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ABSTRACT

Accurate and efficient on-chip power modeling is crucial to runtime
power, energy, and voltage management. Such power monitoring
can be achieved by designing and integrating on-chip power me-
ters (OPMs) into the target design. In this work, we propose a new
method named DEEP to automatically develop extremely efficient
OPM solutions for a given design. DEEP selects OPM inputs from
all individual bits in RTL signals. Such bit-level selection provides
an unprecedentedly large number of input candidates and supports
lower hardware cost, compared with signal-level selection in prior
works. In addition, DEEP proposes a powerful two-step OPM input
selection method, and it supports reporting both total power and
the power of major design components. Experiments on a com-
mercial microprocessor demonstrate that DEEP’s OPM solution
achieves correlation R > 0.97 in per-cycle power prediction with
an unprecedented low area overhead on hardware, i.e., < 0.1% of
the microprocessor layout. This reduces the OPM hardware cost
by 4 — 6x compared with the state-of-the-art solution.

1 INTRODUCTION

Power efficiency has become one of the primary design objectives
for modern compute systems, ranging from low-end embedded sys-
tems, mobile computing to high-end data centers. As such, accurate
while efficient power estimation is not only essential for design-time
hardware design decisions, but also vitally important for power,
energy, and voltage management during circuit runtime [38].

In practice, runtime circuit management techniques raise differ-
ent requirements on the on-chip power estimation. The dynamic
voltage and frequency scaling (DVFS), for example, only requires
coarse-grained temporal resolution in power-tracing, where each
estimation can be the average power over microseconds in duration.
In contrast, techniques for fast power management [19], voltage
boosting [13], or voltage noise mitigation [7, 17, 37] require much
more fine-grained temporal resolution, updating power estimations
within 10s of clock cycles. Therefore, ideal on-chip power monitor-
ing in modern compute systems needs to be accurate, efficient, and
support fine-grained temporal resolution. In addition, it should also
be easily extensible to novel designs with automation. Despite ex-
tensive prior explorations, such a perfect on-chip power estimator
is largely unattained.
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Previous works have utilized event counters to model runtime
power in real microprocessors [3, 4, 6, 12, 14, 31]. These power
models are based on counter-values of specific micro-architectural
events, like cache misses and the number of retired instructions,
across thousands or millions of clock cycles. These events do not
naturally support power tracing in more fine-grained temporal
resolution. Moreover, the development of such models requires
extensive designer’s knowledge of the target design to define the
hardware events, and cannot be easily transferred to novel designs.

In recent years, on-chip power meter (OPM) based on selected
RTL signals [9, 23, 25, 41] has been designed to improve temporal
resolution and enable automated development, at the expense of
high hardware implementation cost. Most recently, a solution [38]
makes great progress by reducing the OPM hardware cost to <
1% area overhead in commercial microprocessors. However, 1%
overhead of cutting edge microprocessor design is non-negligible
and there is still huge room for improvement.

In this work, we propose a new methodology named DEEP to
automatically construct an extremely low-cost on-chip power meter
(OPM) in any given circuit design!. DEEP supports a truly negligible
implementation cost thus making it feasible to be implemented
in almost any design. The major contributions in this work are
summarized below.

e We propose DEEP, which automatically develops OPM with
4—6X lower cost compared with the state-of-the-art solution.
It achieves correlation R > 0.97 in power prediction with
area overhead < 0.1% of the microprocessor layout. This
model accuracy is measured based on accurate post-layout
power simulations, and hardware cost is verified on the
actual OPM implementation on the design layout.

e DEEP proposes to select OPM input from all individual bits
in RTL signals. Compared with signal-level selection in prior
works, such bit-level selection provides an unprecedentedly
large number of candidates and leads to a significantly lower
hardware cost.

e DEEP proposes an innovative two-stage method to efficiently
select high-quality OPM inputs from a huge number of input
candidates.

e Besides estimating the power of the whole design, DEEP
extends the OPM to also report the power of selected design
components without extra hardware cost or accuracy loss.

2 PREVIOUS WORKS

There have been many prior studies in runtime on-chip power
modeling. Besides a few analog solutions [5], popular previous
methods can be categorized into two major types, counter-based

IThe power model development methodology will be open-sourced in
https://anonymous.4open.science/r/DEEP-3E6B/.
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. Model Input Candidate Vi Input Selection Power Estimation | Temporal | Claimed OPM
Baseline Methods . .
(Candidate Count M) Method Level Resolution | Area Overhead
B1. MICRO’21 [38] All RTL signals (178 K) MCP Design-level Per-cycle <1%
B2. MICRO’19 [20] All RTL signals (178 K) K-means Design-level 100s cycles N/A
B3. DATE’18 [25] Registers (67 K) Lasso Design-level > 1K cycles 7%
B4. DATE’18 [41] Module I/O signals (< 178K) Increase by level | Component-level | 100s cycles 4-10%
B5. ASPDAC’15 [39] Registers (67 K) No Selection Design-level Per-cycle 16%
’ DEEP (this work) ‘ All bits of RTL signals (578 K) ‘ Two-step Selection | Component-level | Per-cycle <0.1%

Table 1: Overview of representative works in proxy-based on-chip power estimation.

and proxy-based. Most counter-based solutions [3, 4, 6, 10, 11, 14—
16, 18, 24, 27-30, 36] utilize already existing performance counters
in industrial designs like microprocessors or digital signal proces-
sors (DSPs). Such counters can be treated as free and the associated
area overhead is minimum. However, the development of such
counter-based power models requires extensive designers’ knowl-
edge of the specific design to define related hardware events. It
restricts the automation of these power modeling models. More-
over, these counter-monitored hardware events manifest multiple
cycles after the causal trigger event. It restricts the temporal reso-
lution of estimations to thousands to millions of cycles.

In comparison, proxy-based runtime power models can be more
friendly to automation, applicable to multiple designs, and support
more fine-grained temporal resolutions. Prior works [9, 23, 25, 38,
41] select the most power correlated signals, named proxies, as
inputs of the power model. Most of them target the best trade-
off among hardware implementation cost, accuracy, and temporal
resolution.

Besides these runtime power estimators, some works [8, 20, 32,
39] utilize proxy-based models to accelerate design-time power sim-
ulation by emulating on FPGA or other platforms. In the strict sense,
these works are originally proposed to benefit power simulation at
design time instead of runtime. But these power models actually
can be extensible to runtime power monitoring when implemented
on-chip.

Table 1 summarizes representative proxy-based power estima-
tion methods with their power model input candidates, tempo-
ral resolution, and claimed OPM hardware cost measured in area
overhead. The most recent and state-of-the-art work [38] reduces
overhead to < 1% of the design layout.

In this work, DEEP satisfies almost all desired properties of an
‘ideal’ OPM development method. It automatically develops ac-
curate OPMs for per-cycle temporal resolution with a negligible
< 0.1% hardware overhead. Moreover, it enables reporting the
power of selected components/modules, which supports more flex-
ible and component-level power, energy, and voltage management
techniques.

3 METHODOLOGY

The power consumption of circuits consists of both dynamic and
leakage components. Since the leakage power remains rather invari-
ant to the switching activity and code execution, it generally does
not affect the runtime circuit management. Therefore, like many

previous works [20, 38], DEEP focuses on developing OPM to mon-
itor the runtime dynamic power of a given design. Since dynamic
power is linearly proportional to charging/discharging of gate/wire-
capacitance, which is reflected in signal transitions/toggling, the
toggling of signals is detected on-chip and used as power model
inputs. As demonstrated in many prior works [20, 38, 39], based on
togging activities, the dynamic power can be reasonably approxi-
mated by an efficient linear power model.

3.1 Power Modeling Framework Overview

We first introduce DEEP’s framework in developing proxy-based
runtime OPM, as shown in Figure 1. There are three major stages.
First, given an arbitrary design RTL and corresponding testbenches,
signal waveforms and ground-truth power values are generated
through simulation. Second, a power model is automatically devel-
oped for the given design. Third, the power model is implemented
on hardware as the OPM and integrated as part of the target design.
To reduce OPM hardware cost, only the most power-correlated de-
sign signals, named power proxies, can be selected as power model
inputs.

DEEP targets per-cycle power prediction, which provides the
best temporal resolution and is a most challenging scenario [38].
Given a design with altogether M input variable candidates Vj,
DEEP selects a subset Vo C Vyy with Q = [Vp| < M, as power
proxies, and Q is the number of proxies. Then a linear power model
can be easily trained with these Q proxies as model inputs. For such
per-cycle power model, it is deployed to estimate the power at the
ith clock cycle,

Q
plil =D wj-x; L] (1)
j=1

where x1[i], x2[i], ... xo[i] € {0,1} are input features indicating
the per-cycle togglings or transitions of Q proxies in the i ! clock
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Figure 1: The DEEP OPM development framework.
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Figure 2: (a) Toggle detection of one bus signal sX[3 : 0] as
one model input in previous works [38]. (b) Toggle detection
of only one individual bit sX[2] as one model input in DEEP.

cycle, wi, wa, ..., wQ € R* are trainable weights. Selecting power
proxies Vg from Vy; with Q < M can greatly reduce the hard-
ware cost for runtime OPM. The choice of Q controls the trade-off
between accuracy and efficiency.

3.2 Proxy Candidates in Power Model

Deciding the proxies Vg as power model input is the key model
development step since it determines the OPM accuracy and effi-
ciency. This involves first deciding the candidates of model inputs
Vi and then selecting Vo from it.

In many previous works [20, 38, 41], inputs candidates Vs are
all or part of available RTL signals. Once selected as proxies, the
signal’s toggling activities will be detected as model inputs. An
example of toggle detection in recent prior work [38] is shown in
Figure 2(a). To detect the toggling of a signal sX with a width of 4,
every bit in sX is registered with one flip-flop and then monitored
with a 1-bit toggle detector (one flip-flop and one XOR). As a result,
its toggling activity is set to 1 if any bit in sX flips, otherwise it is 0.
Assume sX is the j proxy, its toggling activities are model input
xj[1],...x;[N] € {0,1} in Equation 1. Besides this binary toggling
value as model input, some other works [20, 41] adopt non-binary
numbers for the toggling activity for each signal. This makes toggle
detection and subsequent power calculation even more complex.

In the development framework, the OPM hardware cost is not
known until OPM implementation finally finishes, making hardware-
cost-aware model development difficult. Prior works [20, 38] thus
use the proxy number Q as a metric to evaluate OPM hardware
cost during model development. In this way, the proxy selection
algorithm only needs to minimize Q for lower OPM cost. How-
ever, since they use RTL signals as candidates, this metric is very
misleading, because the hardware cost to detect different signals as
proxies can be largely different. As Figure 2(a) demonstrates, wide
data bus signals, which are important proxies in practice, require
much more circuitry to detect their toggling than single-bit signals.
Therefore, the number of proxies Q does not accurately reflect OPM
cost. In addition, using RTL signals as candidates forces selection
algorithms either choose a wide bus signal or drop it, without other
alternatives.
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Algorithm 1 Power Proxy Vj Selection Step 1

Input: Toggling activities X € {0, 1}V, Power Label y € RN. N
is number of cycles, M is the number of all candidate variables.
Step 1: Pruning:
1: Initiate intermediate selection list V; = []
2: Initiate a linear model with M weights w}. For the ith cycle,
power prediction is o[i] = Zﬁyil w} - X[i, j]
3: Define MSE as error term £ = ||o — y||2
4: Define MCP penalty term P = 2?11 PMcp(w})
5. Training w;. = argmin(L + P) with coordinate descent. Con-
strain w’, >= 0 during training
6: for j € [1,M] do
7: add variable j to Vj if w} #0

Output: The intermediate variable selection list V;

In this work, DEEP proposes to select proxies at more the fine-
grained bit-level instead of signal-level. In other words, DEEP allows
the power model inputs Vj; to be every individual bit instead of
whole signals. As Figure 2(b) shows, it supports selecting individual
bits like the sX[2] from this bus signal. This difference leads to
essentially different solutions. First, compared with the number
of selected signals, the number of selected bits, which is Q in this
work, can much more accurately reflect the real OPM hardware
cost. This is because the cost to detect every bit is similar (two
flip-flops and one XOR). Only in this case, minimizing Q leads to
the most efficient OPM solutions. Second, by selecting individual
bits instead of whole signals, for the same number of proxies Q,
the hardware cost is greatly reduced, as indicated by the difference
between Figure 2(a) and Figure 2(b). Third, this provides much
more input candidates and flexible solutions. For the commercial
microprocessor in our experiment, as shown in Table 1, there are
155 K RTL signals but altogether 578 K individual bits in the design.
Therefore M = 578 K in the experiment. It indicates a larger solution
space with potentially better OPM solutions, compared with using
RTL signals [20, 38, 41] or only registers [25, 39] as Vjs. This is
further validated by results in Section 5.1.

3.3 Proxy Selection in Power Model Design

After candidates V) are determined, DEEP proposes a two-step
method to select proxies Vg from V). In the first step, a powerful
top-down pruning method is performed to narrow down the scope
of variables from Vj; to an intermediate input list V7, where I = V;
and Q < I < M. This pruning is a highly efficient method when
exploring a huge number of candidates, but it does not directly
lead to well-optimized final solution. This is further elaborated in
Section 5.1. In the second step, a bottom-up selection method selects
finalized V from such intermediate result V7.

The pruning-based first step is introduced in Algorithm 1. In this
step, DEEP prunes all candidates with minimax concave penalty
(MCP) [40] as defined below.

2
Awl - 3

%y/lz if |lw| > yA

if |w| < yA
For weight w € R, Pyicp(w) = { iffwl <y

MCP’s superior performance over Lasso in OPM development has
been proved in the latest prior work [38]. Compared with the popu-
lar Lasso penalty using L1 norm of weights, it protects large weights
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Algorithm 2 Power Proxy Vg Selection Step 2

Input: Toggling activities X € {0, 1}N*! of selected bits V.
Power Label y € RN. N is number of cycles.
Step 2: Bottom-up Selection:

1: function SELECTONEBESTVAR(V))

2 // Select one variable that adds most to accuracy
3 SetRY, =0, jpest =0

4 for signal j in [1,I] from V; do

5 Set temporary proxy list V1 = Vg + [ ]

6 Select toggle activities of Vr, denote as Xj[Vr]
7 Train a linear model M with Xj[Vr] and Y

8

9

if Model M’s accuracy R? > Ri then
) 5 ) est
Rbest =R" Jpest =J

10: return jq;

12: Initialize the proxy list Vo = []

13: repeat Q times

14: Vo -append( sELECTONEBESTVAR(V)) )
15: while Vj still changes do

16: for each proxy v in Vg do

17: // Check if better variable than v exists
18: Remove v from V,

19: Vo -append( sELECTONEBESTVAR(V)) )

Output: The selected proxy list Vg

under strong penalty strength. y and A are hyper-parameters decid-
ing the penalty strength and the threshold of large weights. When
the weight w > yA, the penalty of it Pyjcp(w) becomes a constant.

Algorithm 1 starts with a linear model with all M candidate
variables as inputs and corresponding weights w’,. After training
with penalty # in the loss function, most weights will shrink to zero
during training. Only variables with non-zero weights are added to
the intermediate list V7.

After the pruning, a bottom-up selection algorithm is performed
to determine the finalized proxy list V based on the intermediate
selection V7. It is based on the idea of best subset selection [21, 35],
which targets to select a near-optimal subset of variables from Vy
that yields the best performance. As Algorithm 2 shows, we first de-
fine a straightforward function named sELECTONEBESTVAR. It scans
each of the variables in V; and selects the one that adds the most
to model accuracy, measured with the coefficient of determination
R? [22].

In Algorithm 2, proxies Vp are selected incrementally one-by-
one. In each iteration, as line 14 shows, one signal that adds the
most to model accuracy is selected and added to V. This iteration
does not stop here. Instead, it then goes through every already
selected proxy v in Vg and searches if any other variable would
add more accuracy by replacing it. This is achieved by removing
each v signal from V, then search the whole candidate list V; with
SELECTONEBESTVAR in line 18 and 19. When there is no better signal
than v, the SELECTONEBESTVAR will return the originally removed
signal v, which is added back to the V. This remove-replace process
will continue until Vg no longer changes (line 15).

The heuristic method in Algorithm 2 claims to find near-optimal
subset solution efficiently [21, 35]. But compared with pruning
in the first step, it is significantly slower when V7 is large and as
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Figure 3: OPM hardware implementation with quantized
weights. The outputs are per-cycle power values.

Vo grows. It is prohibitively time-consuming if directly applied to
the huge candidate list Vj;. Therefore, we adopted the two-step
selection, with the first step efficiently narrowing down a huge
scope and the second step finalizing high-quality proxies.

3.4 Hardware Implementation

After proxies Vp are determined, the final power model defined in
Equation 1 is trained and implemented on hardware as OPM. Since
we adopt individual bits as input variables, the OPM implementation
is straightforward. As Figure 3 shows, it consists of two main parts.
The interface part detects the toggling activities of proxies, and the
computation part implements the linear power model by summing
up all weights of toggling signals. For DEEP-OPM, the interface part
takes up more area overhead than computation. The OPM output
is per-cycle power estimation. Based on such per-cycle power, it is
straightforward to further calculate multi-cycle average power if
necessary.

To reduce the hardware cost of OPM, weight quantization is
performed before implementing OPM on hardware. In DEEP, all
weights are quantized to integers, which greatly reduces the hard-
ware cost with limited accuracy loss. As Figure 3 shows, differ-
ent weight values as integers correspond to different numbers of
weight bits in the power computation part. These weights will be
determined during OPM design time and will not be tuned after
fabrication. At runtime, the OPM power estimations will be com-
pared with preconfigured thresholds to initiate power or voltage
management. To handle possible inter-chip variations, instead of
adjusting model weights on a per-chip basis, post-silicon calibration
of those preconfigured thresholds will be sufficient.

3.5 Component-Level Implementation

We have introduced the development of an OPM to estimate the
total power of a design. In this work, DEEP can also estimate the
power of selected major components in the design. To achieve
this, the power model development method is applied to design
components separately, resulting in multiple sub-OPMs. This means
developing a sub-OPM for each component/module by restricting
variable candidates Vj, toggling activities X, and power label y only
to this component. An exception is for some memory components,
where only I/O signals of the RAM macros are available on-chip.
In this case, its candidates V)1 can be selected from the whole
design. Based on all these sub-OPMs, their outputs are summed
up to report total the power of the design. Our experiment shows
that this component-level DEEP does not lead to an extra OPM
implementation cost.
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’ #RTL Signal ‘ #Register ‘ #RTL Bit ‘ #Standard Cell ‘ #Macro ‘

| 155K [ 7K [ 578K | 603K | 66 |
Table 2: Basic statistics of the microprocessor.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

Our experiment is performed on a 64-bit high-efficiency commercial
microprocessor. It is two-way superscalar and supports SIMD and
floating-point operations. In our experiment, this microprocessor
is configured with one CPU core, 32 KB L1 instruction cache, 32
KB L1 data cache, and 1024 KB L2 cache. The L2 memory system
includes the L2 cache pipeline and all logic required to maintain
memory coherence.

We implement this design with an industrial 28nm technology
node at 1 GHz. Design Compiler [1] and IC Compiler II [33] are
adopted for logic synthesis and design layout, respectively. The RTL
simulation is based on Synopsys VCS [2] and per-cycle power is sim-
ulated with PrimePower [34]. Different from some prior works [38]
using inaccurate RTL-level power as the label, in this work, all
power labels are simulated based on the post-routing layout solu-
tions. The total area of the microprocessor layout is 4.05 mm?, with
standard cells occupying 0.74 mm? of the layout area.

Table 2 shows some basic statistics of this microprocessor im-
plementation. There are around 155 thousand RTL signals and 67
thousand registers in the design. In comparison, when using all bits
in RTL signals as candidates in this work, there are altogether 578
thousand bits as candidates Vj;.

Figure 4 shows decomposed input candidate count and ground-
truth power of major components/modules. According to this, to
verify our component-level DEEP, we develop sub-OPMs for five
selected major submodules in the microprocessor, including L1
cache with table lookaside buffer (TLB), L2 cache with the logic
maintaining memory coherence, data processing unit (DPU) of core,
instruction fetch unit (IFU) of core, and all other logic in the CPU
core except DPU and IFU. They all contribute more than 10% of the
total power consumption in implementation. Based on these sub-
OPM:s, the power of CPU core, CPU core+L1, and CPU core+L1+L2
(total power) are also calculated by the OPM. As mentioned, only
I/0O signals of RAM blocks in L1 and L2 caches are available in Vj,
thus they only account for a very small portion of bits in Figure 4(a).
Therefore, when developing sub-OPM for the L1 cache, its Vy is
not limited to the L1 cache itself, but can be from the whole design.
As for the L2 cache, as Figure 4(a) shows, there are many signals in
the non-RAM logic. Thus like other components, the Vi of L2 is
still within the L2 component.

L1_TLB

CPU.other

L1_TLB

L2.noRAM CPU.other

CPU.IFU

L2.RAM CPU.IFU

CPU.DPU

() )
Figure 4: (a) Decomposition of all 578 K RTL bits as candidates
Vum. (b) Decomposition of averaged power.
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In this experiment, two strictly separated types of workloads
are generated and simulated on the microprocessor to generate
training (including validation) and testing data. Following the prac-
tice in [38], all testing workloads are designer-crafted represen-
tative power indicative workloads, including dhrystone, saxpy,
cache_miss, maxpower, etc. Altogether the testing set consists of six
designer-crafted workloads, with altogether N;es; = 26,000 cycles.
In comparison, workloads used in model training are first generated
based on a random combination of various instructions, then se-
lected to achieve good coverage of power consumption [38]. There
are seven automatically generated workloads with Ny,qin = 17,000
cycles in the training data.

The model development methods for both DEEP and all baselines
are implemented with Python3. Some proxy selection baselines are
based on scikit-learn [26]. The MCP algorithm with coordinate
descent optimization is implemented from scratch. In the exper-
iment, the two-step selection method in DEEP finishes in hours,
with MCP converging in 100 epochs. The layout of microprocessor
takes days to finish. Key hyperparameters are tuned based on the
performance on validation data and are reported below. The y in
MCP is set to 5, and penalty strength a controls the size of V;. We
do not strictly control V; size as we report many OPM solutions
to demonstrate the accuracy and efficiency trade-off curve. As a
rule of thumb according to our experiment, a reasonable range is
I € [3xQ,30XQ]. The proxy size of DEEP Q € [100, 300] provides
a good range of OPM accuracy and overhead.

4.2 Baseline Methods and Metrics

We compare DEEP with representative prior works on OPM design
in Table 1. To measure OPM accuracy, we evaluate it with mean
absolute error (MAE) percentage and Pearson correlation R between
power label y € RN and prediction p € RN. For the hardware cost
of OPM solutions, we define two area overhead metrics AO;, and
AO¢. AO[ equals the total gate area of all OPM components divided
by the area of the whole layout region (4.05 mm?). Considering the
layout consists of many hard macros, to avoid underestimating the
cost, AO¢ divides the total gate area of OPM only by the area of all
standard cells in the design (0.74 mm?).

SN lylil - plill
>N ylil

_ OPM gate area on layout

MAE = , A0y =

The layout area

Almost all baselines are not open-sourced and we replicate them
ourselves for comparisons. For baselines B2-B5 in Table 1, we fo-
cus on the replication of proxy selection methods to generate Vp,
which is the key part of OPM development. But we adjust some
of their OPMs design with more efficient hardware implementa-
tion. For example, we eliminate all multipliers and perform weight
quantization. Therefore the measured hardware cost in our experi-
ment is much lower than they originally claimed in Table 1. But for
the strongest baseline B1 [38], we strictly follow their originally
proposed method for a fair comparison.

When comparing OPM solutions, the trade-off between accuracy
vs. area overhead is the focus. We write an area overhead estimator
to evaluate the gate count in an OPM and its area overhead A0y
based on proxies and weights in its power model. To ensure its
correctness, this area estimator is calibrated with accurate area
values measured by synthesizing multiple OPM implementations.

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:31:53 UTC from IEEE Xplore. Restrictions apply.



ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

N

—@— DEEP-Total —%— B3. Lasso —&— DEEP-Total —¥—B3. Lasso
B1. MCP —&— B4. TopDown B1. MCP —<— B4. TopDown
—#— B2. Kmeans —— B5. NoSel —#— B2. Kmeans =i~ B5. NoSel

MAE (%)
o]
R Correlation

0.0 0.4 0.8 0.0

0.4 0.8
OPM Area Overhead A0, (%) OPM Area Overhead AO, (%)

(a) (b)

12
0.98
?
101 ¢ 5 ¥ 4
S Boos| ¢
w » g
=8 \ 8
o
B1. MCP 092 B1. MCP
6 —e— DEEP-Total —e— DEEP-Total
DEEP-Component ~@— DEEP-Component

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
OPM Area Overhead A0, (%) OPM Area Overhead AO; (%)

© )

Figure 5: OPM hardware cost (AOr) vs. per-cycle power pre-
diction accuracy. Comparison with baselines B1 to B5. (a)(c)
Accuracy measured in MAE percentage. (b)(d) Accuracy mea-
sured in R correlation.

In later sections, we will also validate the estimated area overhead
with ground-truth area measurements on OPM-integrated layouts.

4.3 Performance Comparison

We first compare DEEP with all baseline methods in Figure 5, which
shows OPM accuracy vs. the hardware cost in area overhead AOy .
Figure 5(a)(c) present accuracy in MAE percentage and (b)(d) show
accuracy in R correlation. The top two subfigures present com-
parisons with all baselines B1-B5, with AO; range in [0, 1%]. The
bottom two subfigures further zoom in the comparison between
DEEP with the strongest baselines B1 with AOy, range in [0, 0.3%].

In Figure 5(a)(b), we first observe that the most recent baseline
B1 [38] indeed achieves a significantly superior accuracy-efficiency
trade-off than the other four baseline solutions B2-B5. For baseline
B5, since it uses all registers as the initial model input without
explicit selection, there is no trade-off in the plot. We view B1 as
the state-of-the-art solution and focus on comparisons with it in
Figure 5(c)(d).

In Figure 5(c)(d), both versions of DEEP are shown, one only
reporting the total power while the other reporting both total power
and components’ power. Their overall performances are very close.

In Figure 5(c)(d), DEEP significantly outperforms the B1 baseline.
For the DEEP-Component solution achieving MAE = 9.5% and
correlation R = 0.954, the area overhead AOy is only around 0.04%
of the whole layout area. This equals 0.24% of the total standard cell
area. Compared with B1 at the same accuracy, the area overhead
is reduced by 4x. For a more accurate DEEP solution with MAE
= 7.5% and correlation R = 0.973, the AOy is 0.08% of the layout,
which equals 0.42% of total standard cell area. In comparison, the
OPM area overhead in B1 at this accuracy is 6x of the DEEP.

Zhiyao Xie, et al.

wom R Correlation i Area Overhead AO. ;\3
< 1.00 08
-
£ 06 g
I B B B B 0=
S 04 g
;’ 0.90 g
02 8
é

0-85"CpuU.DPU CPU.IFU  CPU 1 2 CPU+L1 CPU+L1+L2

(a)

@@ R Correlation  mmE Area Overhead AO, ;\3
< 1.00 o
}% 06 SE
@ 0.95 s
5 04 @
() =
0.90 <
-4 02 ¢
é

0-85"Cpu.DPU CPU.IFU CPU+L1 CPU+L1+L2

(b)

Figure 6: Component-level DEEP-OPM accuracy. (a) DEEP-
OPM with total overhead AO; = 0.04%. (b) DEEP-OPM with
total overhead AO; = 0.08%.

To further study the component-level DEEP solution, Figure 6
reports the accuracy and area overhead at different component
levels. Figure 6(a) reports a DEEP-Component OPM with total AOp,
= 0.04% and (b) reports a more accurate yet costly solution with
total AOy, = 0.08%. As mentioned, the whole OPM consists of five
major sub-OPMs, monitoring L1, L2, CPUDPU, CPU.IFU, and other
parts of CPU core. The total area overhead AOr is roughly the
summation of these five sub-OPMs. The addition of their outputs
further provides the power of the CPU core, CPU core+L1, and CPU
core+L1+L2 (total power). For each component, we measure the
correlation between the ground-truth simulated power and power
estimation of this part of circuit.

In Figure 6, the horizontal black dashed line indicates R corre-
lation equals to 0.95. The overall accuracy of most components is
high. For OPM with AOy, = 0.04%, the correlation R > 0.94 for all
components except the single L1 cache. Similarly, for OPM with
AOp, = 0.08%, the correlation R >= 0.96 for all components except
L1. The inferior accuracy in L1 is caused by the limited available
signals and bits in the L1 cache, as indicated in Figure 4(a). Although
this challenge is already handled by setting Vs of L1 to be from
the whole design, there are still fewer variables that correlate well
with L1 power. The R = 0.9 for L1 in OPM with AO, = 0.08%.

4.4 Hardware Solution

We verify DEEP’s OPM solution on hardware implementation. The
DEEP-component OPM with estimated overhead AOy = 0.04% and
R =0.954 mentioned in both Figure 5 and Figure 6(a) is implemented.
We integrate this OPM design into the microprocessor and generate
the whole layout, as shown in Figure 7. In this layout, all cells in
the OPM are colored in red. The large macros are L2 data RAMs
and smaller macros are for L1 cache, TLB, and tag RAMs. Then we
measure the ground-truth OPM area overhead on this post-layout
microprocessor. The actual overhead turns out to be indeed AOp
= 0.04%, which validates that our area estimator is correct and
accurately calibrated.

In comparison, a microprocessor layout with baseline B1’s OPM
is shown in Figure 8. Note that the macro locations are not fixed
and are automatically placed by IC Compiler II, leading to a slightly
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Figure 7: Microprocessor layout with DEEP component-level
OPM integrated. The red region is OPM. Area overhead AO,
= 0.04% when measured on this layout. The MAE = 9.5% and
R =0.954.

Figure 8: Microprocessor layout with state-of-the-art baseline
B1 [38]-OPM. The red regions is OPM. Area overhead AO| =
0.16%. The MAE = 9.5% and R = 0.951. Its overhead is 4x of the
DEEP solution.

different floorplan solution. The actually measured AOy, on the lay-
out in Figure 8 is 0.16%. Its accuracy is very close to the DEEP OPM
shown in Figure 7 but with 4x area overhead. This measurement
on layout implementation is consistent with the observation in
Figure 5. When visually comparing the two layout solutions, the
red OPM region in Figure 8 is also obviously larger than Figure 7.

5 DISCUSSION

5.1 Result Analysis

To better understand the unprecedented high efficiency of this
DEEP algorithm, we decompose the contribution of two major new
policies in DEEP through ablation studies in Figure 9(a). Compared
with baseline B1, DEEP adopts a two-step proxy selection method
on all individual bits. The contribution of using bits instead of
signals as V) is reflected by the superior performance of the blue
curve ‘MCP on Bits” over B1 baseline in Figure 9(a). In addition,
we also measure only using registers as Vys in ‘MCP on Registers’,
as adopted by baselines B3 and B5 in Table 1. The performance

MAE (%)
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Figure 9: (a) Analysis of model development policies in DEEP.
(b) The correlation among proxies Vp measured by variance
inflation factor (VIF).

turns out to be very bad. This observation is consistent with the
trend of adopting all RTL signals rather than only registers as input
candidates in recent works [20, 38].

We also measure the accuracy of applying the two-step selection
method on all signals as candidates, as the pink curve ‘Two-step
on Signals’ in Figure 9(a) shows. Its superior performance over
baseline B1 shows the contribution of adopting the two-step proxy
selection over simple MCP.

5.2 Proxy Analysis

Besides ablation study on the accuracy, we also look into selected
proxies Vp, which directly determines OPM quality. Figure 9(b)
calculates the averaged variance inflation factor (VIFs) of all prox-
ies. The VIF reflects the collinearity or correlation among selected
proxies. A high VIF generally implies less independence among
selected proxies and high variance in the model, which can be im-
proved. In Figure 9(b), DEEP shows better VIF than both baseline
B1 and MCP selection on all bits as candidates. This implies that the
two-step selection algorithm in DEEP tends not to select correlated
candidates as proxies simultaneously, partially explaining the better
performance of DEEP OPM.

Figure 10 further analyzes the source of proxies Vp. There are
244 bits selected as inputs in DEEP-OPM with AO;, = 0.08%. Fig-
ure 10(a) inspects all original RTL signals from which these input
bits are selected. Only 30% input bits are from per-bit signals and all
other 70% input bits are selected from buses. Figure 10(b) presents
the source of these selected input bits in terms of components.

width=1 width>32

CPU.other

L2.RAM

width>4
7 width<=32

CPU.DPU

CPU.IFU

(@) (b)
Figure 10: Analysis of 244 proxies Vp in a DEEP OPM with
AO[ = 0.08%. (a) Width of original RTL signals from which
these bits proxies are selected. (b)) Components where these
bit proxies are selected.
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Figure 11: Histogram of proxy bit position in bus signals:
MSB tends to be selected. (a) DEEP-OPM with AO; = 0.04%.
(b) DEEP-OPM with AO[, = 0.08%.

This distribution is similar to the distribution of candidates Vj; in
Figure 4(a).

Another interesting analysis is which bit in a bus signal tends
to be selected as proxies. Figure 11 analyzes the selected bits from
bus signals with width larger than 4. It inspects the ‘bit position” of
selected bits in Vp. For a bus signal named BS[w —1 : 0] with width
w, assuming one bit BS[k] in this bus is selected as a proxy, we
define its bit position to be k/(w—1), which ranges from 0 to 1, with
0 representing the least significant bit (LSB) and 1 representing the
most significant bit (MSB). As shown in two histograms in Figure 11,
MSBs tend to be selected as inputs. This trend is very reasonable
since toggles in MSB tend to capture more arithmetic activities due
to carrying.

5.3 Weight Analysis

Besides proxies, the number of bits of weights after quantization
also provides insights into understanding the OPM hardware cost.
Table 3 reports the distribution of weight bits after quantization.
Please do not confuse these weight bits with the width of RTL
signals. For the OPM with overhead equal to 0.08%, the maximum
weight bits is 6. In this OPM, more than 80% of weights only take less
or equal to 3 bits. It indicates the importance of weight quantization.

W bits | 1| 2 3 4 |56
Count | 6 | 77 | 120 | 28 | 8 | 5

DEEP-OPM
(A0 = 0.08%)

Table 3: Post-quantization weight bits distribution.

6 CONCLUSION

In this work, we present an extremely efficient runtime OPM de-
velopment method named DEEP. It reduces the hardware cost of
OPM to < 0.01% area overhead, making per-cycle on-chip power
estimation affordable in almost any design. We believe this provides
an ‘ideal’ runtime power estimator that supports all desired proper-
ties of OPM, including accuracy, low hardware cost, good temporal
resolution, automated development, and reporting component-level
power values.
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