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On well-posedness of generalized Hall-magneto-hydrodynamics
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Abstract. We obtain local well-posedness result for the generalized Hall-magneto-hydrodynamics system in Besov spaces
B;o(,i‘jl‘”) X B;},i‘g?‘m (R3) with suitable indexes a1, s, and 5. As a corollary, the hyperdissipative electron magneto-
(202 —2) (R3)

hydrodynamics system is globally well-posed in Bo_o’oo for small initial data.

Mathematics Subject Classification. 35Q35, 35Q60, 35A05.

Keywords. Local well-posedness, Global well-posedness, Hall-MHD, Electron-MHD, Besov spaces.

1. Introduction

In this paper, we study the well-posedness problem of the following generalized Hall-magneto-hydrodynamics
(Hall-MHD) system

ur+ (u-Viu—(b-V)b+ Vp = —v(—A)*u,

b+ (u-V)b—(b-V)u+nV x (V xb) x b) = —p(—A)*2D,
V-u=0, V-b=0,

u(0,2) = ug, b(0,2) =bg, t € RT, 2 € R3,

with the parameters oy, as > 0 and the constants v, u > 0,7 > 0.

In particular, the fourth term on the left-hand side of the second equation is called the Hall term.
When a1 = as =1, n > 0, system (1.1) becomes the standard Hall-MHD system, whereas the case n = 0
corresponds to the generalized magneto-hydrodynamics (MHD) system.

Derived in [1] as the incompressible limit of a two-fluid isothermal Euler—-Maxwell system for electrons
and ions, the Hall-MHD system describes the evolution of a system consisting of charged particles that
can be approximated as a conducting fluid, in the presence of a magnetic field b, with u denoting the fluid
velocity, p the pressure, v the viscosity, ;1 the magnetic resistivity and 7 a constant determined by the ion
inertial length. The MHD and Hall-MHD systems have a wide range of applications in plasma physics
and astrophysics, including modeling solar wind turbulence, designing tokamaks as well as studying the
origin and dynamics of the terrestrial magnetosphere. Notably, the Hall-MHD system serves a vital role
in interpreting the magnetic reconnection phenomenon, frequently observed in space plasmas. For more
physical backgrounds, we refer readers to [4,22-24,38,46].

Over the past decade, various mathematical results concerning the Hall-MHD system have been ob-
tained. A mathematically rigorous derivation of the system is due to Acheritogaray et al. [1]. Concerning
the solvability of the system, Chae et al. [5] obtained global-in-time existence of weak solutions and
local-in-time existence of classical solutions. In [6], Chae and Lee established a blow-up criterion and a
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small data global existence result. In addition, local well-posedness results can be found in the works
by Dai [11,12], and global existence results for small data were also proved by Wan and Zhou [49] as
well as by Kwak and Lkhagvasuren [33]. By treating the current density j = V x b as an additional
unknown function, Danchin and Tan [15,16] proved well-posedness results in Besov and Sobolev spaces,
which have been extended by Liu and Tan in [39]. For various regularity criteria, readers are referred
to [10,18,19,28,51,60-62,69]. Regarding the properties of the solutions, the temporary decay of weak
solutions was studied by Chae and Schonbek [7], while the stability of global strong solutions is due to
Benvenutti and Ferreira [2]. On the other hand, in the irresistive setting, there are striking ill-posedness re-
sults due to Chae and Weng [9] as well as Jeong and Oh [30]. Recently, Dai [13] proved the non-uniqueness
of the Leray—Hopf weak solution via a convex integration scheme.

As generalized Laplacians may appear in realistic circumstances in which the viscosity (or resistance)
is enhanced or attenuated (c.f. [52-54]), the MHD system with generalized Laplacians has been intensively
studied and there is a sizable literature. Without attempting to write an exhaustive list, we recall a few
key results on the generalized MHD system. Wu [52] showed that there exists a global weak solution to
the n-dimensional generalized MHD system, i.e., system (1.1) with v > 0, 4 > 0 and n = 0, for any
ay > 0 and as > 0, and that the weak solutions associated with a; > % + 7 and az > % + 7 are
classical for sufficiently smooth initial data; the constraints on the parameters were further relaxed to
o1 > 2+ %, az > 0and oy +az > 1+ % in a subsequent work of the same author [54]. Global existence of
mild solutions for small initial data in various function spaces such as the Fourier-Besov—Morrey spaces,
Fourier-Herz spaces, pseudomeasure spaces, anisotropic Sobolev/Besov spaces and Lei-Lin type spaces
can be found in [17,35-37,40,56,57,63]. In 2D, the generalized MHD system is well-posed even if «y
falls in the the hypodissipative range, e.g., 0 < a7 < 1 and as = 1, or even in the non-resistive case,
i.e., s = 0, as shown in [20,29,47]. Results in the form of blow-up criterion, e.g., [53,70], are abundant.
For asymptotic behaviors of the generalized MHD system, we refer readers to [59,65] and the references
therein.

Our study of the generalized system (1.1) is motivated by the results on the generalized MHD system.
Mathematically, it is easier to exploit dissipation to overcome the Hall term, which tends to be an obstacle
to well-posedness. Chae et al. [8] proved local well-posedness in the case a; = 0, ag > %7 while local
well-posedness result for 0 < a3 < 2, 1 < as < 2 and global well-posedness result for oy > g, g > % were
obtained, respectively, by Wan and Zhou [50] and Wan [48]. Small data global solutions were established
in [44,55,58]. Results concerning the asymptotic behavior of solutions to the generalized Hall-MHD can
be found in [66-68]. In addition, decay result of global smooth solutions in the cases where either oy or
as = 0 is due to Dai and Liu [14]. We refer readers to [21,27,31,45] for a number of regularity criteria.

In this paper, we shall prove that system (1.1) is locally well-posed in the Besov space B;{Z‘.ﬁ“‘” X

B;{iﬁrm (R3) for suitable choices of ay,as, 3 and 4. We are curious about how the parameters «; and
a affect the well-posedness of the system in large Besov spaces. For generalized MHD system, local and
global well-posedness results in Besov spaces were proved in [64] via the same mechanism as in this paper,
in spite of a major difference between the MHD and Hall-MHD systems in terms of scaling properties.
In brief, the generalized MHD system scales as

ux(t, ) = A2 (N2t Ax), ba(t, ) = A2271p(A\22¢t, A,

while the electron-MHD (EMHD) equations, i.e., the fluid-free version of system (1.1), scale as by (¢, z) =
A22=2p(\222¢ \x), resulting in the absence of a genuine scaling along with a lack of the notion of criticality
in the Hall-MHD system, which seems to render the global well-posedness for the full system (1.1) rather
elusive. For system (1.1), we can only establish local well-posedness, in contrast to the generalized MHD

system, which possesses global-in-time solutions in the largest critical space B;Eii”*” X B&S£‘271)(R3),
with a; = am, % < ag,a9 < 1 for small initial data, as proven in [64]. The fact that the well-posedness
result for the Hall-MHD system deviates from that for the MHD system is an evidence that the new scale

and nonlinear interactions introduced by the Hall term nV x ((V x b) x b) play a significant role.
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Our main result states as follows.

Theorem 1.1. (Local well-posedness) For (ug,by) € B;Sig“”” X B;o(,iz‘rﬁ) (R?), there ewists a unique
local-in-time solution (u,b) to system (1.1) such that

(u,0) € £ (0,73 B2 x B2 P (R?))

with T = T(V, 1y 1y [[uo |l 5= 2ar s ||b0||Bf<2a27g>), provided that the parameters ay, as, B and ~y satisfy the
following constraints 1 ,

v > max{l, 51},
B > max{2 M}

20[1

i (1.2)
P) <ap <7,

§<OLQ<B.

An interesting byproduct of the above result is small data global well-posedness for the EMHD equa-
tions.

Theorem 1.2. (Global existence for small data) Let 1 < ag < 2. There exists some ¢ = £(p) > 0 such
that if ||b0||37<2a272)(R3) < e, then there ezists a solution b to the EMHD system, i.e., system (1.1) with

u = 0, satisfying

. ag—1
be L™ (O,+oo;B;o(72og‘2*2)(R3)> and supt o [16]] 00 (3) < 00.
t>0

2. Preliminaries
2.1. Notation

Throughout the paper, we will use C to denote different constants. The notation A < B means that A <
CB for some constant C. For simplicity, we denote the caloric extensions e **(=2)" 4y and e~ #(=2)"?p
by g and 50, respectively. In addition, we use P to denote the Helmholtz—Leray projection onto solenoidal
vector fields, which acts on a vector field ¢ as

Pop = ¢+ V- (—A)" dive.

2.2. Besov spaces via Littlewood—Paley theory

We shall briefly recall the homogeneous Littlewood—Paley decomposition, through which we shall define
the homogeneous Besov space. For a complete description of Littlewood—Paley theory and its applications,
we refer readers to [3,26].

We introduce the radial function y € C§°(R™) such that 0 < xy <1 and

1, for|¢| < %

x(©) = {0, for [¢] > 1.

Let ¢ € C§°(R™) be such that ¢(&) = x(£/2) — x(§). We construct a family of smooth functions {¢,}4ez
supported on dyadic annuli in the frequency space, defined as

©q(§) = p(279€), g € Z.

We can see that {¢g}qez is a partition of unity in R™.
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Denoting the Fourier transform and its inverse by F and F~!, respectively, we introduce h := F~ L.
For u € &', the homogeneous Littlewood—Paley projections are defined as

Agu = F~Hp(279€) Fu) = 2™ / h(2%)u(x — y)dy, ¢ € Z.
Rﬂ.

In view of the above definitions, we note that the following identity holds in the sense of distributions

u = ZAqU

qEZ

With each Aqu supported in some annular domain in the Fourier space, Littlewood-Paley projections
provide us with a way to decompose a function into pieces with localized frequencies.
For s € R and 1 < p,q < oo, we define the homogeneous Besov space B, , as

B; R ={feS'[R") :|fl

p,q

s n oo
By (R7) < I

with the norm given by

D @A @)t ] 1< g <o,
By (") T\ \jez
sup (283||Ajf\|Lp(Rn)), if ¢ = o0.
jez

1]

In this paper, we are primarily interested in the L°°, /*°-based Besov spaces B;ooo

2.3. Besov spaces and the heat kernel

It turns out that negative order Besov spaces can also be characterized via the action of the heat kernel.
In particular, we have the following lemma, for whose proof we refer readers to [34].

Lemma 2.1. Let f € Bgo’oo for some s < 0. The following norm equivalence holds.
Ifll5e  =supt 2 [le A" fl|poo, where a > 0. (2.1)
%00 450
More generally, the following lemma concerning the action of the heat semigroup in Besov spaces holds
true and shall be extensively used in this paper.

Lemma 2.2. (i) For a > 0, the following inequalities hold.
le™ C2" flle < Clfllze
Ve A fl|pe < Ct 3| | 1,
IVPe= =2 f]| oo < Ot 25 || f] v

(ii) For a > 0 and so < s1, the following inequalities hold.
le A fllpey < Ct2a1 0| f]| oy

[VEe A" fl oy < Ctmaa om0tk ]| ooy

Proofs of Lemma 2.2 can be found in [32,43].
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2.4. Mild solutions

A mild solution to system (1.1) is the fix point of the map
[ S1(u,b)
S(u,b) = <Sg(u,b) ,

where S7(u,b) and Sa(u, b) are given by the following Duhamel’s formulae-

t
Si(u,b) == u(t,z) =e VA gy (x) — / e VE=IEATPY L (4 @ u)(s)ds
0

t
. /e_u(t—s)(—m‘” PV - (b® b)(s)ds,
0

¢
Sy (u,b) = b(t,z) =e HH=A)py(z) — /e_”(t_‘“)(_A)%IP’V (u®b)(s)ds

0
t

+ /e*Mtfs)(fA)“z]PV (b ®u)(s)ds

0
t

— n/e*ﬂ@*s)(*ﬁ)”v x (V- (b@b))(s)ds.
0

(2.2)

(2.3)

In (2.4), we have applied the vector identity V x (V- (b® b)) =V x ((V x b) x b) to the Hall term. To

further simplify notations, we view the integrals in expressions (2.3) and (2.4) as bilinear forms.

Definition 2.3. (Bilinear forms) Let f,g € S . The bilinear forms Ba, (-, "), Ba,(--) and B, (-,-) are

defined as follows.
t

Bo,(f.g) = [ e "UTOCRTPY L (f @ g)(s)ds;

Bo,(f.9) = [ e MmIERTPY L (f @ g)(s)ds;

o O —

t
B, (f,9) :n/e_“(t_s)(_A)QQV x (V- (b®b))(s)ds.
0
In view of the above, we can write the formulae (2.2), (2.3) and (2.4) as
St (u,b) =tg(x) — Ba, (u,u) + Ba, (b,b),

Sy (u, b) =bg(z) — Bay (1, ) + Bay (b, u) — Ba, (b, b).

2.5. The contraction principle

Given the mild solution formulation (2.2), a traditional approach is to find a fixed point by iterating the
map (u,b) — S(u,b). In order to do so, it is essential to find a space £ such that the bilinear forms B, (-, -)
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and B, (+,-) are bounded from £ x £ to &. In this paper, we shall use the following lemma, proven in [34]
and [41] as a simple consequence of Banach fixed point theorem.

Lemma 2.4. Let £ be a Banach space. Given a bilinear form B : € x € — &£ such that |B(u,v)|s <
Collullellvlle, Vu, v € &, for some constant Cy > 0, we have the following assertions for the equation

u=1y+ B(u,u). (2.6)

(i) Suppose that y € B:(0) :== {f € € : ||f|le < €} for some ¢ € (0, ﬁ), then the Eq. (2.6) has a
solution u € Boc(0) :={f € £ : || flle < 2¢}, which is, in fact, the unique solution in the ball Ba.(0).

(if) On top of (i), suppose that § € B:(0),u € B (0) and & = y+B(u, @), then the following continuous
dependence is true.

_ 1 _
Ju—alle < mﬂy—yna (2.7)

It can be seen from inequality (2.7) that to ensure local well-posedness, it suffices that Cy = CT“ for
some a > 0, while global well-posedness would require Cy to be bounded above by a time-independent
constant.

3. Proofs of Theorems

This section is devoted to the proofs of Theorems 1.1 and 1.2. We work within a framework based on
the concepts of the “admissible path space” and “adapted value space,” as formulated in [34]. The idea
is to first identify an “admissible path space” £ in which we may apply the contraction principle, then
characterize the “adapted value space” Er associated with Er. In our case, we consider the space

Er={f:fe8, et " fec&r, 0<t<T} i=1lor2

To start, we define the Banach spaces X7 and Yr and the admissible path space &7 := X1 X Yrp.

B 201 =~

Xp = {f 'R — L®([R%): V- f=0and sup ¢SOl ey < oo} (3.1)
3 2028

Yo = {f RS LRV f=0and sup tF ()]l m) < oo} (3.2)

By formulae (2.3) and (2.4) along with the characterization of homogeneous Besov spaces in terms of
the heat flow (2.2), we have the following inequalities -
209 =y
Jull ey < spt ™355 ol + 1By () + 1B (0 8) e

<Cy ol gz -+ 1By (0l xy + 1By, (D) x
2a0—8 ~
bl <0t 55 ol + 1B (D)l + B (bl + [ By D)

<Cullboll gz zaa=e) + [1Bas (1 0) vz + [[Bas (b, w)llyr + [Bas (0, 0)llyr -
Clearly, B;o{?,‘.il ) B;o(,i‘;z =5 (R3) is an adapted value space corresponding to the admissible path space

Er given by Definitions 3.1 and 3.2.
We proceed to prove the following proposition.
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Proposition 3.1. Suppose that the parameters oy, a9, 8 and v satisfy

7> max{l, ),
B > max{2, VH)M}

200 3.3
7 <ag <7, (3.3)
g < ap < f3.
If (u,b) € Ep for some 0 < T < oo, then ||S(u,b) — (i, bo)|| € Er. In particular,
15 (u,0) = (@0, bo) e < CT*||(u,b)|2, (34)

for some a >0 and C = C(v,u,n) > 0.

Proof. First, we remark that the constraints on the parameters indeed yield a non-empty set, since the
combination v =1, =2,a; =1 — 4§ and as = 2 — 2§ with % <i< % clearly satisfies (3.3).

To prove (3.4), it suffices to show that the bilinear forms are bounded from Ep x Er to Er, with bounds
dependent on v, u,n and 7. To this end, we invoke the property of the Beta function. More specifically,
for « > 1 and 0 < 6 < «, we have

t
0 1
/t—T Sradr =t 5753<1**71**> <Ct17777- (3.5)
« «
0

Let v > 1 and 3 < oy <. Via integration by parts, Hoélder’s inequality, identity (3.5) and Definition
3.1, we have the following inequalities.

t

1
1o (u, )|, < G sup t 75 /t—s 7ot [|u(s) oo llu(s) ] cod
0<t<T J

t
2 —
< Cullulk, sup e /(t—s)fﬁy%%ds
o<t<T
0
=1
< CT% ||ul%,.

Similarly, the following estimates are true provided that v > 1, 3 < a1 < v, g < ag < ( and
ﬂ > ('Y‘H- Ot2

2041

t

2a) —v __1
1Be (b, D)7 < Gy sup, t2 /(t = 5)" 21 [[b(s)[|oo [[6(s) [ o ds
0

t
203 =y 1 o8
S CVHb”%(T sup t(;;lw /(t—S) 2;cls 2+a2d8
o<t<T
0
B _at
< OI R bl
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To bound the term |[Ba, (b, u)||y, we further require that ap > 3 and v > oL

t

2a9—0 1
[Basblly < G sup ¢ [ (¢ = 5)7 75 ()15 s
0

¢
200 —f3 1 ol B
< Cullullxlplly sup 55" [ (-9 7s 2o o
0<t<T
0
IR

< CMTzal 22 ||uHXT||b||YT

We note that the term ||Bg, (u, )|y can be estimated in an identical manner.

Finally, we integrate by parts twice to estimate the Hall term. We end up with the condition ag > 1
along with all the constraints from previous estimates.

t

/ (t— )75 [[b(5) o [B(5) o

0

200—-0

||%O£2(b7 b)”YT S Cuvn sup t 202
0<t<T

t
2028 1 .. B
< C“’n”bH%/T sup t 22&2 /(t—S) ‘)‘128 2+a2d8
0<t<T
0
£=2 2
< CupT > ||blly,.-
g

Proof of Theorem 1.1. By inequality (3.4), Lemmas 2.2 and 2.4, there exists a solution (u,b) € Er pro-
vided that the initial data (ug,bp) and the time T satisfy

4CT® (CVHUOHB;(%;OH*’Y) + C“""”bOHB;(.i?’ﬁ)) < 1.

It remains to be shown that (u,b) € L>(0,T; BB pr2ea—h) (R?)). By (2.3) and Lemma 2.2,
it holds that

201 =~

IS1u()]| g=zer—n = sup_7 2 (e TR Sru(t) | o
o 0<7T<T
< sup 7.72‘23{7||eﬂ/(r+t)(fA)"1UOHLOo
0<r<T
T+t
2001 —
+ sup Tﬁlwﬂuﬂﬁﬁ /(T+t—s)_ﬁs_2+a%ds
0<7T<T
0
T+t
201 -7 9 1 9. B
+ sup 7 2 []blly,. [ (Tt —s) Zis T e2ds.
0<r<T
0
Estimating with the help of (3.5), we have
201 -y o 1421
||Slu(t)||B;(zglﬂ> < sup T 24 (He—u'r(—A) “uolle + (7 4 £)" ul%,

0<r<T
{1 428
(7 47 o))

ol oo + T2, b) 2,
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In a similar fashion, the following inequalities follows from (2.4) and Lemma 2.2.

2a3-0 _#T(_A)az
[520(t)[ 3 2az-) = sup 7 22 |le S2b(t)]| Lo
©0,00 0<r<T

< sup Tz‘éif (eu(r+t)(A)“2b0||Loo

o<r<T
T4+t
+ 2wl x.. ||b]|v- T+t—s _ﬁ3_2+7;%+%d5
T T
0

T+t
s
—|—Hb||%/T /(7’—|—t—5)a1252+<*2ds>.

The integrals can be evaluated thanks to (3.5), which yields the bound on Ssb.

2a9=0 _ A
192b(0) oo S sup_ 7w (|l TR by
00,00 o<r<T

142 4Bt 14 68=1
(7 + )T ulx Bl + (707 ], )

ol posma + T2 (bl
The inequalities above imply that
(u,b) € L= (0,T; B2 =) x B (2227 (R3)).

However, well-posedness result for the standard Hall-MHD system, i.e., the case a; = as = 1, is
unattainable as the above method breaks down in this case.
We now turn to the hyper-resistive EMHD equations, written as

by +nV X ((V x b) x b) = —pu(—A)*2b,
V-b=0, (3.6)
b(0,z) = by, t € RT,x € R3,

where 1 < ap < 2.

The above system is the small-scale limit of the Hall-MHD system, corresponding to the scenario in
which the ions are practically static, simply forming a neutralizing background for the moving electrons.
It is named electron MHD as the system is solely determined by the electrons. In astrophysics, system
(3.6) makes frequent appearances in the study of the magnetosphere and the solar wind, whose dynamics
can be puzzling due to high frequency magnetic fluctuations. Readers may consult [22,25,42] for relevant
physics backgrounds.

Unlike the complete system (1.1), system (3.6) possesses the property of scaling invariance. More
specifically, if b(t,r) solves system (3.6) with initial data by, then by(t,z) = A22272p(\2°2¢ \z) is a
solution subject to the initial data A2*272by(Az). One can see that the space L> (0, co; B;EZ;”‘Q) (R?))
is the largest critical space according to the scaling property. Unfortunately, our pathway to small data
global well-posedness fails just when as = 1, leaving the question of the standard EMHD equations’
solvability in the largest critical space Bgo,oo(R:;) unanswered.

We proceed to prove Theorem 1.2 by finding a ball B C Y7 where the solution map Ss is a contraction
mapping. We have the following two propositions.

Proposition 3.2. Let as € (1,2) and §=2. For 0 < T < oo, the map Sa satisfies
1520 = bollv, < Cb]3,.- (3.7)
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Therefore, there exists some 1 > 0, such that Ss is a self-mapping on the ball

BE1 (50) = {f €EYr: ”f - EOHYT < 51}7

provided that |[bo|| ;- 2az-2) < €.

(R3)

Proof. The inequality (3.7) follows from the following estimate.
t

1Bz (0, 0) |y <bupt e /t—s )77 [b(5) o 1B(5) | s

0
t

2c09 —2
<|[blf3, supt 2 / (t— )% 5~ ds
t>0
0
<Gl [bl13,.

Since it is assumed that b € B, (by) and ||bo||Bf<za272>(R3) < &1, it follows from inequality (3.7) and
lemma (2.2) that 1
1826~ Bollva < ClbIZ, < C(Ib— ol + IBoll3,) < Ce2.
(]

Proposition 3.3. Let 1 < az < 2 and = 2. For any T € (0,00], there exists some g5 € (0,e1) such that
if ||b0HB_(za2_2>(R3) < €9, then the solution map So is a contraction mapping on the ball

B€2 (i)o) =: {f € YT : ||f - EO”YT < 52}.
Proof. Let b,b € B., (50). Clearly, the following inequalities hold.
HSQb - SQEHYT = H%Oéz (b’ b) - %062 (B’ B)HYT
< H%az (b7 b) - %042 (b’ b)HYT + ||%a2 (bv b) - %az (ba b) HYT
< O max{|[[bllyz, [6]lv2 H[b — by,
< Cupmez||b = bz
We can ensure that S is a contraction mapping by choosing €2 < 1/2C,, ,,. O

Proof of Theorem 1.2. As a result of Proposition 3.3, we know that for some 5 > 0, Sy has a fixed point,
which is a mild solution to system (3.6), in

62 (bo) - {f €Yr: ||f_b0||YT <eg, T'= +OO}

provided that ||b0||l_3_<2a2‘_2)(m3 < eg.

)
To see that the solution b is in L*°(0, oo; 3;22032‘2) (R?)), we just calculate

|S2b(t )”B (2022 SSHPT 325 (”e—H(T-i-t)( A)(EQbOHLOO

T+t
+[|b]13., /(T+t—s)a232+fzds>
0
5”170“3;(,2;52‘2) + (b5 -
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