How Good Is Your Verilog RTL Code?
A Quick Answer from Machine Learning

Prianka Sengupta Aakash Tyagi
prianka.sengupta@tamu.edu tyagi@cse.tamu.edu
Texas A&M University Texas A&M University

Yiran Chen Jiang Hu
yiran.chen@duke.edu jlanghu@tamu.edu
Duke University Texas A&M University

College Station, Texas, USA College Station, Texas, USA Durham, N Carolina, USA College Station, Texas, USA

ABSTRACT

Hardware Description Language (HDL) is a common entry point
for designing digital circuits. Differences in HDL coding styles and
design choices may lead to considerably different design quality
and performance-power tradeoff. In general, the impact of HDL
coding is not clear until logic synthesis or even layout is completed.
However, running synthesis merely as a feedback for HDL code is
computationally not economical especially in early design phases
when the code needs to be frequently modified. Furthermore, in late
stages of design convergence burdened with high-impact engineer-
ing change orders (ECO’s), design iterations become prohibitively
expensive. To this end, we propose a machine learning approach
to Verilog-based Register-Transfer Level (RTL) design assessment
without going through the synthesis process. It would allow de-
signers to quickly evaluate the performance-power tradeoff among
different options of RTL designs. Experimental results show that our
proposed technique achieves an average of 95% prediction accuracy
in terms of post-placement analysis, and is 6 orders of magnitude
faster than evaluation by running logic synthesis and placement.

KEYWORDS

Verilog RTL, Machine Learning, Performance and Power

1 INTRODUCTION

Hardware Description Language (HDL), such as Verilog and VHDL,
is the universal entry point for most digital designs including ASICs
and IP blocks. For a given design specification, a designer can take
multiple approaches for writing the corresponding RTL code. These
include, but are not limited to different state encodings for finite-
state machines, choice of procedural assignment types, multiple
style definitions of conditional logic and more. Moreover, the choice
of micro-architecture can be considerably different between two
RTL solutions that implement the same design. These differences
can significantly impact the circuit performance and power. This
is illustrated in Figure 1, where post-placement timing and power
results from two RTL solutions of the same AES encryption IP are
compared. The AES IP consists of around 12K gates and the two
versions of the RTL have been developed by modifying the state
machine encoding and increasing the depth of FIFO units used in
sub-modules. The total negative slack (TNS) vs. dynamic power
distribution of the two RTL solutions provides clear feedback on
the relative design quality and challenges towards convergence. For
applications that prioritize power over performance, RTL solution 1
is preferable whereas solution 2 offers more performance headroom
from its lower TNS values.

Quite often, the impact of RTL design choice on the quality of
results (QoR) becomes known only once the implementation results
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9217-4/22/10...$15.00
https://doi.org/10.1145/3508352.3549375

are available from synthesis, placement and routing (PnR). Although
performance and power estimates are most accurate at the post-
routing stage compared to the post-synthesis or post-placement
stage, this knowledge comes at the cost of significant runtime. Even
the runtime of mere logic synthesis can be very long if it is fre-
quently invoked to assess the impact of RTL changes. Indeed, an
RTL design needs to be evaluated with different synthesis parame-
ters. For modern SoC design, it is not uncommon to spend a week
in evaluating the quality of results (QoR) of an HDL design [12].
The long feedback time from implementation stages makes the
evaluation of the RTL rather expensive, especially in the early
stages of development where changes are frequent. Also for de-
sign IPs which are sourced externally, assessing their performance
and power quality at an early stage is crucial for successful SoC
integration. Furthermore, late RTL design changes introduce costly
engineering effort across the chain of hierarchy from RTL designer
to physical design (PD) feedback in an industry scenario. Therefore,
the ability to gain early RTL design feedback has immense potential
for improving design QoR, as well as for reducing turn-around time.

Design Name: aes_core
—5k-| O Verilog RTL 1
Verilog RTL 2
~10k |
~15k-|

—20k -

25k

Total Negative Slack (TNS) (nS)

—30k |

—35k

T T

200 30 4 0 e 70 8
Dynamic Power (mW)
Figure 1: Impact of different Verilog codes for an AES encryp-
tion IP design. TNS and dynamic power values for each code
are obtained through different synthesis parameter settings.

Most of the recent works utilize synthesis and PnR resources
along with machine learning (ML) techniques to estimate power
and or timing metrics[4, 6, 19, 20]. In these works, the features
are derived from different stages of design implementation flow
to leverage the ML prediction tasks. Among these works, RTL in-
strumentation techniques and simulation activities were studied
for real-time power estimation in [20] and [6]. Both of these work
achieve more than 90% accuracy in projecting workload specific
dynamic power by automatic identification of representative RTL

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

signals for a given design. Although these approaches provide valu-
able power results, the models are not transferable to a new RTL
design due to the requirements of design specific instrumentation.
Another approach seen in the industry is to enhance the EDA tools
in order to efficiently execute the design feedback cycle [2, 12].
These RTL power estimation and analysis tools rely on calibrated
models to estimate power with claimed error margin of 5% - 10%.
The runtime of these tools, although faster than legacy approaches,
still consumes hours for each run and multiple days for explor-
ing optimal implementation options. Machine learning-based PPA
(Performance, Power and Area) modeling were developed in [4].
However, the chosen model features include only some RTL param-
eters instead of entire RTL code and therefore cannot capture the
impact of different RTL coding styles. One related research explores
design parameter tuning [19]. However, its machine learning model
features consider only tool parameters and do not include RTL code
or design information. Other related work explores delay prediction
using RTL in [7], where statistics of internal cell connectivity is
extracted as features to predict post-synthesis critical path delay.
However, the prediction scheme has only been explored for combi-
national circuits such as adders and trained using synthetic design
variations generated by a RTL generator. A former research[15]
explores the idea of extracting the area and delay parameters from a
subset of the design and uses a polynomial function based predictor
to obtain estimates for the overall design. However, the approach
is not transferable to unseen designs without manual refinement
of model parameters. Also this work only focuses on the critical
path delay estimation and doesn’t report total negative slack (TNS),
which is more useful when comparing the timing characteristics of
two designs. To the best of our knowledge, no previous work can
provide fast RTL code QoR assessment models that can be reused
across different designs.

We propose a machine learning based approach to quickly pre-
dict post-placement total negative slack (TNS) and dynamic power
without having the need to run synthesis and placement flow. The
predictive models are trained offline and can be applied to unseen
new designs outside of the training data set. Two prediction formu-
lations are studied. In the first formulation, called value prediction,
the total negative slack (TNS) and dynamic power for a specific set
of synthesis parameter settings is predicted. This prediction addi-
tionally helps explore the synthesis parameter values that yield best
performance-power tradeoff. The second formulation, called Pareto
front prediction, predicts the Pareto front curve for the TNS-power
tradeoff. Our proposed approach aims to deliver predictive analysis
to help designers gauge the following:

e Assess the TNS and dynamic power trade-off of a given
RTL design under a specific synthesis parameter setting.

o Assess the Pareto front of TNS and dynamic power tradeoff
across multiple RTL sources.

o Compare quality differences between equivalent RTL IPs.

The results on a set of benchmark designs show that our approach
canreach an average of 95% accuracy with respect to post-placement
TNS and dynamic power. For evaluating timing and power for a
single synthesis recipe, our approach is 6 orders of magnitude faster
than running synthesis and placement flow. Here, a single synthesis

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu

recipe corresponds to specific values for a set of synthesis param-
eters which are used during a single synthesis run. For assessing
the TNS-power tradeoff for multiple synthesis recipe, our proposed
method performs 8 orders of magnitude faster than the synthesis
and placement flow, i.e., our method can reduce the runtime from
days to less than a second. Since our models can be directly applied
to designs different from training data, the training cost is easily
amortized. This is the first work that simultaneously achieves such
high accuracy, fast speed and model reusability.

2 OVERVIEW

We take a two step approach to deliver the predictive analysis for
any given RTL design. The first step decomposes the Verilog RTL
code to AST (Abstract Syntax Tree) and graph structures and ex-
tracts important features from the design. The second step involves
building and training machine learning models using these features
collected from a wide range of designs along with synthesis pa-
rameters. Figure 2 shows the overview of the process to build the
predictive model.

f Reference Power |
|
1 Performance Data j

ML Predictive
Models Model

AST Parsing
RTL Feature Vectors

Figure 2: Overview of creating and training our model.

Building any reliable predictive model requires a representative
training set, high fidelity feature extraction and careful model se-
lection. In the proposed method in Figure 2, a wide set of designs
from established benchmarks and multiple open source IPs are used
for training and validating the models. For each of these designs, a
novel AST based feature extraction method is applied to extract a
set of features that can successfully represent and differentiate the
characteristics of the RTL designs. To construct the spread of possi-
ble performance and power outcomes, each design is synthesized
with a combination of multiple synthesis recipe parameters and
placed using industry standard EDA tools. This implementation
provides a cluster of data points which can be used to assess the
TNS and dynamic power trade-off capability of a given design as
well as to compare the tradeoff between two candidate IPs with
equivalent functionalities. The predictive model uses the reference
implementation data as target and is trained using a combination
of extracted RTL features and synthesis parameters as input. A set
of designs are kept detached from the training process to test the
universal applicability of the Machine Learning models for any
unseen design.

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

How Good Is Your Verilog RTL Code?
A Quick Answer from Machine Learning

3 PROBLEM FORMULATION

In this work, we focus on the prediction of total negative slack
(TNS) and dynamic power as these metrics align with the industry
standard practice of performance and power optimization. TNS
represents the ability of design to meet a specific operating fre-
quency. A design with a low absolute TNS value implies that the
RTL is suitable in quality with regards to timing. Often time, a trade-
off between timing and dynamic power is decided based on the
intended application of the design at hand. The trade-off character-
istics between TNS and dynamic power is an inherent property of
the design, which is dictated by the RTL coding style and also by the
chosen micro-architecture. The two different predicted measures of
TNS and dynamic power are described in the sections below. Our
prediction is targeted to the accuracy of post-placement analysis
as the first order layout effects on timing and power are mostly
captured in a placed circuit. Our framework can be easily extended
to handle other metrics, such as area, worst case slack and static
power. In this work, we study two different formulations for the
prediction.

3.1 Formulation 1: TNS and Power Value
Prediction

In this formulation, TNS and dynamic power values are predicted
for unseen Verilog RTL designs for specific settings of logic syn-
thesis parameters (listed in section 6.1.1). This is because the same
Verilog code may lead to different TNS and power results depending
on the synthesis tool parameters. The dynamic power in focus is
reported at a 20% average activity factor. When provided with RTL
features and synthesis parameter sweeps, the predictor is trained to
generate a set of dynamic power and TNS values. These predicted
values closely resemble the outcomes from an actual implementa-
tion, as shown in Figure 3. Early prediction of the TNS and dynamic
power allows longer headroom to optimize the RTL to achieve the
desired trade-off.

3.2 Formulation 2: Pareto Front Prediction

Although the value prediction can provide an estimate of TNS and
power, the estimate is for a single synthesis recipe. In order to have
an overall assessment of quality for a Verilog code, one needs to run

Design Name: gfx (180K Gates)

~5,000-]
2 -10000- | gmmtmm
~ g 0
S g %;D G °
O Y @9°° 3
Z -15000 8 e R
: ,' eI ®9, © Po
S ~20,000 ! og°
2 HIEON 8§ LI AP =
o i °p o%%c% 0 9
2 -25000-] I (33 o8 °
g ’ 1 000°%® o
) 1 = & °
k) ! ° e %80 °
Z. 30,000 i L7 o ®
i ° L] Q,§ 0090 © 9 o '®
3 %0 o%° o RS
B -35,000- o Fos 1o
°
~40,000-

N — T T T
15 20 25 30 35 40 45 S0 55 60 65 70 75
Dynamic Power (mW)

Figure 3: Post-placement solutions and the Pareto front curve
for a lightweight graphics processor core.

the model several times with the desired synthesis recipe parameter
values. In the second formulation, our model will predict the TNS-
power Pareto front curve among all results from a Verilog code
independent of synthesis recipe parameters. In Figure 3, the Pareto
front curve is indicated by the dotted line. A Pareto front curve can
be described by a regression function. Based on our empirical study,
we choose the function listed in equation 1.

y=aln(x-b)+c (1)

Where x denotes dynamic power and y represents TNS. The values
of coefficients a, b and c are obtained by fitting the training data.
Since the Pareto does not relate directly to the synthesis tool param-
eters, we anticipate the Pareto curve coefficients to be established
by the source RTL code features alone.

4 VERILOG RTL FEATURE EXTRACTION

Although Verilog is a hardware description language, it closely
resembles C/C++. Therefore, we leverage a common programming
language parsing technique called Abstract Syntax Tree to represent
the Verilog source code as a tree structure that can facilitate the
end goal of design feature extraction.

4.1 Verilog Abstract Syntax Tree (AST)

Abstract Syntax Tree is a tree like representation of any program-
ming language with each node of the tree representing a language
construct or keyword. The tree follows the hierarchy established in
the source code starting from a root element and ending in many
leaf nodes. Multiple open source tools exist for generating the AST
from Verilog, namely Verilator [14], PyVerilog [16], Verible [1]
among multiple others. In this work, we rely on Verilator to convert
the source verilog of the benchmark designs to their respective
AST representation. The AST generated from Verilator is saved
in the XML format which is a markup format used to represent
hierarchical data. Verilator also allows flattening the design during
AST generation, which is beneficial as it resolves all the references
to defined parameter and populates the logic from multiple module
and function instances directly into the AST. The AST is provided
as an input to the AST parsing engine which is one of the novel
contributions of this work.

4.2 Parsing AST for Features

The AST generated from source RTL is parsed in two different
approaches depending on the target machine learning model. For
certain graph based ML models, the features need to be arranged in
a graph format, whereas for the other non-graph based models the
features need to be represented as a one dimensional vector. For
both of these approaches, we discuss the parsing procedure and
processing flow shown in Figure 4 and Figure 5.

4.2.1 Vector Based Feature Extraction: In our goal to build a predic-
tive model, we explored a set of non-graph based ML models which
expect a feature vector as input. For this mode of feature extraction
every register assignment is identified in the AST and back-traced
to build the logic tree responsible for driving the register. Once
all register logic trees are created, a feature extraction procedure
computes the distribution of multiple design features across all the

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

(AST Conversion
IfStatement:
GreaterThan:
Identifier:

Verilog Code Snippet

bggin IntConst: 4'd4
if (data > 4'd4)

NonblockingSubstitution:
result<=data-4'd2; Lvalue:
alas Identifier: result
result<=data+4'dl; Rvalue:
end Minus:
Identifier: data
IntConst: 4'd2
NonblockingSubstitution:
Lvalue:
Identifier: result
Rvalue:
Plus:
Identifier:
IntConst: 4'dl

..
Register Trees N

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu

N Design Feature Vector
> dist,
Compute Tree dists
dist,
Features
Tree Features dist
= Model Training

* Input/Output bits
*Register bits
*Logic Operator Bits

*Add/Sub Bits
* Comparator Bits
*Boolean Logic Bits

Compute Feature Reference
Distribution Target Data

Verilog Code Snippet (AST Conversion h Novel
begin IfStatement: .
if (data > 4+dd) GreaterThan: Bdrging
result<=data-4'd2; |:> Identifier:
else IntConst: 4'd4
result<=data+4'dl; NonblockingSubstitution:
end Lvalue:
Identifier: result
Rvalue:

Minus:
Identifier: data
IntConst: 4'd2
NonblockingSubstitution:
Lvalue:
Identifier: result
Rvalue:
Plus:
Identifier:
IntConst: 4'dl

)

Reference
Target Data

\
W\,
\
\
i
H (\
PN, L i Adjacency Feature |
I e H ; . i]
H { - Matrix Matrix — i S~
/ a0 a0x «. || 200 £o1 -+ ;E> --
H
Haw ayy oo || £10 £ -0 | o —
/ ! ' O
i . o i
1
Annotate Node and HERIE t Bopen || GNN Model
s & 3 e
Edge Features H ! Training

Figure 5: Processing flow for Graph based feature extraction from Verilog

logic trees. The design features of choice are: 1) Total Input bits and
Output bits, 2) Total Register Bits, 3) Total Logic Operator Bits, 4)
Total Adder/Subtractor Bits, 5) Total Multiplier Bits, 6) Total Com-
parator Bits, 7) Total Boolean Logic Bits. 8) Average Tree Depth
and 9) Average Wire Width The features are computed for each
logic tree and the distribution of these features across all the logic
trees in the design is saved as a two dimensional feature vector. The
processing flow for vector based feature extraction is presented in
Figure 4.

4.2.2 Graph Based Feature Extraction: In this work we explore two
different methods of graph feature extraction from AST.

The first type of feature graph back-traces the assignments to
each register in order to acquire the cone of driving logic. All regis-
ter components in the design are used to create unique nodes. All
procedural assignments to these registers are identified in the AST
followed by a search for logic operations, arithmetic operations
or conditional logic that affect the assignment to the register in
focus. The tracing method is continued until all inter-register con-
nections are visited and appropriate edge connections are formed.
In the resulting graph, nodes can be registers, arithmetic operators,
boolean logic, constant register, input/output pins or muxes to rep-
resent two way conditional blocks. Edges are formed from direct
assignments or dependency between two node elements. e.g. an
arithmetic node will have edges connecting to its operators.

The second type of feature graph is constructed by tracing the
control and data-flow graph (CDFG) of a given design. In this mode
of graphs, the flow of data and intermediate controls are followed to

construct the graph. The graph starts off with defined data elements
or ports as nodes, such as input/output, registers and constant
values. The progression of each data element within the design
is traced out as a variable may get used in conditional operation,
arithmetic operation or more. At the end of the control and dataflow
tracing, the leaf node is often a data element that can be attached
back to the root nodes. This element wise tracing procedure creates
a single design graph which is exported as the design feature. Once
a single graph for the design is constructed, a feature annotation
procedure is executed to compute the following set of features for
each node and edge - Node Features: 1) Total input bits, 2) Total
output bits, 3) Encoded logic type (xor, and, add, sub, shifter etc),
4) Encoded node type (Arithmetic, Boolean, Data etc), 5) Number
of neighboring nodes. Edge features: 1) Edge bit width, 2) En-
coded source-destination pair type (reg>reg, reg>logic, logic>reg,
logic>logic), 3) Edge type (data or logic). The processing flow for
graph based feature extraction is presented in Figure 5.

5 MACHINE LEARNING MODEL SELECTION

In both modes of prediction, Value and Pareto Front, the output
of the model is a numeric value representing either a metric value
or a curve parameter. This implies the need for a regression based
machine learning model. Multiple different machine learning re-
gression schemes were evaluated against the prediction task. The
ML models that were tested can be categorized into two main cate-
gories: models that expect a RTL feature vector as the input and
models that expect an annotated design graph as its input.

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

How Good Is Your Verilog RTL Code?
A Quick Answer from Machine Learning

5.1 Vector Based Regression Models:

Multiple ML models were tested that require a vector based input
feature for prediction. The model types and their configuration is
listed below:

e Linear Regression: We chose Linear Regression model [10]
to understand the linearity of the data set.

e Random Forest Regression: In this work, a Random Forest
model [8] with 100 estimation trees with a limited depth of
10 was used to ensure generalization across designs.

e Neural Network: In this work, a Neural Network model [18]
was built consisting of three hidden layers with 256, 132
and 16 nodes respectively to predict the required numeric
value of the prediction task.

e XGBoost Regressor: The XGBoost model [3] used in this
work consisted of 80 tree estimators with a max depth of 7.

The feature vector extraction previously discussed in 4.2.1 gen-
erates a two-dimensional vector containing the distribution of fea-
tures in a RTL design. This feature vector is flattened to a single
dimension and normalized before providing as an input to the mod-
els mentioned above.

5.2 Graph Based Regression Models:

Graph Neural Network (GNN) [11] are a different branch of machine
learning models that learns from graph like data and make graph
level or node level predictions. We test two types of graph as input
to our model:

e AST Based Graph Input
e CDFG Based Graph Input

In the TNS and dynamic power prediction task, we configure the
GNN models to perform graph level numeric prediction. We focus
mainly on GAT (Graph Attention Network) [17] for building the
graph based regression model. The implementation of GNN and
GAT models in Spektral [5] were used in this work.

6 EXPERIMENTAL RESULTS

6.1 Data Generation

A total of 51 Verilog RTL designs from the IWLS 2005 benchmark
[9] and OpenCores were used to generate the training and testing
data. Table 1 lists the design names and their size in terms of gate
count that were considered to obtain the TNS and dynamic power
values. It should be noted that the reported gate-count should only
be used for relative size comparison between designs, as the abso-
lute gate count may vary depending on the synthesis parameter
settings. In order to familiarize the ML models with the parameter
dependent variations, a large set of implementation data are gener-
ated using commercial synthesis and placement tools and used as
the model target data. The target data to predict TNS and dynamic
power values are collected from post-placement to capture any
overhead from physical layout. The spread of these data values are
obtained from synthesis recipe variations to construct 416 synthesis
runs for every design. The designs were synthesized using a 45nm
technology library with access to low, typical and high VT cells.
The designs used for testing were kept separate from the training
set to ensure confidence in the prediction models.

Table 1: 51 benchmark designs used for training data genera-
tion and testing.

45 Training Designs Seq. Cells Comb. Cell Total Gates

Ss_pcm 87 173 260
uart2bus 157 611 768
wb_dma 523 1,728 2,251
mem_ctrl 1,065 3,296 4,361
aes_core 530 11,887 12,417
fpu 663 31,881 32,544
Xge_mac 13,301 33,366 46,667
scdma_viterbi 68,393 164,236 232,629

6 Testcase Designs Seq. Cells Comb. Cell Total Gates

ethernet 2,344 7,232 9,576

vga_led 17,057 35,791 52,848
des3_perf 29,496 67,854 97,352
nova 29,083 90,870 119,953
gfx 48,490 148,475 196,965
jpegencode 39,113 223,411 262,524

6.1.1 Synthesis Parameters: Commercial synthesis tools provide a
wide range of tune-able parameter that can impact the outcome of
the netlist’s timing and power characteristics. We leverage impor-
tant tool parameters e.g Max Fanout, Max Transition, Max Capaci-
tance, Max Leakage, High Fanout Net and Fanout Load to construct
a combination of different values to generate the target data points
for each design.

As mentioned earlier in section 3, two prediction approaches
were considered in this work. The first one is for TNS and power
value prediction and the second one is for Pareto front prediction.
The training data collected from the 45 aforementioned RTL designs
of varying sizes and functionalities are then used to evaluate each
of these prediction tasks. 6 test designs listed in Table 1 were used
for the testing.

6.2 Total Negative Slack (TNS) and Power: Value
Prediction

In order to predict the values of TNS and dynamic power, six dif-
ferent types of ML models, mentioned in section 5, were trained
for TNS and power separately. The RTL feature vectors extracted
from the training designs are the primary input to these ML models.
For every sample pair (input, target) the input feature vector F is
appended with the specific synthesis parameter values p that were
used to generate the target values y, (Power) or y; (TNS). For graph
based models, p is appended to the feature vectors of every node.
R? correlation coefficient has been used to measure the accuracy of
the prediction models and is defined in equation 2.

2 (Ypred = Ytrue)®
Z(ytrue - ytrue)z

The prediction results across different ML models for each test
case design in Figure 7 show that our proposed method achieves an

RP=(1 (2

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

Design Name: des3_perf (98K Gates)

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu

@ ;2\ Design Name: gfx (180K Gates) @ Design Name: jpegencode (246K Gates)
= @ -10k- @
% —0.5k | E E Ok~ 0 00O PR°
g < 15k - z B els
g -1k E i ¥ 8 ocg, =
z @ =20k7) B e % 10k .;: 03 ‘.' :
£ -1k & 25k R 2 £y ey o,
§ gb §° —15k-| m?fb ° eaé’ :
3 % 2 30k ° <. P B
= O Ground Truth % _35k- Ground Truth 5-; o o 9O Ground Truth
~2.5k| Prediction 5 Prediction B s 2 Prediction
p! . A 3 A P 0 30 4_'0 0 60 70 0 50 60 7'0 80 90 100 110
Dynamic Power (mW) Dynamic Power (mW) Dynamic Power (mW)

Figure 6: Prediction vs ground truth for the XGBoost prediction model for three testcases.

Summary of Model Accuracy Across Test Cases

N 8 L
100% < S8 . o2 .
g g B 55, . §* s5%
95% & = 8 " S
® oo] N = ! 8 \=g 2
= 90% = 25 . § - 55 . < 2
e 8 N =% =3 .- 2 K
B 8% & 8 % Bl N o 2
g 2 3
E 80%
2
8 75%
e
S 0%
§ 65%
&
2 60%
o
55%
50%
ethernet des3_perf nova vga_led gfx jpeg_encode Average
(46K) (98K) (117K) (124K) (180K) (246K) Accuracy

® Linear Regression (RMSE: 0.21) Neural Network (RMSE: 0.014)
= Random Forest (RMSE: 0.011) = XGBoost (RSME: 0.0098)
m Graph Attention Network CDFG (RSME: 0.017) m Graph Attention Network AST (RSME: 0.015)

Figure 7: The R? coefficient of determination and normalized
root mean squared error (RSME) for TNS and dynamic power
prediction.

average of 95% accuracy and the XGBoost Regressor preforms best
for the TNS and power value prediction. The best score possible for
a model is 1.0 and for a constant model that always predicts a fixed

value regardless of the input features would get a score of 0.0[10].

It was observed that simpler models such as Linear Regression
are unable to fully capture the non-linear relation between RTL
features and their corresponding impact on TNS and power. Also
the generalization characteristics of Neural Network and Graph
based models yield a narrower spread of predicted values compared
to ground truth. Both Random Forest and XGBoost rely on tree
based parameter segmentation and successfully learns not only
the feature-to-target relation, but also the effect of inter-feature
interaction as observed. The prediction quality vs ground truth for
three testcases of increasing size, small, medium and large can be
observed in Figure 6.

6.3 TNS vs. Power: Pareto Front Prediction

For predicting the Pareto front of each test design, the same six
different ML models were trained with the prediction target being
the a, b and ¢ parameters in equation 1 required to fit the Pareto front
curve. For each design, the post-placement solutions at the Pareto
front of TNS-power tradeoff need to be fitted with the formulation
listed in equation 1. However, this approach yields only one set

of a, b and ¢ value for each design which equates to only 45 sets
of training samples. To avoid over-fitting to this small data set,
we choose to increase the training data set using augmentation
[13]. By adding a marginal amount of noise to the a, b, ¢ parameters
of the original Pareto curve, 20 new synthetic Pareto lines were
constructed. Each of these lines are tightly coupled to the original
Pareto curve. After augmentation, the training data consisted of 900
training samples. It should be noted that for the Pareto prediction,
only the RTL feature vector F or design graph Dg is used as the
input. The synthesis parameters p does not need to be appended to
the input, which differs from the value prediction approach.

The metric of accuracy for this prediction task was set to be the
Average Distance from Reference Set (ADRS) [19]. A lower ADRS
value indicates that the data points along the predicted Pareto curve
are closer to the data points on the reference Pareto curve. Assuming
the set of data points along the true pareto-front is denoted by G
and the predicted points are in I. Data points in G and I contain
power and TNS value pairs (Py, Ty) and (P, T) respectively. The
ADRS between G and I is defined as:

1 .
ADRS(G,I) = i Z min d(y, 2) 3)
yeG
Py, —P;
8(r = (P, Ty). A = (B Ty) = max(0, |15, @)

The best possible score for ADRS is 0.0, indicating the closeness
of the predicted Pareto front line to the reference Pareto front.
The achieved ADRS for the test designs are summarized in Figure
9 which shows that the proposed method is successfully able to
predict the pareto curve coefficients with minimal ADRS of 4.4. In
this case, the Neural Network model performs the best followed
by Graph Attention(GAT) Network model due to their ability to
resolve compound features and discover non-linearity.

6.4 Runtime Comparison

One of the significant achievements of this work is the runtime
savings of 6 orders of magnitude in the TNS and dynamic power
prediction and 8 orders of magnitude in the Pareto front curve
prediction. Table 2 compares the runtime for single prediction of
TNS-power values and the pareto curve coeflicients with respect
to the traditional synthesis and placement. Each of the single value
predictions represent the true TNS and dynamic power expected
from a single set of synthesis parameter setting as mentioned in

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

How Good Is Your Verilog RTL Code?
A Quick Answer from Machine Learning

Design Name: des3_perf (98K Gates)

Design Name: gfx (180K Gates)

=
& g
%) ~
E skl -~ 7 -10k-|
@ F4
E o o 2 o © 50 ¢ g
S ik oo @oo 2
9

q [T, oo g0 g Eavs e g
Al f0 R H R & %
g i ° P o L £
3 ° = |
8 k| . £ -30k
% z
& 25k === Ground Truth > g s Grovid Teath ®

=== Prediction ° = —40k-|

~== Prediction
T T ; T ;
6 8 10 14 16 20 30 40 50 6 70
Dynamic Power (mW) Dynamic Power (mW)

@ Design Name: jpegencode (246K Gates)

2

Z 0k ® o0 08 e

= # L

= At e

F /) © o o

% 1] I‘lo ° 80 (-]
14 f h

E /é oo ?‘go

- Y/ O, ©

® 20k 1 o &

%‘] 20k 1 ° 8 °° £

E Pd o0 ?

S 30k === Ground Truth” g

= === Prediction

[+]
— T ———
30 40 50 60 70 80 90 100
Dynamic Power (mW)

Figure 8: Pareto Front prediction using Neural Network prediction model for three testcases.

Summary of ADRS for ML Models Across Test Cases

10.5
95 o
85
75
6.5

ADRS (Lower is Better)

%
> i v
i % ~
s m o &
© o N < = S
s S s .
“ o bl M ome a
5.5 il 2 ~ e |
2] =
4.5 ol ~ <
A P
35 4
25
15
0.5
ebe

©
=

o

=

o
<
~
=
<

7.0

in
Ten
o %
N
v

ethernet des3_perf nova vga_led jpeg_encode Average
(46K) (98K) (117K) (124K) (180K) (246K)
® Linear Regression Neural Network
® Random Forest m XGBoost

u Graph Attention Network CDFG

® Graph Attention Network AST

Figure 9: Measure of closeness (ADRS) between predicted
Pareto Front and ground truth Pareto front.

Table 2: Runtime comparison for single synthesis recipe.

Synthesis and Value Pareto

Model Placement Inference Inference
Runtime Time! Time?

ethernet 2820 Seconds 0.014 Seconds ~ 0.05 Seconds
vga_led 19500 Seconds ~ 0.014 Seconds 0.05 Seconds
des3_perf 9180 Seconds ~ 0.014 Seconds 0.05 Seconds
nova 26220 Seconds ~ 0.014 Seconds 0.05 Seconds
gfx 22320 Seconds ~ 0.014 Seconds 0.05 Seconds
Jpes_en- 27720 Seconds 0.014 Seconds 0.05 Seconds
code
Average 17960 Seconds ~ 0.014 Seconds 0.05 Seconds
Speedup 1X ~1240000X ~360000X

! For best value prediction model: XGBoost Regressor

2 For best Pareto prediction model: Neural Network

section 6. Figure 10 compares the average runtime between 416
synthesis runs with different parameter settings, the runtime of the
proposed method for predicting TNS and dynamic power and for
predicting the Pareto front of TNS-power tradeoff. In this scenario,
the runtime of Pareto front prediction is significantly faster due
to the fact that it has to predict the Pareto curve coefficients only
once, in contrast with the 416 predictions needed from the value
prediction model.

The training time of the models that were studied fall in the range
of 7~27 minutes depending on the model being trained. Although,
generating the training target data takes considerable machine
time, it is a one time effort that can be used universally once com-
pleted. The synthesis, placement and inference times in table 2 were
collected on a 10 Core Intel(R) Xeon(R) CPU E5-2680 (2.80GHz).

1E+08
Synthesis and Placement

Runtime Average

|

~124x10*X ~150x10°X
'
v 1

Value Prediction
Runtime (seconds)

1E+07

1.E+06

1E+05

1E+04

1E+03

1E+02

SESEas x BESEEEES

1E+01

1E+00

Run Time (seconds) - log scale

Pareto Prediciton
Runtime (seconds)

Synthesis and
Placement Runtime
® jpeg_encode

(246K)

methernet mdes3_perf mnova
(46K) (98K) (117K)

vga_led mgfx
(124K) (180K)

Figure 10: Average runtime comparison for capturing the
effect of multiple synthesis recipe.

6.5 Application: RTL Comparison Study

One of the key application of our proposed prediction method is
the inspection of two RTL codes that implement the same function-
ality. The coding style and the micro-architecture chosen during
development can vary between RTL design teams or individual
developers and affect the post-placement performance and power
significantly. To evaluate the sensitivity of the prediction model
to coding style and micro-architecture variations, the RTL of the
test-cases were modified to specifically inject coding style changes
and micro-architectural changes.

6.5.1 Effect of RTL Coding Style: Verilog HDL offers multiple ways
to achieve the same logic, e.g one can use either blocking or non-
blocking statements in the procedural blocks to assign values to
register elements. Similarly, both if-else code blocks and switch-
case code blocks can be used for implementing multi-criteria con-
ditional logic. These coding style differences can introduce minor
movement to the timing and power results. Figure 11 shows the
sensitivity of the prediction models between a given design and
its style varied version. In each of its sub-figures, the left part are
the post-placement results and the Pareto front fitting of two RTL

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

Design: des3_perf (98K Gates)
Style Variation Prediction

Style Variation Ground Truth

o
o
~
N
=]
=

ack (TNS) (nS)
2
I
2

&
o
=
T
L
B
1

Total Negative Slack (TNS) (nS)

7}

@

> —1.5k

3 -1k

5 %

) h 95 o o —2k-|

Z 15k $ Mo 7 °g— ° °

g o © O Baseline Verilog 2.5k O Baseline Verilog

B ok Style Variation Style Variation
6 8 10 12 14 16 18 20 4 6 8 10 12

Dynamic Power (mW) (a) Dynamic Power (mW)

Design: nova (119K Gates)
Style Variation Ground Truth Style Variation Prediction

nS)

IS
\

(USH

=5k

—10k -

v
2
I

—15k-

Total Negative Slack (TNS) (

O Baseline Verilog
Style Variation

O Baseline Verilog
—15k | Style Variation

—20k |

Total Negative Slack (TNS) (nS)
1
&
E

6 8 10 12 14 16 4 6 8 0 12
Dynamic Power (mW) (b) Dynamic Power (mW)

Design: gfx (180K Gates)

’(a‘ Style Variation Ground Truth %‘ Style Variation Prediction

£ o £ 0k

@ | - 7

V4 Z

& | £ 10k

2 —10k-| 8 -

g =3 d

] = 20k r

@ @ 19 :

& 20k 2 1

S 1 ; S ~30k-| }

& ! 0 @ oo

z m. 4 3 P

= -30k-) 40k)

g LB O Bascline Verilog 3 g “# O Baseline Verilog

= °7 % style Variation & '“[] Style Variation
T T : ; -50k — — —
20 40 60 80 10 20 30 40 50 60 70

Dynamic Power (mW) (c) Dynamic Power (mW)

Figure 11: Prediction vs ground truth for three testcase with
RTL Coding Style Variation.

codes with style differences. The right part are predicted values
prediction and Pareto front from our method for the same two
RTL variants. One can tell that the left and right charts show the
same trend and relative comparison. As such, our method can help
designers to compare two Verilog codes in an accuracy similar
to post-placement analysis but 6 orders of magnitude faster, i.e.,
reducing the evaluation time from days to less than a second.

6.5.2 Effect of Micro-Architecture Choice: The micro-architecture
of a design defines low level details of the design, including but not
limited to: state encoding of finite state machines, arrangement of
data muxes and configuration of FIFO depths. These choices cast a
direct effect on the TNS and dynamic power that can be achieved
from the design. Figure 12 shows the sensitivity of the prediction
models between baseline testcase design and a modified version
where several micro-architectural changes have been made. The
similarity of the true values and Pareto fronts (in left charts) and
predicted results (in right charts) shows the ability of the predictive
model to successfully adjust the predictions considering the effects
of micro-architectural changes. In each chart, the ADRS between
the two Pareto front curves of the two RTL variants is labeled. Both
the ground truth and the prediction lead to the same ADRS ranking:

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu

Design: des3_perf (98K Gates)
Micro Arch. Variation Ground Truth Micro Arch. Variation Prediction

nS)

—0.5k

|
e
o
~
!

—1k-

1k ~1.5k

Total Negative Slack (TNS) (nS)
Total Negative Slack (TNS)(

g
—1.5k
o | & i 2.5k o °
|| [O Baseline Verilog__ O Baseline Verilog
-2k ADRS: 4.1 Micro Arch. Variation =3k | ADRS: 6.0| | Micro Arch. Variation
6 7 8 9 10 11 12 13 4 é g lb ll2

Dynamic Power (mW) (a Dynamic Power (mW)

=

Design: nova (119K Gates)

Micro Arch. Variation Ground Truth Micro Arch. Variation Prediction

=)
=
1
=)
3
H

-3k —10k-|

s

S

=
f

—20k |

Total Negative Slack (TNS) (nS)

Total Negative Slack (TNS) (nS)

o -]
: O Baseline Verilog —30k-| O Baseline Verilog
~20k-{| ADRS: 3.2| | ('] Micro Arch. Variation | |ADRS: 4.3 Micro Arch. Variation
- U= —
6 8 10 12 14 4 6 8 10 12
Dynamic Power (mW)

Dynamic Power (mW) (b)

Design: gfx (180K Gates)

@ Micro Arch. Variation Ground Truth Micro Arch. Variation Prediction

= 10k 3\ 10k

|2 1%2)

z

=) E 20k |

< <

2 —20k-

S g

= & 30k

L 30k L2)

2 2 o

b g .

& —40k - 5

) - - g‘n

E oo¥n g iz, —50k]

8 -50k- 2 = - E T ofm B 8 |

S © Baseline Verilog S —60k | O Baseline Verilog

ADRS: 4.0 Micro Arch. Variation = ADRS: 5.8 Micro Arch. Variation

= T

20 30 40 50 6 70 8 9% 0 30 40 S0 6 70

Dynamic Power (mW) (c) Dvnamic Power (mW)

Figure 12: Prediction vs ground truth for three testcases with
RTL Micro-architecture variation.

ADRS(des3_perf) > ADRS(gfx) > ADRS(nova). Therefore, our
predictive model provides good fidelity in not only understanding
which RTL variant may dominate the other in power-TNS trade-off
but also the difference between two Pareto front curves.

7 CONCLUSION

In this paper, we have presented a machine learning based total
negative slack (TNS) and dynamic power prediction method from
Verilog RTL code which utilizes a novel RTL code parsing mecha-
nism. The proposed method successfully provides the assessment
of a given RTL design in 6 orders of magnitude faster turn-around
time in terms of TNS vs. dynamic power values for a given synthe-
sis recipe (parameter setting) and the Pareto fronts. This enables a
quick comparison feedback of equivalent RTL design qualities. The
proposed work can be easily ported to other HDL languages and
can be extended to predict workload specific power profiling.

ACKNOWLEDGMENTS

This work is partially supported by Semiconductor Research Cor-
poration GRC-CADT 3103.001/3104.001 and National Science Foun-
dation CCF-2106725/2106828.

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

How Good Is Your Verilog RTL Code?
A Quick Answer from Machine Learning

REFERENCES

[1] Tim Ansell and Mehdi Saligane. 2020. The Missing Pieces of Open Design
Enablement: A Recent History of Google Efforts: Invited Paper. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 1-8.

[2] Ansys. 2021. PowerArtist. https://www.ansys.com/products/semiconductors/
ansys-powerartist

[3] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785-794.

[4] W Rhett Davis, Paul Franzon, Luis Francisco, Billy Huggins, and Rajeev Jain. 2021.
Fast and Accurate PPA Modeling with Transfer Learning. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 1-8.

[5] Daniele Grattarola and Cesare Alippi. 2021. Graph neural networks in tensorflow
and keras with spektral [application notes]. IEEE Computational Intelligence
Magazine 16, 1 (2021), 99-106.

[6] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanovi¢. 2019. Sim-
mani: Runtime power modeling for arbitrary rtl with automatic signal selection.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 1050-1062.

[7] Daniela Sanchez Lopera, Lorenzo Servadei, Vishwa Priyanka Kasi, Sebastian
Prebeck, and Wolfgang Ecker. 2021. RTL Delay Prediction Using Neural Networks.
In 2021 IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, 1-7.

[8] Gilles Louppe. 2014. Understanding random forests: From theory to practice.
arXiv preprint arXiv:1407.7502 (2014).

[9] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. Integrating
logic synthesis, technology mapping, and retiming. In Proc. IWLS 05. Citeseer.

[10] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825-2830.

[11] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The graph neural network model. IEEE transac-
tions on neural networks 20, 1 (2008), 61-80.

[12] Jim Schultz. 2021. RTL Architect: Parallel RTL Exploration with Unparalleled
Accuracy. Technical Report.

[13] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Journal of big data 6, 1 (2019), 1-48.

[14] Wilson Snyder. 2004. Verilator and systemperl. In North American SystemC Users’
Group, Design Automation Conference.

[15] Arvind Srinivasan, Gary D Huber, and David P LaPotin. 1998. Accurate area and
delay estimation from RTL descriptions. IEEE transactions on very large scale
integration (VLSI) systems 6, 1 (1998), 168-172.

[16] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A python-based hardware de-
sign processing toolkit for verilog hdl. In International Symposium on Applied
Reconfigurable Computing. Springer, 451-460.

[17] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[18] Sun-Chong Wang. 2003. Artificial neural network. In Interdisciplinary computing
in java programming. Springer, 81-100.

[19] Zhiyao Xie, Guan-Qi Fang, Yu-Hung Huang, Haoxing Ren, Yanging Zhang,
Brucek Khailany, Shao-Yun Fang, Jiang Hu, Yiran Chen, and Erick Carvajal
Barboza. 2020. FIST: A feature-importance sampling and tree-based method
for automatic design flow parameter tuning. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 19-25.

[20] Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai, and Tin-Fook Ngai. 2015. Early
stage real-time SoC power estimation using RTL instrumentation. In The 20th
Asia and South Pacific Design Automation Conference. IEEE, 779-784.

Authorized licensed use limited to: Duke University. Downloaded on July 27,2023 at 15:34:33 UTC from IEEE Xplore. Restrictions apply.

