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Gravitational wave observations of large mass ratio compact binary mergers like GW190814 highlight the

need for reliable, high-accuracy waveform templates for such systems. We present NRHybSur2dq15, a new

surrogate model trained on hybridized numerical relativity (NR) waveforms with mass ratios q ≤ 15 and

aligned spins jχ1zj ≤ 0.5 and χ2z ¼ 0. We target the parameter space of GW190814-like events as large mass

ratio NR simulations are very expensive. The model includes the (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5) spin-

weighted spherical harmonic modes and spans the entire LIGO-Virgo bandwidth (with flow ¼ 20 Hz) for

total masses M ≳ 9.5 M⊙. NRHybSur2dq15 accurately reproduces the hybrid waveforms, with mismatches

below ∼2 × 10−3 for total masses 10 M⊙ ≤ M ≤ 300 M⊙. This is at least an order of magnitude

improvement over existing semianalytical models for GW190814-like systems. Finally, we reanalyze

GW190814 with the new model and obtain source parameter constraints consistent with previous work.

DOI: 10.1103/PhysRevD.106.044001

I. INTRODUCTION

The LIGO [1] and Virgo [2] detectors have observed a

total of 90 gravitational wave (GW) signals to date [3–5],

including the landmark observations of the first binary black

hole (BH) [6], binary neutron star (NS) [7], and BH-NS

binaries [8]. Among these observations, GW190814 [9] is

unique due to its uncertain nature: a merger of a ∼23 M⊙

BH and a ∼2.6 M⊙ companion that is either the heaviest NS

or the lightest BH ever discovered [9] in a compact binary

system.
1
In addition to the intrigue about its astrophysical

origin [10–18], this event also poses new challenges for

waveform models due to the highly unequal masses of the

binary components.

Numerical relativity (NR) is the only available method

for solving Einstein’s equations near the merger of two

compact objects and has played a central role in GW

astronomy [19–22]. Unfortunately, NR simulations are

prohibitively expensive for direct GW data analysis appli-

cations, as each simulation can take up to a few months on

a supercomputer. The need for a faster alternative to NR

has led to the development of several semianalytical

waveform models [23–33] that rely on some physically

motivated assumptions for the underlying phenomenology

and calibrate the remaining free parameters to NR simu-

lations. As a result, these models are fast enough for GW

data analysis, but are typically not as accurate as the NR

simulations [34–36].

On the other hand, NR surrogate models [35–38] take a

data-driven approach by training the model directly on NR

simulations, without the need for added assumptions. These

models have been shown to reproduce NR simulations

without a significant loss of accuracy while also being fast

enough for GW data analysis [35,36]. The main limitation

for surrogate models, however, is that their applicability is

restricted to the regions where sufficient NR simulations are

available. In particular, NR simulations become expensive

as one approaches large mass ratios q ¼ m1=m2 and/or

large spin magnitudes χ1;2 [22,39], where m1 (m2) repre-

sents the mass of the heavier (lighter) BH, so that q ≥ 1, and

χ 1;2 represent the corresponding dimensionless spins, with

*
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A similar event, GW200210_092254, a merger of a 24.1 M⊙

BH and a 2.81 M⊙ compact object was identified in Ref. [5].
However, this event is a marginal GW candidate, with a
probability of astrophysical origin pastro ∼ 0.54 [5]. Therefore,
we limit our analysis to GW190814.
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magnitudes χ1;2 ≤ 1. Therefore, previous NR surrogate

models have only been trained on simulations with q ≤ 8

and χ1;2 ≤ 0.8 [35]. These models are not suitable for high-

mass ratio systems like GW190814 (q ∼ 8.96þ0.75
−0.62 at 90%

credibility [9]).

Similarly, the calibration NR data for the semianalytical

models [23–26] used in the GW190814 discovery paper [9]

are also very sparse at mass ratios q ≳ 8. Fortunately, most

of the events observed by LIGO-Virgo fall at more moderate

mass ratios q ≲ 5 [5], with a preference for q ∼ 1 [40],

where current semianalytical models are well calibrated. In

contrast, the large mass ratio of GW190814 poses new

challenges for waveform modeling, and it is important to

understand the impact of modeling error on the source

parameter estimation of this event.

For example, at large q, subdominant modes of radiation

beyond the quadrupole mode can play an important role.

The complex waveform h ¼ hþ − ih× can be decomposed

into a sum of spin-weighted spherical harmonic modeshlm,

hðt; ι;φ0Þ ¼
X

∞

l¼2

X

l

m¼−l

hlmðtÞ−2Ylmðι;φ0Þ; ð1Þ

where hþ (h×) represents the plus (cross) GW polarization,

−2Ylm are the spin¼ −2-weighted spherical harmonics, and

ðι;φ0Þ represent the direction to the observer in the source

frame.
2
The l ¼ jmj ¼ 2 terms typically dominate the sum

in Eq. (1), and are referred to as the quadrupole modes.

However, as one approaches large q, the subdominant

modes (also referred to as nonquadrupole or higher modes)

become increasingly important for estimating the binary

source properties [41–45]. Therefore, it is important for

waveform models to accurately capture the effect of the

subdominant modes on the observed signal. Along with

developing a new surrogate model, one of the goals of this

work is to assess whether current semianalytical models

and, in particular, their subdominant modes are accurate

enough for events like GW190814.

A. The NRHybSur2dq15 model

In this work, we build a GW190814-targeted surrogate

model that is based on NR simulations with mass ratios up

to q ¼ 15. Because of the computational cost of NR

simulations with large mass ratios and/or spins [22], we

restrict the model to spins (anti)aligned along the direction

of the orbital angular momentum L, with χ1z ∈ ½−0.5; 0.5�,
χ1x ¼ χ1y ¼ 0, and χ 2 ¼ 0. We ignore the spin of the

secondary BH for simplicity, as its effect is expected to be

suppressed for large q systems like GW190814, at least at

current signal to noise ratio (SNR). For example, Ref. [9]

found that the secondary spin of GW190814 was uncon-

strained. This assumption may need to be relaxed for

louder signals that are expected in the future with detector

improvements.

Above, the z direction is taken to be along L, whose

direction is constant for aligned-spin systems. In addition to

the dominant [ðl; mÞ ¼ ð2; 2Þ] mode, the model accurately

captures effects of the following subdominant modes: (2,1),

(3,3), (4,4), and (5,5). Note that the m < 0 modes carry the

same information asm > 0modes for aligned-spin binaries

and do not need to be modeled separately.

To train the model, we perform 20 new NR simulations

in the range 8 < q ≤ 15, using the spectral Einstein code

(SpEC) [22,46] developed by the SXS [47] Collaboration.

Because of computational limitations, these simulations

only include about 30 orbits before the merger; therefore,

they do not cover the full LIGO-Virgo frequency band for

stellar mass binaries. More precisely, for total masses

M ¼ m1 þm2 ≲ 70.0 M⊙, the initial frequency of the

(2, 2) mode of these waveforms falls within the LIGO-

Virgo band, taken to begin at flow ¼ 20 Hz. We extend the

validity of the model to lower masses by smoothly

transitioning [35] to the effective-one-body (EOB) model

SEOBNRv4HM [27] for the early inspiral. These NR-EOB

hybrid waveforms are augmented with 31 waveforms

in the q ≤ 8 region, generated using the NRHybSur3dq8

[35] surrogate model, which is already hybridized.

The new model, NRHybSur2dq15 is trained on these

51 hybrid waveforms, and all modes of this model are

valid for the full LIGO-Virgo band (with flow ¼ 20 Hz)

for M ≳ 9.5 M⊙.

For simplicity, NRHybSur2dq15 ignores two physical fea-

tures that can be relevant for GW190814: precession and

tidal deformability of the secondary object. Precession

occurs when the component objects have spins that are

tilted with respect to L. In such binaries, the spins interact

with L (as well as with each other), causing the orbital plane

to precess [48]. The effective precession parameter χp [49]

for GW190814 was constrained to χp ≲ 0.07 at 90%

credibility by Ref. [9]. However, including precession in

the waveform model was found to improve the component

mass constraints [9]. Therefore, while neglecting precession

is a reasonable assumption, this can limit the applicability of

our results. Precessing NR surrogates can require ≳1000

NR simulations [36,38,50], which is not currently feasible

for large mass ratios [22]. Nevertheless, we can still

compare the performance of NRHybSur2dq15 against other

nonprecessing models.

Next, the tidal deformations of NSs within a compact

binary can alter the orbital dynamics, imprinting a signature

on the GW signal [51]. Assuming the secondary object of

GW190814 is a NS, this effect, parametrized by the

effective tidal deformability [51], scales as Λ̃ ∝ 1=q4

2
The source frame is defined as follows: the z axis points along

the orbital angular momentum L of the binary, the x axis points
along the line of separation from the lighter BH to the heavier
BH, and the y axis completes the triad. Therefore, ι denotes the
inclination angle between L and line of sight to the observer.
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[see, e.g., Eq. (1) of Ref. [7] ] and can be safely ignored for

GW190814 [9]. For large q binaries like GW190814, the

NS simply plunges into the BH before tidal deformation or

disruption can occur [52]. As a result, GW190814 shows no

evidence of measurable tidal effects in the signal and no

electromagnetic counterpart to the GWs has been identified

[9]. This justifies our choice to ignore the effects of tidal

deformation in NRHybSur2dq15.

To summarize, NRHybSur2dq15 is valid for mass ratios

q ≤ 15, spins χ1z ∈ ½−0.5; 0.5� and χ1x ¼ χ1y ¼ χ 2 ¼ 0,

total masses M ≳ 9.5 M⊙ (for flow ¼ 20 Hz), and zero

tidal deformability. The name of the model is derived from

the fact that it is based on NR hybrid waveforms, spans the

two-dimensional parameter space of ðq; χ1zÞ, and extends

to q ¼ 15.

The rest of the paper is organized as follows. In Sec. II,

we describe the construction of NRHybSur2dq15. In Sec. III,

we evaluate the accuracy of the model by computing

mismatches against NR-EOB hybrid waveforms. We dem-

onstrate that NRHybSur2dq15 is more accurate than existing

semianalytical models by at least an order of magnitude,

with mismatches≲2 × 10−3 throughout its parameter space.

In Sec. IV, we reanalyze GW190814 using NRHybSur2dq15

and find that our constraints on the binary properties are

consistent with those reported in Ref. [9]. We end with some

concluding remarks in Sec. V. Throughout this paper, we

denote redshifted detector frame masses as m1, m2, and

M ¼ m1 þm2. When referring to the source-frame masses,

we denote them explicitly as msrc
1
, msrc

2
, andMsrc. These are

related by factors of 1þ z, where z is the cosmological

redshift; for example, M ¼ ð1þ zÞMsrc.

II. METHODS

In this section, we describe the steps involved in building

the new model NRHybSur2dq15, including the generation of

the required NR and hybrid waveforms and the surrogate

model construction.

A. Training set generation

In order to build the surrogate model, we need a “training

set” of hybrid waveforms and their associated binary

parameters. The parameter space of interest for us is the

2D region q ∈ ½1; 15� and χ1z ∈ ½−0.5; 0.5�, with fixed

χ1x ¼ χ1y ¼ 0, and χ 2 ¼ 0. The total mass scales out for

binary BHs and does not need to be modeled separately.

The NR simulations necessary for generating hybrid wave-

forms are expensive, especially as one approaches large q
[22]. Therefore, one would ideally like to use the fewest

possible hybrid waveforms to build a surrogate model of

given a target accuracy. However, we do not know a priori

how big the training set should be or how these points

should be distributed in the parameter space. In order to

determine a suitable training set, we first build a surrogate

model for post-Newtonian (PN) waveforms.

1. PN surrogate and new NR simulations

We use the GWFrames package [53] to generate PN

waveforms. For the orbital phase, we use the TaylorT4 [54]

approximant and include nonspinning terms up to 4 PN

order [55–58] and spin terms up to 2.5 PN order [59–61].

For the amplitudes, we include terms up to 3.5 PN order

[62–64]. For the PN surrogate, we restrict the length of the

waveforms to be 5000 M, terminating at the orbital fre-

quency of the Schwarzschild innermost-stable circular orbit

(ISCO): ωorb ¼ 6−3=2 rad=M. In addition, we only use the

(2, 2) mode for simplicity. Despite the restrictions in length,

mode content, and the missing merger-ringdown section in

the PN waveforms, we find that this approach provides a

good initial training set for constructing hybrid NR-EOB

surrogates [35]. Above, the orbital frequency is defined as

ωorb ¼
dϕorb

dt
; ð2Þ

where ϕorb is the orbital phase obtained from the (2, 2) mode

[see Eq. (8)].

We initialize the training set for the PN surrogate with

just the corner cases of the parameter space. For our 2D

model, these consist of the four points: ðq; χ1zÞ ¼ ð1;�0.5Þ
and ð15;�0.5Þ. We augment the training set in an iterative

greedy manner: At each iteration, we build a PN surrogate

with the current training set, following the same methods as

we use for the hybrid surrogate (see Sec. II D). Then, we

test this surrogate against a larger (∼10 times) “validation

set,” generated by randomly sampling the parameter space

at each iteration.
3
We select the parameter in the validation

set that has the largest error [computed using Eq. (4)] and

add it to the training set for the next iteration. We repeat this

procedure until the largest validation error falls below a

certain threshold.

In order to estimate the error between two complex

waveforms h1 and h2, we use the time-domain inner

product,

hh1;h2i ¼
�

�

�

�

Z

tmax

tmin

h1ðtÞh�
2
ðtÞdt

�

�

�

�

; ð3Þ

to compute the mismatch

MM ¼ 1 −
hh1;h2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1;h1ihh2;h2i
p : ð4Þ

When computing mismatches for the PN surrogate, we

assume a flat noise curve and do not optimize over time and

phase shifts.

3
The boundary parameters are expected to be more important

than those in the bulk; therefore, for 30% of the points in the
validation set, we sample only from the boundary, which
corresponds to the edges of a square in the 2D case.
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Figure 1 shows the maximum validation error at each

iteration against the size of the training set. We stop this

procedure when the training set size reaches 47, as the

mismatch settles below 10−6 at this point. Among these, 31

cases lie in the region q ≤ 8, while 16 lie in the region

8 < q ≤ 15. Rather than perform new NR simulations for

the q ≤ 8 cases, we generate waveforms using the existing

NRHybSur3dq8 model [35]. This model was trained on

NR-EOB/PN hybrid waveforms with mass ratios q ≤ 8

and spins χ1z;2z ∈ ½−0.8; 0.8� and was shown to reproduce

the hybrid waveforms without a significant loss of accu-

racy [35].

For the cases with q > 8, we perform new NR simu-

lations using SpEC [22,46]. These NR waveforms include

∼5000M of evolution before the merger and are hybridized

using SEOBNRv4HM [27] waveforms to include the early

inspiral (see Sec. II A 2). However, of the 16 cases with

q > 8, only 15 simulations were successfully completed.
4

This leaves us with a total of 46 training waveforms

(15 NR-EOB hybrid waveforms and 31 NRHybSur3dq8

waveforms).

From an initial attempt to build a hybrid surrogate with

these 46 waveforms, we found that the model performs

poorly for low masses ≲50 M⊙, with mismatches reaching

∼10−2, but performs very well for higher masses, with

mismatches ∼10−3. In other words, the late inspiral and

merger-ringdown stages were accurately captured, but the

early inspiral was not. This suggested that more hybrid

waveforms were required. To estimate where in parameter

space to place new hybrid waveforms, we first constructed a

trial NR-only surrogate using the above training set of 46

waveforms, but restricted to the last 5000 M before merger;

we will refer to this model as NRSur2dq15. Next, we

hybridized waveforms (see Sec. II A 2) obtained from

NRSur2dq15 to generate new training points in the q > 8

region. This bootstrap method allowed us to create as many

hybrid waveforms as necessary in the q > 8 region without

performing new NR simulations. After some trial and error,

we found that placing five new hybrid waveforms at q ¼ 14

(uniformly distributed in χ1z ∈ ½−0.5; 0.5�) resolved the

problem at low masses.

With this insight, we finally performed five new SpEC

NR simulations at these points and added the hybrid

waveforms based on these to our training set for the final

model, which now includes 20 NR-EOB hybrid wave-

forms and 31 NRHybSur3dq8 waveforms, for a total of 51

waveforms. Figure 2 shows the distribution of these

parameters, including the failed simulation and the new

q ¼ 14 simulations.

The new NR simulations are performed using SpEC

[22,46]; they have been assigned identifiers SXS:BBH:

2463-SXS:BBH:2482 and made publicly available through

the SXS catalog [65]. The constraint equations are solved

employing the extended conformal thin sandwich formal-

ism [66,67] with superposed harmonic Kerr free data [68].

The evolution equations are solved employing the gener-

alized harmonic formulation [69,70]. The start time

of these simulations is approximately 5000 M before the

peak of the waveform amplitude [defined in Eq. (5)], where

M ¼ m1 þm2 is the total Christodoulou mass measured

after the initial burst of junk radiation [22]. The initial

orbital parameters are chosen through an iterative procedure

[71] such that the orbits are quasicircular; the largest

eccentricity for these simulations is 6.4 × 10−4, while the

FIG. 1. Largest mismatch of the PN surrogate (over the entire

validation set) as a function of number of greedy parameters used

for training. The PN surrogate is seen to converge to the

validation waveforms as the size of the training set increases.

FIG. 2. Training set parameters used in building the surrogate

model NRHybSur2dq15. The red markers correspond to cases with

q ≤ 8, for which NRHybSur3dq8 is used to generate training

waveforms. The black markers represent the new NR waveforms

performed for this work, while the empty marker shows the failed

NR simulation. The distribution of the 47 parameters from Fig. 1

can be seen by ignoring the black markers highlighted in cyan;

these represent the five additional NR simulations that were

necessary to improve the model.

4
The reason for failure is large constraint violation as the

binary approaches merger. We believe a better domain decom-
position may be needed for this simulation, which we plan to
explore in the future.
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median value is 2.9 × 10−4. The waveforms are extracted at

several extraction surfaces at varying finite radii form the

origin and then extrapolated to future null infinity [72].

Finally, the extrapolated waveforms are corrected to account

for the initial drift of the center of mass [73].

2. Hybridization

Given the new NR waveforms, we now hybridize them

by smoothly attaching an EOB waveform for the early

inspiral. For the previous NR hybrid surrogate model

NRHybSur3dq8 [35], a combination of PN and EOB was

used for the early inspiral: the amplitudes for all modes

were obtained from PN, while the phase evolution for all

modes was derived from the (2, 2) mode of the SEOBNRv4

EOB model [74] (see Sec. IV B of Ref. [35]). This was

motivated by the fact that the PN mode amplitudes were

found to be accurate enough for hybridizing q ≤ 8 NR

simulations, while the PN mode phases were not (see Fig. 3

of Ref. [35]).

We find that the same strategy does not work for the

large q cases considered in this work. Figure 3 shows a

comparison between the mode amplitudes of NR, PN, and

the SEOBNRv4HM EOB model [27], for a q ¼ 15 system.

We show all modes [(2, 2), (2, 1), (3, 3), (4, 4), and (5, 5)]

included by SEOBNRv4HM, which is an extension of the

SEOBNRv4 model. The PN waveforms are described in

Sec. II A 1; we include amplitude terms up to 3.5 PN

order [62–64]. In Fig. 3, the PN amplitudes (especially

for the subdominant modes) deviate significantly from

NR, while SEOBNRv4HM shows excellent agreement. This

is not surprising, as SEOBNRv4HM is calibrated to NR

waveforms, as well as some BH perturbation theory

waveforms at extreme mass ratios [27]. We conclude

that current PN waveforms are not suitable for hybrid-

izing NR waveforms at large mass ratios like q ∼ 15.

Therefore, in this work, we only use SEOBNRv4HM for

hybridizing NR waveforms. Unfortunately, this means

that our new model NRHybSur2dq15 is restricted to the same

set of modes as SEOBNRv4HM.

We follow the same hybridization procedure as Sec. Vof

Ref. [35] to smoothly attach SEOBNRv4HM inspirals to the

20 new q > 8 NR simulations obtained in Sec. II A 1. For

the remaining 31 training cases with q ≤ 8, we generate

waveforms using the NRHybSur3dq8 model, as it is already

hybridized. This completes the construction of our training

set of waveforms.

B. Frame alignment

We follow Ref. [35] and apply the following postpro-

cessing to the training set waveforms. This ensures that all

waveforms are in the same frame, and therefore that the

data used in the surrogate fits (see Sec. II D) vary smoothly

across parameter space.

1. Time alignment

We apply a time shift to each training waveform such

that the peak of the total amplitude

Atot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l;m

jhlmj2
s

ð5Þ

occurs at t ¼ 0. The original peak time is determined by a

quadratic fit using five time samples adjacent to the discrete

maximum of Atot [38].

2. Downsampling and common time array

The length of each hybrid waveform is set by choosing a

starting orbital frequency ωorb for the SEOBNRv4HM inspiral;

we use ωorb ¼ 1 × 10−3 rad=M for all waveforms.

However, for the same starting frequency, the waveform

length in time is different for different mass ratios and

FIG. 3. Mode amplitudes for NR, PN, and SEOBNRv4HM as a

function of the characteristic speed v ¼ ω
1=3
orb for binary param-

eters ðq; χ1z; χ2zÞ ¼ ð15; 0.5; 0.0Þ. The vertical dashed lines

represent the Schwarzschild ISCO point v ¼ 1=
ffiffiffi

6
p

. While PN

deviates significantly from NR, SEOBNRv4HM shows excellent

agreement. We show all available modes of SEOBNRv4HM.
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spins. On the other hand, the surrogate modeling procedure

requires that all training waveforms have a common time

array [37]. Therefore, we truncate all waveforms such that

they start at the same initial time (∼2.4 × 107M before the

peak), which is determined by the shortest hybrid wave-

form in the training set. Post truncation, the largest starting

orbital frequency is ωorb ¼ 1.1 × 10−3 rad=M, which sets

the low-frequency limit of validity of the surrogate. For

LIGO and Virgo, assuming a starting GW frequency of

20 Hz, the (2, 2) mode of the surrogate model is valid for

total masses M ≥ 3.7 M⊙. The highest spin-weighted

spherical harmonic mode included in the model is (5, 5),

for which the corresponding frequency is 5=2 times that of

the (2, 2) mode. Therefore, all modes of the surrogate are

valid for M ≳ 9.5 M⊙.

Because the hybrid waveforms are very long, it is not

practical to sample the entire waveform with a small

uniform time step like 0.1 M, as is typically done for

NR-only surrogates [36]. Fortunately, the early low-

frequency portion of the waveform does not require as

dense a time sampling as the later high-frequency portion.

We therefore downsample the time arrays of the truncated

hybrid waveforms to a common set of time samples. We

choose the time samples such that there are five points per

orbit for the above-mentioned shortest hybrid waveform in

the training set. However, for t ≥ −1000 M⊙, we switch to

uniformly spaced time samples with a time step of 0.1 M.

This ensures that we have a sufficiently dense sampling

rate for the late inspiral and the merger ringdown where the

frequency reaches its peak. We retain times up to 120M
after the peak, which is sufficient to capture the entire

ringdown.

Given the common downsampled time array, we use

cubic splines to interpolate all waveforms in the training set

to these times. However, we first transform the waveforms

into the co-orbital frame, defined as

hC
lm ¼ hlme

imϕorb ; ð6Þ

h22 ¼ A22e
−iϕ22 ; ð7Þ

ϕorb ¼
ϕ22

2
; ð8Þ

wherehlm is the inertial frame waveform, ϕorb is the orbital

phase, and A22 and ϕ22 are the amplitude and phase of the

(2, 2) mode. The co-orbital frame can be seen as roughly

corotating with the binary, obtained by applying a time-

dependent rotation about the z axis, by an amount given by

the instantaneous orbital phase. Therefore, the waveform is

a slowly varying function of time in this frame, which

increases the interpolation accuracy. For the (2, 2) mode we

save the downsampled amplitude A22 and phase ϕ22, while

for all other modes we save the real and imaginary parts

of hlm
C.

3. Phase alignment

Finally, we rotate the waveforms about the z axis such

that the orbital phase ϕorb is zero at t ¼ −1000 M. Note

that this by itself would fix the physical rotation up to a

shift of π. When generating the EOB inspiral waveform for

hybridization, the frame is aligned such that heavier BH is

on the positive x axis at the initial time, which fixes the π

ambiguity [35]. After the phase alignment, the heavier BH

is on the positive x axis at t ¼ −1000 M for all waveforms.

However, keep in mind that this frame is defined using the

waveform at future null infinity, and these BH positions do

not necessarily correspond to the (gauge-dependent) coor-

dinate BH positions in the NR simulations.

C. Data decomposition

It is much easier to build a model for slowly varying

functions of time. Therefore, we decompose the inertial

frame strain hlm, which is oscillatory, into simpler “wave-

form data pieces” and build a separate surrogate for each

data piece. When evaluating the full surrogate model, we

first evaluate the surrogate for each data piece and then

combine the data pieces to get the inertial frame strain. The

(2, 2) mode is decomposed into its amplitude A22 and

phase ϕ22 (which is further decomposed below). For the

other modes, we model the real and imaginary parts of the

co-orbital frame strain hlm
C [see Eq. (6)].

Following Ref. [36], we further decompose ϕ22 by

subtracting the leading-order prediction from the TaylorT3

PN approximant [75], given by

ϕT3
22

¼ ϕT3
ref −

2

ηθ5
; ð9Þ

where ϕT3
ref is an arbitrary integration constant, θ ¼

½ηðtref − tÞ=ð5MÞ�−1=8, tref is an arbitrary time offset, and

η ¼ q=ð1þ qÞ2 is the symmetric mass ratio. Because ϕT3
ref

diverges at tref , we choose tref ¼ 1000M, long after the peak

(t ¼ 0) of the waveform, ensuring that we are always

far away from this divergence. We choose ϕT3
ref such that

ϕT3
22

¼ 0 at t ¼ −1000 M, which is the same time at which

we align the hybrid phase in Sec. II B 3.

By modeling the difference ϕres
22

¼ ϕ22 − ϕT3
22

instead of

ϕ22, we automatically capture almost all of the phase

evolution in the early inspiral of the long hybrid wave-

forms. Therefore, we simplify the problem of modeling the

phase to the same as modeling the phase of NR-only

waveforms. This improves the overall accuracy of the

surrogate model for low masses, for which the inspiral

dominates. We stress that the exact form of ϕT3
22

(or its

physical meaning) is not important because we add the

exact same ϕT3
22

to our model of ϕres
22

when evaluating the

surrogate. In fact, even though TaylorT3 is known to be less

accurate than other approximants [76,77], its speed (being a
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simple, analytic, closed-form, function of time) makes it

ideal for our purpose.

To summarize, we decompose the hybrid waveforms into

the following waveform data pieces, each of which is a

smooth, slowly varying function of time: ðA22;ϕ
res
22
Þ for the

(2, 2) mode and the real and imaginary parts of hlm
C for

the (2, 1), (3, 3), (4, 4), and (5, 5) modes.

D. Surrogate construction and evaluation

Given the waveform data pieces, we build a surrogate

model for each data piece using the same procedure as

Sec. V C of Ref. [35], which we summarize below.

For each waveform data piece, we first construct a linear

basis using the greedy basis method [78], with tolerances of

10−2 rad for the ϕres
22

data piece and 5 × 10−5 for all other

data pieces. Next, we construct an empirical time inter-

polant [79–81] with the same number of empirical time

nodes as basis functions for that data piece. Finally, for each

empirical time node, we construct a parametric fit for the

waveform data piece, following the Gaussian process

regression fitting method, as described in Refs. [82,83].

The fits are parametrized by ðlogðqÞ; χ̂Þ, where

χ̂ ¼ χeff − 38ηðχ1z þ χ2zÞ=113
1 − 76η=113

ð10Þ

is the spin parameter entering the GW phase at leading

order [84], and χeff ¼ qχ1zþχ2z
1þq

is the effective spin. Note that

in the above expressions χ2z ¼ 0 for the current surrogate,

but we adopt this parametrization to be consistent with

Ref. [35]. In practice, parametrizing the fits by ðlogðqÞ; χ1zÞ
also leads to a surrogate of similar accuracy. On the other

hand, the logðqÞ parametrization leads to a significant

improvement in model accuracy, in agreement with

Refs. [35,85].

When evaluating the surrogate waveform, we first

evaluate each surrogate waveform data piece. Next, we

compute the (2, 2) mode phase,

ϕS
22
≡ ϕres;S

22
þ ϕT3

22
; ð11Þ

where ϕres;S
22

≈ ϕres
22

is the surrogate model for ϕres
22
, and ϕT3

22

is given by Eq. (9). If the waveform is required at a uniform

sampling rate, we interpolate each waveform data piece

from the sparse time samples to the required time samples

using a cubic-spline interpolation scheme. Finally, we use

Eqs. (6)–(8) to reconstruct the inertial frame strain.

III. SURROGATE ERRORS

In this section, we evaluate the accuracy of NRHybSur2dq15

by comparing against NR-EOB hybrid waveforms.

Similarly, we compute errors for two semianalytic wave-

form models, the phenomenological model IMRPhenomTHM

[29] and the EOB model SEOBNRv4HM [27]. Both of these

models are calibrated against nonprecessing NR simulations

and include the same set of modes as NRHybSur2dq15 and the

hybrid waveforms: (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5).

Other semianalytic nonprecessing models that include

subdominant modes exist in literature, including Refs.

[31,33], but we do not consider these models for simplicity

(as they have accuracies comparable [31,33,86] to

IMRPhenomTHM and SEOBNRv4HM).

In order to estimate the difference between two wave-

formsh1 andh2, we compute the mismatch [Eq. (4)] using

the noise-weighted inner product in frequency domain,

defined as

hh1;h2i ¼ 4ℜ

�
Z

fmax

fmin

h̃1ðfÞh̃�
2ðfÞ

SnðfÞ
df

�

; ð12Þ

where h̃ðfÞ indicates the Fourier transform of the complex

strain hðtÞ, � indicates a complex conjugation, ℜ indicates

the real part, and SnðfÞ is the one-sided power spectral

density of a GW detector. We use the advanced-LIGO

design sensitivity zero-detuned, high-power noise curve

[87], with fmin ¼ 20 and fmax ¼ 2000 Hz. We compute the

mismatches following the procedure described in Sec. VII

of Ref. [35]: the mismatches are optimized over shifts in

time, polarization angle, and initial orbital phase. Both plus

and cross polarizations are treated on an equal footing by

using a two-detector setup, where one detector sees only

the plus and the other only the cross polarization. We use all

the available modes of a given waveform model and

compute the mismatches at 37 points uniformly distributed

on the sky in the source frame.

Figure 4 shows mismatches computed using the advanced-

LIGO noise curve for NRHybSur2dq15, SEOBNRv4HM, and

IMRPhenomTHM against hybrid waveforms. As these depend

on the total mass, we show mismatches for various masses,

starting near the lower limit of the range of validity of the

surrogate M ≳ 9.5 M⊙. At each mass, we show the median

and 95th percentile mismatches, over many hybrid wave-

forms and points in the source-frame sky.

The left panel of Fig. 4 shows mismatches against the 20

q > 8 NR-EOB hybrid waveforms in Fig. 2. As these

hybrid waveforms were also used in the training of

NRHybSur2dq15, we conduct a “leave-one-out” analysis: we

generate 20 trial surrogates, leaving out one of the q > 8

hybrid waveforms from the training set in each trial, but

including the rest of the training cases (both q > 8 and

q ≤ 8) in Fig. 2. For each trial surrogate, we compute errors

against the q > 8 hybrid waveform that was left out. In this

manner, we only compare NRHybSur2dq15 against waveforms

not used in the model training. Therefore, these errors are

indicative of the true modeling error.

For the q > 8 region, 95th percentile mismatches for

NRHybSur2dq15 fall below ∼2 × 10−3 over the entire mass
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range in Fig. 4. The errors for IMRPhenomTHM and

SEOBNRv4HM are generally larger by at least an order of

magnitude. However, for SEOBNRv4HM, the errors at low

masses overlap with the surrogate errors. This is most

likely because SEOBNRv4HM was used to generate the early

inspiral waveform for the NR-EOB hybrid waveforms. At

low masses, where the early inspiral dominates the overall

error budget, these errors are therefore not representative

of the true error in SEOBNRv4HM.

The right panel of Fig. 4 shows mismatches in the q < 8

region. In this region, rather than conduct leave-one-out

tests, we simply generate 100 new hybrid waveforms

using the NRHybSur3dq8 model for testing. These test cases

are uniformly distributed in the region q ∈ ½1; 8� and

χ1z ∈ ½−0.5; 0.5�, with χ2z ¼ 0. Once again NRHybSur2dq15

has mismatches that are at least an order of magnitude

smaller than that of SEOBNRv4HM and IMRPhenomTHM. In

this case, SEOBNRv4HM errors are broadly uniform across all

masses. This is most likely explained by the fact that the

early inspiral of NRHybSur3dq8 was based on PN as well as

EOB waveforms; more precisely, PN was directly used to

generate the mode amplitudes, while the (2, 2) mode of

SEOBNRv4HM (the SEOBNRv4 [74] model) was used to

correct the PN mode phases.

While Fig. 4 shows model errors when including all

available modes, it can be useful to also understand the

errors in the individual modes. We quantify this using the

normalized L2 norm between two waveforms h and h0,

Eðh;h0Þ ¼ 1

2

P

l;m

R t2
t1
jhlmðtÞ −h0

lmðtÞj2dt
P

l;m

R t2
t1
jhlmðtÞj2dt

: ð13Þ

This error measure was introduced in Ref. [50] and is

related to weighted average of the mismatch over the sky in

the source frame. When computing E, we only consider the

late inspiral and merger-ringdown region by choosing t1 ¼
−4500 M and t2 ¼ 115 M. As the NR waveforms used in

generating the hybrid waveforms had typical start times

∼ − 5000 M (see Sec. II A), this ensures that E is inde-

pendent of which model was used in the hybridization

procedure. Furthermore, rather than optimizing over time

or phase shifts, we simply align the frames of the two

waveforms such that the peak amplitude [Eq. (5)] occurs at

t ¼ 0, and the orbital phase [Eq. (8)] is zero at

t ¼ −4500M. This makes E much cheaper to evaluate

than the mismatches in Eq. (12). In addition to computing

normalized errors using all available modes, we also

consider single-mode errors by restricting the sums in

Eq. (13) to individual modes.

Figure 5 shows normalized errors for NRHybSur2dq15,

SEOBNRv4HM, and IMRPhenomTHM against hybrid wave-

forms. The left panel of Fig. 5 follows the left panel of

Fig. 4 and shows errors for the three waveform models

(using a leave-one-out analysis for NRHybSur2dq15) against

the 20 q > 8 NR-EOB hybrid waveforms. The right panel

of Fig. 5 follows the right panel of Fig. 4 and shows errors

against the same 100 uniformly distributed NRHybSur3dq8

waveforms in the region q ∈ ½1; 8� and χ1z ∈ ½−0.5; 0.5�,
with χ2z ¼ 0. For both q > 8 and q ≤ 8, we once again

find that NRHybSur2dq15 is more accurate than the other

models by at least an order of magnitude, both for the full

waveform and for the individual modes.

Considering the individual mode errors in Fig. 5, we

note that the fractional errors in the nonquadrupole modes

FIG. 4. Left: mismatches as a function of the total mass M for NRHybSur2dq15, SEOBNRv4HM, and IMRPhenomTHM against NR-EOB

hybrid waveforms with q > 8. For NRHybSur2dq15, we show leave-one-out errors. Mismatches are computed using the advanced-LIGO

noise curve, at several points in the sky of the source frame using all available modes: (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5). The solid

(dashed) lines show the 95th percentile (median) mismatch values over points on the sky, as well as different hybrid waveforms. Right:

same, but now the mismatches are computed against the NRHybSur3dq8 model in the q ≤ 8 region.
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FIG. 5. Left: normalized error E [Eq. (13)] computed for NRHybSur2dq15, SEOBNRv4HM, and IMRPhenomTHM against NR-EOB hybrid

waveforms with q > 8, but restricting the start time of the waveforms to −4500M before the peak amplitude. In the first row, E is

computed using all available modes, and in the subsequent rows, single-mode errors are computed by restricting Eq. (13) to individual

modes. Right: same, but now the error is computed against the NRHybSur3dq8 model in the q ≤ 8 region.
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of SEOBNRv4HM and IMRPhenomTHM reach large values. In

particular, the errors in the (5, 5) mode for SEOBNRv4HM for

q > 8 can reach values E ∼ 1. While the nonquadrupole

modes are still subdominant for q≳ 10 binaries like

GW190814 (which is why the full waveform errors do

not reach such large values in Fig. 5), it may be important

for models like IMRPhenomTHM and SEOBNRv4HM to

improve accuracy in these modes for future observations.

Finally, to illustrate the (in)accuracy of the individual

modes, Figs. 6–8 show the cases leading to the largest

individual mode errors in the left panel of Fig. 5.

A. Extrapolating outside the training region

The errors computed so far were restricted to the training

region of NRHybSur2dq15: q ≤ 15, χ1z ∈ ½−0.5; 0.5�, and

χ2z ¼ 0. It is possible to extrapolate the model to larger

q and jχ1zj, but it is difficult to assess the model accuracy in

this region due to a lack of NR simulations. Instead,

through a visual inspection of the evaluated waveforms,

we find that extrapolating beyond q ¼ 20 or jχ1zj ¼ 0.7

leads to unphysical “glitches” in the time series for the

mode amplitudes and the derivatives of the mode phases.

Therefore, while we allow the model to be evaluated in the

region q ≤ 20, χ1z ∈ ½−0.7; 0.7�, and χ2z ¼ 0, we advise

caution when extrapolating the model.

IV. REANALYZING GW190814

NRHybSur2dq15 is targeted towards GW events like

GW190814 [9], with mass ratios q≳ 9. As NRHybSur2dq15

is more accurate than alternative models in this region, we

now reanalyze GW190814 with NRHybSur2dq15. In addition,

we consider two phenomenological models, IMRPhenomTHM

[29] and IMRPhenomTPHM [28]. Both of these models include

the effects of subdominant modes, but only IMRPhenomTPHM

includes precession effects. Precession effects are included

in IMRPhenomTPHM by “twisting” the frame of the non-

precessing model IMRPhenomTHM to mimic orbital preces-

sion [28]. The GW190814 discovery paper [9] instead

considered the SEOBNRv4PHM [23] and IMRPhenomPv3PHM

[24] binary BH models, both of which include the effects of

subdominant modes and precession (through a similar

twisting procedure). For simplicity, we do not consider

these models here, but we have verified that our results with

IMRPhenomTPHM are consistent with Ref. [9]. Reference [9]

also considered models [25,26] with tidal effects, but found

no measurable tidal signatures; therefore, we only show

results for binary BH models.

FIG. 6. The (2, 2) modes of the three waveform models compared against NR, for the cases that lead to the largest (2, 2) mode error in

the left panel of Fig. 5. The top (middle) [bottom] figure shows the case for which NRHybSur2dq15 (SEOBNRv4HM) [IMRPhenomTHM] has

the largest (2, 2) mode error.
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FIG. 7. Same as Fig. 6, but now showing the worst cases for the (2, 1) (top) and (3, 3) (bottom) modes.
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FIG. 8. Same as Fig. 6, but now showing the worst cases for the (4, 4) (top) and (5, 5) (bottom) modes.
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Source properties can be inferred from GW data follow-

ing Bayes’ theorem (see, e.g., Ref. [88] for a review). We

analyze the GW190814 data made public by the LIGO-

Virgo-Kagra Collaboration [9,89], using the Parallel Bilby

[90] parameter estimation package with the dynesty [91]

sampler. Following Ref. [5], we choose a prior that is

uniform in detector frame component masses and isotropic

in sky location and binary orientation. For the distance

prior, we use the UniformSourceFrame prior [92] assuming a

cosmology from [93] as implemented in Astropy [94,95].

When using the nonprecessing models NRHybSur2dq15 and

IMRPhenomTHM, we use the AlignedSpin prior [92,96], with

FIG. 9. Constraints on GW190814 parameters obtained using the NRHybSur2dq15, IMRPhenomTHM, and IMRPhenomPv3PHM models.

We show posterior distributions for the source-frame component massesmsrc
1

andmsrc
2

(top left), the effective spin χeff and the source-

frame chirp mass Msrc (top right), and the extrinsic parameters cosðθJNÞ and luminosity distance DL (bottom). The solid (dashed)

contours represent the central 50% (90%) credible regions of the joint posteriors. Marginalized 1D posteriors are shown on the plot

edges. In the top left panel, we include lines of constant mass ratios (q ¼ 7; 9; 11; 13) for comparison. The bimodality in the bottom

panel is due to a well-known degeneracy between distance and inclination [97]. IMRPhenomTHM and NRHybSur2dq15 show good

agreement, suggesting that IMRPhenomTHM is accurate enough for GW190814-like events at current SNRs. The constraints on the

component masses and χeff improve for IMRPhenomTPHM compared to the nonprecessing models, suggesting that precession should be

included in NRHybSur2dq15.
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−0.5 ≤ χ1z ≤ 0.5 and χ2z ¼ 0. The AlignedSpin prior follows

the generic-spin assumptions of a prior that is uniform in

magnitude and isotropic in orientation for each of the two

spin vectors, which in the nonprecessing case is projected

onto the orbital angular momentum. Even though

IMRPhenomTHM allows generic aligned spins on both

BHs, we restrict the model to the same spin range as

NRHybSur2dq15 for easy comparison. We have, however,

verified that using unrestricted aligned spins for

IMRPhenomTHM has a negligible impact on GW190814

posteriors; this is expected, as Ref. [9] placed a constraint

of χ1 ≲ 0.07 at 90% credibility and found that χ2 cannot be

constrained for GW190814. When using the precessing

model IMRPhenomTPHM, our prior is uniform in spin mag-

nitudes (with 0 ≤ χ1; χ2 ≤ 1) and isotropic in spin orienta-

tions for both BHs. The reason for considering a precessing

model with no spin restrictions is to gauge the impact of

neglecting precession in NRHybSur2dq15.

Figure 9 shows posterior distributions for the

GW190814 source parameters obtained using

NRHybSur2dq15, IMRPhenomTHM, and IMRPhenomTPHM. We

show constraints on the source-frame component masses

msrc
1

and msrc
2
, the effective spin χeff , the source-frame

chirp mass Msrc ¼ Msrcη3=5, the luminosity distance DL,

and cosine of the inclination angle θJN between the total

angular momentum J and the line of sight direction N̂. As

NRHybSur2dq15 is significantly more accurate (see Fig. 4),

the differences between NRHybSur2dq15 and IMRPhenomTHM

can be used to gauge systematic uncertainties in

IMRPhenomTHM. In Fig. 9, we find good agreement

between NRHybSur2dq15 and IMRPhenomTHM for all param-

eters shown, which suggests that semianalytical models

like IMRPhenomTHM are accurate enough for events like

GW190814. However, this may not be the case as

detector sensitivity improves and GW190814-like signals

are observed at larger SNRs. At larger SNRs, the

differences noted in Figs. 4 and 5 can become significant.

Finally, comparing the posteriors for IMRPhenomTHM and

IMRPhenomTPHM in Fig. 9, we find that including the effects

of precession leads to stronger constraints on the compo-

nent masses and χeff , while the chirp mass, distance, and

inclination constraints are not significantly affected. This is

in agreement with Ref. [9] and implies that precession

effects should be included in NRHybSur2dq15. While this can

be done by a frame twisting procedure similar to

IMRPhenomTPHM, this method does not capture the full

effects of precession like the asymmetries between pairs

of ðl; mÞ and ðl;−mÞ spin-weighted spherical harmonic

modes [34,36]. While precessing NR surrogate models [36]

capture these effects, they require ≳1000 NR simulations,

which are not currently possible at large mass ratios.

Therefore, we leave this exploration to future work.

V. CONCLUSION

We present NRHybSur2dq15, a surrogate waveform model

targeted at large mass ratio GW events like GW190814.

The model is trained on 51 binary BH hybrid waveforms

with mass ratios q ≤ 15 and aligned spins χ1z ∈ ½−0.5; 0.5�,
χ2z ¼ 0, includes the (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5)

spin-weighted spherical harmonic modes, and spans the

entire LIGO-Virgo bandwidth (with flow ¼ 20 Hz) for total

masses M ≳ 9.5 M⊙. Through a leave-one-out study, we

show that NRHybSur2dq15 accurately reproduces the hybrid

waveforms, with mismatches below ∼2 × 10−3 for total

masses 10 M⊙ ≤ M ≤ 300 M⊙. This is at least an order of

magnitude improvement over existing semianalytical mod-

els. The model is made publicly available through the easy-

to-use PYTHON package GWSurrogate [98].

We reanalyze GW190814 using NRHybSur2dq15 and find

results consistent with the discovery paper [9]. This

suggests that current semianalytical models are accurate

enough for events like GW190814. However, as detector

sensitivity improves, we can expect to see similar signals at

a higher SNR. We anticipate that accurate models like

NRHybSur2dq15 will be necessary for analyzing such signals.

With that goal, we identify precession as an important

feature to be added to NRHybSur2dq15 in the future.
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