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ABSTRACT

Deep learning has been widely applied in various VLSI design au-
tomation tasks, from layout quality estimation to design optimiza-
tion. Though deep learning has shown state-of-the-art performance
in several applications, recent studies reveal that deep neural net-
works exhibit intrinsic vulnerability to adversarial perturbations,
which pose risks in the ML-aided VLSI design flow. One of the
most effective strategies to improve robustness is regularization
approaches, which adjust the optimization objective to make the
deep neural network generalize better. In this paper, we examine
several adversarial defense methods to improve the robustness of
ML-based lithography hotspot detectors. We present an innovative
design rule checking (DRC)-guided curvature regularization (CURE)
approach, which is customized to robustify ML-based lithography
hotspot detectors against white-box attacks. Our approach allows
for improvements in both the robustness and the accuracy of the
model. Experiments show that the model optimized by DRC-guided
CURE achieves the highest robustness and accuracy compared with
those trained using the baseline defense methods. Compared with
the vanilla model, DRC-guided CURE decreases the average attack
success rate by 53.9% and increases the average ROC-AUC by 12.1%.
Compared with the best of the defense baselines, DRC-guided CURE
reduces the average attack success rate by 18.6% and improves the
average ROC-AUC by 4.3%.

1 INTRODUCTION

Machine learning (ML) techniques, especially those based on deep
learning, have been widely employed in electronic computer-aided
design (CAD) domains ranging from logic synthesis [24] to physical
design [8] and design for manufacturability (DFM) [18]. In DFM,
ML-based lithography hotspot detectors are well studied and serve
as a successful example of ML techniques applied to accelerate the
DFM development cycle. For advanced technology nodes, since the
transistor feature sizes are reaching the limit of conventional optical
lithography systems, lithographic process variations can drastically
affect the manufacturing yield. Therefore, detection of lithography
hotspots - layout patterns that can potentially cause manufacturing
defects - is very important. Conventional lithography hotspot detec-
tion approaches involve optical proximity correction (OPC) [16] and
lithographic simulation, which suffers from high runtime overhead.
To enable faster and accurate lithography hotspot detection, recent
studies has shown that convolutional neural networks (CNN)-based
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Figure 1: Malicious IP vendors may use adversarial perturba-
tions to hide hotspots in immature designs. Designers using
an unrobust ML-based hotspot detector for printability veri-
fication may suffer from great loss at the tapeout stage due
to hidden hotspots.
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lithography hotspot detectors can bypass the time-consuming sim-
ulation and achieve state-of-the-art accuracy [22].

However, deep neural networks like CNNs exhibit intrinsic sus-
ceptibility to adversarial perturbations [5, 10, 12]. Adversarial per-
turbations are small but deliberate alterations to the inputs of the
deep neural network, resulting in incorrect outputs. And such sus-
ceptibility to adversarial perturbations poses risks in the VLSI design
flow [19, 20]. Due to the global trends in VLSI design and manufac-
turing, it is common for designers to procure intellectual property
(IP) designs from third-party design vendors and combine them
with components designed in-house to generate the chip layout. A
blueprint of the chip layout can be sent to the foundry for further
mask synthesis and manufacturing. However, third-party design
vendors cannot always be trusted. Before tapeout, the designer can
quickly verify the printability of the purchased designs using a
CNN-based lithography hotspot detector, which can be integrated
into a commercial tool [11].

Figure 1 shows an adversarial scenario where a malicious design
vendor may seek short-cut profits by selling immature IP designs.
The malicious vendor can add adversarial perturbations to lithog-
raphy hotspots to hide these defects, instead of really correcting
them. In this way, CNN-based lithography hotspot detectors may
be fooled and unable to recognize the perturbed hotspots. And if
the perturbed layout is sent to a foundry for tapeout, it can cause a
great loss to downstream chip yield, wasting the designer’s effort.
Another potential risk is that the malicious design vendor may sim-
ply sell bad IP designs to sabotage the design under development,
wasting the designer’s time and resources on design recycling and
fixing poor designs. In summary, the risks posed by adversarial
perturbations can fundamentally undermine the trust in the ML-
based lithography hotspot detectors. Ensuring the reliability of the
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ML-based lithography hotspot detectors is a critical step toward the
feasibility of ML’s integration into the VLSI design flow. However,
methods of robustifying ML-based lithography hotspot detectors
are rarely discussed.

Recent ML research has demonstrated that adversarial perturba-
tions pose risks in practically every application where deep neural
networks are used [5, 10, 12]. Borrowing ideas from computer vision,
prior works have also studied CAD-related tasks like lithography
hotspot detection, proposing approaches of generating adversarial
perturbations on via layout hotspots [11, 23]. It is worth noting
that there are some important differences of adversarial perturba-
tions between computer vision and lithography. In computer vision,
typical perturbation methods make an imperceptible perturbation
to each pixel [1], inducing incorrect model output. In lithography,
however, such a method is infeasible because (1) both the layout
patterns and the perturbations are binary (e.g., insertion or removal
of pattern components), and (2) perturbations should pass design
rule checking (DRC) and thus are constrained in their sizes, shapes
and locations. Prior works typically make perturbations to the lay-
out iteratively to ensure DRC-clean at each step. [11] focus on the
insertion of fraudulent sub-resolution assistant features (SRAFs)
and use pixel-based gradient method to find the best SRAF combi-
nation. Following [11], [23] considers removal of preexisting SRAFs
and proposes an efficient group gradient method to optimize the
perturbation, yielding better performance in successful perturba-
tion generation. However, these works focus on the perturbation
methods and rarely discuss defense methods. To the best of our
knowledge, little systematic research on the methodologies of en-
hancing the robustness of ML for CAD has been found.

Motivated by the risks of adversarial perturbations, in this pa-
per, we propose a customized regularization-based defense method,
called DRC-guided CURE, to robustify ML-based lithography
hotspot detectors!. We design the regularizer based on DRC con-
straints of the adversarial perturbations. In our experiments, we
focus on the white-box attacker with full knowledge about the
model, since this is the strongest attacker setting. Experiment re-
sults show that DRC-guided CURE achieves superior performance
in both robustness and accuracy compared with the vanilla model
(no defense applied), adversarial training and CURE. Our main
contributions are summarized as follows:

e We analyze the effectiveness of existing defense techniques,
including adversarial training and regularization-based ap-
proaches, in a case study of lithography hotspot detection.
We demonstrate their limitations in robustifying the ML-
based lithography hotspot detector.

e We propose an innovative regularization-based defense method,

called DRC-guided CURE, which is customized for robustify-
ing ML-based lithography hotspot detectors. Our proposed
DRC-guided CURE outperforms all baseline defense tech-
niques, decreasing the perturbation success rate by 53.9%
compared with the vanilla model. Moreover, this robustness
improvement costs no accuracy loss. Instead, it even im-
proves the area under the ROC curve of the model by 12.1%.

In order to contribute to the reproducibility and fair comparison in ML for CAD,
the framework and the dataset used in our experiment are anonymously open-
sourced at https://github.com/panjingyu/Robustify- ML-Based- Lithography-Hotspot-
Detectors.
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Figure 2: Illustration of simulated printed patterns of vias
layouts without SRAFs and with SRAFs.

e We provide an ablated analysis on the effectiveness of our
proposed DRC-guided CURE in the white-box attacker set-
ting. We give intuitive explanations of DRC-guided CURE’s
capability of improving both robustness and accuracy of the
ML-based lithography hotspot detector.

2 PRELIMINARIES

In this section, we will introduce backgrounds related to adversarial
defenses for ML-based lithography hotspot detectors.

2.1 ML-based Lithography Hotspot Detection

Lithography hotspot detection facilitates the VLSI back-end design
and sign-off flow by early detection of the lithography hotspots. The
conventional approach to lithography hotspot detection is based
on simulation using physical models of optical lithography. Despite
its accuracy, such simulation costs lots of computational resources
and is very time-consuming, especially for modern VLSI designs.

When a lithography hotspot is detected, resolution enhancement
techniques (RETs) such as SRAF insertion [2, 4, 21] and OPC [16] are
applied to compensate for lithography distortion and thus fix the
hotspot. Figure 2 shows illustration of simulated printed patterns of
vias layouts without SRAFs and with SRAFs. If the vias are printed
as is, the resulting printed output would be only a small region of
the vias pattern, which is far from the desired result. With SRAF
insertion, the printed pattern can more accurately reflect the desired
vias pattern.

Due to the prohibitive run-time of conventional lithography sim-
ulation, recent studies have proposed alternative methods to speed
up the hotspot detection process using machine learning [14, 22].
Machine learning solutions seek to statistically model the underly-
ing relationships between lithographic features and the correspond-
ing layout’s printability. Note that, by transforming the lithographic
features into images, one can pose the lithography hotspot detection
problem as a binary image classification problem. Borrowing ideas
from computer vision, recent work has proposed convolutional
neural networks (CNN) for this problem, achieving state-of-the-art
accuracy [22].
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2.2 Adversarial Perturbations on Lithography
Hotspot Patterns

To the best of our knowledge, two gradient-based white-box adver-
sarial perturbation methods have been proposed for CNN-based
lithography hotspot detectors [11, 23]. The first method is the pixel-
based gradient method [11] which generates DRC-clean fraudulent
SRAFs and makes attempts based on pixel gradients to add fraudu-
lent SRAFs to the original layout to fool the lithography hotspot
detector. In [11], hotspot clips are converted to images, and each
valid fraudulent SRAF region is a block of pixels. In the pixel-based
gradient method, given a set of valid SRAF shapes, the algorithm
iterates the summation of gradients of all pixels in each possible
location. Fraudulent SRAFs with negative gradient sums are it-
eratively inserted into the layout in the ascending order of their
gradient sums, until either target neural network gives incorrect
output or the attack constraint is met.

The second method, which is known as the group gradient
method [23], makes improvements based on the pixel-based gradi-
ent method [11]. The group gradient method randomly generates
a set of DRC-clean SRAF candidates and iteratively optimizes the
weight of each candidate to minimize the perturbation given the
constraint of successfully fooling the deep neural network. [23]
also expands the adversarial perturbation space by considering re-
moval of preexisting SRAFs. As a result, the group gradient method
reports better attack success rate than the pixel-based gradient
method. Therefore, we will focus on the group gradient method as
our attacker model in our experiments.

2.3 Threat Model

2.3.1 Setting. We explore the scenario of a designer considering
the purchase of a macro from a third-party intellectual property (IP)
vendor, as posed in previous studies of threats to the VLSI design
flow [19]. The IP vendor distributes hard macros in GDS-II format,
where the layout is allegedly enhanced for lithography using RETs.
As part of the validation process, the designer checks the macro
to establish its quality by using a CNN-based hotspot detector.
And the attacker’s goal is to generate minimal perturbations on a
lithography hotspot to fool the target ML-based lithography hotspot
detector into misclassifying the perturbed hotspot as a non-hotspot.

2.3.2 Attacker Capabilities. Following research on adversarial at-
tacks in deep learning, the attackers can be roughly categorized into
white-box attackers and black-box attackers according to the con-
straints on their access to information about the target model. For
example, given a CNN-based target model, a black-box attacker can
only make queries to the model and access the input-output pairs.
In contrast, white-box attackers posses access to all the information
including the hyperparameters of the target model (e.g., its archi-
tecture, its training algorithm), the parameters (e.g., the weights
and bias) of each layer, the training data, and so on. Therefore, a
white-box attacker is a stronger attacker model than a black-box
attacker [1, 5, 12]. In this work, we consider defense techniques
against white-box attackers.

3 PROBLEM FORMULATION

Consider a white-box attacker A with full knowledge about the
architecture, training algorithms, and weights and bias of each layer

of the target ML-based lithography hotspot detector f, A crafts
adversarial perturbations to a set of lithography layout patterns.
The objective of robustifying an ML-based lithography hotspot
detector f is to maximize the accuracy of f on the dataset containing
adversarially perturbed lithography layout patterns.

For a fair evaluation on the overall accuracy of the target hotspot
detector, we use the area under the receiver operating charac-
teristic curve (ROC-AUC) as the metric for accuracy. Besides, to
directly analyze the robustness against adversarial perturbations
on layout hotspots, we define hotspot accuracy as the ratio of
the number of correctly detected hotspots and the total number of
hotspots. We also define attack success rate r as

_ |{True Positives} N {Successful attacks}|
B [{True Positives}|

>

where {Positives} denotes the set of hotspots that can be correctly
detected by the detector before any adversarial perturbation, and
{Successful attacks} denotes the set of hotspots that are incorrectly
undetected by the detector after adding adversarial perturbations
by the adversary ‘A.

4 DEFENSE METHODOLOGIES

In this section, we first introduce two baseline defense methods,
adversarial training and curvature regularization. Then we present
our innovative DRC-guided CURE method.

4.1 Adversarial training

Assuming that the defender is aware of the risks of adversarial
perturbations on hotspot detectors, it can robustify the model by
including adversarial layouts into the training dataset but with true
hotspot labels and then retraining the model. This method is known
as adversarial training [13]. Algorithm 1 illustrates the procedure
of adversarial training.

Adversarial training has recently been shown to be one of the
most effective methods for increasing the robustness of a deep
neural network against adversarial perturbations. Recent studies
showed that adversarial training correlates to decreased curvature
of the loss [15]. Intuitively, a smaller curvature of the loss reflects a
smoother decision boundary of the classifier, which is more robust
against small random perturbations to the inputs.

4.2 Curvature Regularization (CURE)

The CURE method robustify the model by adjusting its optimiza-
tion objective. CURE aims at directly minimizing the curvature of
the loss to achieve robustness that is comparable to adversarial
training [15]. In order to minimize the curvature of the loss, the
CURE regularizer should penalize large eigenvalues of the Hessian
H of the loss ¢ at input point x, since the eigenvalues correspond
to the amount of curvature at the direction of their corresponding
eigenvectors. Let A1, . .., A7 denote the eigenvalues of H. To encour-
age all eigenvalues to be small, the CURE regularizer Lcyrg can be
formulated as Lcygrg = 2; /Il.z, which corresponds to the Frobenius
norm of the Hessian H. With function p(1) = 12, we have

Loure = ), p(A) = trace(p(H)) = E(z" p(H)z) = E||Hz||*,
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Algorithm 1 Adversarial Training

Input: Training hotspot data Dy, training non-hotspot data Dy, a
trained ML-based lithography hotspot detector f, a training
algorithm T, attacker function A(d, ) which adds adversarial
perturbations to hotspot data d in order to fool model f and
outputs the perturbed data, and the number N of perturbed data
samples.
Output: Robustified model f.
: for dy € Dy do
Dy, = Dy, U A(dy, f)
if |[Dy;| > N then
End this for loop.
: D= D;{ UDyg UDN

: f<T(f,D)

8: return f

> Initialize a set of adversarial hotspot data.

SRy e

=)

> Construct the training dataset.
> Retrain the model.

N

where the expectation is taken over z ~ N(0,I;). By using a fi-
nite difference approximation of the Hessian H, we have Hz ~
w, where h denotes the discretization step. Therefore,
the regularizer becomes
Leurg (x) = 7 E[IVeGe+ ha) = Vel

which involves computing an expectation over z and penalizes
large curvatures over all directions. Since prior works [3, 7] have
shown that the direction of the gradients indicates the directions
of high curvature, it is usually a natural choice to make z in line
with the gradient direction. Besides, in practice, common image-
based adversarial problems usually involve o norm constraints
on the adversarial perturbations. Hence, [15] set the step z to the

sign of the gradient multiplied with a normalization factor, written
sign(Ve(x)) . . 1

Tsign (Ve ] Finally, neglecting the ;; factor, the CURE

regularizer is formulated as

Leurg (%) = |[Ve(x + hz) — Ve(x) ||,

as z =

where h controls the scale of the discretization step. And the overall
optimization objective of the model becomes £(x) + nLcyrg (x).

4.3 DRC-guided CURE

Utilizing the DRC constraints on the adversarial lithography per-
turbations, we propose the DRC-guided curvature regularization
method (DRC-guided CURE) to robustify ML-based lithography
hotspot detectors. Regarding the DRC constraints, we consider
both fraudulent SRAF insertion and preexisting SRAF removal.
DRC-clean fraudulent SRAF insertion must satisfy the following
constraints:

e Fraudulent SRAFs can only be inserted to the SRAF layer.

e Fraudulent SRAFs should be rectangles with a fixed width
of 40nm and a variable height between 40-90nm, at a resolu-
tion of Inm. The SRAF can be placed either horizontally or
vertically.

o The Euclidean distance between any two SRAFs should be
at least 40nm.

e Fraudulent SRAFs should not overlap with the forbidden
region surrounding the vias in a layout.

(a) Via and SRAF patterns.

(b) The corresponding regions for possi-
ble adversarial perturbations.

Figure 3: Illustration of via and SRAF patterns of a given
layout and its corresponding regions for possible adversar-
ial perturbations. In (a), the red rectangles denote existing
SRAFs, and the white squares denote vias. In (b), the green
region denotes the DRC-clean fraudulent SRAF insertion
spots. And the red rectangles denote the adversarial removal
candidates, which correspond to the preexisting SRAFs.

According to these constraints, we can calculate the valid re-
gion for fraudulent SRAF insertion given a layout with preexisting
vias and SRAFs. The valid removal candidates of adversarial per-
turbations are simply the preexisting SRAFs. Figure 3(a) shows
an example of vias layout hotspot clip, where the red rectangles
denote existing SRAFs and the white squares denote the vias. And
Figure 3(b) shows the corresponding regions for potential adver-
sarial perturbations. In Figure 3(b), the green region marks where
DRC-clean fraudulent SRAF insertion is possible. The red rectangles
denote removal candidates of adversarial perturbations, which are
simply preexisting SRAFs. To ease the calculation of such regions
for each layout, we consider the Chebyshev distance (i.e., the Lo dis-
tance) as an approximation of the Euclidean distance in the spacing
constraints. Besides, we also assume the inserted fraudulent SRAFs
should not be too far from the vias, and thus adding a limit to the
outer boundaries of the possible adversarial insertion region. And
the inner boundaries of the possible adversarial insertion region
is determined by the spacing constraints regarding the preexisting
SRAFs and the forbidden zone around the vias.

Based on the calculation of the regions of possible adversarial
perturbations, we re-design the regularization term in CURE and
propose the DRC-guided CURE. It is worth noting that, in CURE,
sign(Ve(x)) is that

[Isign(Ve(x))
it targets robustness against fw-constrained perturbations. How-
ever, the £ constraint does not hold in adversarial perturbations to
lithography hotspot layouts. Instead, the adversarial perturbations
that DRC-guided CURE targets is constrained by the DRC-clean
fraudulent SRAF insertion region and the locations of preexisting
SRAFs. Therefore, we propose a DRC-guided step z” = %
where m; is the binary mask of the region for potential SRAF inser-
tion (e.g., the green region in Figure 3) and m, is the binary mask
of the region for potential SRAF removal (e.g., the red rectangles
in Figure 3). Here, m;, m, € {0, I}HXW, where H and W denote
the height and width of the via layout, respectively. Therefore, we

the rationale behind the choice of step z =
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Layer Kernel size | Stride | Activation | Output Size
conv_DCT | 128 x 128 128 - (20, 20, 32)
conv_1 3xX3 1 ReLU (20, 20, 16)
conv_2 3xX3 1 ReLU (20, 20, 16)
pool_1 22 2 - (10, 10, 16)
conv_3 3%X3 1 ReLU (10, 10, 32)
conv_4 3x3 1 ReLU (10, 10, 32)
pool_2 22 2 - (5,5, 32)
linear 1 - - ReLU 256
linear 2 - - - 2

Table 1: Model architecture.

formulate the DRC-guided CURE regularizer as
Lpre(x) = ||Ve(x +hz') - Ve(x)| %,

where h controls the scale of the DRC-guided step z’. The overall
optimization objective then become the regularized loss function
£(x) + ALprc(x), where A controls the strength of DRC-guided
CURE.

In summary, our proposed DRC-guided CURE improves CURE
by penalizing the curvature in the direction z’ determined by the
DRC constraints, rather than the gradient-guided direction z as
proposed in CURE.

5 EXPERIMENTS

5.1 Experiment Setup

To investigate the effectiveness of our proposed DRC-guided CURE
method, we compare the accuracy and robustness of the model
trained using the DRC-guided CURE method with several baseline
defense algorithms. Our baselines include the vanilla method (i.e.,
normal training without defense techniques), adversarial training
and CURE. Our attacker adopts the state-of-the-art group gradient
method [23]. We implement the all the defense methods and the
attack method in Python using the PyTorch framework [17]. Our
experiments run on a NVIDIA TITAN RTX GPU with Intel® Xeon®
Gold 6136 CPU.

Regarding the via layout hotspot dataset, we use legacy node
via designs that are verified and simulated using Mentor Graphics
Calibre Design For Manufacturability tool suite [6]. We construct
our dataset based on the raw via layout data in GDS-II format from
[23]. We transform the raw via layout clips of 2um X 2um size to

D Original Hotspot Accuracy
Vanilla | AT | CURE | DRC-guided
1 0.79 0.69 0.83 0.83
2 0.71 0.66 0.81 0.86
3 0.76 0.75 | 0.84 0.83
4 0.71 0.66 0.80 0.88
Average | 0.743 | 0.690 | 0.820 0.850

Table 2: Comparison of hotspot accuracy before perturbation
attack when different defense methods are applied. Here, AT
denotes adversarial training.

images with a resolution of 2048 x 2048 pixels. The image-based via
layout dataset is split randomly into a training dataset and a testing
dataset. The training dataset includes 68565 via layout clips with
5012 hotspots. The testing dataset is composed of four groups, each
of which is composed of 100 non-hotspot clips and 100 hotspot
clips. Given a trained target model, the attacker model generates
adversarial perturbations at its best effort based on the hotspot clips
of the four testing groups. Besides, to ensure a strong attacker model,
we relax the constraint on the maximal number of adversarial
perturbations in each via layout to 20, posing a challenging setting
to the defense methods.

Table 1 gives the configuration of our model architecture, which
directly follows [22]. The conv_DCT layer is equivalent with the
Discrete Cosine Transform (DCT)-based feature tensor extraction in
[22], transforming a layout clip image to a tensor of DCT frequency
components. For both the vanilla method and the defense methods,
we train the model for 40000 steps using the Adam optimizer [9]
and set the initial learning rate to 0.01, with a batch size of 128, and
L2 regularization strength of 0.00005. During training, to combat
over-fitting caused by the imbalance in the number of hotspot
clips and non-hotspot clips in the training set, we re-sample the
hotspots to ensure the numbers of hotspot clips and non-hotspot
clips are balanced in each batch of data. For adversarial training,
we empirically set the number of adversarially perturbed layouts
to 750, which is around 15% of the hotspot clips in the training set.
For a fair comparison, we retrain the model from scratch on the
training set with adversarial perturbations. For CURE, we set the
step scale h = 6 and the strength of CURE A = 0.33. For DRC-guided
CURE, we set the step scale h = 1 and the strength A = 0.2. For the
group gradient method attack, we follow the hyperparameters in
[23].

5.2 Evaluation of Robustified Models

Figure 4 compares the ROC-AUC of the model over the four testing
groups and the average ROC-AUC, with the presence of adversar-
ial perturbations. In each of the four testing group, our proposed
DRC-guided CURE outperforms the vanilla model, adversarial train-
ing and CURE. Compared with the vanilla model, the DRC-guided
CURE increases the average ROC-AUC from 0.786 to 0.881, which
is a 12.1% improvement. As for the baseline defense methods, the
model trained using adversarial training suffer from accuracy degra-
dation. This is because the adversarial examples seen by the model

D Hotspot Accuracy After Attack
Vanilla | AT | CURE | DRC-guided

1 0.43 0.60 0.66 0.70

2 0.47 0.60 0.62 0.68

3 0.38 0.57 0.60 0.68

4 0.47 0.61 0.64 0.70

Average | 0.438 | 0.595 | 0.630 0.690

Table 3: Comparison of hotspot accuracy after perturbation
attack when different defense methods are applied.
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Figure 4: Comparison of ROC-AUC of different defense methods at the presence of adversarial perturbations.

in the adversarial training has limited coverage of the whole per-
turbation space. Therefore, adversarial training only provides ro-
bustness against a small subset of all the possible adversarial per-
turbations. Furthermore, the white-box attacker is actually highly
flexible, since it can adjust the generated adversarial perturbations
according to the parameters of the model. Thus, adversarial training
may finally provide little robustness to the target model. On the
other hand, training on perturbed layouts can mislead the model
to learn some trivial features and neglect important features from
unperturbed layouts, thus hampering the accuracy of the model.
And compared with CURE, our proposed DRC-guided CURE still
shows an advantage of 4.3% higher ROC-AUC. This result proves
the effectiveness of the DRC-guided step z” which utilizes informa-
tion of the via layout patterns and regions of potential adversarial
perturbations.

To directly analyze the robustness of the target model on the
perturbed hotspot data, we compare the variation of hotspot accu-
racy before and after adversarial perturbations for different defense
methods, along with comparison of their attack success rates. Ta-
ble 2 and Table 3 shows the hotspot accuracy of the target model
on the four testing groups before and after perturbations attack,
respectively. Table 4 shows the corresponding attack success rate
of the group gradient method on the four testing groups. AT in the
tables denotes adversarial training. The vanilla model suffers from
a high attack success rate of 40.8%, which indicates a drastic drop of
average hotspot accuracy from 74.3% to 43.8%. For defense methods,
adversarial training shows an even larger accuracy degradation
than the vanilla model, failing to robustify the model. This result
demonstrates that adversarial training yields poor convergence
for the target model. CURE provides much better robustness than

D Attack Success Rate
Vanilla | AT | CURE | DRC-guided
1 0.456 0.377 | 0.205 0.157
2 0.338 0.424 | 0.235 0.209
3 0.500 0.427 | 0.286 0.181
4 0.338 0.530 | 0.200 0.205
Average 0.408 0.440 | 0.231 0.188

Table 4: Comparison of attack success rates when different
defense methods are applied.

adversarial training, showing a much lower average attack success
rate of 23.1% and a higher average hotspot accuracy of 63.0% after
attack. Furthermore, our proposed DRC-guided CURE outperforms
both adversarial training and CURE, showing a 53.9% lower av-
erage attack success rate of 18.8% than the vanilla model. Even
compared with CURE, the attack success rate of DRC-guided CURE
is still 18.6% lower, which proves the effectiveness of our customized
regularizer. DRC-guided CURE also shows a superior hotspot accu-
racy after attack of 69.0%, which is 57.5% higher than the vanilla
model The DRC-guided CURE can improve the hotspot accuracy of
the model even without the presence of adversarial perturbations
because it co-optimize both the value and the sharpness (i.e., curva-
ture) of the loss simultaneously, helping the loss function converges
at a smooth surface. Therefore, the model trained by DRC-guided
CURE achieves a lower inference loss, which corresponds to higher
accuracy. Besides, such regularization on curvature also help pre-
vent over-fitting to the training data, improving the generality of
the model.

5.3 Visualization of Adversarial Perturbations
after Defense

In the following, we intuitively analyze the robustness of the ML-
based lithography hotspot detector trained using our proposed
DRC-guided CURE. Figure 5 shows two examples of successful ad-
versarial perturbations before and after DRC-guided CURE defense.
The white blocks denote preexisting SRAFs and vias in the layout,
while the colored blocks denote adversarial perturbations. To be
specific, the green blocks denote inserted fraudulent SRAFs, and
the red blocks denote removed preexisting SRAFs. In the group
gradient method, adversarial perturbations are added to the layout
iteratively. Therefore, when performing group gradient method,
if fewer adversarial perturbations are needed to flip the output of
hotspot detector, the hotspot detector is less robust. For the vanilla
model, successful adversarial perturbations require insertion of
merely three fraudulent SRAFs in example 1 and removal of one
preexisting SRAF in example 2. However, after defense using DRC-
guided CURE, successful adversarial perturbations require a greater
number of modifications and a wider range of locations than for
the vanilla model, in both examples. These two examples demon-
strate that with the defense of DRC-guided CURE, the difficulty
of generating successful adversarial perturbations is significantly
higher.
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(a) Example 1 fooling the vanilla model. (b) Example 1 fooling the model trained
using DRC-guided CURE.

(c) Example 2 fooling the vanilla model. (d) Example 2 fooling the model trained
using DRC-guided CURE.

Figure 5: Two examples of adversarial perturbations required
to fool the ML-based lithography hotspot detector before and
after DRC-guided CURE defense. Here, green blocks denote
inserted fraudulent SRAFs, and red blocks denote deleted
preexisting SRAFs.

6 CONCLUSIONS

In this work, we propose a customized DRC-guided CURE method
to robustify ML-based lithography hotspot detectors in order to
combat the risks posed by adversarial perturbations. We compare
the robustness of the target model trained using DRC-guided CURE
with the models trained using the vanilla method, adversarial train-
ing and CURE. Our proposed DRC-guided CURE proves to provide
the most robustness to the model compared with the baseline meth-
ods, decreasing the attack success rate by 53.9%. Furthermore, DRC-
guided CURE also increases the accuracy of the model, showing
an improvement of the ROC-AUC by 12.1%. Compared with the
best result among the baseline defense methods, DRC-guided CURE
decreases the average attack success rate by 18.6% and improves
the average ROC-AUC by 4.3%.

ACKNOWLEDGMENTS

This work is supported by SRC GRC-CADT 3103.001/3104.001 and
NSF CCF-2106725/2106828. We also give special thanks to Haoyu
Yang for sharing the vias layout hotspot dataset.

REFERENCES

[1] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition 84 (2018), 317-331.

o

=
S

(1]

[12

(13

[14

[17]

[18

[19

[20]

[21

[22

[23]

S
=)

Liang Deng, Martin DF Wong, Kai-Yuan Chao, and Hua Xiang. 2007. Coupling-
aware dummy metal insertion for lithography. In 2007 Asia and South Pacific
Design Automation Conference. IEEE, 13-18.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano
Soatto. 2018. Empirical study of the topology and geometry of deep networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
3762-3770.

Hao Geng, Wei Zhong, Haoyu Yang, Yuzhe Ma, Joydeep Mitra, and Bei Yu.
2019. SRAF insertion via supervised dictionary learning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2019), 2849—
2859.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

Mentor Graphics. 2008. Calibre verification user’s manual.

Saumya Jetley, Nicholas Lord, and Philip Torr. 2018. With friends like these, who
needs adversaries? Advances in neural information processing systems 31 (2018).
Andrew B Kahng. 2018. Machine learning applications in physical design: Recent
results and directions. In Proceedings of the 2018 International Symposium on
Physical Design. 68-73.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Alexey Kurakin, Ian ] Goodfellow, and Samy Bengio. 2018. Adversarial examples
in the physical world. In Artificial intelligence safety and security. Chapman and
Hall/CRC, 99-112.

Kang Liu, Haoyu Yang, Yuzhe Ma, Benjamin Tan, Bei Yu, Evangeline FY Young,
Ramesh Karri, and Siddharth Garg. 2020. Adversarial perturbation attacks on
ML-based CAD: A case study on CNN-based lithographic hotspot detection. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 25, 5 (2020),
1-31.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2016. Delving into transfer-
able adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770
(2016).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

Tetsuaki Matsunawa, Jhih-Rong Gao, Bei Yu, and David Z Pan. 2015. A new lithog-
raphy hotspot detection framework based on AdaBoost classifier and simplified
feature extraction. In Design-Process-Technology Co-optimization for Manufac-
turability IX, Vol. 9427. SPIE, 201-211.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal
Frossard. 2019. Robustness via curvature regularization, and vice versa. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
9078-9086.

Oberdan W Otto, Joseph G Garofalo, KK Low, Chi-Min Yuan, Richard C Hender-
son, Christophe Pierrat, Robert L Kostelak, Sheila Vaidya, and PK Vasudev. 1994.
Automated optical proximity correction: a rules-based approach. In Optical/Laser
Microlithography VII, Vol. 2197. International Society for Optics and Photonics,
278-293.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf,
and J6rg Henkel. 2021. MLCAD: A Survey of Research in Machine Learning for
CAD Keynote Paper. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2021).

Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A primer on
hardware security: Models, methods, and metrics. Proc. IEEE 102, 8 (2014), 1283~
1295.

Zhiyao Xie, Jingyu Pan, Chen-Chia Chang, and Yiran Chen. 2022. The Dark Side:
Security Concerns in Machine Learning for EDA. arXiv preprint arXiv:2203.10597
(2022).

Xiaoqing Xu, Tetsuaki Matsunawa, Shigeki Nojima, Chikaaki Kodama, Toshiya
Kotani, and David Z Pan. 2016. A machine learning based framework for sub-
resolution assist feature generation. In Proceedings of the 2016 on International
Symposium on Physical Design. 161-168.

Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, Bei Yu, and Evangeline FY Young. 2018.
Layout hotspot detection with feature tensor generation and deep biased learning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
38, 6(2018), 1175-1187.

Haoyu Yang, Shifan Zhang, Kang Liu, Siting Liu, Benjamin Tan, Ramesh Karri,
Siddharth Garg, Bei Yu, and Evangeline FY Young. 2021. Attacking a CNN-based
Layout Hotspot Detector Using Group Gradient Method. In 2021 26th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 885-891.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. 2018. Developing synthe-
sis flows without human knowledge. In Proceedings of the 55th Annual Design
Automation Conference. 1-6.

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.



