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Gravitational wave observations of large mass ratio compact binary mergers like GW 190814 highlight the
need for reliable, high-accuracy waveform templates for such systems. We present NRHybSur2dql5, a new
surrogate model trained on hybridized numerical relativity (NR) waveforms with mass ratios ¢ < 15 and
aligned spins [y, < 0.5 and y,, = 0. We target the parameter space of GW 1908 14-like events as large mass
ratio NR simulations are very expensive. The model includes the (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5) spin-
weighted spherical harmonic modes and spans the entire LIGO-Virgo bandwidth (with f},, = 20 Hz) for
total masses M 2 9.5 M. NRHybSur2dql5 accurately reproduces the hybrid waveforms, with mismatches
below ~2 x 10~ for total masses 10 My < M <300 M. This is at least an order of magnitude
improvement over existing semianalytical models for GW190814-like systems. Finally, we reanalyze
GW190814 with the new model and obtain source parameter constraints consistent with previous work.
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I. INTRODUCTION

The LIGO [1] and Virgo [2] detectors have observed a
total of 90 gravitational wave (GW) signals to date [3-5],
including the landmark observations of the first binary black
hole (BH) [6], binary neutron star (NS) [7], and BH-NS
binaries [8]. Among these observations, GW190814 [9] is
unique due to its uncertain nature: a merger of a ~23 My
BH and a ~2.6 M companion that is either the heaviest NS
or the lightest BH ever discovered [9] in a compact binary
system.1 In addition to the intrigue about its astrophysical
origin [10-18], this event also poses new challenges for
waveform models due to the highly unequal masses of the
binary components.

Numerical relativity (NR) is the only available method
for solving Einstein’s equations near the merger of two
compact objects and has played a central role in GW
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'A similar event, GW200210_092254, a merger of a 24.1 M
BH and a 2.81 M, compact object was identified in Ref. [5].
However, this event is a marginal GW candidate, with a
probability of astrophysical origin p,g,, ~ 0.54 [5]. Therefore,
we limit our analysis to GW190814.
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astronomy [19-22]. Unfortunately, NR simulations are
prohibitively expensive for direct GW data analysis appli-
cations, as each simulation can take up to a few months on
a supercomputer. The need for a faster alternative to NR
has led to the development of several semianalytical
waveform models [23-33] that rely on some physically
motivated assumptions for the underlying phenomenology
and calibrate the remaining free parameters to NR simu-
lations. As a result, these models are fast enough for GW
data analysis, but are typically not as accurate as the NR
simulations [34-36].

On the other hand, NR surrogate models [35-38] take a
data-driven approach by training the model directly on NR
simulations, without the need for added assumptions. These
models have been shown to reproduce NR simulations
without a significant loss of accuracy while also being fast
enough for GW data analysis [35,36]. The main limitation
for surrogate models, however, is that their applicability is
restricted to the regions where sufficient NR simulations are
available. In particular, NR simulations become expensive
as one approaches large mass ratios ¢ = m;/m, and/or
large spin magnitudes y,, [22,39], where m; (m,) repre-
sents the mass of the heavier (lighter) BH, so that ¢ > 1, and
X1, represent the corresponding dimensionless spins, with
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magnitudes y;, < 1. Therefore, previous NR surrogate
models have only been trained on simulations with ¢ < 8
and y;, < 0.8 [35]. These models are not suitable for high-

mass ratio systems like GW190814 (¢ ~ 8.967)> at 90%
credibility [9]).

Similarly, the calibration NR data for the semianalytical
models [23-26] used in the GW 190814 discovery paper [9]
are also very sparse at mass ratios ¢ 2 8. Fortunately, most
of the events observed by LIGO-Virgo fall at more moderate
mass ratios g <5 [5], with a preference for g ~ 1 [40],
where current semianalytical models are well calibrated. In
contrast, the large mass ratio of GW190814 poses new
challenges for waveform modeling, and it is important to
understand the impact of modeling error on the source
parameter estimation of this event.

For example, at large ¢, subdominant modes of radiation
beyond the quadrupole mode can play an important role.
The complex waveform # = h, — ih, can be decomposed
into a sum of spin-weighted spherical harmonic modes 7% ,,,,,

00 4

(1,1, 00) = Z Z Zeom(t) oY o (1.90), (1)

1=2 m=-¢

where h, (h,) represents the plus (cross) GW polarization,
_,Y,, are the spin = —2-weighted spherical harmonics, and
(1, o) represent the direction to the observer in the source
frame.” The £ = |m| = 2 terms typically dominate the sum
in Eq. (1), and are referred to as the quadrupole modes.
However, as one approaches large ¢, the subdominant
modes (also referred to as nonquadrupole or higher modes)
become increasingly important for estimating the binary
source properties [41-45]. Therefore, it is important for
waveform models to accurately capture the effect of the
subdominant modes on the observed signal. Along with
developing a new surrogate model, one of the goals of this
work is to assess whether current semianalytical models
and, in particular, their subdominant modes are accurate
enough for events like GW190814.

A. The NRHybSur2dq15 model

In this work, we build a GW190814-targeted surrogate
model that is based on NR simulations with mass ratios up
to g = 15. Because of the computational cost of NR
simulations with large mass ratios and/or spins [22], we
restrict the model to spins (anti)aligned along the direction
of the orbital angular momentum L, with y ;. € [-0.5,0.5],
Xix = X1y, =0, and x, = 0. We ignore the spin of the
secondary BH for simplicity, as its effect is expected to be

*The source frame is defined as follows: the z axis points along
the orbital angular momentum L of the binary, the x axis points
along the line of separation from the lighter BH to the heavier
BH, and the y axis completes the triad. Therefore, : denotes the
inclination angle between L and line of sight to the observer.

suppressed for large g systems like GW 190814, at least at
current signal to noise ratio (SNR). For example, Ref. [9]
found that the secondary spin of GW190814 was uncon-
strained. This assumption may need to be relaxed for
louder signals that are expected in the future with detector
improvements.

Above, the z direction is taken to be along L, whose
direction is constant for aligned-spin systems. In addition to
the dominant [(£Z, m) = (2,2)] mode, the model accurately
captures effects of the following subdominant modes: (2,1),
(3,3), (4,4), and (5,5). Note that the m < 0 modes carry the
same information as m > 0 modes for aligned-spin binaries
and do not need to be modeled separately.

To train the model, we perform 20 new NR simulations
in the range 8 < g < 15, using the spectral Einstein code
(SpEC) [22,46] developed by the SXS [47] Collaboration.
Because of computational limitations, these simulations
only include about 30 orbits before the merger; therefore,
they do not cover the full LIGO-Virgo frequency band for
stellar mass binaries. More precisely, for total masses
M = my +m,y; £70.0 My, the initial frequency of the
(2, 2) mode of these waveforms falls within the LIGO-
Virgo band, taken to begin at f,,, = 20 Hz. We extend the
validity of the model to lower masses by smoothly
transitioning [35] to the effective-one-body (EOB) model
SEOBNRv4HM [27] for the early inspiral. These NR-EOB
hybrid waveforms are augmented with 31 waveforms
in the g <8 region, generated using the NRHybSur3dq8
[35] surrogate model, which is already hybridized.
The new model, NRHybSur2dql5 is trained on these
51 hybrid waveforms, and all modes of this model are
valid for the full LIGO-Virgo band (with fi,,, = 20 Hz)
for M 2 9.5 M,

For simplicity, NRHybSur2dq15 ignores two physical fea-
tures that can be relevant for GW190814: precession and
tidal deformability of the secondary object. Precession
occurs when the component objects have spins that are
tilted with respect to L. In such binaries, the spins interact
with L (as well as with each other), causing the orbital plane
to precess [48]. The effective precession parameter y,, [49]
for GW190814 was constrained to y, <0.07 at 90%
credibility by Ref. [9]. However, including precession in
the waveform model was found to improve the component
mass constraints [9]. Therefore, while neglecting precession
is a reasonable assumption, this can limit the applicability of
our results. Precessing NR surrogates can require 21000
NR simulations [36,38,50], which is not currently feasible
for large mass ratios [22]. Nevertheless, we can still
compare the performance of NRHybSur2dql5 against other
nonprecessing models.

Next, the tidal deformations of NSs within a compact
binary can alter the orbital dynamics, imprinting a signature
on the GW signal [51]. Assuming the secondary object of
GWI190814 is a NS, this effect, parametrized by the
effective tidal deformability [51], scales as A « 1/g*
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[see, e.g., Eq. (1) of Ref. [7] ] and can be safely ignored for
GW190814 [9]. For large g binaries like GW190814, the
NS simply plunges into the BH before tidal deformation or
disruption can occur [52]. As a result, GW 190814 shows no
evidence of measurable tidal effects in the signal and no
electromagnetic counterpart to the GWs has been identified
[9]. This justifies our choice to ignore the effects of tidal
deformation in NRHybSur2dq15.

To summarize, NRHybSur2dql5 is valid for mass ratios
q <15, spins yy. € [-0.5,0.5] and y, =y, = x>, =0,
total masses M 2 9.5 My (for fy,, = 20 Hz), and zero
tidal deformability. The name of the model is derived from
the fact that it is based on NR hybrid waveforms, spans the
two-dimensional parameter space of (g, y;.), and extends
to g = 15.

The rest of the paper is organized as follows. In Sec. II,
we describe the construction of NRHybSur2dq15. In Sec. III,
we evaluate the accuracy of the model by computing
mismatches against NR-EOB hybrid waveforms. We dem-
onstrate that NRHybSur2dql5 iS more accurate than existing
semianalytical models by at least an order of magnitude,
with mismatches <2 x 1073 throughout its parameter space.
In Sec. IV, we reanalyze GW190814 using NRHybSur2dql5
and find that our constraints on the binary properties are
consistent with those reported in Ref. [9]. We end with some
concluding remarks in Sec. V. Throughout this paper, we
denote redshifted detector frame masses as m, m,, and
M = my + m,. When referring to the source-frame masses,
we denote them explicitly as mi™, m5*, and M*°. These are
related by factors of 1+ z, where z is the cosmological
redshift; for example, M = (1 + z)M**.

II. METHODS

In this section, we describe the steps involved in building
the new model NRHybSur2dq15, including the generation of
the required NR and hybrid waveforms and the surrogate
model construction.

A. Training set generation

In order to build the surrogate model, we need a “training
set” of hybrid waveforms and their associated binary
parameters. The parameter space of interest for us is the
2D region g € [1,15] and y,, € [-0.5,0.5], with fixed
Xix = X1y = 0, and x, = 0. The total mass scales out for
binary BHs and does not need to be modeled separately.
The NR simulations necessary for generating hybrid wave-
forms are expensive, especially as one approaches large ¢
[22]. Therefore, one would ideally like to use the fewest
possible hybrid waveforms to build a surrogate model of
given a target accuracy. However, we do not know a priori
how big the training set should be or how these points
should be distributed in the parameter space. In order to
determine a suitable training set, we first build a surrogate
model for post-Newtonian (PN) waveforms.

1. PN surrogate and new NR simulations

We use the Gwrrames package [53] to generate PN
waveforms. For the orbital phase, we use the TaylorT4 [54]
approximant and include nonspinning terms up to 4 PN
order [55-58] and spin terms up to 2.5 PN order [59-61].
For the amplitudes, we include terms up to 3.5 PN order
[62—-64]. For the PN surrogate, we restrict the length of the
waveforms to be 5000 M, terminating at the orbital fre-
quency of the Schwarzschild innermost-stable circular orbit
(ISCO): @y, = 673/% rad/M. In addition, we only use the
(2, 2) mode for simplicity. Despite the restrictions in length,
mode content, and the missing merger-ringdown section in
the PN waveforms, we find that this approach provides a
good initial training set for constructing hybrid NR-EOB
surrogates [35]. Above, the orbital frequency is defined as

o d¢0rb
WDorp = dt ’

(2)

where ¢, is the orbital phase obtained from the (2, 2) mode
[see Eq. (8)].

We initialize the training set for the PN surrogate with
just the corner cases of the parameter space. For our 2D
model, these consist of the four points: (¢, y,.) = (1, £0.5)
and (15,+£0.5). We augment the training set in an iterative
greedy manner: At each iteration, we build a PN surrogate
with the current training set, following the same methods as
we use for the hybrid surrogate (see Sec. II D). Then, we
test this surrogate against a larger (~10 times) “validation
set,” generated bgf randomly sampling the parameter space
at each iteration.” We select the parameter in the validation
set that has the largest error [computed using Eq. (4)] and
add it to the training set for the next iteration. We repeat this
procedure until the largest validation error falls below a
certain threshold.

In order to estimate the error between two complex
waveforms %, and %,, we use the time-domain inner
product,

tﬂ1aX
o) =| [ masOa. )
Imin
to compute the mismatch
Mle— <ﬁ1,ﬁ2> (4)

Vo foi)(For, 7ig)

When computing mismatches for the PN surrogate, we
assume a flat noise curve and do not optimize over time and
phase shifts.

The boundary parameters are expected to be more important
than those in the bulk; therefore, for 30% of the points in the
validation set, we sample only from the boundary, which
corresponds to the edges of a square in the 2D case.
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FIG. 1. Largest mismatch of the PN surrogate (over the entire

validation set) as a function of number of greedy parameters used
for training. The PN surrogate is seen to converge to the
validation waveforms as the size of the training set increases.

Figure 1 shows the maximum validation error at each
iteration against the size of the training set. We stop this
procedure when the training set size reaches 47, as the
mismatch settles below 107° at this point. Among these, 31
cases lie in the region g < 8, while 16 lie in the region
8 < g < 15. Rather than perform new NR simulations for
the g < 8 cases, we generate waveforms using the existing
NRHybSur3dg8 model [35]. This model was trained on
NR-EOB/PN hybrid waveforms with mass ratios g < 8
and spins y,,, € [—0.8,0.8] and was shown to reproduce
the hybrid waveforms without a significant loss of accu-
racy [35].

For the cases with ¢ > 8, we perform new NR simu-
lations using SpEC [22,46]. These NR waveforms include
~5000M of evolution before the merger and are hybridized
using SEOBNRv4HM [27] waveforms to include the early
inspiral (see Sec. Il A 2). However, of the 16 cases with
g > 8, only 15 simulations were successfully completed.4
This leaves us with a total of 46 training waveforms
(15 NR-EOB hybrid waveforms and 31 NRHybSur3dq8
waveforms).

From an initial attempt to build a hybrid surrogate with
these 46 waveforms, we found that the model performs
poorly for low masses <50 M, with mismatches reaching
~1072, but performs very well for higher masses, with
mismatches ~1073. In other words, the late inspiral and
merger-ringdown stages were accurately captured, but the
early inspiral was not. This suggested that more hybrid
waveforms were required. To estimate where in parameter
space to place new hybrid waveforms, we first constructed a
trial NR-only surrogate using the above training set of 46
waveforms, but restricted to the last 5000 M before merger;

*The reason for failure is large constraint violation as the
binary approaches merger. We believe a better domain decom-
position may be needed for this simulation, which we plan to
explore in the future.

we will refer to this model as NRsSur2dql5. Next, we
hybridized waveforms (see Sec. II A2) obtained from
NRSur2dql5 to generate new training points in the g > 8
region. This bootstrap method allowed us to create as many
hybrid waveforms as necessary in the ¢ > 8 region without
performing new NR simulations. After some trial and error,
we found that placing five new hybrid waveforms at ¢ = 14
(uniformly distributed in y,. € [-0.5,0.5]) resolved the
problem at low masses.

With this insight, we finally performed five new SpEC
NR simulations at these points and added the hybrid
waveforms based on these to our training set for the final
model, which now includes 20 NR-EOB hybrid wave-
forms and 31 NRHybSur3dq8 waveforms, for a total of 51
waveforms. Figure 2 shows the distribution of these
parameters, including the failed simulation and the new
q = 14 simulations.

The new NR simulations are performed using SpEC
[22,46]; they have been assigned identifiers SXS:BBH:
2463-SXS:BBH:2482 and made publicly available through
the SXS catalog [65]. The constraint equations are solved
employing the extended conformal thin sandwich formal-
ism [66,67] with superposed harmonic Kerr free data [68].
The evolution equations are solved employing the gener-
alized harmonic formulation [69,70]. The start time
of these simulations is approximately 5000 M before the
peak of the waveform amplitude [defined in Eq. (5)], where
M = my 4+ m, is the total Christodoulou mass measured
after the initial burst of junk radiation [22]. The initial
orbital parameters are chosen through an iterative procedure
[71] such that the orbits are quasicircular; the largest
eccentricity for these simulations is 6.4 x 10~*, while the

® NRHybsur3dq8 e SpEC
0.5 L o L * * *—o
e o ®
° Pu L
w L4 [ )
= ®
0.0 ° ® o ° o ¢
° ®
b °
4 ° o ° b ®
—0.5 es-e = = —e
| | | | |
1 4 12 15

FIG. 2. Training set parameters used in building the surrogate
model NRHybSur2dq15. The red markers correspond to cases with
g <8, for which NRHybsSur3dq8 is used to generate training
waveforms. The black markers represent the new NR waveforms
performed for this work, while the empty marker shows the failed
NR simulation. The distribution of the 47 parameters from Fig. 1
can be seen by ignoring the black markers highlighted in cyan;
these represent the five additional NR simulations that were
necessary to improve the model.
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FIG. 3. Mode amplitudes for NR, PN, and SEOBNRv4HM as a
function of the characteristic speed v = w(l,f; for binary param-
eters (q,x1.,x2.) = (15,0.5,0.0). The vertical dashed lines
represent the Schwarzschild ISCO point v = 1/4/6. While PN
deviates significantly from NR, SEOBNRv4HM shows excellent

agreement. We show all available modes of SEOBNRv4HM.

median value is 2.9 x 107*. The waveforms are extracted at
several extraction surfaces at varying finite radii form the
origin and then extrapolated to future null infinity [72].
Finally, the extrapolated waveforms are corrected to account
for the initial drift of the center of mass [73].

2. Hybridization

Given the new NR waveforms, we now hybridize them
by smoothly attaching an EOB waveform for the early
inspiral. For the previous NR hybrid surrogate model
NRHybSur3dq8 [35], a combination of PN and EOB was
used for the early inspiral: the amplitudes for all modes
were obtained from PN, while the phase evolution for all
modes was derived from the (2, 2) mode of the SEOBNRv4
EOB model [74] (see Sec. IV B of Ref. [35]). This was
motivated by the fact that the PN mode amplitudes were
found to be accurate enough for hybridizing ¢ < 8 NR

simulations, while the PN mode phases were not (see Fig. 3
of Ref. [35]).

We find that the same strategy does not work for the
large g cases considered in this work. Figure 3 shows a
comparison between the mode amplitudes of NR, PN, and
the SEOBNRv4HM EOB model [27], for a ¢ = 15 system.
We show all modes [(2, 2), (2, 1), (3, 3), (4,4), and (5, 5)]
included by SEOBNRv4HM, which is an extension of the
SEOBNRv4 model. The PN waveforms are described in
Sec. II A 1; we include amplitude terms up to 3.5 PN
order [62-64]. In Fig. 3, the PN amplitudes (especially
for the subdominant modes) deviate significantly from
NR, while SEOBNRv4HM shows excellent agreement. This
is not surprising, as SEOBNRv4HM is calibrated to NR
waveforms, as well as some BH perturbation theory
waveforms at extreme mass ratios [27]. We conclude
that current PN waveforms are not suitable for hybrid-
izing NR waveforms at large mass ratios like g ~ 15.
Therefore, in this work, we only use SEOBNRv4HM for
hybridizing NR waveforms. Unfortunately, this means
that our new model NRHybSur2dq15 is restricted to the same
set of modes as SEOBNRv4HM.

We follow the same hybridization procedure as Sec. V of
Ref. [35] to smoothly attach SEOBNRv4HM inspirals to the
20 new g > 8 NR simulations obtained in Sec. Il A 1. For
the remaining 31 training cases with ¢ < 8, we generate
waveforms using the NRHybSur3dg8 model, as it is already
hybridized. This completes the construction of our training
set of waveforms.

B. Frame alignment

We follow Ref. [35] and apply the following postpro-
cessing to the training set waveforms. This ensures that all
waveforms are in the same frame, and therefore that the
data used in the surrogate fits (see Sec. II D) vary smoothly
across parameter space.

1. Time alignment

We apply a time shift to each training waveform such
that the peak of the total amplitude

Atol: lz‘ﬁme (5)
I.m

occurs at £ = 0. The original peak time is determined by a
quadratic fit using five time samples adjacent to the discrete
maximum of A, [38].

2. Downsampling and common time array

The length of each hybrid waveform is set by choosing a
starting orbital frequency @, for the SEOBNRv4HM inspiral;
we use @y, = 1x 1073 rad/M for all waveforms.
However, for the same starting frequency, the waveform
length in time is different for different mass ratios and
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spins. On the other hand, the surrogate modeling procedure
requires that all training waveforms have a common time
array [37]. Therefore, we truncate all waveforms such that
they start at the same initial time (~2.4 x 10’ M before the
peak), which is determined by the shortest hybrid wave-
form in the training set. Post truncation, the largest starting
orbital frequency is wy, = 1.1 x 1073 rad/M, which sets
the low-frequency limit of validity of the surrogate. For
LIGO and Virgo, assuming a starting GW frequency of
20 Hz, the (2, 2) mode of the surrogate model is valid for
total masses M > 3.7 M. The highest spin-weighted
spherical harmonic mode included in the model is (5, 5),
for which the corresponding frequency is 5/2 times that of
the (2, 2) mode. Therefore, all modes of the surrogate are
valid for M = 9.5 M.

Because the hybrid waveforms are very long, it is not
practical to sample the entire waveform with a small
uniform time step like 0.1 M, as is typically done for
NR-only surrogates [36]. Fortunately, the early low-
frequency portion of the waveform does not require as
dense a time sampling as the later high-frequency portion.
We therefore downsample the time arrays of the truncated
hybrid waveforms to a common set of time samples. We
choose the time samples such that there are five points per
orbit for the above-mentioned shortest hybrid waveform in
the training set. However, for > —1000 M, we switch to
uniformly spaced time samples with a time step of 0.1 M.
This ensures that we have a sufficiently dense sampling
rate for the late inspiral and the merger ringdown where the
frequency reaches its peak. We retain times up to 120M
after the peak, which is sufficient to capture the entire
ringdown.

Given the common downsampled time array, we use
cubic splines to interpolate all waveforms in the training set
to these times. However, we first transform the waveforms
into the co-orbital frame, defined as

ﬁgm - ﬁ’fmeim¢orb’ (6)

By = Agpe™i22, (7)
¢22

2 3

¢0rb D) ( )

where 7., is the inertial frame waveform, ¢, is the orbital
phase, and A,, and ¢,, are the amplitude and phase of the
(2, 2) mode. The co-orbital frame can be seen as roughly
corotating with the binary, obtained by applying a time-
dependent rotation about the z axis, by an amount given by
the instantaneous orbital phase. Therefore, the waveform is
a slowly varying function of time in this frame, which
increases the interpolation accuracy. For the (2, 2) mode we
save the downsampled amplitude A,, and phase ¢,,, while
for all other modes we save the real and imaginary parts
of ﬁfmc.

3. Phase alignment

Finally, we rotate the waveforms about the z axis such
that the orbital phase ¢y, is zero at t = —1000 M. Note
that this by itself would fix the physical rotation up to a
shift of 7. When generating the EOB inspiral waveform for
hybridization, the frame is aligned such that heavier BH is
on the positive x axis at the initial time, which fixes the z
ambiguity [35]. After the phase alignment, the heavier BH
is on the positive x axis at t = —1000 M for all waveforms.
However, keep in mind that this frame is defined using the
waveform at future null infinity, and these BH positions do
not necessarily correspond to the (gauge-dependent) coor-
dinate BH positions in the NR simulations.

C. Data decomposition

It is much easier to build a model for slowly varying
functions of time. Therefore, we decompose the inertial
frame strain /% ,,,, which is oscillatory, into simpler “wave-
form data pieces” and build a separate surrogate for each
data piece. When evaluating the full surrogate model, we
first evaluate the surrogate for each data piece and then
combine the data pieces to get the inertial frame strain. The
(2, 2) mode is decomposed into its amplitude A,, and
phase ¢, (which is further decomposed below). For the
other modes, we model the real and imaginary parts of the
co-orbital frame strain %,,,¢ [see Eq. (6)].

Following Ref. [36], we further decompose ¢,, by
subtracting the leading-order prediction from the TaylorT3
PN approximant [75], given by

2
B = E‘ﬁv )

where @13 is an arbitrary integration constant, 6 =
[7(ter — 1)/ (5M)]7/3, t.¢ is an arbitrary time offset, and
n=q/(1+ q)?* is the symmetric mass ratio. Because ¢L3
diverges at t,.t, we choose .., = 1000M, long after the peak
(t=0) of the waveform, ensuring that we are always
far away from this divergence. We choose rTe3f such that

73 =0att=—1000 M, which is the same time at which
we align the hybrid phase in Sec. II B 3.

By modeling the difference ¢35 = ¢h», — ¢33 instead of
¢, we automatically capture almost all of the phase
evolution in the early inspiral of the long hybrid wave-
forms. Therefore, we simplify the problem of modeling the
phase to the same as modeling the phase of NR-only
waveforms. This improves the overall accuracy of the
surrogate model for low masses, for which the inspiral
dominates. We stress that the exact form of @13 (or its
physical meaning) is not important because we add the
exact same ¢35 to our model of @55 when evaluating the
surrogate. In fact, even though TaylorT3 is known to be less
accurate than other approximants [76,77], its speed (being a
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simple, analytic, closed-form, function of time) makes it
ideal for our purpose.

To summarize, we decompose the hybrid waveforms into
the following waveform data pieces, each of which is a
smooth, slowly varying function of time: (A,,, ¢53) for the
(2, 2) mode and the real and imaginary parts of %,,,¢ for
the (2, 1), (3, 3), (4, 4), and (5, 5) modes.

D. Surrogate construction and evaluation

Given the waveform data pieces, we build a surrogate
model for each data piece using the same procedure as
Sec. V C of Ref. [35], which we summarize below.

For each waveform data piece, we first construct a linear
basis using the greedy basis method [78], with tolerances of
1072 rad for the @53 data piece and 5 x 107> for all other
data pieces. Next, we construct an empirical time inter-
polant [79-81] with the same number of empirical time
nodes as basis functions for that data piece. Finally, for each
empirical time node, we construct a parametric fit for the
waveform data piece, following the Gaussian process
regression fitting method, as described in Refs. [82,83].
The fits are parametrized by (log(q),}), where

387](){12 +)(2z)/113
1—76n/113

~ Xeff —
X =

(10)

is the spin parameter entering the GW phase at leading
order [84], and y g = ¥2x Jm is the effective spin. Note that

in the above expressmns )(22 = 0 for the current surrogate,
but we adopt this parametrization to be consistent with
Ref. [35]. In practice, parametrizing the fits by (log(g), x1.)
also leads to a surrogate of similar accuracy. On the other
hand, the log(g) parametrization leads to a significant
improvement in model accuracy, in agreement with
Refs. [35,85].

When evaluating the surrogate waveform, we first
evaluate each surrogate waveform data piece. Next, we
compute the (2, 2) mode phase,

¢22_ ress+¢227 (ll)
where ¢35 ~ @55 is the surrogate model for @55, and
is given by Eq. (9). If the waveform is required at a uniform
sampling rate, we interpolate each waveform data piece
from the sparse time samples to the required time samples
using a cubic-spline interpolation scheme. Finally, we use
Egs. (6)—(8) to reconstruct the inertial frame strain.

III. SURROGATE ERRORS

In this section, we evaluate the accuracy of NRHybSur2dq15
by comparing against NR-EOB hybrid waveforms.
Similarly, we compute errors for two semianalytic wave-
form models, the phenomenological model IMRPhenomTHM

[29] and the EOB model SEOBNRv4HM [27]. Both of these
models are calibrated against nonprecessing NR simulations
and include the same set of modes as NRHybSur2dq15 and the
hybrid waveforms: (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5).
Other semianalytic nonprecessing models that include
subdominant modes exist in literature, including Refs.
[31,33], but we do not consider these models for simplicity
(as they have accuracies comparable [31,33,86] to
IMRPhenomTHM and SEOBNRv4HM).

In order to estimate the difference between two wave-
forms 7% and /,, we compute the mismatch [Eq. (4)] using
the noise-weighted inner product in frequency domain,

defined as
|:/fmax

where 7 (f) indicates the Fourier transform of the complex
strain %(r), * indicates a complex conjugation, it indicates
the real part, and S,(f) is the one-sided power spectral
density of a GW detector. We use the advanced-LIGO
design sensitivity zero-detuned, high-power noise curve
[87], with f ., = 20 and f,.x = 2000 Hz. We compute the
mismatches following the procedure described in Sec. VII
of Ref. [35]: the mismatches are optimized over shifts in
time, polarization angle, and initial orbital phase. Both plus
and cross polarizations are treated on an equal footing by
using a two-detector setup, where one detector sees only
the plus and the other only the cross polarization. We use all
the available modes of a given waveform model and
compute the mismatches at 37 points uniformly distributed
on the sky in the source frame.

Figure 4 shows mismatches computed using the advanced-
LIGO noise curve for NRHybSur2dql5, SEOBNRv4HM, and
IMRPhenomTHM against hybrid waveforms. As these depend
on the total mass, we show mismatches for various masses,
starting near the lower limit of the range of validity of the
surrogate M 2 9.5 M. At each mass, we show the median
and 95th percentile mismatches, over many hybrid wave-
forms and points in the source-frame sky.

The left panel of Fig. 4 shows mismatches against the 20
g > 8 NR-EOB hybrid waveforms in Fig. 2. As these
hybrid waveforms were also used in the training of
NRHybSur2dq15, we conduct a “leave-one-out” analysis: we
generate 20 trial surrogates, leaving out one of the ¢ > 8
hybrid waveforms from the training set in each trial, but
including the rest of the training cases (both ¢ > 8 and
q < 8)in Fig. 2. For each trial surrogate, we compute errors
against the ¢ > 8 hybrid waveform that was left out. In this
manner, we only compare NRHybSur2dq15 against waveforms
not used in the model training. Therefore, these errors are
indicative of the true modeling error.

For the g > 8 region, 95th percentile mismatches for
NRHybSur2dq15 fall below ~2 x 1073 over the entire mass

71(£)%5(f)

<ﬁ’lvﬁ2> S (f)

df |, (12)
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FIG. 4. Left: mismatches as a function of the total mass M for NRHybSur2dql5, SEOBNRv4HM, and IMRPhenomTHM against NR-EOB
hybrid waveforms with ¢ > 8. For NRHybsur2dq15, we show leave-one-out errors. Mismatches are computed using the advanced-LIGO
noise curve, at several points in the sky of the source frame using all available modes: (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5). The solid
(dashed) lines show the 95th percentile (median) mismatch values over points on the sky, as well as different hybrid waveforms. Right:
same, but now the mismatches are computed against the NRHybSur3dg8 model in the ¢ < 8 region.

range in Fig. 4. The errors for IMRPhenomTHM and
SEOBNRv4HM are generally larger by at least an order of
magnitude. However, for SEOBNRv4HM, the errors at low
masses overlap with the surrogate errors. This is most
likely because SEOBNRv4HM was used to generate the early
inspiral waveform for the NR-EOB hybrid waveforms. At
low masses, where the early inspiral dominates the overall
error budget, these errors are therefore not representative
of the true error in SEOBNRv4HM.

The right panel of Fig. 4 shows mismatches in the ¢ < 8
region. In this region, rather than conduct leave-one-out
tests, we simply generate 100 new hybrid waveforms
using the NRHybSur3dq8 model for testing. These test cases
are uniformly distributed in the region ¢ € [1,8] and
X1: € [-0.5,0.5], with y,, = 0. Once again NRHybSur2dq!5
has mismatches that are at least an order of magnitude
smaller than that of SEOBNRv4HM and IMRPhenomTHM. In
this case, SEOBNRv4HM errors are broadly uniform across all
masses. This is most likely explained by the fact that the
early inspiral of NRHybSur3dg8 was based on PN as well as
EOB waveforms; more precisely, PN was directly used to
generate the mode amplitudes, while the (2, 2) mode of
SEOBNRv4HM (the SEOBNRv4 [74] model) was used to
correct the PN mode phases.

While Fig. 4 shows model errors when including all
available modes, it can be useful to also understand the
errors in the individual modes. We quantify this using the
normalized L, norm between two waveforms % and 7%/,

Y J V(1) = A, (1) Pt

EAAB) =
A = S T Vim0 P

(13)

This error measure was introduced in Ref. [50] and is
related to weighted average of the mismatch over the sky in
the source frame. When computing £, we only consider the
late inspiral and merger-ringdown region by choosing #; =
—4500 M and 1, = 115 M. As the NR waveforms used in
generating the hybrid waveforms had typical start times
~ —5000 M (see Sec. I A), this ensures that £ is inde-
pendent of which model was used in the hybridization
procedure. Furthermore, rather than optimizing over time
or phase shifts, we simply align the frames of the two
waveforms such that the peak amplitude [Eq. (5)] occurs at
t =0, and the orbital phase [Eq. (8)] is zero at
t = —4500M. This makes £ much cheaper to evaluate
than the mismatches in Eq. (12). In addition to computing
normalized errors using all available modes, we also
consider single-mode errors by restricting the sums in
Eq. (13) to individual modes.

Figure 5 shows normalized errors for NRHybSur2dql5,
SEOBNRv4HM, and IMRPhenomTHM against hybrid wave-
forms. The left panel of Fig. 5 follows the left panel of
Fig. 4 and shows errors for the three waveform models
(using a leave-one-out analysis for NRHybSur2dq!15) against
the 20 ¢ > 8 NR-EOB hybrid waveforms. The right panel
of Fig. 5 follows the right panel of Fig. 4 and shows errors
against the same 100 uniformly distributed NRHybSur3dq8
waveforms in the region ¢ € [1,8] and y;, € [-0.5,0.5],
with y,, = 0. For both ¢ > 8 and g < 8, we once again
find that NRHybSur2dql5 is more accurate than the other
models by at least an order of magnitude, both for the full
waveform and for the individual modes.

Considering the individual mode errors in Fig. 5, we
note that the fractional errors in the nonquadrupole modes
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FIG. 5. Left: normalized error £ [Eq. (13)] computed for NRHybSur2dq15, SEOBNRv4HM, and IMRPhenomTHM against NR-EOB hybrid
waveforms with ¢ > 8, but restricting the start time of the waveforms to —4500M before the peak amplitude. In the first row, & is
computed using all available modes, and in the subsequent rows, single-mode errors are computed by restricting Eq. (13) to individual
modes. Right: same, but now the error is computed against the NRHybSur3dq8 model in the g < 8 region.
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FIG. 6. The (2, 2) modes of the three waveform models compared against NR, for the cases that lead to the largest (2, 2) mode error in
the left panel of Fig. 5. The top (middle) [bottom] figure shows the case for which NRHybSur2dq15 (SEOBNRv4HM) [IMRPhenomTHM] has

the largest (2, 2) mode error.

of SEOBNRv4HM and IMRPhenomTHM reach large values. In
particular, the errors in the (5, 5) mode for SEOBNRv4HM for
q > 8 can reach values £ ~ 1. While the nonquadrupole
modes are still subdominant for ¢ = 10 binaries like
GW190814 (which is why the full waveform errors do
not reach such large values in Fig. 5), it may be important
for models like IMRPhenomTHM and SEOBNRv4HM to
improve accuracy in these modes for future observations.
Finally, to illustrate the (in)accuracy of the individual
modes, Figs. 6-8 show the cases leading to the largest
individual mode errors in the left panel of Fig. 5.

A. Extrapolating outside the training region

The errors computed so far were restricted to the training
region of NRHybSur2dql5: g < 15, yy, € [-0.5,0.5], and
X2, = 0. It is possible to extrapolate the model to larger
g and [y, |, but it is difficult to assess the model accuracy in
this region due to a lack of NR simulations. Instead,
through a visual inspection of the evaluated waveforms,
we find that extrapolating beyond ¢ = 20 or |y, | = 0.7
leads to unphysical “glitches” in the time series for the
mode amplitudes and the derivatives of the mode phases.
Therefore, while we allow the model to be evaluated in the

region g <20, y,, € [-0.7,0.7], and y,. = 0, we advise
caution when extrapolating the model.

IV. REANALYZING GW190814

NRHybSur2dql5 is targeted towards GW events like
GW190814 [9], with mass ratios g 2 9. As NRHybSur2dql5
is more accurate than alternative models in this region, we
now reanalyze GW190814 with NRHybSur2dq15. In addition,
we consider two phenomenological models, IMRPhenomTHM
[29] and IMRPhenomTPHM [28]. Both of these models include
the effects of subdominant modes, but only IMRPhenomTPHM
includes precession effects. Precession effects are included
in IMRPhenomTPHM by “twisting” the frame of the non-
precessing model IMRPhenomTHM to mimic orbital preces-
sion [28]. The GW190814 discovery paper [9] instead
considered the SEOBNRv4PHM [23] and IMRPhenomPv3PHM
[24] binary BH models, both of which include the effects of
subdominant modes and precession (through a similar
twisting procedure). For simplicity, we do not consider
these models here, but we have verified that our results with
IMRPhenomTPHM are consistent with Ref. [9]. Reference [9]
also considered models [25,26] with tidal effects, but found
no measurable tidal signatures; therefore, we only show
results for binary BH models.
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Same as Fig. 6, but now showing the worst cases for the (2, 1) (top) and (3, 3) (bottom) modes.
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FIG. 9. Constraints on GW190814 parameters obtained using the NRHybSur2dq15, IMRPhenomTHM, and IMRPhenomPv3PHM models.
We show posterior distributions for the source-frame component masses m${™ and m5* (top left), the effective spin y.¢ and the source-
frame chirp mass M (top right), and the extrinsic parameters cos(@;y) and luminosity distance D; (bottom). The solid (dashed)
contours represent the central 50% (90%) credible regions of the joint posteriors. Marginalized 1D posteriors are shown on the plot
edges. In the top left panel, we include lines of constant mass ratios (g = 7,9, 11, 13) for comparison. The bimodality in the bottom
panel is due to a well-known degeneracy between distance and inclination [97]. IMRPhenomTHM and NRHybSur2dql5 show good
agreement, suggesting that IMRPhenomTHM is accurate enough for GW190814-like events at current SNRs. The constraints on the
component masses and y.q improve for IMRPhenomTPHM compared to the nonprecessing models, suggesting that precession should be

included in NRHybSur2dql5.

Source properties can be inferred from GW data follow-
ing Bayes’ theorem (see, e.g., Ref. [88] for a review). We
analyze the GW190814 data made public by the LIGO-
Virgo-Kagra Collaboration [9,89], using the Parallel Bilby
[90] parameter estimation package with the dynesty [91]
sampler. Following Ref. [5], we choose a prior that is

uniform in detector frame component masses and isotropic
in sky location and binary orientation. For the distance
prior, we use the UniformSourceFrame prior [92] assuming a
cosmology from [93] as implemented in Astropy [94,95].

When using the nonprecessing models NRHybSur2dq15 and
IMRPhenomTHM, we use the AlignedSpin prior [92,96], with
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—0.5 <y, £0.5 and y,, = 0. The AlignedSpin prior follows
the generic-spin assumptions of a prior that is uniform in
magnitude and isotropic in orientation for each of the two
spin vectors, which in the nonprecessing case is projected
onto the orbital angular momentum. Even though
IMRPhenomTHM allows generic aligned spins on both
BHs, we restrict the model to the same spin range as
NRHybSur2dql5 for easy comparison. We have, however,
verified that using unrestricted aligned spins for
IMRPhenomTHM has a negligible impact on GW190814
posteriors; this is expected, as Ref. [9] placed a constraint
of y1 £0.07 at 90% credibility and found that y, cannot be
constrained for GW190814. When using the precessing
model IMRPhenomTPHM, our prior is uniform in spin mag-
nitudes (with 0 < ¥, > < 1) and isotropic in spin orienta-
tions for both BHs. The reason for considering a precessing
model with no spin restrictions is to gauge the impact of
neglecting precession in NRHybSur2dql5.

Figure 9 shows posterior distributions for the
GW190814  source parameters obtained using
NRHybSur2dq15, IMRPhenomTHM, and IMRPhenomTPHM. We
show constraints on the source-frame component masses
mi and m3*, the effective spin y.g, the source-frame
chirp mass M*™ = M**/5, the luminosity distance D, ,
and cosine of the inclination angle 6;, between the total
angular momentum J and the line of sight direction N. As
NRHybSur2dq15 is significantly more accurate (see Fig. 4),
the differences between NRHybSur2dq15 and IMRPhenomTHM
can be used to gauge systematic uncertainties in
IMRPhenomTHM. In Fig. 9, we find good agreement
between NRHybSur2dq15 and IMRPhenomTHM for all param-
eters shown, which suggests that semianalytical models
like IMRPhenomTHM are accurate enough for events like
GW190814. However, this may not be the case as
detector sensitivity improves and GW190814-like signals
are observed at larger SNRs. At larger SNRs, the
differences noted in Figs. 4 and 5 can become significant.

Finally, comparing the posteriors for IMRPhenomTHM and
IMRPhenomTPHM in Fig. 9, we find that including the effects
of precession leads to stronger constraints on the compo-
nent masses and y.g, while the chirp mass, distance, and
inclination constraints are not significantly affected. This is
in agreement with Ref. [9] and implies that precession
effects should be included in NRHybSur2dq15. While this can
be done by a frame twisting procedure similar to
IMRPhenomTPHM, this method does not capture the full
effects of precession like the asymmetries between pairs
of (¢,m) and (£, —m) spin-weighted spherical harmonic
modes [34,36]. While precessing NR surrogate models [36]
capture these effects, they require 21000 NR simulations,
which are not currently possible at large mass ratios.
Therefore, we leave this exploration to future work.

V. CONCLUSION

We present NRHybSur2dq15, a surrogate waveform model
targeted at large mass ratio GW events like GW190814.
The model is trained on 51 binary BH hybrid waveforms
with mass ratios ¢ < 15 and aligned spins y ., € [-0.5,0.5],
X2, =0, includes the (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5)
spin-weighted spherical harmonic modes, and spans the
entire LIGO-Virgo bandwidth (with f},,, = 20 Hz) for total
masses M 2 9.5 M. Through a leave-one-out study, we
show that NRHybSur2dq15 accurately reproduces the hybrid
waveforms, with mismatches below ~2 x 1073 for total
masses 10 My < M <300 M. This is at least an order of
magnitude improvement over existing semianalytical mod-
els. The model is made publicly available through the easy-
to-use PYTHON package GWSurrogate [98].

We reanalyze GW190814 using NRHybSur2dq15 and find
results consistent with the discovery paper [9]. This
suggests that current semianalytical models are accurate
enough for events like GW190814. However, as detector
sensitivity improves, we can expect to see similar signals at
a higher SNR. We anticipate that accurate models like
NRHybSur2dq15 will be necessary for analyzing such signals.
With that goal, we identify precession as an important
feature to be added to NRHybSur2dql5 in the future.
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