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Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural
analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing
1, 3-linked B-D-GlcpA residues, 1, 4-linked a-D-Galp residues, and alternating 1, 2-linked a-D-Manp residues and
1, 4-linked B-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal

residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro
and in vivo, including cell cycle, senescence-associated f-galactosidase, DNA damage and senescence-associated
secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell
dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated
senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be
used for beta cell senescence treatment and alleviation of the progression of T2D.

1. Introduction

In 2019, the global diabetes prevalence was estimated to be 463
million people, and the number was projected to rise to 578 million by
2030 [1]. Diabetes mellitus (DM) is a chronic disease represented by
relative or absolute insulin insufficiency associated with pancreatic beta
cells, leading to elevation of blood sugar levels, which is related to many
metabolic diseases [2,3]. Evidence indicates clearly that cell dysfunction
induced by glucotoxicity in pancreatic beta cells relates to the patho-
genesis of type 2 diabetes (T2D) [4]. Old age is also contributed to the
development of T2D [5-8]. Both glucotoxicity and aging contribute to
the diabetic microenvironment that promotes beta cell senescence [6,9].

The senescent beta cells downregulate the expression of key genes
related to their function and identity, contributing to loss of function,
cellular identity and worsening metabolic profile [10]. Cellular senes-
cence is defined as a state of cell cycle arrest, the chromatin change and
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protein synthesis increased including secreting massive amounts of
senescence-associated secretory phenotype (SASP) factors [10-12]. Li
et al. found the thioredoxin-interacting protein (TXNIP) exacerbated
pancreatic beta cell senescence and age-related dysfunction by inducing
cell cycle arrest through the p38-p16,/p21-CDK-Rb pathway in TXNIP~/
~ and C57BL/6 mice [13]. The SASP was a primary mediator of the
detrimental effects of senescent cells. SASP could trigger inflammatory
responses, disrupted the tissue microenvironment and homeostasis by
the secretion of extra cellular matrix components, recruitment of im-
mune cells, or affecting the fate of other cells in the tissue [14]. Tran-
scriptional analyses showed the SASP factors are produced and secreted
by senescent beta cells, and the senescent beta cells might lead to
senescence of neighboring beta cells via secretion of SASP in a paracrine
action [6]. The expression of senescence markers (p1 6INK4a, p21 Cipl) and
the SASP (116, Il1a, Tnf, Ccl2, and Cxcll) were upregulated in SA-p-Gal™
pancreatic beta cells and beta cell markers (Ins1, Pdx1, Mafa, Nkx6.1,
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Fig. 1. The structural features of some fucoidans from brown algae. (A-F) ba

ckbone structures based on fucopyranosyl residues, such as sulfated fucan, sulfated

galactofucan and sulfated glucuronofucan; (G-L) backbone structures based on a variety of glycosyl residues, containing sulfated fucogalactan, sulfated fucoglu-
curonan, sulfated fucoglucuronomannan and sulfated xylo-fucoglucuronomannans. [33].

and Neurodl) was the downregulated, and this up-regulation of genes
that were usually suppressed in SA-p-Gal™ beta cells [6]. These changes
in senescent beta cells result in the pathogenesis of DM.

Currently, ‘senolytic’ drugs that kill senescent cells or inhibit the
secretion of SASP factors are the main approaches used to treat T2D
[15]. Rapamycin and related agents can prolong the lifespan of patients

and decrease the incidence of associated conditions such as heart failure,
cancer, and immune dysfunction [15]. Metformin can inhibit the SASP
by interfering with IKK/NF-xB activation [16,17]. ABT263 (inhibitor of
the Bcl-2 family) has been shown to alleviate cell senescence, improve
glucose metabolism and beta cell function, downregulate the expression
of markers of aging and senescence and inhibit the secretion of SASP
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factors in INK-ATTAC model [6]. Although drugs that target beta cell
senescence have emerged, the agents that are currently available do not
achieve satisfactory results and new drugs that also promote beta cells
regeneration are urgently required.

Fucoidan, a heparin-like sulfated polysaccharide found widely in
brown seaweeds, has been demonstrated to have numerous biological
activities, including anti-inflammatory, anti-viral, anti-senescence, anti-
tumor, antioxidant, anti-hyperlipidemia, regulating metabolic disor-
ders, enhancing central nervous system and anti-tumor effects [18-25].
Fucoidan from Sargassum fusiforme was found to activate the NRF2
pathway to alleviate obesity and insulin resistance [26]. Fucoidan also
reduced pancreatic beta cell death and enhanced insulin synthesis via
the SIRT1/PDX1/GLP1-R pathway in streptozotocin-induced mouse
model of mice [27]. In addition, Jiang et al. indicated the fucoidan
protects beta cell function through the cAMP signaling pathway [28].
However, reports on the anti-senescence activity of fucoidan are rare.
Min et al. reported that fucoidan reduce the viability and induced
apoptosis of hepatocellular carcinoma cells and prevented senescence of
normal liver cells [29]. Lee et al. found that pretreatment with fucoidan
reversed senescence of endothelial colony-forming cells (ECFCs)
through the FAK, AKT, and ERK signaling pathways [30]. Fucoidan also
reversed the mesenchymal stem cell (MSC) senescence induced by p-
cresol through regulation of cell cycle-associated proteins and cellular
prion proteins [31]. Moreover, fucoidan inhibited the formation of
senescence-associated heterochromatin foci and regulated the expres-
sion of senescence-associated proteins p21 and pl6. A Sargassum fusi-
forme-derived fucoidan SP2 was also shown to activate the NRF2-
mediated antioxidant signaling pathway during the aging process
[32]. This information led to the hypothesis that prevention of pancre-
atic beta cell senescence by fucoidans is a promising strategy for the
treatment of type 2 diabetes.

Fucoidans are complicated chemical structures containing fucose,
galactose, mannose, rhamnose, glucose and uronic acid, with biological
activities that may vary depending on the species of brown algae, har-
vest time and location and methods used for extraction. According to the
previous review [33], the structures of fucoidans (also named as fucose-
containing sulfated polysaccharides, FCSPs) were summarized in Fig. 1.
They can be divided into two types: 1) backbone structures based on
fucopyranosyl residues, such as sulfated fucan, sulfated galactofucan
and sulfated glucuronofucan and 2) backbone structures based on a
variety of glycosyl residues, containing sulfated fucogalactan, sulfated
fucoglucuronan, sulfated fucoglucuronomannan and sulfated xylo-
fucoglucuronomannans.

In this study, we prepared a fuco-manno-glucuronogalactan (SFGG)
derived from Saccharina japonica. Based on the anti-senescence activity
of fucoidan, we speculated that SFGG could attenuate pancreatic beta
cell senescence and treat T2D. Therefore, we evaluated SFGG’s effects on
pancreatic beta cells in senescent MIN6 cells and mouse model. Our
work provides the potential drug for beta cell senescence and inhibition
of the progression of T2D.

2. Materials and methods
2.1. Materials

The MIN6 pancreatic beta cell line was cultured in high glucose
Dulbecco’s modified Eagle’s medium (DMEM), containing 0.05 % 2-
mercaptoethanol (Sigma-Aldrich, Bioreagent, St. Louis, MO, USA), 15
% fetal bovine serum for embryonic stem cells (ES-FBS; Vistech, New
Zealand), 100 U/mL penicillin and 100 pg/mL streptomycin (Gibco,
Carlsbad, CA, USA) at 37 °C in a humidified atmosphere under 5 % CO5.
Hydrogen peroxide (H202) was purchased from Sigma-Aldrich (Sigma-
Aldrich, USA).
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2.2. Preparation and analysis of SFGG

Fucoidan was prepared as previously described [34,35]. Briefly,
fucoidan (1 g) was dissolved in 0.1 M hydrochloric acid (HCI) and stirred
for 2 h at 80 °C. The degradation solution was neutralized, concentrated,
and precipitated using ethanol. The precipitate was re-dissolved and
degraded using 0.5 M HCL. The degradation solution was neutralized,
concentrated, and precipitated using ethanol. The precipitate was re-
dissolved and further purified on a Bio-Gel P-10 column (2.6 x 100
cm) eluted with 0.2 M NH4HCOj3 to obtain SFGG. SFGG was refluxed in
0.1 M sulfuric acid for 4 h. The solution was then neutralized, centri-
fuged, concentrated and ultrafiltered by using a Ultracel 3 kDa mem-
brane (Sigma-Aldrich). Then ultrafiltrate was then purified on a Bio-Gel
P-10 column (2.6 x 100 cm) eluted with 0.2 M NH4HCO3 to obtain three
fractions (SFGG-1, SFGG-2 and SFGG-3).

Total sugar content, fucose (Fuc) content, uronic acid (UA) content,
sulfate content, monosaccharide composition and molecular weight
were determined as previously described [35]. The molecular weights of
the polysaccharides were evaluated by GPC-HPLC on tandem TSKgel
Guard SWxl (7 pm, 6.0 x 40 mm), TSKgel G4000 SWxI column (7 pm,
7.8 x 300 mm) and TSKgel G3000 SWxl column (7 pm, 7.8 x 300 mm)
with elution in 0.1 M ammonium acetate at a flow rate of 0.6 mL/min at
30 °C with refractive index detection. Seven different molecular weight
dextrans (00268-500MG, 00269-100MG, 00270-100MG, 00271-
100MG, 00891-100MG, 00892-100MG and 00893-100MG), purchased
from Sigma (St.Louis, MO), were used as weight standards.

Electrospray ionization mass spectrometry (ESI-MS) and tandem ESI-
MS with collision-induced dissociation (ESI-CID-MS/MS). ESI-MS and
MS/MS were performed on a LTQ ORBITRAP XL (Thermo Scientific).
The samples were dissolved, centrifuged and analyzed. Mass spectra
were registered in the negative ion mode at a flow rate of 5 pL/min. The
capillary voltage was set to —3000 V, and the cone voltage was set at
—50 V. The source temperature was 80 °C, and the desolvation tem-
perature was 150 °C. All spectra were analyzed by Xcalibur.

The samples (30 mg) were deuterium oxide (99.9 %) exchanged
twice before dissolving in deuterium oxide (99.9 %). Nuclear magnetic
resonance (NMR) spectra were recorded on a Bruker AVANCE III 600
MHz (Billerica, MA) at 25 °C or at a Hudson-Bruker SB 800 MHz spec-
trometer (Bruker BioSpin, Billerica, MA, USA) at 25 °C.

2.3. Cell viability assay

The MIN6 pancreatic beta cell line was cultured in high glucose
Dulbecco’s modified Eagle’s medium (DMEM), containing 0.05 % 2-
mercaptoethanol (Sigma-Aldrich, Bioreagent, St. Louis, MO, USA), 15
% fetal bovine serum for embryonic stem cells (ES-FBS; Vistech, New
Zealand), 100 U/mL penicillin and 100 pg/mL streptomycin (Gibco,
Carlsbad, CA, USA) at 37 °C in a humidified atmosphere under 5 % CO5.
Hydrogen peroxide (H203) was purchased from Sigma-Aldrich (Sigma-
Aldrich, USA).

MING cells were seeded in 96-well plate at a density of 1 x 10* cells
per well and pretreated with 125 pmol/L H05 for 2 h at 37 °C in a CO,
incubator. The medium was then replaced with fresh medium contain-
ing SFGG at different concentrations (0, 25, 50, 100, and 200 pg/mL)
and the cells were incubated for 24 h at 37 °C in a CO5 incubator.

Cell viability was measured using cell counting kit-8 (CCK-8) assay
(Yeasen Biotech, Shanghai, China) according to the manufacturer’s in-
structions. After experimental treatment, the culture supernatant was
removed, and cells were incubated in culture medium containing 10 pL
CCK-8 for 1.5 h at 37 °C in the dark. The absorbance in each well was
measured at 450 nm using a Multiskan GO microplate reader (Thermo
Fisher Scientific, Waltham, MA, USA). Cell viability was calculated as
follows: Cell viability (%) = (A; — Ag) / (Ac — Ap) x 100, where Ay is the
absorbance of the blank, A; is the absorbance of the test group, and A is
the absorbance of the control.
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Table 1
Primer sequence.
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Gene Primer (forward) Primer (reverse)

Actin GTGACGTTGACATCCGTAAAGA GCCGGACTCATCGTACTCC
Tnf-a GAGCACAGAAAGCATGATCCG GCCACAAGCAGGAATGAGAAG
Nf-xb CTCTGAACAAAATGCCCCACG ACGATGCAATGGACTGTCAGG
Cxcl10 TGCCGTCATTTTCTGCCTC TATGGCCCTCATTCTCACTGG
Cxcr4 TATTGTCCACGCCACCAACAG CGTCGGCAAAGATGAAGTCAG
Neurod1 GACCCAGAAACTGTCTAAAATAGAGACA AAGGAGACCAGATCAGGGCTTT
Nkx6.1 CTTCTGGCCCGGAGTGATG GGGTCTGGTGTGTTTTCTCTTC
Mafa CTTCAGCAAGGAGGAGGTCATC GCGTAGCCGCGGTTCTT

Glut2 TCATCATTGCTGGACGAAGTG TTGCCCAGAATAAAGCTGAGG
Pdx1 TAGGCGTCGCACAAGAAGAA TCCGTATTGGAACGCTCAAGT

2.4. Cell cycle assay

MING cells were seeded in 6-well plate at a density of 4 x 10° per
well. The cell cycle and apoptosis were then analyzed using commer-
cially available kits (Beyotime, Shanghai, China) according to the
manufacturer’s instructions. Briefly, after rinsing with phosphate-
buffered saline (PBS) and tryptic digestion, the cells were fixed with
75 % ethanol at 4 °C overnight. After discarding the ethanol, the cell
pellet was washed with PBS and resuspended in 1 ml of PI staining re-
agent for 30 min before flow cytometric analysis (BD LSRFortessa, BD
Biosciences, San Jose, CA, USA). The percentage of cells in the different
phases of the cell cycle was estimated with ModFit LT 5.0 analysis
software.

2.5. Senescence-associated f-galactosidase (SA f-gal) assay

The senescence was assessed of MIN6 cells and frozen pancreas
sections by X-Gal staining for detection of f-galactosidase activity using
commercially available kit (CST, Danvers, MA, USA) after incubation in
the fixative solution provided in the kit. The images were taken by op-
tical microscopy (SC180, Olympus, Tokyo, Japan).

2.6. Glucose-stimulated insulin secretion assay (GSIS)

MING6 cells were preincubated with glucose-free Krebs-Ringer bi-
carbonate buffer plus HEPES (KRBH) for 30 min before incubation for 1
h in KRBH buffer containing 2.8 mmol/L or 25 mmol/L glucose. The
supernatant was collected, and the insulin content was measured by
ELISA (Ezassay, Shenzhen, China). The results were normalized by
protein concentration.

2.7. Immunofluorescence assay

Pancreas tissues were collected and fixed in 4 % paraformaldehyde
(PFA) and dewatered in different concentration of ethanol and
embedded in paraffin. After paraffin removal and dehydration in
ethanol, the pancreas sections were repaired antigen and incubated with
5 % BSA for 15 min at RT sequentially. MING cells were fixed in 4 % PFA
for 20 min, permeabilized with 0.2 % Triton X-100/PBS for 15 min and
blocked with 5 % BSA for 60 min at RT. Pancreas sections and cells on
coverslips were then incubated overnight at 4 °C with antibodies for the
detection of the following: Ki67 (Abcam, Cambridge, UK; dilution
1:300), IL-1p (Abcam: 1:100), yYH2AX (Abcam; 1:500), Insulin (Abclo-
nal, Wuhan, China; 1:500), Insulin (Proteintech, USA; dilution 1:1000),
FoxO1 (CST, Danvers, MA, USA; 1:200), Glucaogan (Proteintech, USA;
dilution 1:800); PDX1(CST, Danvers, MA, USA; 1:400); MAFA (Abcam,
1:250). After several washes with PBS, the fixed cells were incubated for
1.5 h with a goat anti-rabbit and anti-mouse secondary antibody (Invi-
trogen, Carlsbad, CA, USA; 1:200) and counterstained for 5 min with
4’,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, BioReagent;
1:4000) for 5 min. After mounting with fluorescence decay resistant
medium, Tissues and cells were observed and photographed under a

confocal microscope (IX83-FV3000, Olympus, Tokyo, Japan) or a fluo-
rescence microscope (Axio Imager M2, ZEISS, Oberkochen, Germany).

2.8. RNA isolation and quantitative real-time PCR (qPCR)

RNA was isolated using AG RNAex Pro reagent (Accurate Biotech-
nology, Hunan, China) and reversed transcribed using an Evo M-MLV RT
Premix kit (Accurate Biotechnology, Hunan, China) according to the
manufacturers’ protocols. Real-time PCR was performed using the
LightCycler480 II system (Roche, Basel, Switzerland) and a SYBR Green
Premix Pro Taq Hs qPCR kit (Accurate Biotechnology). After normali-
zation to f-actin, relative gene expression was determined using the
2—AACT method. Primer sequences are as shown in Table 1.

2.9. Western blot assay

MING6 cells were lysed with cell lysis buffer containing a protease
inhibitors cocktail (FdBio Science, Hangzhou, China) and protein con-
centrations were determined by BCA protein assay kit (FdBio Science).
Total protein extracts were denatured and separated by 10 % or 12.5 %
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Millipore,
Billerica, MO, USA). Membranes were incubated with primary anti-
bodies for the detection of p16™“*% (1:1000), p21 (1:1000), p-RB
(1:1000), RB (1:1000), EZH2 (1:1000), FoxO1 (1:1000), PDX1 (1:1000),
yH2AX (1:1000), Hsp90 (1:5000) (Abcam); p-FoxO1l (1:1000), AKT
(1:1000), and p-AKT (1:1000) (CST); E2F1, PI3K (1:1000), p-PI3K
(1:1000), and GAPDH (1:10000) (Abclonal); p53 (1:1000) (Pro-
teintech); and p-actin (1:10000) (Sigma) at 4 °C overnight. Subse-
quently, membranes were incubated with a horseradish peroxidase-
conjugated anti-rabbit or anti-mouse secondary antibody (Jackson
ImmunoResearch, USA). Proteins were visualized using an enhanced
chemiluminescence kit (FdBio Science, Hangzhou, China).

2.10. Animals feeding and grouping

The male C57BL/6 mice, 5 weeks of age, were conducted at Animal
Research Center with approval of Animal Ethical and Welfare Com-
mittee of Zhejiang Chinese Medical University (ZCMU) (IACUC-
20190422-04). The mice were randomly divided into the control group
(normal diet) and HFD group (high fat diet: 60 % kcal% fat, D12492,
R&D). After 1 month feeding, the HFD group was induced by intraper-
itoneal injection of 30 mg/kg Streptozotocin (STZ) (freshly dissolved in
0.1 mol/l sodium citrate buffer pH 4.5) for one day and the control
group received the same volume normal buffer. The mice with fasting
blood glucose levels >11.1 mmol/L twice was considered as model mice.
For metformin (Met) and SFGG treatment, the model mice were divided
into three groups:1) the model group were treated with normal water; 2)
The metformin group treated with metformin (100 mg/kg); 3) The SFGG
group treated with SFGG (100 mg/kg). After 15 weeks intragastrical (i.
g.) administration, the mice were euthanized, the tissues were collected.
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2.11. Oral glucose tolerance test (OGTT)

The mice were transferred to fresh cage and fast 14 h before testing
(14 h) , while ensuring the drinking water. The blood samples were
collected from the tail-vein at 0, 15, 30, 60, 120 min after 1 g/kg body
weight of oral glucose administration [36]. The glucose levels were
determined using Verio Flex (Johnson, USA). The area under the curve
(AUC) was determined from time 0-120 min after
administration.

glucose

2.12. Hematoxylin and eosin (HE) staining

After paraffin removal and dehydration in ethanol, the pancreas
sections were placed in 3 % hydrogen peroxide and incubated with 5 %
BSA for 15 min at RT sequentially. Then the sections were treated with
DAB kit (CWBIO, China) and taken images using optical microscopy
(SC180, Olympus, Tokyo, Japan).



W. Zhang et al.
2.13. Statistical analysis

The results are expressed as the mean + SEM. One-way ANOVA
analysis was used for data comparisons within multiple groups, statis-
tical significance was set at p < 0.05. Prism software was used for graphs
and statistical analysis.

3. Results
3.1. Structural analysis of SFGG

Chemical composition analysis indicated that SFGG had a total sugar
content of 85.8 % and contained 8.5 % Fuc, 26.9 % UA and 8.9 % sulfate.
The PMP derivatization-high performance liquid chromatography
(HPLC) spectrum showed that the molar ratio of monosaccharides of
SFGG was 1.28:1.38:2.86:1 [mannose (Man): glucuronic acid (GlcA):
galactose (Gal): fucose (Fuc)] (Fig. S1A). According to gel permeation
chromatography (GPC)-HPLC analysis, the average molecular weight
(Mw) of SFGG was approximately 36.1 kDa (Fig. S1B). So, we proposed
that SFGG is a sulfated fuco-manno-glucuronogalactan according to the
previous study [33].

Polysaccharides with uronic acid are more stable than poly-
saccharides without uronic acid. So, SFGG was degraded by 0.1 M sul-
furic acid and ultrafiltrated by 3 kDa cut-off membrane to study the
structural features of galactopyranose residues or fucopyranose resi-
dues. The ultrafiltrate was purified on a Bio-Gel P-10 column to obtain
three fractions (SFGG-1, SFGG-2 and SFGG-3). The fractions were
analyzed by electrospray mass spectrometry mass spectrometry (ESI-
MS). SFGG-1 is a mixture of oligo-glucuronan, oligo-glucuronomannan
and oligo-sulfated galactan, SFGG-2 contained similar compositions
with lower degree of polymerization or sulfation, and SFGG-3 is mainly
sulfated oligo-galactan (Fig. 2A-D). Some sulfated oligo-galactans were
further analyzed by tandem ESI-MS with collision-induced dissociation
(ESI-CID-MS/MS) (Fig. 2E). There were three major characteristic ions
024, 034 and %*A among sulfated oligo-galactan, suggesting that the
linkage of galactan is 1, 4-linked. There were many ions, which were
derived from the loss of sulfur trioxide (—80 Da), sulfur trioxide with
H50 (—98 Da) and sulfur trioxide with double H,O (—116 Da). It was
proposed that the sulfate group was substituted at C3 or C6 of gal-
actopyranose residues [37]. Unfortunately, the structural features of
oligo-fucans were not detected because the fucopyranose residues might
be destroyed or it is branched with sulfated fucose (Monosulfated fucose
(FS) was detected). ESI-CID-MS/MS (Fig. 2E) shows that the sulfation
pattern of FS might be C2 or C4 because of the presences of %?A and %X.
In addition, ESI-CID-MS/MS of glucuronan-tetramer and pentamer
(Fig. 2E) were performed. There were no characteristic ions O’ZA, indi-
cating that the linkage of glucuronan was 1, 3-linkage. Moreover, in the
ESI-CID-MS/MS spectrum of oligo-glucuronomannan (Fig. 2E), there
was one characteristic ion 0’2A6, confirmed the presence of 1, 2-linked
a-D-Manp residue. Therefore, we concluded that SFGG had glucur-
onomannan, glucuronan and sulfated galactan with a backbone of 1, 4-
linked Galp residues sulfated at C3 or C6. In addition, SFGG might have
branches with sulfate fucose.

The 'H NMR, DEPTQ, HSQC spectra and other two-dimensional
spectra of SFGG were also performed (Fig. 3A-D and Fig. S2-4). It is
apparent to see that there are five correlated signals at the region of
anomeric carbon and hydrogen in the HSQC spectrum (Fig. 3D). We
found that resonances with chemical shifts of anomeric hydrogen/car-
bon at 5.27/98.8, 4.73/102.5 and 4.33/101.7 ppm are characteristic
peaks of 1, 2-linked a-D-Manp residues, 1, 3-linked B-D-GlcpA residues
and 1, 4-linked p-D-GlcpA residues, respectively [33,38,39]. And the
other two correlated signals of 5.19/98.8 and 5.22/100.4 ppm were
missing after SFGG was degraded by acid. Thus, we proposed that these
two signals belonged to Gal residues and Fuc residues. The molar ratio of
Gal to Fuc was 2.86:1 and polysaccharides extracted from brown alga
contained only a-L-Fucp residues, suggesting that the strong peak at
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5.19/98.8 ppm was belonged to Gal residues while the weak peak at
5.22/100.4 ppm was belonged to Fuc residues. Resonances at 16.1 ppm
(Fig. 3C) and 1.11 ppm (Fig. 3B) were typical of CHs carbons and
hydrogen of Fuc residues. The results in HMBC (Fig. S4) showed that the
CHj3 hydrogen of Fuc residues at 1.11 ppm had two strong correlated
peaks at 81.4 and 66.5 ppm and one weak correlated peak at 72.3 ppm,
which were assigned to C4, C5 and C3 of Fuc residues, respectively. The
results in 'H,'H-COSY (Fig. $3) showed that the anomeric hydrogen at
5.22 ppm of Fuc residues had two correlated peaks at 3.85 and 4.22
ppm, suggesting that Fuc residues were sulfated at C2/C3/C4. MS did
not detect the structural features of oligo-fucan, proposing that Fuc
residues might be branched. According to a previous study [33], sulfated
fucose might be branched at C3 of Man residues. And the anomeric
hydrogen at 5.22 ppm of Fuc residues in HMBC had the correlated peak
at 69.3 ppm, which was assigned to C3 of Man residues. So, we propose
that the correlated signals of 5.22/100.4 ppm are a-L-Fucp residues
sulfated at C2/C3/C4, which branched at C3 of Man residues. Combined
with the MS results, the correlated signals of 5.19/98.8 ppm were the
characteristic peaks of 1, 4-linked a-D-Galp residues sulfated at C3 and/
or C6 combined with the MS results. Therefore, we conclude that SFGG
is a sulfated fuco-galacto-glucuronomannan, which has the backbones of
interspersing 1, 3-linked -D-GlcpA residues, 1, 4-linked a-D-Galp resi-
dues, and alternating 1, 2-linked a-D-Manp residues and 1, 4-linked p-D-
GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc resi-
dues and C3/C6 of Gal residues, and branched at C3 of Man residues.
The proposed structure of SFGG is summarized in Fig. 3E.

3.2. SFGG alleviates senescence and downregulates SASP factors in
senescent MING6 cells

The cytotoxicity and anti-senescence activity of SFGG were evalu-
ated in vitro. As shown in Fig. 4A, there were no significant changes in
cell viability after treatment with SFGG at different concentrations
(6.25-200 pg/mL), showing that SFGG had no obvious cytotoxic effects
on MING cells. The results indicated that SFGG may be a weakly toxic
screening drugs for diabetes.

The previous study showed that HyO, induced beta cell senescence,
leading to lose beta cell identity and upregulation of SASP factors [6].
Exposed to 125 pmol/L H05 for 2 h, the fresh medium containing SFGG
at different concentrations was substituted and incubated for 24 h
(Fig. 4B-C). Compared with the untreated control cells, exposure to
H,0; inhibited the viability of MIN6 cells, while this effect was signif-
icantly alleviated by SFGG treatment at concentrations ranging from 25
to 200 pg/mL (p < 0.05) (Fig. 4C); therefore, we investigated the effects
of SFGG at concentrations in this range in the follow-up experiments.

SA f-gal staining showed SFGG markedly alleviated MING6 cell
senescence (Fig. 4D). And senescence-associated proteins, including
p16™KI%2 ho1 and p53, were dramatically downregulated in a dose-
dependent manner after SFGG treatment (Fig. 4E). Senescent cells ex-
press and release a variety of SASP factors which typically exacerbate
inflammation and systemic insulin resistance by promoting the loss of
pancreatic beta cells [10]. The results in Fig. 4F-I confirmed SFGG could
downregulated the SASP factors. The gene expression of Nf-kxb was
downregulated at the concentration of 25-200 pg/mL (p < 0.0001)
(Fig. 4F), Tnf-a and Cxcr4 were downregulated at concentration of 50-
200 pg/mL (p < 0.01) (Fig. 4G-H), and IL-1p was downregulated obvi-
ously at 100-200 pg/mL compared with the HyOy treatment group
(Fig. 4I),. These observations indicated that SFGG could ameliorated
beta cell senescence and the accumulation of SASP factors.

3.3. SFGQG relieved the suppression of senescent MING6 cell proliferation
and DNA damage

The main feature of cellular senescence is growth inhibition and G1
cell cycle arrest. Ki67 was a key cell proliferation marker to confirm the
suppression of MING6 cell proliferation induced by HyO4 treatment, and
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blot of yH2AX (n = 3). (F) Immunofluorescence staining of YH2AX (n = 3).
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and Glut2 (n = 3). *p < 0.05, **p < 0.01, ****p < 0.0001 vs H,0, control.

this effect was eliminated by SFGG administration (Fig. 5A). Further-
more, Flow cytometry showed HyOz-treated MING cells were predomi-
nantly (60.7 %) distributed in the GO/G1 phase, while a more minor
proportion (21.5 %) were distributed in the S phase. Similarly, among
the control cells, 56.83 % were distributed in the GO/G1 and 19.06 % in

10

the S phase (Fig. 5B and C). In contrast, SFGG treatment decreased the
proportion of cells in the G1 phase (p < 0.05), while the distribution of
cells in the S phase was increased, indicating that SFGG alleviated G1
arrest and promoted the re-entry of cells into the S and G2/M phases.
Next, the protein expression of cell cycle regulators, such as CDK4, pRB,
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FoxO1 (p-FoxO1) and FoxOl1 in the cytoplasm (Cyto) and nucleus (Nu) (n = 3). (C) Western blot of PI3K/Akt related proteins (n = 3).

E2F1 and EZH2 was upregulated by SFGG treatment (Fig. 5D).

DNA damage accumulation has been recognized as a causal factor in
the aging process and the development of age-related pathologies.
Following the occurrence of DNA damage, a series of responses are
activated in cells that lead to phosphorylation of histone H2AX (YH2AX),
which promotes efficient assembly of DNA repair complexes. Therefore,
we performed immunofluorescence and western blot analysis of the
expression of yH2AX, a phosphorylated histone marking double-
stranded DNA breaks, to quantify DNA damage in MING6 cells. The re-
sults of immunofluorescence and western blot in Fig. 5SE-F showed that
SFGG treatment could rescued the accumulation of YH2AX after HoOo
exposure. In other words, SFGG could decreased the DNA damage to
alleviate beta cell senescence.

3.4. SFGG modulates insulin synthesis and potentiates GSIS in senescent
MING cells

Pancreatic beta cells secrete insulin via a process that is activated by
the entry of glucose mediated by glucose transporters to maintain
glucose homeostasis. After exposure to HyO,, insulin secretion at 25
mmol/L glucose was decreased compared with untreated control cells
and the function was enhanced by SFGG treatment at 50, 100 and 200
pg/mL (p < 0.05). However, there was no difference at low-glucose
stimulation (Fig. 6A). Furthermore, Glut2, controlling the entry of
glucose into cells, were upregulated by SFGG treatment in a dose-
dependent manner (p < 0.05) (Fig. 6B and H).

Moreover, the insulin synthesis was significantly suppression after
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H»0; treatment (Fig. 6C). Insulin synthesis in response to glucose and
insulin signaling is controlled largely by binding of key transcription
factors (PDX1, MAFA, NKX6.1 and Neurod1) to upstream enhancer el-
ements as well as numerous coregulators [40-42]. The expression of
these transcription factors genes was downregulated in MIN6 cells
following exposure to HyO, and upregulated by SFGG treatment. The
gene and protein expression of Pdx1 were upregulated at the concen-
tration of 100-200 pg/mL (p < 0.01) (Fig. 6D and H). The gene
expression of Mafa was upregulated at concentration of 50-200 pg/mL
in a dose-dependent manner (p < 0.0001) (Fig. 6E), Nkx6.1 was upre-
gulated at concentration of 25-200 pg/mL (25 pg/mL, p < 0.01; 50-200
pg/mL, p < 0.05) (Fig. 6F), and Neurodl was upregulated at concen-
tration of 50-200 pg/mL (50-100 pg/ml, p < 0.01; 200 pg/mL, p < 0.05)
compared with the HyO5 treatment group (Fig. 6G). All together, The
SFGG could modulate insulin synthesis, potentiated insulin secretion
and recovered beta cell identity in senescent MING cells.

3.5. SFGG ameliorates senescence by inhibition of the FoxO1 via PI3K/
AKT pathway

FoxO1 regulation of cell proliferation, apoptosis, differentiation, and
insulin secretion in pancreatic beta cells is mediated by transcription
factors such as MAFA and Neurod1 [42,43]. In this study we found that
FoxO1 phosphorylation was markedly decreased in MING6 cells treated
with HyO2 compared with the levels in the control group and that this
effect was alleviated by SFGG treatment at cytoplasm, and the FoxO1
expression was conversely at nucleus (Fig. 7B). FoxO1l is known to
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Fig. 8. SFGG ameliorate pancreatic beta cell function in diabetic mice. (A)The flow diagram of mice model. (B) Body weight monitoring (n = 5). (C) Blood glucose

monitoring (n = 5). (D-E) OGTT and AUC (n = 5). (F) HE and SA f-gal staining of pancreas (n = 5). ***p < 0.001, *

shuttle between nucleus and cytoplasm to regulate various biological
activities. Dephosphorylation of FoxO1 results in its translocation to the
nucleus from the cytoplasm and inactivation of its transcription factor
capability. The results of immunofluorescence staining and western blot
showed that FoxO1 was translocated to nucleus in MING6 cells exposed to
Hy02 and that the translocation was reversed by SFGG treatment
(Fig. 7A).

Many studies indicated that the PI3K/AKT signaling pathway
involved in regulating the proliferation and function of pancreatic beta
cells, and PI3K/AKT pathway could inhibit FoxO1 translocation [44,45].
Therefore, we analyzed the expression of proteins related to the PI3K/
AKT pathway, which regulates FoxO1 translocation to further charac-
terize the molecular mechanisms underlying the protective effects of
SFGG against senescence. Western blot analysis showed that the phos-
phorylation of PI3K and AKT was decreased in MING6 cells exposed to
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***p < 0.0001 vs model group.

H30, compared with the levels in the control group and this effect was
completely alleviated by SFGG treatment (Fig. 7C). The results demon-
strated that SFGG could ameliorates beta cell senescence by inhibition of
the FoxO1 translocation via PI3K/AKT pathway.

3.6. SFGG decelerated pancreatic beta cell senescence in mice

The C57BL/6 mouse model was attended in the following study after
4 weeks HFD and 30 mg/kg STZ injection one time to further the
translation potential of studies in vivo (Fig. 8A). Interestingly, mice from
SFGG group displayed a significant decrease of body weight (p <
0.0001) and blood glucose (p < 0.0001) compared with the model group
and the hypoglycemic capacity was as good as metformin after 15 weeks
SFGG administration (Fig. 8B-C). Furthermore, the glucose tolerance
was deteriorated at model group, as judged by OGTT. The SFGG can
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improved the glucose tolerance obviously, the AUC was reduced obvi-
ously at SFGG group (p < 0.001) (Fig. 8D-E). HE staining showed the
beta cell mass was reduced at SFGG group, and the insulin level in islets
was improved and glucagon was downregulated at SFGG group (Figs. 8F
and 9A). All the results indicated that the SFGG can improved the islets
function of the mouse model.

We then examined that SA p-gal staining and p21Tins" cells were
decreased significantly in islets of SFGG mice compared to model group,

suggesting that the SFGG could inhibit beta cell senescence (Figs. 8F and
9B). The previous study showed the SFGG can enhance expression of key
beta cell identity genes, including a, Pdx1, Nkx6.1 andNeurod1 in MIN6
cell. We further detected the expression of PDX1 and MAFA in islets, The
results showed that the key beta cell identity markers are significantly
upregulated in SFGG group compared with model group (Fig. 10A-B).
These findings suggest that the SFGG inhibits beta cell senescence and
improved beta cell identity.
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Above all, we know that SFGG can downregulate the p53/p21 and
p16 pathways to enhance cell cycle regulators such as CDK4, pRB, E2F1
and EZH2 and restore the normal cell cycle. SFGG can also inhibit the
SASP factors to reduce inflammatory damage to cell function. Moreover,
SFGG can strengthen beta cell identity and insulin synthesis via the
PI3K/AKT/FOXO1 pathway. All these changes will enhance cellular
activity and insulin secretion in pancreatic beta cells (Fig. 10C). The
results suggested SFGG are a potential drug for beta cell senescence and
alleviation of the progression of T2D.

4. Discussion

Fucoidan has numerous biological activities, such as anti-
inflammatory, anti-senescence, anti-tumor, antioxidant, anti-
hyperlipidemia and so on [5-8]. However, the structures of fucoidan
are very complex. In this study, a sulfated fuco-manno-
glucuronogalactan (SFGG) was prepared. Structural analysis indicated
that it has the backbones of interspersing 1, 3-linked f-D-GlcpA residues,
1, 4-linked o-D-Galp residues, and alternating 1, 2-linked o-D-Manp
residues and 1, 4-linked $-D-GlcpA residues, sulfated at C6 of Man res-
idues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and
branched at C3 of Man residues. Owing to targeting pancreas beta cell
senescence is a potential therapeutic strategy for T2D therapies, we
hypothesised SFGG was a potential drug to ameliorate senescent
pancreatic beta cells.

The senescence phenotype is often characterized by increased
fB-galactosidase activity and DNA damage as well as cell cycle arrest and
enhanced secretion of SASP factors [46]. SFGG treatment can obviously
alleviated DNA damage and SA-B-gal activity, indicating its potential as
an anti-senescence drug. Moreover, cell cycle arrest, which is regulated
by multiple proteins, such as p16™%* and p21. p16 inhibits CDK4/6
directly and is regarded as a unique and specific marker of senescence.
p21 inhibits a series of CDKs and its expression is regulated mainly by
p53. Thus, fucoidan can prevent and treat cell cycle arrest by regulating
the expression of p16™%43 p21 and p53 in MING cells [46]. Further-
more, CDK4 forms a complex with cyclin D to phosphorylate RB, which
then triggers the disassociation of RB and E2F to promote cell cycle
transition to the S phase [47]. In accordance with these findings, we
showed that SFGG treatment rescued the arrest of cell cycle progression
from the GO/G1 phase to S phase, and increased the expression of CDK4,
phosphorylated RB and E2F1. Senescent cells secrete cytokines, che-
mokines and proteinases, which are highly heterogeneous and affect a
series of biological processes. Our study showed the IL-1f, NF-xB, TNF-«
and CXCR4 were upregulated in senescent MING6 cells, and that these
effects were alleviated by SFGG treatment, indicating the therapeutic
activity of SFGG on senescence in MING6 cells.

The accumulation of senescent beta cells leads to the loss of func-
tional beta cell mass and ultimately, to deficient insulin secretion, which
are key contributors to age-related T2D [10]. Aging rats have defects in
the transduction of glucose-induced stimulatory signals that regulate
insulin secretion and synthesis [48]. In the present study, we demon-
strated that SFGG facilitated insulin synthesis and ameliorated the
insufficiency of insulin secretion in senescent MING6 cells and islets of
diabetic mice. Furthermore, insulin synthesis and secretion are regu-
lated mainly by MAFA, NKX6.1, PDX1, Neurod1, which are vital to beta
cell function and identity [41,42]. In this study, SFGG could upregulated
the expression of PDX1, NKX6.1, MAFA, and Neurod1 in senescent cells.
Thus, it was found that SFGG could alleviate senescent beta cell
dysfunction and loss of identity.

A series of studies showed that FoxO1 is a negative regulator of the
transcription factor PDX1 and highly expressed in pancreatic beta cells,
which has a direct effect on pancreatic beta cell neogenesis, prolifera-
tion, insulin secretion and stress resistance [43,49-51]. The PI3K/AKT
signaling pathway is central to the control of autophagy, metabolism,
and oxidative stress [52] and is involved in the regulation of beta cell
mass and function [53,54]. It has been reported that phycocyanin, a
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pigment protein purified from alga, exerted protective effects against
INS-1 pancreatic beta cells dysfunction by modulating the PI3K/AKT
signaling pathway [55,56]. FoxO1 activity is regulated by phosphory-
lation mediated by the PI3K and AKT. Phosphorylation of FoxO1 by AKT
leads to its translocation from the nucleus to the cytoplasm, resulting in
the inhibition of FoxO1-dependent transcription [57,58]. It was shown
that SFGG could affected translocation FoxO1 and activation of PI3K/
AKT pathway involving in the mechanism of SFGG reducing senescent
beta cells.

5. Conclusion

In summary, we demonstrated that SFGG could effectively alleviated
senescence-related phenotypes in vitro and in vivo, suggesting that
SFGG is implicated as a potential agent for the treatment of beta cell
senescence and alleviation the progression of T2D. Protective effects
against senescence of beta cell function via PI3K/AKT/FoxO1 signaling
pathway may play a vital role in alleviating pancreatic beta cell
senescence.
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