] on ML for EDA mentioned their concern
about type-one attack on training data without a more detailed
analysis.

In this article, we present a comprehensive study with our
preliminary experimental results on all identified security and
model reliability concerns. According to our observation, some
of these concerns/challenges are actually less practical, while
others pose a high threat to data owners, model owners,
or users. We will first present representative works, appli-
cation scenarios, and special properties of ML for EDA in
Section II. After that, these four major concerns are presented
in Sections III-VI, respectively. Finally, in Section VII, we dis-
cuss other potential concerns and impacts in the future, when
ML for EDA becomes ubiquitous.

II. ML FOR EDA BACKGROUND
A. Existing ML Solutions in EDA

We start with a brief inspection of representative ML solu-
tions in EDA. Nowadays, ML-based research efforts can be
observed at almost all major stages of a typical VLSI design
flow. For high-level synthesis (HLS), models are proposed for
fast quality of result (QoR) estimation [10], [11] or design
space exploration [12], [13]. Many power models [14], [15]
are also proposed in the early design stages. Some power
models [16], [17] are further implemented for runtime circuit
management. At logic synthesis, ML models are proposed for
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chip quality prediction [18], [19] and optimization [20], [21].
During physical design, more models perform predictions or
optimizations on almost all important design metrics, including
timing [22], [23], [24], macro placement [25], [26], routabil-
ity [27], [28], [29], IR drop [30], [31], [32], clock tree
quality [33], interconnect [34], crosstalk [35], 3-D integra-
tion [36], etc. Also, ML models are developed for design
verification [37], [38], design for testability (DFT) [39], and
lithography problems [40], [41]. Besides the methods applied
at specific design stages, automatic design flow tuning is
another well-explored topic in ML for EDA [42], [43].

ML-based methods are of course not only limited to dig-
ital designs. For analog design, similarly, various models
have been developed for topology design [44], [45], device
sizing [46], [47], prelayout prediction [48], [49], layout eval-
uation [50], [51], layout generation [52], [53], and analog
design testing [54]. For a more complete survey on all existing
research efforts, please refer to previous survey papers [2], [3]
solely devoted to this topic.

Besides being a hot research topic in academia, ML-based
estimators have also gained popularity in the EDA indus-
try. Recent versions of commercial tools already support
the construction of ML models on delay [55] or congestion
predictions [56], providing improved PPA or faster conver-
gence after invoking the ML models in their tools [55], [56].
In addition, EDA vendors have provided ML models for design
space exploration or design flow tuning, named DSO.ai [4] and
Cerebrus [5].

Among these ML applications targeting digital or analog
designs, almost all popular ML techniques have been applied.
Most methods in ML for EDA adopt supervised models, espe-
cially neural network techniques, while some others perform
reinforcement learning. In this work, we also focus on the
most popular supervised methods. Considering the popularity
in both EDA academia and industry, we believe ML models
will play a more important role in design automation in the
future. Therefore, a deep understanding of all potential security
and model reliability concerns is essential.

B. Application Scenarios

To better analyze all security and model reliability con-
cerns in ML for EDA, we should first fully understand the
practical applications scenarios of these ML-based techniques.
However, as an emerging type of chip design technique,
new explorations in ML for EDA solutions are still ongo-
ing while the pace of commercialization in the industry lags
behind. Thus, besides observing existing solutions, we have to
anticipate possible application scenarios in the near future.

Currently, many existing research efforts in ML for EDA
merely target the demonstration of their correctness and effec-
tiveness. A small portion of works have been verified and
applied in private in-house design flows in design compa-
nies. In addition, some ML models are deployed in EDA
tools by EDA vendors. They correspond to two major types
of application scenarios.

1) Same model providers and users. For ML models

developed and deployed for in-house flows internally,
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TABLE 1
POSSIBLE APPLICATION SCENARIOS OF ML FOR EDA
Scenario | Black-Box  Trained  Separated Provider & User
S1 v v v
S2 X v v
S3 v X v
S4 X v X

the model provider and user are from the same company
and work rather closely.

2) Separate model providers and users. As Fig. 1 shows,
there may be separate model providers from EDA ven-
dors or independent developers and model users from
design companies. In the future, we tend to believe it
is more likely for more ML model providers and users
to be separated, like the separation of IC design, EDA,
and fabrication in the semiconductor industry history.

Despite these observations, the anticipation of future appli-
cation scenarios is not straightforward. Compared with tradi-
tional EDA software, ML for EDA methods adopt a different
and more complex flow, which consists of multiple stages,
including model architecture design, data and label collection,
model training, model inference/prediction, and utilization of
prediction results. These tasks could be divided differently
between model providers and clients. Different partitions of
tasks lead to different scenarios.

Table I presents four possible application scenarios or busi-
ness models of ML for EDA based on our anticipation. In
the first scenario S1, a separate ML model provider provides
their well-trained model as a black-box to users, possibly
through cloud services. This is very similar to the popular
ML-as-a-service (MLaaS) business model in many general
ML tasks, like the cloud services offered by Amazon, Google,
Microsoft, BigML, etc. [57]. Such cloud services allow model
providers to charge users for queries. These ML models are of
high commercial values. In this case, models will be vulner-
able to attacks against competitive advantage, attacks against
ML performance, and also unreliability problems.

In addition, there could be a special case, S2, where ML
models are actually white-box to users or potential attack-
ers. There are a few possible reasons causing the model to
be white-box. For example, researchers, individual develop-
ers, and even companies may hope to directly open-source
their trained model for free. Also, models targeting black-box
in S1 may be hacked, especially if they are deployed locally
instead of through cloud platforms without enough security
measures. In this scenario, the ML model itself is already
available to potential attackers, while new security concerns
about the training design data privacy arise.

Another possible scenario, S3, is to leave more tasks to
users. The model providers only design their ML methodol-
ogy without performing the training. The method is provided
as black-box, with information like feature, architecture, and
optimization procedure not explicitly disclosed. Then users can
train and use their own customized ML models as black-box
with their own labeled data. Rather than being provided as
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stand-alone services in S1, it is more likely for such method-
ologies to be integrated and released together with existing
EDA tools. This business model can already be observed in
some existing EDA tools [55] from vendors.

Finally, ML model providers and users may not be sepa-
rated. Users in design companies can design and train their
own models for specific problems in their in-house design
flow. This is scenario S4 in Table I. In this case, this rather
private flow will be much less vulnerable to malicious attacks.
But it will still be affected by the inherent unreliability of ML
models, which will be covered in detail in Section VI.

C. Overview of Special Properties

Before giving a detailed analysis of all four types of chal-
lenges, we briefly inspect some special properties of ML
for EDA solutions. Although many ML for EDA solutions
have been developed based on black-box use of existing ideas
from the ML community, we still observe some remarkable
properties different from general ML tasks.

Unprecedented Data Heterogeneity: Huge heterogeneity can
exist between data samples, resulting from the large difference
among circuit designs due to functionality, micro-architecture,
and technology node. For example, assuming we already
restrict the training and testing data of an ML model to be
only from Arm processors, we still cannot expect the model
trained on old designs like Cortex-M0 with 40-nm technology
node to perform very well on latest designs like Neoverse N2
with 5-nm technology. This level of training and testing data
heterogeneity is uncommon in benchmarks for general ML
applications like computer vision.

High Complexity in Data and Pattern: A circuit contains
orders-of-magnitude more information than an ordinary image.
For prediction tasks, models are learning behaviors of highly
complex EDA engines. For optimization tasks like macro
placement, models are exploring a huge solution space [25],
significantly larger than the Go game solved by AlphaGo [58].
These complexities increase the difficulty in studying security
and reliability problems in ML for EDA.

More Confidential Design in Higher Demand: The construc-
tion of ML models in EDA relies on training data generated
from circuit designs, which are highly confidential to design
companies. Due to the aforementioned data heterogeneity, for
ML models targeting applications on most cutting-edge cir-
cuit designs, similarly, latest cutting-edge circuits are typically
desired as training data for model construction. This tends
to put these advanced highly confidential circuit designs at a
higher risk of information leakage.

Potentially Decentralized Training Data: Many ML for
EDA developers have very limited access to the latest
design data owned by design companies. Therefore, training
with decentralized private circuit data is explored in recent
works [59]. They propose to perform collaborative training
on decentralized data with techniques like federated learn-
ing (FL) [60]. Such a scenario can lead to many additional
risks.

Models Performing Binary Classification or Regression:
Most security studies in general ML tasks target common
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multiclass classifiers. For example, there are 1000 classes
in Image-Net benchmark for convolutional neural network
(CNN) models and 3 classes in COLLAB benchmark [61]
for graph neural network (GNN) models. In comparison, most
predictive models in EDA perform binary classification or
regression, while optimization models adopt reinforcement
learning. This difference makes many attack and defense meth-
ods targeting multiclass classifiers no longer applicable. For
example, some attack methods [62] utilize models’ multiclass
predictions to evaluate the model’s “confidence level” on any
specific target class. Such confidence level can leak training
data properties.

D. Overall Experiment Setup

In this article, we try to cover all security or reliability con-
cerns we have observed in ML for EDA in these years. Since
not all concerns have been systematically studied in ML for
EDA before, we perform some preliminary experiments our-
selves to better demonstrate our ideas. The experiments are
mainly performed on the two most representative and well-
studied topics in ML for EDA, which is the routability problem
during layout, and the lithography problem for manufacturing.
The setup and dataset of these experiments mainly follow the
most recent works [8], [63] on these topics.

For routability tasks, either routing congestions [28], [29]
or DRC (design rule checking) [27], [64] are adopted as the
metric of routability. The congestion detection is simpler than
DRC violation detection in practice. Therefore, congestion
detection models generally achieve higher accuracy.

Most experiments in this work are based on a com-
prehensive dataset using 74 designs with largely varying
sizes from multiple benchmarks. There are 29 designs from
ISCAS’89 [65], 13 designs from ITC’99 [66], 19 other designs
from Faraday and OpenCores in the IWLS’05 [67], 13 designs
from ISPD’15 [68]. For each design, multiple placement solu-
tions are generated with different logic synthesis and physical
design settings. Altogether 7131 placement solutions are gen-
erated from these 74 designs. We apply Design Compiler for
logic synthesis and Innovus [55] for physical design, with the
NanGate 45-nm technology library [69].

Besides routability tasks, we also conduct experiments on
lithography hotspot detection, another representative topic in
ML for EDA, to study relevant security concerns on adver-
sarial attacks. The lithography hotspot detectors are also
CNN-based. The experiment is based on a lithography dataset
from the previous work [8], with four groups of 400 hotspot
clips for adversarial sample generation and 34 356 layout clips
for model training.

We adopt a general set of notations that describe both
routability and lithography problems. Some commonly used
notations are summarized in Table II. Given a differentiable
ML model F with trained weights W, denote the input features
and the label of a training sample as X and y, respectively. For
layout with width d and height 4, the corresponding input fea-
tures X usually include multiple 2-D features, describing the
distribution of macros or blockages. Each feature is in R?*"
and X € R&*"*C where C is number of features. The label y
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TABLE II
COMMONLY USED NOTATIONS IN THIS MANUSCRIPT

Recovered features in the first attack

Attack model in the second attack
Unlabeled data in the second attack

X Input features Y Label
d Layout width h Layout height
F ML model w Model weights
P Model predictions w,o | Batch statistics
L Error term in loss R Regularizer
Xr
Fa
Xu

is either a 2-D distribution indicating locations of actual vio-
lations (R?*") or a scalar R indicating the overall quality of
the layout

FX|W) : X € RMXC 5y e R or y e R.

The prediction from trained model F with weights W on
each sample (X,y) is F(X|W), which is also denoted as p.
The shape of the prediction p is the same as y.

For routability prediction on both DRC violation and con-
gestions, features X can include wire density distributions,
blockage locations describing pins, cells, macros, and detailed
pin shapes. For lithography hotspot predictions, features X
include blockage locations describing vias and subresolution
assistant features (SRAFs). A more detailed introduction and
visualizations of features X and of actual labels y are provided
in related prior works [6], [8], [27], [29].

III. ATTACKS AGAINST DESIGN PRIVACY
A. Design Privacy Overview

Training data is the foundation of ML for EDA and it
directly determines the quality of ML models. Such data
includes both input features and ground-truth labels. For a
circuit design/IP used for data generation, input features are
different representations of the design, and labels are corre-
sponding circuit qualities, including power, performance, etc.
A circuit is significantly more complex than an ordinary image,
thus provides rich information for model development. Such
information can be highly confidential for design companies.

In the semiconductor industry, knowing competitors’ devel-
opment decisions easily provides a great competitive advan-
tage. Previous studies [70], [71] have demonstrated that given
an ML model, it is possible for attackers to reconstruct or
recover sensitive feature information in the model training
data. The process of maliciously recovering input features is
commonly referred to as model inversion or reconstruction
attack [71]. In ML for EDA, such attacks may cause seri-
ous security challenges on circuit designs/IPs used in training.
Even compared with other ML applications involving private
data, like medical image processing or language models on
smartphones, attacks targeting ML for EDA models are more
threatening, since attackers do not require high-quality recov-
ery of training data. A very small part of information about the
circuit design may already benefit the attacker. For example,
attackers may only target basic information like dynamic scal-
ing granularity, target manufacturing process, flat/horizontal
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implementation methodologies, etc. Based on the small piece
of reconstructed features, it is possible for attackers with suf-
ficient background to infer valuable information about the
research or development direction of their target company.

To make things worse, as mentioned in Section II-C, in ML
for EDA, due to data heterogeneity, more confidential design
is in higher demand as high-quality training data. This prop-
erty tends to put those most advanced and confidential circuit
designs at a high risk of information leakage. This concern
on design privacy is recognized as an open challenge by the
recent ML for EDA survey [3].

B. Attack Method on Design Privacy

We provide a demonstration of the malicious reconstruction
of training data in ML for EDA. It applies to most complex
ML models like deep neural networks. However, it turns out
that such an attack has very high requirements on information
available to attackers.

The fundamental attacking mechanism is straightforward.
Based on the setting presented in Section II-D and summarized
in Table II, attackers can try to reconstruct similar input fea-
tures of the sample, denoted as X, targeting X, ~ X. This X,
can be referred to as reconstructed input. The ultimate target
can be formalized as follows:

Based on model F, find X, = argminy [|X; — X[[2. (1)

When the attacker can access the model as white-box, as
indicated by scenario S2 in Table I, he has full knowledge
of the weights W. However, the information about the ML
model itself is not enough. We apply a very strong assumption
to study the most threatening case of such an attack. If an
attacker targets the training sample, we assume he/she can
generate or hack a close estimation of the model prediction
P~ p = F(X|W) of this sample. This assumption is also
made in representative reconstruction attack works [71] on
facial image models. The attack method starts with an initial
generation of the X, with random signals. After that, gradient
descent with respect to X, is performed iteratively, as shown
below, until it reaches convergence

In each iteration, X, — = Vy,Loss(F(X,|W), p') (2)

Vx| [FGAW) =P, ()

Different from the model training process, where gradi-
ent descent is performed with respect to model weights w,
in this attack, gradient descent is performed with respect
to the reconstructed input X,. This operation minimizes the
difference between the prediction F(X,|W) based on attacker-
reconstructed input X, and the actual prediction p based on X.
By performing this, X, is optimized to approximate the original
training data sample X.

However, in practice this simple loss function ||F(X,|W) —
P'll2 does not work well. Simply minimizing the difference
between original and new model output may not optimize the
reconstructed input X, toward the original feature X. This is
also verified in our own experiment. Instead, extra loss func-
tion terms have to be introduced to steer the optimization
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(a) (b)

Fig. 2. Malicious model inversion attack. (a) Feature X in training data (left
column). (b) Reconstructed input X, (right column). Target features on: the
distribution of macros (1st row) and net bounding boxes (2nd row).

direction and enforce the similarities between X, and original
feature X [72].

To improve the attack quality, we provide additional guid-
ance to make the X, follow existing feature statistics, which
are stored in widely used batch normalization (BN) layers of
deep neural networks. This is inspired by the work of [72]
in computer vision. The BN layer [73] normalizes the feature
maps during training and implicitly captures the channel-wise
running/moving means (pN and variances aéN. Therefore, we
can steer the mean p and variance o2 of input batches with
reconstructed input X, toward the running values stored in all
BN layers. We define regularization terms for the /th BN layer
with pupN_; and oéN ;» as shown below

RO = () = ], + || o7 ) — o

where u;(X,) and alz(Xr) are the mean and variance of the
batch with reconstructed input X, at the /th BN layer. Then
these penalty terms corresponding to all BN layers are added
to the loss function, with a controllable weight o

Loss(F(X,AW), p') = [[FXAW) = P[], +a ) R'(X). @)
l
In this way, the extra regularization steers the optimization
of X, toward the recovery of original training features X.

C. Experiment on Design Privacy Attack

Experimental results on model inversion attack with loss
in (4) are shown in Fig. 2. We present our inversion results
on two routability prediction features: macro positions and
density of all net bounding boxes. The original features are
shown in Fig. 2(a) and the features reconstructed by attackers
are in Fig. 2(b). A certain degree of similarities can indeed
be observed, especially in large-scale patterns. This example
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in Fig. 2 is representative in our experiment and the rest of
the dataset shows a similar trend. We first provide our qual-
itative observation on it. For the macro locations, the sizes
and locations all six macros in Fig. 2(a) are reconstructed
by X, in Fig. 2(b). For net bounding boxes, similarly, the
regions with high net density are reconstructed. However,
obvious differences still exist in both large-scale and small-
scale patterns. For macros in Fig. 2(b), three false-positive
macros are generated in the middle. Similarly, there are also
false-positive net bounding box densities reconstructed in orig-
inally empty regions. Besides observations, we further provide
a quantitative measurement of the similarities. The similarity
is measured with ROC curve AUC like a prediction problem,
with original features X viewed as the label and reconstructed
X, viewed as its prediction. The AUC ranges from 0 to 1,
with AUC = 0.5 indicating the accuracy of random guessing.
For recovered macros and net bounding boxes, their similar-
ity measured with ROC AUC is 0.77 and 0.67, respectively. It
indicates limited similarity between X and X, and is consistent
with the aforementioned observation.

More importantly, we emphasize that such attack is already
based on a few very strong assumptions: 1) attacker has
white-box access to the ML model and 2) attacker has an
approximation of the prediction value p’. While the first con-
dition may be achieved by hacking in scenario S2 or building
very similar surrogate models, the generation of p’ is very dif-
ficult in practice. Despite these strong assumptions and the
carefully designed attack algorithm in (4), we still get limited
performance on design privacy attack, as reflected in Fig. 2.
Therefore, we conclude that based on existing techniques and
our current exploration, the overall difficulty to conduct a
model inversion attack on design privacy in ML for EDA is
actually high.

In order to defend against such an attack, direct white-box
sharing of trained models to the public or untrusted third
parties should first be avoided. This rule will be enforced
at the model sharing stage after model development. Also,
as indicated in (2), the attack relies on loss gradients. Some
works [74] propose the idea of limiting gradient values below
a certain threshold during training, in order to defend against
input reconstruction attacks. This will be applied during the
model development stage.

IV. ATTACKS AGAINST ML MODEL COMPETITIVENESS
A. ML Models Competitiveness Overview

As indicated by scenario S1 in Table I, trained ML models
can be provided on the cloud as a service in ML for EDA.
Such MLaaS typically charges clients based on their queries.
For service providers, it takes extensive efforts to construct
these high-quality models, with steps, including data collec-
tion, label generation, ML model design, ML model training,
validation, etc. To provide even better service, they may have
to construct multiple ML models for different types of design
and technologies, taking extra engineering efforts. In summary,
these trained ML models are important business assets and are
costly to develop.
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However, it is possible for attackers to “steal” these models.
Here, the steal broadly refers to all activities where attack-
ers develop their own substitute ML models with very similar
functionality, utilizing the existing model in MLaaS. In other
words, based on an existing black-box model F, attackers can
train their own model, named attack model F,, with much
lower cost. This malicious attack is referred to as model extrac-
tion. Although this attack does not affect the function of the
original MLaaS, the attack model F, poses an obvious threat
to the competitive advantage and business value of the original
model F.

In addition, aforementioned scenario S1 in Table I is not
the only vulnerable business model. In scenario S3, where
only ML model architecture is provided as black-box without
performing the training, malicious attacks are also possible.
Attackers may infer the model architecture, in order to save
their own research cost. In general ML applications, this has
been achieved by building an extra ML model to map from
the concatenation of query outputs to the model architecture
attributes [75]. It can be further improved by crafting own
training data that maximizes information leakage. However,
this attack on model architecture has only been verified on
very simple models with less than 5 convolutional layers [75].

B. Attack Method on Model Competitiveness

For attackers who hope to build their own attack model F,
in scenario S1, they can actually greatly benefit from exist-
ing trained ML models. The most fundamental yet effective
attack methodology is to generate pseudo labels by querying
the MLaaS-provided model F with attackers’ own unlabeled
data. In practice, label generation is one of the most costly
steps during model development in ML for EDA. First, it can
take a large computation cost and long runtime to finish a
design flow and get accurate simulation results, which are the
labels. For example, assuming we work on a design with more
than one million gates, it easily takes more than one day to
finish synthesis and physical design to generate one complete
layout. If developers plan to generate 1000 labeled samples
on designs at this level of complexity, it will take dozens
of machines running for months. Second, this label genera-
tion process requires licenses of commercial tools. Third, it
requires great engineering expertise and efforts to generate
reasonable and realistic training labels. In summary, label gen-
eration requires extensive computation resources, commercial
EDA tool licenses, engineer efforts, time, etc.

If potential competitors/attackers can skip the label genera-
tion process to build their own dataset, the model construction
will be much easier. We refer the provided MLaaS black-box
model as the victim model F with trained weights W and the
ML model developed by attackers as the attack model F, with
weights W,. Given unlabeled input data X,,, the attacker can
query the victim model F(X,,|W) and use it as the pseudo label
to train the attack model F,. So the attack method is a very
simple gradient descent optimization. In each iteration

Wa— = Vw,Loss(Fu(Xu[Wa), F(Xy|W)).

This is the most fundamental while effective attack target-
ing scenario S1. Based on this, attackers may further reduce
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Attack model 1 409 labeled d
Attack model 2 0% unlabeled data

10% Attack
labeled baseline

0,
Victim model «~— 40% labeled data 10.6
testing
Fig. 3. Partitioning of dataset to study model competitiveness attack.

Performance of these models are in Table III.

the number of queries, in order to save the cost. For example,
they can choose to select and only query the most represen-
tative unlabeled samples, based on ideas from active learning
or semi-supervised learning.

C. Experiment on Model Competitiveness Attack

We demonstrate the effectiveness of our proposed funda-
mental model extraction attack in the routability experiment
on constructing congestion models. Following the aforemen-
tioned scenario, we divide all of our existing data into four
partitions without any overlap: 1) 40% of labeled data used
to train the original victim model; 2) 10% labeled data used
for testing model accuracy; 3) 40% of unlabeled data prepared
by attackers; and 4) 10% labeled data prepared by attackers,
in order to build a baseline. Fig. 3 illustrates the data parti-
tioning in this setup. Notice that the 40% unlabeled data from
attackers are different from the 40% labeled training data of
the victim model. This is very close to a realistic scenario,
where attackers use different data from model developers.

Based on the data partition, an attack baseline is first trained
with 10% labeled data. Then an attack model 1 is trained on
40% unlabeled data with pseudo labels from victim model F.
No actual label is provided by the attacker for this model. An
attack model 2 is trained on both 40% unlabeled data and the
10% labeled data.

Table III shows performance comparisons between the orig-
inal victim model F, attack model baseline, and two attack
models F,. For attack model 1, without any labeled data, it
achieves an accuracy of AUC = 0.796, which is close to the
victim model. For attack model 2, with a small portion (10%)
of extra labeled data, it achieves even higher accuracy (AUC =
0.811) than the victim model. These results demonstrate the
effectiveness of model extraction attack with such a simple
pseudo-labeling method.

According to the result in Table III, attackers can train even
more accurate models with a very small portion of labeled
data by querying the victim model. This attack proves to be
efficient and profitable. It poses a threat to the competitiveness
and business value of provided models in ML for EDA.

As for possible countermeasures for this attack, it is hard
to prevent such malicious model extraction directly [76]. To
make the attack more difficult, the model should return final
predictions, e.g., 0/1/{0, l}dXh, instead of raw model output
with confidence information, e.g., 0.4/0.6/R¥*" This only
requires simple adjustments when returning query results.
Some works [77] further propose to detect malicious model-
extraction queries assuming they try to explore decision
boundaries, which will result in a different distribution

1177

TABLE III
ATTACK ON MODEL COMPETITIVENESS. THE MLAAS-PROVIDED
(VICTIM) MODEL AND ATTACKERS USE DIFFERENT DATA

.. Accuracy
Model Training data (AUC)
MLaaS-provided victim 40% labeled data 0.806
Attack baseline 10% labeled data 0.765
Attack model 1 40% unlabeled data 0.796
40% unlabeled data
Attack model 2 + 10% labeled data 0.811

compared with normal queries. This mechanism requires an
extra detection process when model processing queries.

V. ATTACKS AGAINST ML PERFORMANCE
A. ML Performance Attack Overview

Besides aforementioned attacks targeting data privacy or
model competitiveness, another main type of malicious attacks
may happen in ML for EDA targets affecting the performance
of existing ML models. Compared with the previous two types
of attacks, which are less explored by ML for EDA commu-
nity, some prior works [6], [7], [8] studied the attack on the
performance of CNN-based lithography hotspot detectors.

There exist multiple types of malicious attacks on the
performance of ML models. A well-studied type is adversar-
ial attack, where attackers modify the model input by very
small but deliberate alterations, named adversarial perturba-
tion. In this way, attackers introduce their desired misleading
ML inference result, without being noticed by potential vic-
tims. Such adversarial perturbation makes use of the inherent
susceptibility of deep neural networks. However, in practice,
it may not be feasible for outside attackers to easily modify
the input in an ML-IC design flow.

The work of [6] presents a realistic scenario of adversarial
attacks on ML models targeting lithography hotspot detection.
Currently, using a CNN-based hotspot detector, the designer
can quickly ascertain if a layout with third-party macros is
printable as-is. To pass off subpar designs as high quality, mali-
cious third-party vendors may selectively modify their layouts
to steer the detector to misclassify hotspot regions as non-
hotspot. That is, attackers can hide hotspots in their low-quality
macros by introducing adversarial perturbations.

Besides adversarial attacks, a stealthy poisoning attack is
also threatening. It targets inserting backdoor in ML models
during the training stage. Instead of requiring control over the
model training process, this is achieved by poisoning the train-
ing data. A common poisoning mechanism is to insert a secret
trigger to the features and coax ML models to unknowingly
learn the secret trigger as a pattern of the attacker’s target label.
The work of [7] demonstrates poisoning attacks on lithography
problems.

B. Attack Method on Model Performance

Adversarial attacks are based on the generation of adver-
sarial samples. The most fundamental attack method is fast
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(a) (b)

Fig. 4. Visualization of adversarial attacks targeting lithography problems.
(a) Original input to ML hotspot detector. White shapes indicate vias and red
shapes indicate SRAFs. (b) White shapes are original input (vias + SRAFs),
green shapes are inserted artificial SRAF shapes (perturbations), which suc-
cessfully fool the detector to switch from correct positive prediction (violation
exists) to negative (no violation).

gradient sign attack (FGSM) [78]. For attacks without a spe-
cific target, it perturbs the input features X toward the direction
that maximizes the error J between prediction F(X|w) and the
correct label y. This gradient ascent process is similar to the
gradient descent operation on input in (3), but optimizes input
X toward the opposite direction. To avoid the attack being per-
ceived by victims, the perturbation is often constrained with a
maximum perturbation amount €. For FGSM attack, the con-
straint € is defined with an /, norm. The generation process
of perturbed input X, is shown as follows:

Xp < clip(X + € sign(VxJ(F(X|w), y))).

Besides the fundamental FGSM, there are other adversarial
attack methods like projected gradient descent (PGD) [79],
which is a more effective, multistep variant of FGSM.

These fundamental attack methods with FGSM or PGD are
based on constraints limiting pixel-wise perturbation ampli-
tude, viewing input as ordinary images. In EDA applications,
the scenario and attack algorithm can be quite different. For
example, when targeting lithography hotspot detectors [6],
instead of perturbing every pixel, the perturbation, in this
case, is to insert or delete shapes of artificial subresolution
assist features (SRAFs) on layouts. Also, the layout after per-
turbation has to remain legal and DRC violation clean [6],
[8]. Compared with the well-studied traditional pixel-level
attack, this largely different attack constraint leads to different
attacks [6], [8] in EDA applications. The potential attackers
are low-quality IP/macros providers who wish to hide lithog-
raphy deficiencies in their design or maliciously sabotage the
downstream manufacturing process.

Fig. 4 provides visualizations on attacks targeting lithogra-
phy problems. Fig. 4(a) shows the original model input with
violations. The violation is correctly detected by the ML detec-
tor. Fig. 4(b) shows the inserted perturbations that successfully
fool the detector. Different from the traditional pixel-wise con-
straint, such perturbations have to be in the shape of SRAFs
and the perturbed layout has to remain legal.

In ML for EDA, adversarial attacks are threatening to ML
models targeting lithography problems, where design layouts
as inputs can easily come from malicious third-party providers.
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In comparison, for models supposed to be deeply incorpo-
rated and coupled with existing design flows, like routability
models, it will be more difficult for attackers to insert their
perturbations to model inputs.

In addition, although we introduce adversarial attacks by
assuming attackers have access to white-box model F with
weights w, actually they can also be applied to black-box sce-
narios. In this case, the adversarial samples can be generated
based on certain surrogate models with similar functionality.
These samples are still effective after transferring to the black-
box target model F'. This successful black-box attack attributes
to the extraction of nonrobust features by both surrogate model
and target model F. Such nonrobust features are features
that are highly predictive, yet brittle and incomprehensible to
humans [80]. Allowing black-box scenarios further lowers the
bar for adversarial attacks on ML model performance.

Besides adversarial attacks, poisoning attacks target ML
performance at the model training stage. Take the same lithog-
raphy problem as an example, to hide lithography deficiencies,
malicious insiders can stealthily introduce a backdoor into
lithography detectors by providing poisoned training data
with backdoor “triggers.” The detector is thus trained to link
the trigger with nonhotspot. If this detector is adopted and
deployed, any attackers knowing the backdoor can pass off
a low-quality design as “hotspot-free” by inserting the trig-
ger in their own layouts [7]. Recent studies [9] show that
this poisoning attack on lithography can be defended by dilut-
ing the intentional bias from triggers with data augmentation
strategies.

C. Defense Method on Model Performance

To cope with potential adversarial attacks in ML for EDA,
we propose to build more robust models by adopting defense
algorithms like curvature regularization (CURE) [81]. This
work studies the relation between model curvature and robust-
ness against adversarial attacks. It first calculates the Hessian
matrix on loss function with respect to input features, then
proves that ML models with a smaller curvature (i.e., smaller
eigenvalues of the Hessian matrix) demonstrate higher robust-
ness [81]. Intuitively, smaller eigenvalues of Hessian indicate
a smaller curvature around input, implying a “locally linear”
behavior in the neighbor of input.

Therefore, to build more robust models, a solution is to
penalize large eigenvalues of the aforementioned Hessian
matrix with respect to the input. It is achieved by imposing
gradient regularity (i.e., small curvature) along the direction
of gradient descent. This new regularizer R with respect to
original input X is shown below, and is added to the original
loss function L with a controllable weight «

R = ||VxL(X + hz) — VxL(X)||?
Loss = L+ aR (5)

where the vector z  sign(VyL(X)), & is a sufficiently small
value controlling the step size. This new regularizer R penal-
izes an approximation of the second-order derivative, which
represents curvature with respect to input X.
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(a) (b)

Fig. 5.

Adversarial attack example on routability prediction. (a) Original feature on the distribution of clock tree. (b) Clock tree feature after adversarial

attack. The perturbation is small. (c) Congestion label. (d) Prediction based on original features in (a). (e) Prediction based on adversarial attacked features

in (b). The attack makes predictions meaningless.

In this article, we studied adversarial attacks on different
ML for EDA tasks. More importantly, we apply the CURE
method to construct more robust models with very limited
accuracy loss in tasks like lithography hotspot detection. It can
better defend the adversarial attack [6] on hotspot detectors.

D. Experiment on Model Performance Attack

We first verify the effectiveness of the widely adopted
adversarial attack algorithm like PGD [79] with traditional
pixel-wise constraint on routability models. These traditional
adversarial attacks turn out to work well in ML for EDA tasks.
Experimental results are shown in Fig. 5. Fig. 5(a) shows the
original feature of the clock tree together with all flip-flops
in the layout, and Fig. 5(b) shows the corresponding feature
with perturbations. Their difference in major patterns is not
obvious. Fig. 5(c) shows the congestion label. The normal
prediction based on original features in Fig. 5(d) is close to
ground truth in Fig. 5(c). However, the prediction based on
features with perturbations in Fig. 5(e) is almost meaning-
less. The distinction between prediction results in Fig. 5(d)
and (e) clearly indicates the effectiveness of the traditional
attacks like PGD in ML for EDA tasks, as demonstrated on
this routability problem. Similar results are also observed for
the FGSM attack in our experiment.

However, the difference between Fig. 5(a) and (b) is still
perceptual to humans, indicating inferior attack quality com-
pared with attacks on general images. There are at least two
reasons. First, the model performs binary classification on
each grid instead of multiclass classification, leaving fewer
interclass decision boundaries. Second, the input feature is
also close to binary, indicating the existence of the clock tree
elements. The simple feature also makes perturbations more
uniform and obvious.

As mentioned, adversarial attacks can be largely different in
ML for EDA applications like lithography problems. As Fig. 4
introduced, the corresponding adversarial attack constraint is
different from the traditional pixel-wise attack. To study this
type of attack, we first replicate the adversarial attack in the
work of [6] with a similar experimental setup as mentioned
in Section II-D. It attacks lithography hotspot detectors by
inserting or deleting artificial SRAF shapes as perturbations.
The accuracy of this model and attack success rate on it is
shown in the “vanilla model” of Table IV. In this experiment
setup, there are four groups of data in the whole dataset. The

TABLE IV
ADVERSARIAL ATTACK AND DEFENSE ON LITHOGRAPHY HOTSPOT
DETECTORS. THE ATTACK INSERTS/DELETES SRAFS ON INPUTS. THE
ROBUST MODEL BASED ON CURE REGULARIZER REDUCES THE ATTACK
SUCCESS RATE WITH LIMITED ACCURACY LOSS

Dataset Accuracy Attack
Model

Group (AUC) Success Rate
) Vanilla Model 0.829 0.338
Robust Model 0.842 0.200
) Vanilla Model 0.815 0.456
Robust Model 0.866 0.205
3 Vanilla Model 0.741 0.338
Robust Model 0.800 0.235
4 Vanilla Model 0.761 0.500
Robust Model 0.870 0.286

attack success rate is measured by dividing the number of
successful attacks by the total number of trials. After that, we
apply the CURE regularizer in 5 to construct a more robust
model. As the comparison in Table IV shows, for group 1,
the attack success rate drops from 0.338 in the vanilla model
to 0.2 in our robust model, with the accuracy also slightly
increasing from 0.829 to 0.842. This trend is the same in
the other three dataset groups. It indicates the CURE-based
robust model is less vulnerable to adversarial attacks in this
specific task without any accuracy loss. This defense method
can be directly applied during the model development process
to generate a more robust model. In the future, we will fur-
ther explore more robust models by customizing the CURE
method to the constraint in SRAF shapes for this task.

VI. UNRELIABILITY IN ML PERFORMANCE
A. Model Unreliability Overview

We have discussed three major types of security concerns
in ML for EDA, targeting data privacy, ML model competitive
advantage, and ML model performance, respectively. They are
all malicious attacks. The last concern that is worth attention
is model reliability. It is reflected by observations that model
accuracy may seriously degrade on certain testing samples. It
is not caused by any malicious attackers, but can be especially
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Fig. 6. Distribution of training and testing samples.

serious in ML for EDA compared with other ML applications,
because of several special properties.

First, as mentioned in Section II-C, huge heterogeneity may
exist between training and testing data samples, resulting from
the large difference among circuits due to functionality, micro-
architecture, and technology node. We further illustrate this
concept in Fig. 6, which shows a possible distribution of train-
ing and testing samples in a simplified input feature space.
A few testing samples can be largely different from existing
training samples, inevitably leading to accuracy degradation
in these samples. In this example with only two features, the
difference between samples seems obvious and easy to mea-
sure. But in practice, such “difference” and the corresponding
impact on testing accuracy are very difficult to know.

Second, it is very difficult for engineers to be aware of
unexpected accuracy degradation on a few testing samples in
practice. Accurate detection of accuracy degradation requires
ground-truth labels to be collected, which is highly time-
consuming and inherently against the purpose of adopting ML
models. Undetected accuracy degradation can lead to much
less optimized design solution or even chip failure, causing
serious income loss for users from design companies.

Third, as mentioned in Section II-C, high complexity exists
in both input data and the pattern for ML models to learn.
These complexities exacerbate the difficulty in the study of
input sample similarity or the detection of possible accuracy
degradation.

In practice, the unreliability problem can be reflected by
concerns like: “Does the ML model work on 7-nm technology
or memory/GPU/certain IPs? To what extent may the accu-
racy degrade? Is transfer learning on new data necessary?”
Currently this is mostly speculated based on model develop-
ers’ confidence and intuition. To the best of our knowledge,
there is no systematic study on this topic. As a result, users
cannot safely trust any ML model in EDA before they have
a deep understanding of the potential unreliability in model
performance. It affects all four scenarios we mentioned in
Table I and may become a major obstacle that prevents a wide
application of ML in EDA in the future.

B. Model Unreliability Analysis

For each ML model in EDA, understanding “unreliability”
requires detecting accuracy loss without knowing the label,
or quantitatively determining the appropriate scope of testing
samples. This solution is not straightforward. One direction
we can think of is to define a new metric to measure the simi-
larity between training data and each testing sample. As Fig. 6
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indicates, the performance unreliability (degradation) is mostly
caused by the sparse distribution of data samples in the fea-
ture space. If the similarity between one testing sample and the
model training data is lower than a certain threshold, the ML
model should either reject inference on this testing sample or
at least raise a warning. Another direction is to adopt ML mod-
els with prediction confidence incorporated in their prediction
outputs. Low confidence generally indicates uncertainty and
possible accuracy degradation on the testing sample. The con-
fidence is available as probability values for many classifiers,
especially multiclass classifiers, but less obvious in common
regression tasks in ML for EDA.

Understanding unreliability in ML models not only helps to
avoid unexpected accuracy drop, but also provides guidance
during model construction. If we can detect testing accuracy
or define the appropriate scope of testing samples, then given a
dataset, it is possible for developers to construct multiple ML
models, each trained with part of training data and applied to
a specific scope of testing samples. For example, in Fig. 6,
developers may train one ML model based on each bench-
mark, instead of training one general model with all samples in
the training dataset. By applying different models to different
testing samples, better overall results can be achieved.

C. Experiment on Unreliability and Data Similarity

We first demonstrate the accuracy degradation when apply-
ing models on largely different designs, and present our
preliminary study in understanding the design similarity and
model performance.

Accuracy degradation on specific testing samples is very
common during the development of ML models. For example,
while a carefully designed routability model on conges-
tion prediction achieves an average performance of 0.83, its
performance can be lower than 0.70 for a few testing designs.

To demonstrate the idea of measuring “similarities” between
design and samples, we try to visualize multiple layouts from
various designs in different benchmarks in the routability
experiment. We adopt simple principle component analysis
(PCA) [82]-based dimension reduction techniques. The visu-
alization is shown in Fig. 7. Each point in this figure indicates
one layout solution and same color indicate layouts from
the same design. Their similarities in Euclidean distance can
be directly visually observed in the figure. Different bench-
mark names are annotated on the figure. To provide more
information, the tiny text annotated on some points is in
the format of the design name plus the size (“small,” “mid,”
“large”) of design. For example, the tiny text “pci_mid” at the
bottom purple points of Fig. 7 indicates the design name “pci”
with middle-level layout size.

We can observe a very interesting and reasonable cluster-
ing of layouts and designs in Fig. 7. First, layouts from the
same design with the same color are very closely clustered.
Second, intuitively similar designs, like designs from the same
benchmark, are obviously closer to each other. For example, all
designs from the ISPD benchmark distribute on the upper left
corner of Fig. 7. More importantly, the designs with macros
are clearly closer to the corner, showing a larger difference
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Fig. 7. Visualization of designs/layouts by dimension reduction. Each point
represents one layout and same color indicates the same design. Similarities
can be observed for designs/layouts from the same benchmark.

TABLE V
TESTING ACCURACY ON DRV DETECTION. THREE MODELS ARE
TRAINED WITH DIFFERENT PARTITIONS OF DATA. THE MODEL TRAINED
WITH ALL DESIGNS DOES NOT PERFORM THE BEST

Training on
Test on . . Small + Middle
Middle | Small + Middle + Large (All)
Small 70.6 72.4 71.5
Middle 75.6 75.4 71.3
Large 71.3 64.9 71.0

with most designs without macros. Similarly, designs from
ITC’99 and small designs from ISCAS’89 reflect clear intra-
benchmark similarities. It is highly likely such straightforward
similarity measurement is not the best solution, but it already
demonstrates reasonable patterns. Perhaps a better solution
should capture more similarities in local patterns and gate
connection topologies. Studies like this can provide guidance
in quantitative measurements of design similarity and under-
standing of model unreliability. A straightforward example is,
models trained with small design layouts (in the center of
Fig. 7) may not perform well on large designs with macros
(in the upper left corner).

As mentioned, such design similarity also provides guid-
ance in model construction. We provide an experiment on
developing DRV detection models with different training data.
Notice that this preliminary experiment targets DRV, thus over-
all accuracy tends to be lower than congestion detection in
previous experiments. In this experiment, all training and test-
ing designs are classified into three types: 1) small; 2) middle;
and 3) large, according to their layout size. This layout size
is another highly straightforward indication of design simi-
larity and we believe a huge room for improvement exists.
Based on this partition of data, we try to train models either
on all training data or on part of training data. We report
the accuracies of different models on different testing data in
Table V.
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As Table V shows, the model trained on all designs does not
perform the best. Instead, the model trained only on middle
designs performs better on middle and large testing designs,
as shown in the last two rows in Table V. In other words,
including small designs in training data generally degrades the
model’s performance on middle and large designs. Intuitively
it can be explained by the “difference” between small designs
and middle or large designs.

Similarly, when testing on small designs, as shown in
the first row of Table V, including small designs in train-
ing improves accuracy while including large designs degrades
accuracy. Generally, training with designs in similar sizes
tends to yield a better model, which is intuitively reasonable.
This preliminary result supports our speculation that based
on design similarity, constructing multiple ML models for
different testing scopes can achieve better accuracy.

In summary, preliminary studies in Fig. 7 and Table V indi-
cate that a good utilization of data similarity may help mitigate
model unreliability problems caused by the data heterogeneity.
During model development, multiple submodels can be gener-
ated with different partitions of training data. When applying
ML models, each testing sample may be evaluated to deter-
mine whether inference should be rejected due to uncertainty
or which submodel to apply, before the prediction result is
generated.

VII. POTENTIAL CONCERNS IN THE FUTURE

We have presented four major types of concerns in ML for
EDA. At the end of this study, we try to further anticipate a
few other potential concerns or impacts that may arise in the
future, when ML for EDA becomes more ubiquitous.

A. Security in Decentralized Setting

The effectiveness of ML for EDA largely hinges on the
availability of a large amount of high-quality training data.
In reality, developers have very limited access to the lat-
est design data, which is owned by design companies and
mostly confidential. Such data availability problem is becom-
ing the limiting constraint on the future growth of ML for EDA
and chip design. Considering the decentralized distribution of
high-quality circuit data, we have witnessed explorations [59]
based on FL, as Fig. 8 illustrates. Developers collaboratively
train one ML model based on the private local data from
K data providers. In each round, data providers send locally
trained models to the central server, then the server aggregates
and distributes the updated model back to all providers. This
may become a major trend in constructing and deploying ML
models in the future.

However, collaboratively constructing ML models in a
decentralized setting incurs many new security concerns. For
example, if one of the data providers is an attacker, it leads to
serious security threats. First, the attacker can directly get full
access to the trained ML model during the collaborative train-
ing process. Second, the attacker can easily insert malicious
backdoor attacks into the ML model, by including poisoning
samples in its local training dataset. Third, it is possible for
the attacker to recover the private data of other data providers.
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This can be achieved based on the idea of generative adversar-
ial networks (GANSs). The attacker can use the trained model
as a discriminator, and train an additional generator to recover
input samples of a specific class [83]. But this requires the
model to be a multiclass classifier, which is not common in
ML for EDA tasks.

B. Label Generation With ML Models

As mentioned in Section I'V-B, label generation is one of the
most costly steps in model development. In the future when
ML models for EDA achieve higher accuracy and become
ubiquitous, it is possible to directly apply existing models to
generate training labels for the development of new ML mod-
els. While this greatly reduces label generation cost, accuracy
degradation is unavoidable.

The accuracy degradation can already be observed in the
model extraction experiment in Section IV-C. As Table III
shows, the attack model trained on 40% unlabeled data is less
accurate than the original victim model trained on 40% labeled
data. Model developers should be aware of such accuracy loss
and avoid overuse of pseudo-labels.

C. Impact on EDA Tools

In the future, models learning the functionality of EDA tools
may be applied to partially or even entirely replace some func-
tions in these EDA tools in circuit design flow. This may seem
quite impractical to many practitioners. However, there exist
works [25], especially reinforcement learning-based methods,
have already claimed superior performance over the same
function in existing tools without reliance on them in applica-
tions. Although debates still exist on the actual performance
of these current solutions, such possibilities may not be ruled
out in our anticipation. Different from most ML applications
where models replace human efforts, ML for EDA methods
have been applied to accomplish the tasks of both human
designers and EDA tools.

To avoid emerging competition with their own tools, in
the future EDA vendors may hope to revise existing user
license agreements and prevent unauthorized use of their tools
to develop ML models with similar functionalities. However,
disabling model training based on a specific software is techni-
cally very difficult, and violations of this rule cannot be easily
detected by the vendor.
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VIII. CONCLUSION

In this article, we provide a comprehensive and impartial
summary of all security and reliability concerns we observe in
ML for EDA tasks. According to our study, some concerns like
model extraction, attacks on model performance, and inher-
ent model unreliability are highly threatening, while potential
design privacy attack turns out to be less practical. In the future,
we will explore more customized attack and defense methods
with more in-depth experiments in ML for EDA.
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