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VARIABLE SELECTION WHEN
IRREPRESENTABLE CONDITIONS FAIL

Fei Xue and Annie Qu

Purdue Univeristy and University of California Irvine

Abstract: Traditional variable selection methods could fail to be sign consistent
when irrepresentable conditions are violated. This is especially critical in high-
dimensional settings when the number of predictors exceeds the sample size. In
this paper, we propose a new semi-standard partial covariance (SPAC) approach
that is capable of reducing the correlation effects from other covariates, while fully
capturing the magnitude of the coefficients. The proposed SPAC is effective in
choosing covariates that have direct effects on the response variable, while elimi-
nating predictors that are not directly associated with the response, but are highly
correlated with the relevant predictors. We show that the proposed SPAC method
with the Lasso penalty or the smoothly clipped absolute deviation (SCAD) penalty
possesses strong sign consistency in high-dimensional settings. Numerical stud-
ies and a post-traumatic stress disorder data application confirm that the proposed
method outperforms the existing Lasso, adaptive Lasso, SCAD, Peter—Clark-simple
algorithm, and factor-adjusted regularized model selection methods when the irrep-
resentable conditions fail.

Key words and phrases: Irrepresentable condition, Lasso, model selection consis-
tency, partial correlation, smoothly clipped absolute deviation.

1. Introduction

Variable selection is an important model-building tool for selecting covari-
ates relevant to the response variable, which is fundamental for the construction
of a sparse model when the number of relevant covariates is much smaller than
the total number of observed covariates. This is especially crucial under high
dimensionality, where the number of covariates far exceeds the number of ob-
servations. For high-dimensional data, traditional regularization variable selec-
tion methods (Tibshirani (1996); Fan and Li (2001); Zou and Hastie (2005);
Yuan and Lin (2006); Zou (2006); Candes and Tao (2007); Zhang (2010)) are

effective in achieving model selection and parameter estimation simultaneously
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under irrepresentable conditions (Zhao and Yu (2006); Fan and Lv (2011);
Kim, Choi and Oh (2008)), which assume that the correlations between rele-
vant and irrelevant covariates are relatively weak compared with those between
relevant covariates.

However, the irrepresentable conditions could fail, regardless of whether or
not the dimension is high. For example, in a mediation analysis seeking to identify
mediators that transmit effects from an exposure factor to an outcome variable,
spurious mediators (irrelevant covariates) could be strongly correlated with the
exposure factor and the true mediators (relevant covariates) (Jérolon et al. (2021);
Chén et al. (2018); Imai and Yamamoto (2013)). Although modified model se-
lection methods have been proposed that incorporate strongly correlated covari-
ates, they either do not possess variable selection consistency (Wang and Wang
(2014); Maier and Rodriguez-Salas (2017); Hilafu and Yin (2017); Biithlmann
et al. (2013)), or they impose a more restrictive condition, such as knowing the
true number of relevant covariates (Javanmard and Montanari (2013)). In par-
ticular, several existing methods (Sharma, Bondell and Zhang (2013); Fu et al.
(2014); Zeng and Xie (2012); Huang et al. (2016)) tend to group and select highly
correlated relevant and irrelevant predictors together. Jia and Rohe (2015) pro-
pose transforming the design matrix so that the irrepresentable conditions are
satisfied. However, the error terms are no longer independent from each other
after the transformation. More importantly, a model-based transformation loses
its original interpretation, in practice.

Under high-dimensional settings (Fan, Shao and Zhou (2018)), sure indepen-
dence screening (Fan and Lv (2008)) screens out variables using the marginal
correlations between the response and the covariates. However, the marginal
correlations between the irrelevant covariates and the response could increase
when the irrelevant covariates are strongly correlated with the relevant covari-
ates, which may reduce the effectiveness of the sure independence screening. The
Peter—Clark-simple (PC-simple) algorithm (Biithlmann, Kalisch and Maathuis
(2010)) was developed to screen variables using partial correlation to solve the
correlation problem. Moreover, Cho and Fryzlewicz (2012) generalize the par-
tial correlation to a tilted correlation, and Li et al. (2016) and Jin, Zhang and
Zhang (2014) incorporate inter-feature correlations to improve the detection of
marginally weakly associated covariates. In addition, Bradic (2016) proposes
a subsample bootstrap aggregation approach to circumvent the irrepresentable
conditions, and Fan, Ke and Wang (2020) developed the factor-adjusted reg-
ularized model selection (Farm-Select) method to decorrelate highly-correlated
covariates.
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The partial correlation approach measures each individual covariate effect
after removing other covariate effects (Peng et al. (2009); Biihlmann, Kalisch
and Maathuis (2010); Li, Liu and Lou (2017); Tang, Wang and Barut (2017)).
However, the range of the partial correlation is bounded between minus one and
one, and therefore the partial correlation may not fully capture strong signals
of some relevant covariates. This motivates us to develop a new semi-standard
partial covariance (SPAC) approach to fully use the magnitude of the signal
strength. The proposed SPAC is more powerful than the partial correlation in
identifying relevant covariates.

Compared with traditional regularization methods, the proposed method en-
courages selecting covariates that have direct effects on the response variable,
while discouraging the selection of irrelevant covariates that are strongly corre-
lated with relevant covariates. We demonstrate the estimation consistency and
variable selection consistency for the proposed SPAC method with the Lasso
penalty (SPAC-Lasso) and the smoothly clipped absolute deviation (SCAD)
penalty (SPAC-SCAD). The proposed method can handle both fixed-dimensional
settings and high-dimensional settings when relevant and irrelevant covariates are
highly correlated with each other.

Our work has the following contributions. First, the proposed variable selec-
tion approach can mitigate the bias of model selection caused by the violation of
irrepresentable conditions for the Lasso or the SCAD method. We show that the
proposed SPAC-Lasso and SPAC-SCAD are still sign consistent, and are espe-
cially effective when the correlations between the relevant and irrelevant covari-
ates are higher than those between the relevant covariates. Second, the proposed
SPAC is more effective in acquiring the signal strength, and thus is more pow-
erful in selecting relevant predictors than is the traditional partial correlation.
Numerical studies confirm that the proposed method outperforms traditional
penalty-based variable selection methods, namely, the PC-simple algorithm and
the Farm-Select method, for highly dependent covariates.

The remainder of the paper is organized as follows. Section 2 provides the
model framework for the variable selection problem. Section 3 introduces the
SPAC and presents the proposed methodology. Section 4 establishes theoretical
properties of the SPAC-Lasso and SPAC-SCAD. Section 5 discusses the imple-
mentation of the proposed method. Section 6 presents various simulation studies.
Section 7 illustrates a real-data application to a study on post-traumatic stress
disorder (PTSD) in African Americans. Section 8 concludes the paper.
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2. Model Framework and Notation

We formulate the variable selection problem under a linear regression setting,

y=Xp+e, (2.1)
where y = (y1,...,yn)’ consists of samples for the response variable Y, X = (;;)
is an n x p random design matrix, 3 = (31,...,8p)7 is a coefficient vector, and

the noise vector € ~ N,(0,021,) is uncorrelated with X. Let x; be the jth
column (jth covariate) of X, for each j = 1,...,p. Without loss of generality,
we assume that each column is standardized from independently and identically

distributed (i.i.d.) samples; that is, a:JTa:j = n and mean Y ;'  x;; = 0, for
j=1,....n. Then, each row of X is identically distributed from a p-dimensional
random vector X = (X1,..., X,)? with mean 0 and positive-definite covariance

matrix Cpxp, with diagonal elements all ones. In addition, we assume that the
response variable is standardized with > ; y; = 0, and thus the intercept can
be omitted.

Here, we assume that the linear model in (2.1) is sparse, where most co-
variates have zero coefficients and are irrelevant to the response Y. That is,
only the first g covariates in X have nonzero coefficients and are relevant to
the response variable, and let 8; = 0 if and only if ¢ > ¢. In addition, we let
¥ = Cov(Y, X1,...,X,) and X! = (o¥), where 7,j € {V,1,2,...,p}.

Under the sparsity assumption, the penalized least squares regression meth-
ods (Tibshirani (1996); Fu (1998)) select variables by minimizing the penalized
least squares function

1 P
L(B) = 5lly = XBI* + D pa(5), (22)
j=1
where || - || represents the Euclidean norm, py(-) is a penalty function, and A is

a tuning parameter. Here, p)(f;) could be the Lasso, adaptive Lasso, or SCAD

penaltYa which have the forms pLasso,A(Bj) = )\|B]|7 pALasso)\(ﬁj) = )\’IBJ|/’BO]|5
and

AlBj] if 0 <[B;] <A
aA|B;] = 0.5(181* + %) .
pscap(Bj) = a—1 if A <651 < aA (2.3)
A(a? - 1)
2 if 18,
Sa—1) if |8;| > aA,

respectively, where “ALasso” represents the adaptive Lasso penalty, a > 2, and
Boj is an initial estimator of f3;.
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3. A New Variable Selection Method

In this section, we propose a semi-standard partial covariance (SPAC) vari-
able selection approach to achieve selection consistency when the original ir-
representable conditions (Zhao and Yu (2006); Fan and Lv (2011)) fail; that
is, there exist strong correlations between the relevant and the irrelevant co-
variates. The proposed SPAC is able to capture the relationship between a
relevant covariate and the response variable, conditional on other covariate ef-
fects, because we derive this SPAC from the notion of partial correlation. For
each j = 1,...,p, let p; = Corr(ey,e;) be the partial correlation between
the response Y and the covariate X;, where ey and ¢; are the residuals of
linear regression models with ¥ and X; as responses, respectively, and with
X j={Xp:k=1,...,j—1,7+1,...,p} as predictors.

Under the normality assumption

(Y, X1,..., X,) T ~ Nyt (0, %), (3.1)

it is well known that p; = Corr(Y, X; | X_;) (Baba, Shibata and Sibuya (2004)),
indicating that a partial correlation measures the linear relationship between Y
and X, conditional on other covariates. Moreover, nonzero partial correlations
correspond to relevant covariates, whereas zero partial correlations correspond to
irrelevant covariates.

However, a partial correlation is unable to fully capture the signal strength,
which is the magnitude of §;, owing to its bounded range. To overcome this
limitation, we propose the following SPAC, and provide the association between
the SPAC and a partial correlation in Lemma 1.

Definition 1. The semi-standard partial covariance (SPAC) between a response
@’
diagonal element of the precision matrix D = C~1.

Y and a covariate X; is v; = f;/ for j = 1,...,p, where d;; is the jth

The exponent 1/2 of dj;; in Definition 1 ensures that v; does not depend on
the scale of X; | X_j, as stated in the following lemma.

Lemma 1. Let s; = {Var(Y | X_;)}'/2, for each j = 1,...,p. Under the
normality assumption (3.1), we have

Cov(Y, X; | X_; /oYY 52
v ( ]’ j) 2 _ /o 714_0?

VT NG TX O T T

By definition, v; = 0 if and only if 8; = 0, for each j = 1,...,p, implying
that we can select relevant covariates by identifying nonzero SPACs. Lemma 1
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shows that the SPAC is equivalent to multiplying the partial correlation by s;
under the normality assumption. Moreover, the proposed «; standardizes the
partial covariance Cov(Y, X, | X_;) by {Var(X; | X_;)}'/2, instead of both s;
and {Var(X; | X_;)}/? as in the partial correlation, which is why we refer to ~;
as the “semi-standard” partial covariance. We involve s; in the SPAC, because
it is an increasing function of the partial correlation p;, and it incorporates the
magnitude of the coefficient §;, as indicated in Lemma 1. Therefore, the proposed
SPAC is able to fully capture the signal strength of relevant predictors, while
removing the effects of other covariates.

We illustrate the SPAC and compare it with a partial correlation from a
geometric perspective using a toy example. Let y = S1x1 + Soxa + €, with 81 # 0
and B2 = 0; that is, o is relevant, but x5 is irrelevant. We also assume that x;
and xg are correlated. By definition, 71 # 0 and v = 0.

We plot the relationships of 1, @2, and y in Figure 1. As shown in the left
graph, @; is the angle between the two bold lines, which represent residuals of
projections from y and x; onto xy. Then, p; = cos(w;) is the sample partial
correlation based on samples in @1, s, and y. The length of the bold line
for residuals of y is a sample estimator of s;, denoted by §;. By Lemma 1,
41 = 81 cos(w) is a sample estimator for 1, which is also the projection from
residuals of y onto residuals of @1, represented by the dotted line in the left graph.

Similarly, in the right graph of Figure 1, pa = cos(wz) and 4, are the sample
partial correlation and sample SPAC for xo, respectively. Here, 45 is not exactly
zero owing to sample variation. The differences between the sample SPACs and
the sample partial correlations come from §; and 85. As shown in Figure 1, §5 is
just the sample variance of the error term, while §; contains the error variation
and increases with the signal coefficient 51, implying that §; should be larger than
S2. Therefore, the SPAC is more effective in distinguishing relevant covariates
from irrelevant covariates than is a partial correlation.

Compared with the coefficients 3, the SPAC takes account of correlation ef-
fects from other covariates. Specifically, because 1 /d;J/.2 = {Var(X; | X_;)}/? =
(1-— Rjz)l/2 (Lauritzen (1996); Raveh (1985)), the SPAC for covariate X is

v = Bi {Var(X; | X_j)}'/* =8; (1 R?)I/Q ;

where R; is the coefficient of the multiple correlation between X; and all other
covariates. When X, is independent of the other covariates, 7; is the same as
Bj. On the other hand, when X is correlated with the other covariates, the
SPAC mitigates the correlation effects from other covariates by multiplying 3;
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X;

Figure 1. Illustrations of the SPAC and partial correlation when X; and X5 are corre-
lated.

by (1— Rjz)l/ 2. Thus, we propose estimating SPAC ; instead of the coefficient 3;
to achieve model selection consistency for data with strong correlations between
the irrelevant covariates and the relevant covariates.

Specifically, we replace the coefficient 5; in the penalized least squares func-
tion (2.2) with djl-]/?’yj, for each j = 1,...,p, and estimate v = (y1,...,7,)T by

minimizing
.1 P 179 P .
Liv.d) = Slly = Y @iyl + Y pa(a)dis. (3.2)
j=1 J=1
where d = (dy1,...,dyy)T is a consistent estimator of the diagonal elements
d = (dn,...,cgpp)T. Substituting 8 by -y, we obtain a new matrix X* =
(ccld}{z, . .,wpdzljz/f), which serves as a design matrix for 4. The squared Eu-

T
J
leads to different weights on the penalizations for different covariates. However,

clidean norm of the jth column in X* is chjac Tj= (ijjn, for j =1,...,p, which
the SPAC of each covariate could be equally important. To avoid unequal weight-
ing, we reweight the penalization term by multiplying the penalty py(v;) in (3.2)
by d;j, for each j = 1,...,p. Consequently, the proposed SPAC estimator is

4 = argmin L(v,d),
v
. . . . A 51/2 51/24 \T
and the corresponding estimator for the coefficients is 8 = (dy}" %1, ..., dpp Fp)" -
We adopt the Lasso, adaptive Lasso, and SCAD penalty functions to shrink
the SPACs in Examples 1-3, respectively, and refer to the corresponding estima-
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tors as SPAC-Lasso, SPAC-ALasso, and SPAC-SCAD, respectively. We compare
these estimators with the original Lasso, adaptive Lasso, and SCAD estimators
in Sections 6 and 7.

Example 1. If we use Lasso penalty, the penalized loss function in (3.2) becomes

1 2
LLasso(77 7||y Zm] / 7]”2 + Azd]]h/j (33)
7j=1

Accordingly, the proposed estimator with the Lasso penalty (SPAC-Lasso) is

"A)’Lasso = argmin LLasso('77 d)
~y
Example 2. Suppose that 40 = (Jo1, - . - ,%p)T is a consistent initial estimator
for v. The objective function for the SPAC method with the adaptive Lasso
penalty (SPAC-ALasso) is

(3.4)

qL/? gl
LALasso(’Yu 7”y Z 93] / i ”2 + A Z d]] ‘ ]||
Jj=

where > 0 is a tuning parameter. The corresponding SPAC-ALasso estimator
is
'AYALasso = argmin LALasso('Y? d)
v

Example 3. Similarly, the objective function for the proposed SPAC method
with the SCAD penalty (SPAC-SCAD) is

p
1 2 7
Lscap(v.d) *Hy ZCBJ APyl 40 pscapa(y)dy,  (3.5)
s

where pscap.a(+) is defined in (2.3), and the corresponding SPAC-SCAD estima-
tor is

Yscap = argmin Lscap(7,d).
Y

4. Consistency Theory

In this section, we demonstrate the asymptotic properties of the proposed
SPAC-Lasso and SPAC-SCAD estimators, and provide examples satisfying the
conditions for the consistency of the proposed method. Although Lemma 1 is un-
der the normality assumption, we do not require this assumption in the following
subsection.
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4.1. Consistency under high dimensionality

In this subsection, we establish the variable selection consistency and estima-
tion consistency of the SPAC-Lasso and SPAC-SCAD under high dimensionality,
where p = pp, ¢ = gy, and C = C,, increases with n. Similar results for fixed
dimensions of p and ¢ are provided in Section S2 in the Supplementary Material.
For high-dimensional settings, the Lasso, adaptive Lasso, and SCAD methods re-
quire the correlations between relevant and irrelevant covariates to be relatively
small compared with those between relevant covariates in order to achieve vari-
able selection consistency (Zhao and Yu (2006); Huang, Ma and Zhang (2008);
Kim, Choi and Oh (2008); Fan and Lv (2011)). The proposed SPAC approach
mitigates the correlation effects from other covariates to achieve model selection
consistency when relevant and irrelevant covariates are strongly correlated and
the original irrepresentable conditions fail.

Following similar notation to that in Zhao and Yu (2006), let 4 =, « if and
only if sign(¥) = sign(y), and an estimator 4 is strongly sign consistent if
there exists a tuning parameter \,, a function of n, such that

lim P{y(An) =s v} =1,

n—o0

where ), is independent of the data.

To show the sign consistency of the proposed method, we define the following
notation. Let X (1) and X (2) be the first g, and the remaining p,, —¢,, columns in
X, respectively, such that X (1) contains relevant covariates, and X (2) consists
of irrelevant covariates. Let C,, = X7TX /n be the sample covariance matrix of
X, with diagonal elements all ones, because the covariates are standardized, as
mentioned in Section 2. Thus, én and the true covariance matrix C,, are both
correlation matrices, and can be partitioned into blocks

. [(euer cli ¢
Cn= (ém é22> ;o Cn= (CQI CQQ) )

according to X = (X (1), X(2)). Similarly, we partition v into (1) = (v1,...,7q
and ¥(2) = (vg+15-- - )"
of the SPACs, respectively.

In addition, we define the following conditions for the proposed SPAC-Lasso
and SPAC-SCAD.

)T

, representing the relevant and irrelevant coefficients

Condition 1 (Irrepresentable condition for SPAC-Lasso). There exists a
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positive constant 1 such that

[veesen vy smEw)|_ <1

where || - ||oo Tepresents the infinity norm of a matriz, and V(1) and V(2) are
diagonal matrices diag{l/di{Q, cee 1/d%2} and diag{l/d;flqﬂ,...,1/d]131/;2}, re-
spectively.

Condition 2 (Irrepresentable condition for SPAC-SCAD). There exists a
positive constant 1 such that

P)\; (hmin)

veerehH v <i-n

where Px; (+) = Dlscap y: ()/Ans hmin = mini<j<q, |8j1/2, and A, = Ay maxi<j<q,
2
3J

Condition 1 is required for the sign consistency of the SPAC-Lasso, while
Condition 2 is required for the SPAC-SCAD under high-dimensional settings.
Condition 2 is weaker than Condition 1 when the signals are strong, because the
SCAD penalty gradually levels off. The above two conditions are modified from
the original irrepresentable conditions proposed in Zhao and Yu (2006) and Fan
and Lv (2011) for the Lasso and SCAD, respectively. However, the proposed
Conditions 1 and 2 could still hold for cases where the original irrepresentable
conditions fail. We illustrate this with examples in Section 4.2.

Condition 3. For some positive constants 0 < kg, ke < 1/2, and k1 > 0, log p, =
O(n'=%%0), gn = O(n*), hmin > (0g pn/n)"/?, and pp > n".

Condition 3 allows the number of covariates to grow exponentially, but re-
quires a lower bound of signal strength, similarly to Fan and Lv (2013) and Zheng,
Fan and Lv (2014)). The requirement p, > n"' comes from Cai, Liu and Luo
(2011) to ensure the consistency of the constrained Lj-minimization estimator
(CLIME) (Cai, Liu and Luo (2011)), which is adopted in the following theorems.
We let d be the diagonal elements of the CLIME. Then, d is consistent under
some regularity conditions and a sparsity assumption of the precision matrix (Cai,
Liu and Luo (2011)).

Following the notation in Cai, Liu and Luo (2011), we model the sparsity of
the precision matrix D by defining

1<j<pn

Pn
Gu(Kp,, Mp,) = {D - max Z |dij|* < Kp,, | Dy < Mpn} ) (4.1)
i=1
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where 0 < w < 1, and K, and M, are positive and allowed to increase with
n. We consider data with precision matrices D € G, (K, , M, ) throughout this
subsection. Details of other regularity Conditions 4, 5, 6, are provided in Section
S1 in the Supplementary Material. The proofs for the following theorems are
provided in Section S4 in the Supplementary Material.

Theorem 1. Let d be diagonal elements of the CLIME of D. If Conditions 3,
4, and 5 are satisfied, and Condition 1 holds with probability at least 1 — O(n_5),
then we have the following properties for the minimization of Liasso(7y,d) in (3.3)
with probability at least 1 — O(n™°).

(1) Strong sign consistency: There exists a strict local minimizer Ypqsso Such
that ’?Lasso =s -

(2) Estimation consistency: The corresponding estimator of the coefficients ﬁ =

2 _ Ingn 12
16~ Bl = of (<E2¢) 1.

VY asso Satisfies

Theorem 2. Let d be diagonal elements of the CLIME of D. If Conditions 3,
5, and 6 are satisfied, and Condition 2 holds with probability at least 1 — O(n*‘s),

then we have the following properties for the minimization of Lscap(y,d) in
(3.5) with probability at least 1 — O(n™%).

(1) Strong sign consistency: There is a strict local minimizer Yscap such that

YscAD =s Y-

(2) Estimation consistency: The corresponding estimator of the coefficients ,6' =

2 _ logpn 12
16~ Bl = 0f () )

Theorems 1 and 2 state that, even though the number of covariates increases
exponentially, the proposed SPAC-Lasso and SPAC-SCAD are able to select the
true model with probability tending to one under Conditions 1 and 2, respectively.
Moreover, the estimators for the coefficients based on the SPAC-Lasso and SPAC-
SCAD both converge to the true 3.

Note that Condition 1 could still be valid even when the original irrepre-
sentable conditions (Zhao and Yu (2006)) for the Lasso are violated. Similarly,

~

V130D satisfies
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Condition 2 is able to accommodate highly correlated covariates when the ir-
representable condition for the SCAD method (Fan and Lv (2011)) fails. We
illustrate this point with examples in the following subsection.

4.2. Examples satisfying the proposed conditions

In this subsection, we give some examples where the proposed irrepresentable
Conditions 1 and 2 still hold, even when the original irrepresentable conditions
for the Lasso and SCAD fail, respectively. We suppose that C,, is a submatrix
of Cy 41 as the dimension increases.

We first consider using an extended block-exchangeable covariance matrix
structure, which is defined as a block diagonal matrix consisting of identity ma-
trices and R:

Cy, = diag{Iy,—q,, B, I, _g. —(po—qo) }> (4.2)
where

R R12) 43)

RPOXPO = <(R12)T R22

is block-exchangeable with
(Ru)i,j = { . . (R22)i,j = { . . (Rm)i’j = 9.

Here, a1, oo, and a3 are unknown constants, R is a gy x go matrix, and py and
qo are constants independent of n.

The R is a fixed-dimensional and dense sub-matrix in C,. The number ¢q
represents the number of relevant covariates with a nonsparse covariance matrix
R and pg represents the total number of covariates with a nonsparse covariance
matrix R. There are pg — qq irrelevant covariates with a dense covariance matrix
R?2. In addition, R'? represents the covariance matrix between the correlated
relevant and irrelevant covariates. We use C,, = diag{Iy,—q,, R, I, _q. —(po—qo)}
instead of R as the covariance matrix to include a diverging and sparse covariance
matrix for high-dimensional settings. Even under the sparse covariance matrix
setting, the original irrepresentable conditions could still fail.

Similarly, we define C,, = diag{Iy,—q,, Rpoxpo> Lp,—q,—(po—
tended block-autoregressive (block-AR) covariance matrix, where

@)} as an ex-

(Rll)i,j _ Oé|11—]‘, (R22)i,j _ Oé!r;_]l, (Rm)i,j _ ag—(QO-FJ”. (44)
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When the covariance matrix C,, is extended block-exchangeable, as in (4.2), the
sparsity assumption in (4.1) holds with K = po{(po — 1)!/A1}* and M = po!/Aq,
where (pg — 1)! and pp! denote the factorials of pg — 1 and pg, respectively, and
Ay = (1—a1)®(1—az)P g (po — qo) (a1 — a3). When the covariance matrix
is extended block-AR, the sparsity assumption in (4.1) holds with K = po{(po —
D!/A}* and M = po!/Ag, where Ay = (1 — a2)®(1 — a2)Po~9[1 — a3(1 —
a102)?(1 — azan)?/{(1 — a?)(1 — a3)(1 — &2)?}]. Note that in both cases, the
K and M do not depend on p,. To simplify the following statements, we let
Lo = qo/mo, where mo = | 37" 1y sign(B)| = [ 221", _ 4 41 sign(vi)] > 0.

Proposition 1. Let p, = exp(n'=2%) and q, = n'/3, with 1/3 + 7 < kg <
1/2 and 0 < 7 < 1/6. Under the normality assumption (3.1), suppose that C,
is an extended block-exchangeable covariance matriz of the form in (4.2), with
a1, g, a3 € (—1,1), such that ajas # a% and C,, is positive definite for any
large constants qo and pg — qo, where qog < pg — qo- Then, there exists a constant
0 <6< 1/2 such that

ICH(CH) Lsign{B(1)}oo =1 with probability at least 1 — O(n%) (4.5)
if o] > a1 Lo. Conversely, (4.5) implies |aa| > a1Lg > a1, as > |asl, and
V)G (CH T V) sien{B()} < |GG sign{BL)},  (4.6)

for sufficiently large constants mg and pg— qo with probability at least 1 — O(n_5),
where the inequality holds element-wise.

Proposition 2. Under the conditions of Proposition 1, if for some constant
0<0<1/2,

ICPHC) oo Pr(hmin) =1 with probability at least 1 — O(n™°%),  (4.7)
then ag > |ag| > a1, and

IVERCHCH V) oaoPalhmin) < ICTH(C)  ooPa(min),  (4.8)

for sufficiently large constants mq and py— qo with probability at least 1 —O(n=°).

The failure of the original irrepresentable conditions (Zhao and Yu (2006);
Fan and Lv (2011)) of the Lasso and SCAD methods implies inequalities (4.5) and
(4.7), respectively. By Propositions 1 and 2, if the original irrepresentable condi-
tions fail, then the correlations between the relevant covariates are the smallest
among the correlations of all covariates, followed by those between the relevant
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and irrelevant covariates. More importantly, the inequalities in (4.6) and (4.8)
hold even when the original irrepresentable conditions are violated, indicating
that the new irrepresentable Conditions 1 and 2 for the SPAC-Lasso and SPAC-
SCAD, respectively, can still be valid.

The following corollaries provide sufficient conditions for the SPAC-Lasso to
be strongly sign consistent when the true covariance matrix is extended block-
exchangeable, as in (4.2), or extended block-AR, with R defined as in (4.4).
We also provide a similar corollary in Section S4 in the Supplementary Material
for the strong sign consistency of the SPAC-SCAD under the extended block-

exchangeable covariance matrix structure.

Corollary 1. Let d be diagonal elements of the CLIME of D. Suppose that the
conditions of Proposition 1 and Condition 4 are satisfied, and that hyin > n=".
If there exists a positive constant n such that

1—a\! /2
oo < (1 —n) (1 ) a1 Lo, (4.9)
then the SPAC-Lasso possesses strong sign consistency, and the estimator ,3 =
V‘lfyLasso is consistent for sufficiently large qo and py — qo.

Under the extended block-exchangeable structure with large n, the weak ir-
representable condition (Zhao and Yu (2006)) of the Lasso holds for large a;.
However, when a; < |ag|/Lo < |azl, the Lasso is not sign consistent, by Propo-
sition 1. In contrast, Corollary 1 shows that the SPAC-Lasso is strongly sign

consistent, given that ag is sufficiently large, even when «; is small.

Corollary 2. Suppose that the conditions of Corollary 1 are satisfied, except
that C,, is an extended block-AR covariance matriz with R defined in (4.4) and
ay, a9, a3 € (0,1), such that 2|lag — z[{aa + 1/(1 + 2)} < 1, where z = aq or as.
Further, suppose that the true coefficients of the relevant covariates have the
same sign. If (4.5) is satisfied, then ag > a1, and the SPAC-Lasso is strongly
sign consistent when there is a constant n > 0 such that

1—a2\"? ag(l -
|052—O£3| 1*0{1 (1—}—(11)(1—0&2)
Corollary 2 states that, under the extended block-AR structure, the failure of
the weak irrepresentable condition of the Lasso also implies that the correlations

between the relevant and irrelevant covariates are stronger than those between
the relevant covariates, that is, as > 1. More importantly, even when the weak
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irrepresentable condition fails, the SPAC-Lasso is still strongly sign consistent,
given that as is sufficiently large. This is consistent with the results of the
extended block-exchangeable example.

In the following proposition, we present another sufficient condition for Con-
ditions 1 and 2 of the proposed method when the correlation structure does not
have a specific form. We first introduce some notation. Let C,, = (c;j)pxp With
cij > 0, and let C,; be a submatrix of C,, with the ith row and ith column
removed for each ¢ = 1,...,p. Denote the ith column of C,, with the ith entry
removed as v;; that is, v; = (c14, .-, Ci—14, Cit1iy - - - ,cpi)T. In addition, let ¢; be
the largest angle between v; and any column vector in C,, ;, and let Apyin; and
Amax,; be the smallest and the largest eigenvalues of C), ;, respectively.

Proposition 3. Suppose that the normality assumption (3.1) and Conditions 3
and 4 are satisfied with ko > max{ka + K3, (k2 + Ka)/2}. If

1 — ||v;[13/ Amax,g

= 1 — ||vil13/Amaxi — [|vill3 sin® @i /Amin,i

2
<9n

holds for all i € {1,...,qn} and j € {qn —|—A17 = ,Pn}, with g, = (1 —n)/||C>!
(CIY)7 Yoo for some n > 0, then |[V(2)C2(CH)'V(1) Yo < 1 —n with
probability at least 1 — O(n~%).

In general, when the correlations between relevant and irrelevant covariates
are larger than those between the relevant covariates, the original irrepresentable
conditions are likely to fail. In this case, correlations between irrelevant covariates
could be high, owing to the positive-definiteness constraint on the correlation
matrices. This indicates that, for each pair of relevant and irrelevant covariates,
variables other than such a pair are more correlated with the irrelevant covariate
than they are with the relevant one. Then, the irrepresentable conditions of the
proposed SPAC method are likely to hold, by Proposition 3. Consequently, the
irrepresentable conditions for the proposed SPAC method can still be satisfied
when the original irrepresentable conditions are violated.

5. Implementation

In this section, we discuss the implementation of the proposed method with
the Lasso, adaptive Lasso, or SCAD penalty. To estimate the diagonal elements
d, we apply the CLIME in our algorithms under high-dimensional settings, which
estimates the jth column of the precision matrix D using the following minimiza-

tion problem:
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lI)n]iRn]bh subject to |Cpb — €jloe < Ad, (5.1)
cRP
where 1 < j < p, e; € R is a vector with one in the jth coordinate and zero
in the others, \; is a tuning parameter, and |- |; and | - | represent the 1-norm
and infinity norm, respectively, of a vector. We solve the problem (5.1) us-
ing the “fastclime” R package (https://cran.r-project.org/web/packages/
fastclime/index.html), and then let cijj be the jth element of the solution. In
the fixed-dimensional settings, we use the sample precision matrix to estimate
the diagonal elements

dij ={(n ' XTX) Y}y, G =1,...,p. (5.2)
For the SPAC-ALasso, we estimate the initial estimator 49 = (§o1, - -, J0p)”
in (3.4) using jo; = Boj/dj.f (1 <j <p), which implies that an initial estimator
By for B is required. We use the ordinary least squares (OLS) estimator of 3 as
the initial estimator ,éo under fixed-dimensional situations. For high-dimensional
settings, we first select the variables using the SPAC-Lasso, and then compute
the OLS estimators of the coefficients for the selected variables. We let ,30 be
the vector consisting of the OLS estimators for the selected covariates, and zeros
for the nonselected covariates. For the tuning parameter related to the adaptive
Lasso penalty in (3.4), we let 4 = 1, and compare the proposed SPAC-ALasso
with the traditional adaptive Lasso method with u = 1.

We use the coordinate descent algorithm (Fu (1998); Breheny and Huang
(2011)) to solve the minimization problems with objective functions in (3.3), (3.4),
and (3.5) for the SPAC-Lasso, SPAC-ALasso, and SPAC-SCAD, respectively. We
illustrate this with p = 1 first. The unpenalized least squares solution of the
univariate setting is z = X7y /(nd/2). Accordingly, the proposed SPAC-Lasso,
SPAC-ALasso, and SPAC-SCAD estimators have closed forms

. . . . . A
'}’Lasso(za )‘) = Slgn(z)ﬂz‘ - )‘)Jrv 'YALasso(Zv )‘7'70) = Slgn(z) <|Z| - ) )
+

5ol
(5.3)
sign(z)(|z] — A+ if |z] <2X
. _ ) (a—1)z —sign(z)a .
Yscap(z, A a) = 5 if 2)\ < |z| < aX (5.4)
a—
z if |z > aA,

respectively.
For a multivariate case, we use these univariate solutions to obtain coordinate-
wise minimizers, except that we replace z in (5.3) and (5.4) with the unpenalized
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Algorithm 1: SPAC-SCAD.

1. Set I = 1. Set tolerance ¢, initial values v(?), and tuning parameters A and a.

2. Calculate d using (5.2) or by solving (5.1), for j =1,...,p
3. Calculate (0 =y — ZJ 1T ;3/2%(0).

O]

4. For j =1,...,p, estimate ;" as follows:

Calculate z; using (5.5);

Calculate %(_l) =9scap(zj, A, a) using (5.4);

Update r = (-1 — :Bjdl/Z(fyj(l) (l 1))

Wy

5. ITterate Step 4 until a convergence criterion is satisfied, for example,
. 1 -1 -1
min, {|(+)" 7' ") /2 TV <

solution of the regression with the partial residual of x; (1 < j < p) as the

response
T T
r.T_; T
j J (1-1)
Zi = = ~ —|— ’y y (55)
’ nd1/2 naljl-j/-2

where r_; = y — Zi# cczczg/ vF is x;’s partial residual, r =y — >0 | a; d;/gfyz*,

and v* = (97, , 7, )7 is the most recent updated estimator for 4. A complete
algorithm for the SPAC-SCAD is provided in Algorithm 1, including the estima-
tion of d in Step 2 and the coordinate descent method in Step 4. Algorithms of
the SPAC-Lasso and SPAC-ALasso are similar to Algorithm 1, except that we
replace Yscap in Step 4 with Y7ass0 OF YALasso 10 (5.3), respectively.

6. Simulations

In this section, we compare the performance of the proposed method with
that of existing model selection approaches in simulation studies. We generate
data 100 times based on a linear regression model, y = X3 + N, (0, I,,), where
X is an n X p matrix and 3 is a p x 1 vector. Each row of the design matrix
X is ii.d. from a multivariate normal distribution with mean 0,1 and a block-
exchangeable covariance matrix Cpx, of the form in (4.3) with the parameters
a = (a1, ag, ag)T. The first ¢ elements in the coefficient vector 3 are nonzero
and take the value f; the remaining elements are zero.

We implement the Lasso, adaptive Lasso, and SCAD methods using the co-
ordinate descent algorithm (Fu (1998); Breheny and Huang (2011)). Because the
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purpose of the proposed method is to provide model selection consistency when
the traditional methods fail, we first check whether the original weak irrepre-
sentable condition is satisfied for the covariates selected by the Lasso. If the con-
dition is violated, we adopt the proposed method; otherwise, the standard Lasso,
adaptive Lasso, and SCAD methods can still be applied. We use the “pcalg”
R package (https://cran.r-project.org/web/packages/pcalg/index.html)
to implement the PC-simple algorithm with a significance level of 0.05, which
is a method based on partial correlations. The Farm-Select method is imple-
mented using the “FarmSelect” R package (https://cran.r-project.org/web/
packages/FarmSelect/index.html). In each penalty-based method, the tuning
parameter A is selected using the extended BIC (EBIC), which is effective for
small n, but large p (Chen and Chen (2008)). For the SCAD method and the
proposed SPAC-SCAD method, we choose a = 3.7 (Fan and Li (2001)). For
the adaptive Lasso, we apply the Lasso estimator as the initial estimator for the
weighting.

To evaluate the performance of each method, we compute the false negative
rate (FNR) and false positive rate (FPR), as follows:

S P I(B;=0,8; #0) P I(B; #0,8;=0)
2?:1 I(Bj #0) ’ Z§:1 1(B; = 0) ’

respectively, where I(-) is an indicator function. The FNR represents the pro-
portion of relevant covariates that are not selected, while the FPR represents the
proportion of selected irrelevant covariates. We define the overall false rate of
a method as the summation of the FNR and the FPR. A method with smaller
overall false rate exhibits better performance in terms of model selection. We
calculate the mean FNR and FPR for each method using 100 replications.

Setting 1: Let p = 250, ¢ = 5, n = 80, 35 = 0.4, and o = (0.1,0.3,0.8)7,
(0.2,0.4,0.8)T, (0.3,0.5, 0.8)T, or (0.5,0.7,0.9)7.

Table 1 shows that the proposed method outperforms existing model selection
approaches under Setting 1. Specifically, the ratio of overall false rate of each
penalty-based method to that of the proposed method with the same penalty
function is greater than one across all covariance matrices. Furthermore, the
overall false rates of the Farm-Select method and the PC-simple algorithm are
both larger than that of the proposed SPAC-SCAD. In particular, the ratio of
overall false rates is the largest when a = (0.5,0.7,0.9)7, where the covariates
are most correlated. For example, the ratio between the traditional Lasso and
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the proposed SPAC-Lasso is 6.637 when a = (0.5,0.7,0.9)7, which is much larger
than the corresponding ratios under other c.

Moreover, the FNRs of the SPAC-Lasso, SPAC-ALasso, and SPAC-SCAD are
smaller than those of the traditional Lasso, adaptive Lasso, and SCAD methods,
respectively, given each a. This also holds for the FPR. In addition, we present
the violation rates in the last row of Table 1, which is the percentage of the original
weak irrepresentable condition being violated based on 100 simulated data. The
violation rates are all close to one, because the original weak irrepresentable
condition does not hold for the true covariance matrices in this setting.

Setting 2: Let p = 1000, ¢ = 20, n = 150, o = (0.3,0.5,0.8)7, and B, =
0.2,0.3,0.4,0.5, or 0.6.

We consider high-dimensional situations with 1,000 covariates in Setting 2.
The results in Table 2 show that the proposed method still outperforms other
competing methods in terms of overall false rate. In addition, the ratios between
the overall false rates are larger for scenarios with larger (5, indicating that the
proposed method shows a greater improvement over existing methods when the
signals are stronger. The FNR and FPR of the PC-simple algorithm for relatively
larger s are not provided in Table 2 because the PC-simple algorithm is quite
time consuming under settings with strong signals and thousands of correlated
potential predictors. It takes more than a few hours to run the algorithm for only
one replication. However, we can still observe that the proposed SPAC-SCAD
outperforms the PC-simple algorithm based on the results under 8; = 0.2 and
Bs = 0.3.

We incorporate binary covariates in Setting 3. We first simulate data from
a multivariate normal distribution with mean 0 and covariance matrix C' of the
form in (4.3), and then transform two relevant and 60 irrelevant covariates X; to
sign(X;).

Setting 3: Let p = 250, ¢ = 5, n = 80, a = (0.5,0.7,0.9)7, and B =
0.2,0.3,0.4,0.5,0.6, or 0.7.

The proposed method also outperforms the other methods when we have
binary potential predictors, according to the results in Table 2. For instance,
when (s = 0.5, the FNR of the SPAC-ALasso is 0.320, only 43.4% of the FNR of
the adaptive Lasso method, indicating that the proposed SPAC-ALasso selects a
greater number of relevant covariates. Similarly, the FPR of the SPAC-ALasso
is smaller than that of the adaptive Lasso, implying that the proposed SPAC-
ALasso selects fewer irrelevant covariates. In addition, the overall false rate of
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Table 1. Results for Setting 1. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. The “Ratio” for Farm-Select (or PC-simple) is
the ratio of FPR+FNR for Farm-Select (or PC-simple) to that of SPAC-SCAD. “Violate”
represents the percentage of the original weak irrepresentable condition being violated
based on Lasso selection results for 100 simulated data.

a (0.1,0.3,08) (0.2,04,08) (0.3,05,08) (0.5 0.7, 0.9)

Lasso FNR 0.804 0.718 0.744 0.744
FPR 0.002 0.005 0.007 0.018

FNR 0.510 0.382 0.460 0.112
SPAC-Lasso  FPR 0.002 0.003 0.006 0.003
Ratio 1.576 1.876 1.614 6.637

AlLasso FNR 0.794 0.778 0.794 0.890
FPR 0.001 0.001 0.003 0.006

FNR 0.500 0.430 0.528 0.384
SPAC-ALasso  FPR 0.000 0.001 0.002 0.002
Ratio 1.589 1.808 1.505 2.321

FNR 0.148 0.196 0.380 0.859

SCAD FPR 0.126 0.093 0.057 0.004
FNR 0.126 0.120 0.214 0.303
SPAC-SCAD  FPR 0.052 0.043 0.038 0.003
Ratio 1.542 1.775 1.734 2.821

FNR 0.200 0.600 0.200 1.000

Farm-Select ~ FPR 0.065 0.029 0.065 0.004
Ratio 1.489 3.859 1.052 3.281

FNR 0.496 0.530 0.696 0.892

PC-simple  FPR 0.003 0.004 0.005 0.007
Ratio 2.809 3.273 2.782 2.937

Violate 0.900 0.940 0.860 0.970

the SPAC-SCAD decreases much faster than that of the PC-simple algorithm as
Bs increases, which is consistent with the fact that a partial correlation is unable
to fully use the signal strength, owing to its bounded range.

Because the estimation of the diagonal elements d could be inaccurate, we
investigate the robustness of the proposed method with respect to the estimation
of d in Setting 4. In this setting, we replace chj in the implementation of SPAC-
Lasso with czjj + uj, for each j = 1,...,p, where u; are i.i.d. from a truncated
normal distribution with minimum value max;<;<,{—d;;}, mean zero, and vari-
ance o2. Here, we require the random noise u; > maxlgjgp{—a?jj} to ensure that
(ijj + u; is positive for each j =1,...,p.

Setting 4: Let p = 500, ¢ = 6, n = 100, B, = 0.3, and a = (0.1,0.3,0.8)7 or
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Table 2. Results for Settings 2 and 3. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. The “Ratio” for Farm-Select (or PC-simple) is
the ratio of FPR+FNR for Farm-Select (or PC-simple) to that of SPAC-SCAD. “Violate”
represents the percentage of the original weak irrepresentable condition being violated
based on Lasso selection results for 100 simulated data.

Setting Setting 2 Setting 3
Bs 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.7
FNR 0.986 0.972 0.852 0.586 0.415 0.976 0.912 0.782 0.642 0.388 0.180
FPR 0.007 0.008 0.010 0.016 0.019 0.003 0.009 0.016 0.018 0.025 0.028
FNR 0.921 0.639 0.357 0.094 0.020 0.904 0.692 0.334 0.182 0.044 0.006
SPAC-Lasso  FPR 0.003 0.007 0.012 0.019 0.021 0.002 0.003 0.009 0.011 0.013 0.014
Ratio 1.075 1.516 2.334 5.328 10.625 1.082 1.325 2.329 3.425 7.214 10.557
FNR 0.998 0.990 0.936 0.659 0.466 0.982 0.954 0.854 0.738 0.496 0.300
FPR 0.002 0.002 0.002 0.003 0.002 0.002 0.004 0.005 0.006 0.005 0.005
FNR 0.969 0.806 0.565 0.340 0.249 0914 0.744 0478 0.320 0.108 0.042
SPAC-ALasso FPR 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.002 0.002 0.002 0.001
Ratio 1.031 1.229 1.657 1.939 1.881 1.075 1.284 1.788 2.309 4.569 7.080
FNR 0.827 0.702 0.580 0.323 0.073 0.824 0.830 0.780 0.612 0.476 0.242
FPR 0.005 0.008 0.008 0.007 0.004 0.024 0.008 0.008 0.009 0.006 0.005
FNR 0.513 0.296 0.108 0.013 0.001 0.774 0.499 0.298 0.158 0.078 0.032
SPAC-SCAD FPR 0.007 0.007 0.004 0.002 0.001 0.005 0.006 0.007 0.004 0.004 0.002
Ratio 1.599 2.339 5.235 22.118 44.648 1.090 1.659 2.585 3.825 5.908 7.275
FNR 1.000 1.000 1.000 0.850  0.800 1.000 1.000 1.000 1.000 0.400 0.200
Farm-Select ~ FPR 0.000 0.001 0.005 0.006 0.006 0.016 0.016 0.024 0.000 0.029 0.029
Ratio 1.923 3.296 8.944 >50 >50 1.306 2.011 3.359 6.154 5.250 6.712
FNR 0.992 0.997 — — 0.918 0.876 0.844 0.786 0.726 0.682
PC-simple FPR 0.005 0.007 — — 0.005 0.006 0.007 0.007 0.007 0.007
Ratio 1.917 3.305 1.186 1.746 2.789 4.880 8.981 20.242
Violate 0.980 0.970 1.000 1.000 1.000 0.909 0.899 0.980 0.960 0.970 1.000

Lasso

ALasso

SCAD

(0.2,0.4,0.8)". The variance parameter o, = 0, 1,3, or 5.

The results for Setting 4 in Table 3 show that the overall false rate of the

2

SPAC-Lasso with noise increases as the variance o;;

increases, but that this overall
false rate is still smaller than that of the Lasso method. For example, when
a = (0.1,0.3,0.8)7, the overall false rate of the SPAC-Lasso with o, = 5 is 0.919
larger than that with o, = 0, but smaller than 0.989, which is the overall false
rate of the Lasso method. Thus, the proposed method is robust to certain errors
in the estimation of d. Although we use the CLIME for the estimation of d in

this study, other consistent estimators can also be used.

Setting 5: Let p = 150, ¢ = 3, n = 80, and Bs = 0.5. The parameters
a = (ag,az,a3)” are (0.2,0.4,0.8), (0.8,0.4,0.2), (0.1,0.3,0.8), (0.8,0.3,0.1),
(0.2,0.4,0.7), (0.7,0.4,0.2), (0.4,0.5,0.7), or (0.7,0.5,0.4).
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Table 3. Results for Setting 4.

a (0.1, 0.3, 0.8) (0.2, 0.4, 0.8)
Method Lasso SPAC-Lasso Lasso SPAC-Lasso
Ou — 0 1 3 5 — 0 1 3 5
FNR 0.988 0.843 0.903 0.895 0.918 0.958 0.848 0.867 0.915 0.908
FPR 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.002
FNR+FPR 0.989 0.843 0.903 0.896 0.919 0.960 0.849 0.868 0.917 0.910

In Setting 5, we examine the robustness of the proposed method when the
original weak irrepresentable condition holds. As shown in Tables 4-5, the pro-
posed method still outperforms the existing methods in terms of FNR+FNP
when ag > «1. In addition, the proposed method performs comparably to the
existing methods when a; > a3, where the original weak irrepresentable con-
dition holds. For example, the ratios of the overall false rates of the adaptive
Lasso method to those of the proposed SPAC-ALasso are greater than 1.5 when
as > «aq, and are equal to or quite close to one when a; > as. In summary, the
proposed method performs similarly to the regular penalization method when the
weak irrepresentable condition holds, but performs much better than the existing
method when the condition fails.

7. Real-Data Application

In this section, we apply the proposed method to high-dimensional genetic
data collected in the Detroit neighborhood health study (https://dnhs.unc.
edu/), a representative study focusing on post-traumatic stress disorder (PTSD)
of African American adults in Detroit, Michigan. This study collects gene ex-
pression data and post-traumatic checklists based on incident trauma exposures,
which is a 17-item set of self-reported measures of PTSD symptoms. We treat
the average of the 17 post-traumatic checklist scores as the response Y. Studies
(Logue et al. (2015); Kuan et al. (2017b)) show that gene expression is associated
with PTSD. To identify gene probes that are relevant to PTSD, we consider using
all gene probes as potential predictors.

Because there are more than 15,000 gene probes and the sample size is only
93, we first screen the gene probes based on the correlations between probes and
the marginal correlations between probes and Y. For each probe X;, we let c;
denote the vector consisting of correlations between this probe and other probes.
Because the proposed method targets correlated data, we consider X; to be cor-
related with others and select it if the average absolute value of the elements in
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Table 4. Results for Setting 5. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. “Violate” represents the percentage of the
original weak irrepresentable condition being violated based on Lasso selection results
for 100 simulated data.

o (0.2,0.4,08) (0.8,04,02) (0.1,0.3,08) (0.8,0.3,0.1)

s FNR 0.240 0.110 0.357 0.103
FPR 0.009 0.002 0.006 0.002

FNR 0.143 0.123 0.123 0.110

SPAC-Lasso  FPR 0.003 0.002 0.003 0.002
Ratio 1.699 0.895 2.871 0.942

AlLnsso FNR 0.297 0.393 0.257 0.373
FPR 0.002 0.001 0.001 0.001

FNR 0.160 0.413 0.147 0.373
SPAC-ALasso  FPR 0.001 0.001 0.001 0.001
Ratio 1.852 0.952 1.748 1.000

FNR 0.073 0.647 0.057 0.660

SCAD FPR 0.012 0.002 0.009 0.002
FNR 0.050 0.657 0.030 0.663
SPAC-SCAD  FPR 0.007 0.002 0.006 0.002
Ratio 1.493 0.985 1.830 0.995

Violate 0.797 0.037 0.743 0.007

c; is greater than 0.1. Moreover, we calculate the marginal correlations between
selected probes and the response variable, and filter out probes with absolute val-
ues of the marginal correlations less than 0.15, which are unlikely to be important
probes. After the screening, we retain 3,591 gene probes for further analysis.
To evaluate the performance of the different methods, we randomly partition
all observations into 95% for training and 5% for testing, 100 times. For each
method, we estimate the parameters using the training sets, calculate the mean
number of selected probes, and compute the average prediction mean squared
errors (PMSEs) from testing sets based on 100 replications. However, the PMSEs
of the PC-simple algorithm and the Farm-Select method are unavailable; the
former only provides variable selection results, without a coefficient estimation,
and the R package of the Farm-Select method does not have an intercept in the
model. To calculate prediction errors for the two methods and compare them
to those of other methods, we adopt the OLS to estimate the coefficients of the
probes selected by each method, and calculate the PMSE based on the OLS
estimation, denoted by OLS-PMSE. The original weak irrepresentable condition
fails in each training set based on the selection results of Lasso, indicating that
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Table 5. Results for Setting 5. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. “Violate” represents the percentage of the
original weak irrepresentable condition being violated based on Lasso selection results
for 100 simulated data.

o (0.2,0.4,0.7) (0.7,04,02) (0.4,05,0.7) (0.7,0.5,0.4)

Losso FNR 0.520 0.103 0.353 0.170
FPR 0.010 0.004 0.013 0.004

FNR 0.303 0.110 0.163 0.193

SPAC-Lasso  FPR 0.007 0.004 0.006 0.004
Ratio 1.708 0.943 2.158 0.884

AlLnsso FNR 0.593 0.310 0.377 0.327
FPR 0.002 0.002 0.003 0.002

FNR 0.380 0.310 0.200 0.350
SPAC-ALasso  FPR 0.001 0.002 0.002 0.003
Ratio 1.562 1.000 1.882 0.931

FNR 0.280 0.463 0.187 0.493

SCAD FPR 0.012 0.008 0.015 0.009
FNR 0.140 0.473 0.133 0.497
SPAC-SCAD  FPR 0.006 0.008 0.010 0.010
Ratio 1.991 0.980 1.409 0.991

Violate 0.883 0.007 0.890 0.133

the proposed method is more suitable for the data than traditional methods are.

Table 6 provides the average PMSE and OLS-PMSE and the number of se-
lected probes for all the methods. According to the table, the proposed method
produces a smaller PMSE and a smaller OLS-PMSE than those of existing meth-
ods. In particular, the average OLS-PMSE of the Lasso is 18.7% more than
that of the SPAC-Lasso. Similarly, the average PMSE of the traditional adaptive
Lasso and SCAD methods are 16.2% and 17.3% more than those of the proposed
SPAC-ALasso and SPAC-SCAD, respectively. Moreover, in terms of the OLS-
PMSE, the Farm-Select method and PC-simple algorithm perform worse than
the proposed method. Among all the methods, the SPAC-ALasso produces the
smallest PMSE with relatively fewer selected probes. In addition, the prediction
errors of the methods with the SCAD penalty are larger than those of methods
with other penalties.

In addition, we apply these methods to all of the samples, and summarize the
selected probes in tables in Section S3 of the Supplementary Material. On the
one hand, ILMN_1716728, ILMN_1682259, ILMN_3307729, ILMN_1670134, ILMN_1793201,
ILMN_1811507, ILMN_1656111, and ILMN_3248844 are common probes selected by the
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Table 6. Average results for the real data.

PMSE OLS-PMSE NS

Lasso 0.9306 0.9868 73
SPAC-Lasso  0.8283 0.8310 74
ALasso 0.9568 1.0406 20
SPAC-ALasso 0.8232 0.9101 22
SCAD 1.3353 1.3164 38
SPAC-SCAD 1.1387 1.1298 39
Farm-Select — 1.2429 40
PC-simple — 1.3278 5

Lasso, SPAC-Lasso, ALasso, SPAC-ALasso, SCAD, SPAC-SCAD, and Farm-
Select. Thus, these probes are very likely to be associated with the response.
Of these, ILMN_1716728, ILMN_3307729, and ILMN_3248844 are also selected by the
PC-simple algorithm, indicating that these three probes are extremely likely to
be relevant to PTSD. On the other hand, ILMN_1663035 from the SREBF1 gene is
only selected by the proposed SPAC-Lasso and SPAC-ALasso. According to the
existing literature (Kuan et al. (2017a)), the SREBF1 gene is indeed associated
with PTSD.

In conclusion, the proposed method leads to a smaller PMSE and OLS-PMSE
than existing variable selection methods with similar numbers of selected probes,
showing that the proposed SPAC strategy improves the accuracy of variable se-
lection.

8. Conclusion

We have proposed a new variable selection approach to address the problem
in which the original irrepresentable conditions fail due to a strong dependency
between relevant and irrelevant covariates. The violation of the irrepresentable
conditions leads to inconsistency of model selection based on traditional methods.
In this paper, we introduce a semi-standard partial covariance (SPAC), which has
a clear geometric interpretation based on projections, and takes advantage of both
coefficients 3 and partial correlations. Moreover, we develop a SPAC method that
penalizes SPACs instead of coefficients 3 or partial correlations alone to mitigate
the selection of irrelevant covariates that are strongly correlated with relevant
covariates.

We establish the strong sign consistency of the proposed SPAC-Lasso and
SPAC-SCAD under high dimensionality. Specifically, we transform irrepresentable
conditions to achieve variable selection consistency, thus solving the problem of
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when the Lasso or SCAD method is not sign consistent. Because we focus on
situations in which traditional methods fail, we first check whether the original
weak irrepresentable condition holds. If it is violated, numerical studies show that
the proposed approach is more effective and outperforms the traditional variable
selection methods.

In contrast to partial correlation approaches, such as the PC-simple algo-
rithm, the proposed method takes full advantage of the signal strength, because
SPACs incorporate the magnitudes of the coefficients. This is also reflected in
the numerical studies, where the SPAC-ALasso and the PC-simple algorithm
both produce relatively small FNRs but large FPRs, because they tend to select
fewer covariates compared with other methods. However, as the signal strength
increases, the false positive rate of the SPAC-ALasso decreases significantly com-
pared with that of the PC-simple algorithm. Additionally, the proposed method
can still achieve sign consistency for nonGaussian distributed covariates, such as
categorical covariates, where a partial correlation is unable to capture the condi-
tional independence. In simulation settings with binary covariates, the proposed
method performs much better than the PC-simple algorithm in terms of overall
false rate.

Although we do not provide the theoretical properties on the consistency
of the SPAC-ALasso, the proof should be similar to that of the SPAC-Lasso.
Moreover, the SPAC idea is flexible and can be readily applied to other penalty-
based methods and the generalized linear model framework.

Supplementary Material

We provide additional conditions, theorems, tables, and corollaries, as well
as proofs for Lemma, 1, all theorems, propositions, and corollaries, in the online
Supplementary Material.
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