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Abstract— Quantification of machined surface roughness is
critical to enabling estimation of part performance such as
tribology and fatigue. As a contactless alternative to the tra-
ditional contact profilometry, photographic methods have been
widely applied due to the advancement of image processing and
ML techniques that allow the analysis of surface characteristics
embedded in optical images and association of these characteris-
tics with surface roughness. The state-of-the-art of photographic
methods make extensive use of 2-D wavelet transform (WT)
for image processing. However, a 2-D wavelet is often limited
in capturing line patterns that are prevalent in the machined
surface due to its radially symmetric nature, leading to sub-
optimal surface characterization. In addition, surface roughness
prediction is primarily carried out as point prediction using ML
methods which do not account for uncertainty in the models
and data. To address these limitations, this study presents a
ridgelet transform (RT)-based method for machined surface
characterization. RT automatically detects the dominant line
patterns, i.e., texture, in surface images and extracts topological
features, such as the constituent spatial frequencies embedded
in the surface profile along the direction that is most relevant
for inducing surface roughness. The extracted texture-aware
features are then used as inputs to random forest (RF) and
kernel density estimation for surface roughness prediction and
uncertainty quantification. Evaluation using experimental data
shows that the developed method predicts surface roughness
with an error of 0.5%, outperforming existing techniques and
demonstrating the potential of RT as a viable technique for
machined surface analysis.

Index Terms— ML, machining, prediction, random forest (RF),
ridgelet, surface roughness, uncertainty analysis, wavelet.
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Manuscript received 30 July 2022: revised 5 September 2022; accepted
21 September 2022. Date of publication 13 October 2022; date of current
version 2 November 2022. This work was supported by the U.S. National
Science Foundation under Grant CMMI-2040288/2040358. The work of
Clayton Cooper was supported by the National Science Foundation Graduate
Research Fellowship under Grant 1937968. The Associate Editor coordinating
the review process was Dr. Siliang Lu. (Clayton Cooper and Jianjing Zhang
contributed equally to this work.) (Corresponding author: Robert X. Gao.)

Clayton Cooper, Jianjing Zhang, and Robert X. Gao are with the Department
of Mechanical and Aerospace Engineering, Case Western Reserve University,
Cleveland, OH 44106 USA (e-mail: cac197@case.edu; jxz170@case.edu;
robert.gao @case.edu).

Liwen Hu and Yuebin Guo are with the Department of Mechanical
and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway,
NJ 08854 USA, and also with the New Jersey Advanced Manufacturing
Institute, Rutgers University—-New Brunswick, New Brunswick, NJ 08854
USA (e-mail: 1h660@scarletmail.rutgers.edu; yuebin.guo@rutgers.edu).

Digital Object Identifier 10.1109/TIM.2022.3214630

, and Robert X. Gao

, Fellow, IEEE

CNN Convolutional neural network.
o(+) Dirac delta function.

DOC Depth of cut.

DT Decision tree.

Ecnersy  Ridgelet-extracted energy.
Eenwopy  Ridgelet-extracted entropy.

hi Surface roughness prediction model.
G Surface image.

GAF Gramian angular field.

h Smoothing parameter of K.
k() Kernel density estimate.

K(9) Gaussian kernel function.

[ Stylus tracing length.

MAPE Mean absolute percentage error.
ML Machine learning.

MLP Multi-layer perceptron.

P() Scale power.

Pm mth decision tree partition.

p() Empirical PDE

PDF Probability density function.
w(-) Wavelet.

R(%) Ridgelet.

Ra Arithmetic average roughness.
Ra* Predicted surface roughness.
RF Random forest.

Rf(-)  Radon transform.

p Directed distance from origin.
RT(-) Ridgelet transform.

5 Wavelet scale parameter.
STFT  Short-time Fourier transform.
SVM Support vector machine.

T Wavelet translation parameter.
7 Angle about origin.

o* Angle of machined surface texture.
v Measured surface profile.
WT(-) Wavelet transform.

X; ith spatial coordinate.

I. INTRODUCTION

UMEROUS high-value components such as blisks and
medical implants [1], [2] are fabricated using milling
operations. Cutting-induced surface roughness at the micro-
scopic scale (100-1000 nm) affects part properties and perfor-
mance such as tribology, corrosion resistance, hydrodynamics,
and electrical conductivity [3], [4], [5]. The behavior and
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service life of machined components can be predicted if
their surface roughness is known, saving human and material
resources throughout their life cycles.

Quantification of surface roughness has traditionally used
contact profilometry, as illustrated in Fig. 1. A stylus is
dragged along the surface to trace the surface profile, v, from
which various roughness metrics can be calculated. However,
contact profilometry has several limitations. It typically covers
a small patch of material (<1 cm), is time consuming to
execute (10-30 s), and requires expensive instruments [6],
[7]. In response to these limitations, contactless phofographic
profilometry has become an attractive alternative due to the
advancement of image processing and ML techniques over
the past decades. These techniques allow for analyzing the
optical surface images, extracting topological features that
are relevant to surface characterization, and associating these
features to surface roughness prediction [8]. Unlike other
contactless methods, such as magnetic flux [9] and fringe
projection [10], photographic methods require no equipment
besides an optical microscope. In addition, photographs are
taken in a fraction of a second, making real-time surface
roughness prediction feasible [11]. Depending on the input
to the predictive models used, techniques for photographic
surface roughness prediction can be categorized into three
groups: raw images, image statistical features, and wavelet
coefficients.

Surface roughness prediction using raw images takes advan-
tage of the image analysis capability provided by CNNs. CNN
uses kernel-based convolution operations to extract local image
features and assemble them from low-level to high-level,
which are then associated with surface roughness prediction.
Rifai et al. [12] used a CNN to process surface images directly
and predicted surface roughness with 9% error. Wang et al.
[13] improved upon this approach using a heterogenous CNN
that considered tool wear as an additional model input when
predicting roughness. The resulting surface roughness predic-
tions had 4% error.

In contrast to raw image-based approaches, image statistical
features have been explored to characterize a surface image
or the discontinuity in the image using statistical features and
relate them to the measured surface roughness. For example,
Simunovic et al. [14] extracted the mean pixel value, standard
deviation, and entropy from machined surface images, and
then processed them by an adaptive neuro-fuzzy inference
system to predict surface roughness, achieving a 7% error.
In the work by Ghodrati et al. [15], surface discontinuities are
first located using edge detection algorithms. Subsequently, the
number of detected edges is associated with surface roughness
using a linear model. It was found that the number of edges
is correlated to surface roughness with a Pearson coefficient
of 0.98. As another example, Prasad et al. [16] quantified
the discontinuity of surface images using four statistics found
from each image’s gray-level co-occurrence matrix [17]. These
statistics were used as inputs to a random forest (RF) model
[18] which classified different levels of surface roughness with
6% error.

Recent studies on surface roughness prediction have increas-
ingly investigated 2-D wavelet transform (WT) and achieved
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state-of-the-art results. The 2-D WT describes the patterns
of the constituent spatial frequencies in an image in terms
of amplitude and location of their occurrences. Each spatial
frequency describes the rate (cycles/pixel) at which an image
oscillates between dark and light [19]. In photographic surface
roughness quantification, oscillation is caused by the topolog-
ical peaks and troughs as shown in of Fig. 1. As a result,
wavelet coefficients that have the pattern of spatial frequencies
encoded in them naturally characterize the surface image and
can serve as the input to a surface roughness predictive model.
For example, Morala-Argiiello et al. [20] used the mean of
2-D wavelet coefficients as input to a MLP to predict the
surface roughness of machined surfaces and achieved a 3%
error. Similarly, Kamguem et al. [21] fused raw image statistics
with 2-D wavelet statistics, e.g., wavelet response energy,
to establish a total of six scalar surface roughness predictors.
An MLP then used these features to predict surface roughness
with 3% error.

Despite the progress, CNN and 2-D wavelet are not inher-
ently suited for analyzing the direction of the lines or the
surface profile in its perpendicular direction that is the most
relevant for determining surface roughness. For example, the
kernel in CNN only traverses in horizontal and vertical direc-
tions whereas kernel-based feature extraction is carried out
only in squared image regions [22]. Also, 2-D wavelets are
radially symmetric, making them suited for analyzing points
rather than line patterns [19], [23]. As a result, surface char-
acterization and surface roughness prediction based on CNN
features or 2-D wavelet coefficients can lead to suboptimal
outcomes.

To address these limitations, this study presents a texture-
aware surface roughness prediction method based on ridgelet
transform (RT) [24], which has previously been investigated
for image denoising [25], [26] and surface scratch extraction
[27], [28]. Instead of having a radially symmetric shape,
a ridgelet is a parameterized 2-D function that is constant
along parallel lines while exhibiting a 1-D wavelet in the
transverse direction. By leveraging the close relationship
between the ridgelet and radon transform, the developed
method can automatically detect the dominant line directions
in the surface image and align the ridgelet in this direction.
Then, by exploiting the scaling and translation parameters
of the 1-D wavelet, the ridgelet can be adapted to different
spatial frequencies embedded in the surface profile induced
by peaks and valleys of the line patterns and extract their
respective contribution to the formation of the surface topology
as ridgelet coefficients by means of RT. To achieve optimal
coefficient extraction, the measure of energy-to-entropy ratio
is investigated for 1-D base wavelet selection to achieve the
most compact representation of the surface spatial frequency
bands. Subsequently, the powers of these bands are computed
to serve as the input for ML-based surface roughness predic-
tion and uncertainty quantification. A flowchart depicting the
constituent components and their interactions of the developed
method is shown in Fig. 2. The contributions of the presented
study are summarized as follows:

1) Developed a texture-aware surface analysis method

based on ridgelet that explicitly accounts for the line
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Fig. 2. Surface roughness prediction based on RT and ML.

patterns in machined surface images by automatically

detecting the dominant line directions.

2) Extended the optimal 1-D base wavelet selection method
to the context of ridgelet and designed new surface
roughness predictors using the power of each RT spatial
frequency based on the association between surface
roughness and the amplitude of RT coefficients.

3) Achieved improved surface roughness prediction accu-
racy as shown in the experimental evaluation through RF
and kernel density estimation that considers uncertainty
in both predictive model and data.

The rest of the article is organized as follows: Section II
introduces the theoretical background of the RT, surface rough-
ness prediction methodology based on RF, and kernel den-
sity estimation. Section III describes experiments performed
to evaluate the developed method. Section IV discusses the
results of the developed method on experimental data and
compares it with the existing approaches to surface roughness
prediction. Conclusions from this study and future research
opportunities are presented in Section V.

II. THEORETICAL BACKGROUND AND METHODOLOGY

During milling, chips form at the end of each cutting tooth
while the tooth is engaged with the workpiece. Each chip
gouges the workpiece before it breaks off, inducing an oblique
surface texture composed of parallel lines of ridges and valleys
(Fig. 1) [29]. The most commonly used surface roughness

metric is the arithmetic average deviation from the centerline
of the profile, Ra, defined in (1)

1 h
= lo(l) — 5|dl
,]_Iofh 0

where Iy and [, are the starting and stopping distances of the
stylus used to trace the surface, and o is the surface profile’s
mean value [29]. Because surface roughness is anisotropic,
Ra is commonly found as Rdageq and Rasep in the feed and
stepover directions, respectively, as shown in the coordinate
system in Fig. 1. The objective of the presented study is to
map the optical surface image to Ra via RT and ML that
take into consideration the physical characteristics in milling
surface texture and quantifies the uncertainty associated with
the surface roughness prediction.

Ra

ey

A. Ridgelet Transform
A ridgelet is a bivariate function over {xi, x;} € R? made
by extruding a 1-D wavelet along a line. For a line Ly , in R?

Ly, :x1€0860 + xp8inf = p )
and 1-D wavelet w; ,
1 p—r

- 3
v, (p) ﬁW( 5 ) (3)

the corresponding ridgelet Ry . is

1 xpcosf + xpsinf — 1

0,57 (x) ﬁ ';f/( 5 ) @
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Fig. 3. Ridgelet and its properties for analyzing surface patterns.

In the above equations, @ is the angle between the line’s normal
vector (in the direction satisfying 0 < # < x) and xy, p is the
directed distance between the line and origin, w(-) is a 1-D
base wavelet, s > 0 is a scaling parameter that determines the
wavelet’s spatial frequency, r € R is a translation parameter
that shifts the wavelet [19], and x = {x, x2}.

The ridgelet R is constant along the directions parallel to
Ly,, and is a 1-D wavelet y; . (p) in the transverse direction.
By adjusting the orientation parameter &, scaling parameter s,
and translation parameter z, ridgelet R becomes adaptive to
the possible variation of the line patterns on machined surface
as shown in Fig. 3.

Consequently, characterizing different surfaces can be con-
sidered as determining the unique pattern with which each
surface image can be decomposed into a combination of coeffi-
cients of 1-D wavelets with varying scales (spatial frequencies)
and locations, in the direction perpendicular to the parallel
lines. These coefficients are extracted through the convolution
of the ridgelet and surface image G(x), known as the RT of
G(x), defined in (5) [23]

I - fxicos8@ +xysinf — 1
RTG (O = — G(x)d
G( JSJT) /./]R? ‘\/Etl{/( s ) (x) X
5)

where y is the conjugate of .
Using the radon transform of G [30]

Rfc@, p) = /fmz G(x)d(p —x,cos0 —xpsinf)dx  (6)

where 4 is the dirac delta function, the RT of G in (5) can be
reformulated as a 1-D WT in the transverse direction p (i.e.,
perpendicular to the line direction)

WTRf(.S‘,T)
- /R Vex (RGO, p)p

= A%‘r(p)li/ﬁv G(x)d(p —x;cos0 — x» siné’)dx:ldp
= /f [/ ws.r (p)o(p — x,cosf — x; sin&)dp]G(x)dx
r? L/R
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:/ L&(xlcosﬂ—l—x;siné‘—r)G(I)dx
Rzﬁ §

= RTG(QJSJT)' (7)

The close connection between the Radon transform and the RT
suggests that determining the line angle in the image can be
achieved as an integral part of computing the RT;. Only when
the line integrals as represented by (6) are computed in the
direction of the physical “ridges,” 8¢, would the pixel values
corresponding to the ridges and valleys accumulate, rather
than canceling out each other. Consequently, the variance of
Rfc(p; 0) is maximized

b = arggnaX(Var[Rfc (p: D). ®)
Once 6} is determined, surface characterization also
requires that the ridgelet in the transverse direction matches
the local spatial frequencies embedded in the surface profile.
Therefore, the 1-D base wavelet selection should be optimized
to capture the location and spatial frequencies information.

B. Selection of Base Wavelet

In this study, the measure of energy-fo-enfropy ratio is
investigated to select the best 1-D base wavelet to define the
ridgelet shape [31].

The information content of a signal can be considered as
the total energy contained in the signal, expressed using the
RT coefficients as

00 oo
Eenergy :/ f |RTG(S, T, Bé)lzdsdr.
—oa JO

Each RT coefficient that corresponds to a match between the
base wavelet y and G in terms of angle, spatial frequency,
and location will have a relatively high magnitude, and thus
indicate effective information extraction.

In addition to extracting a high amount of information, the
selected wavelet should also allow the coefficients to drop off
quickly when a mismatch occurs, such that the surface profile
can be compactly represented. Such “efficiency” in surface
representation can be quantified using the Shannon entropy
[32] (10), as shown at the bottom of the next page, where p(-)
is the empirical PDF of RT (s, 7; 6%). The lower the entropy,
the more compact the representation. As a result, the base
wavelet corresponding to the highest energy-to-entropy ratio
would yield the optimal surface profile characterization by
considering both the information extraction and concentration
in its representation.

In addition to the energy-to-entropy ratio, informa-
tion theoretic measures such as mutual information and
Kullback-Leibler (KL) divergence were also considered as
candidate criterion for wavelet selection. The mutual informa-
tion criterion [33] was proposed as part of an image denoising
scheme using wavelets. The motivation was to remove white
noise from a signal by picking a wavelet that maximizes
the mutual information between the coefficients of the WT
of the contaminated signal and the uncontaminated ground-
truth signal. By assuming that the signal, noise, and wavelet
coefficients were all normally distributed, mutual information
was calculated in closed form and used as a wavelet selection

®
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heuristic. The resulting scalogram contained a maximum level
of information about the ground-truth signal, which could then
be restored through inverse WT. In another study [34], KL
divergence was proposed as a selection criterion wherein an
ideal wavelet was sought for anomaly detection and classi-
fication in ultrasound images. To achieve minimum error in
classification, a wavelet was chosen so that the KL divergence
of wavelet coefficients between anomalous and normal classes
was maximized. This maximized distance between the classes
in wavelet space enabled accurate anomaly detection and
classification.

Despite the successful applications, both information the-
oretic measures have limitations when characterizing surface
profile in milling. On the one hand, mutual information only
accounts for the energy aspect embedded in the energy-to-
entropy ratio measure. Specifically, by maximizing the mutual
information between the signal (i.e., surface profile) and its
wavelet coefficients, the selected base wavelet can only ensure
that maximum information embedded in the signal is extracted
using its wavelet representation. However, the regularity aspect
of the surface profile induced by the milling process (such as
alternative peaks and valleys across the whole surface image),
as represented by the enfropy, is not taken into consideration.
Such regularity is reflected in a way that the surface profile
can be decomposed into the combination of a small number
of scaled and translated base wavelets. As a result, the energy
concentration in the wavelet scalogram is expected to be sparse
and drop off quickly when a mismatch between the base
wavelet and the surface profile occurs, which is quantified as
minimized enfropy in the scalogram. On the other hand, while
the measure of KL divergence is well suited for generating dis-
criminative data features for the application of classification,
it is not directly translatable to the application of regression
(e.g., surface roughness prediction in the presented study),
in which the output is a continuous variable as opposed to
discrete classes to be separated.

C. Feature Extraction

RT with the appropriate base wavelet and line angle yields
scalogram RTc(s, 7;6¢), which consists of bands of vary-
ing spatial frequencies in the surface profile. The interactive
effect among spatial frequencies determines surface roughness
measured by means of a stylus. For example, high surface
frequencies may overwhelm lower frequencies and cause small
surface wavelengths, thus preventing the contact stylus from
fully sinking into each valley as it moves along the surface
to be profiled. Conversely, if high-frequency content is min-
imized, the traced profile will be more faithful to the true
surface. Since photographic metrology is intended to replicate
contact metrology, the related roughness prediction methods
should consider these behaviors.

In this study, the spatial frequencies of the machined
surface profile are represented using scale powers as

2520110

defined in (11)
1

71— 1o

Ps(s) =

/n |RT (s, 7; 05)|d= (11)

0

where 7y and 7; are the minimum and maximum r values,
respectively. Each scale power represents the mean amplitude
of a specific spatial frequency on the surface.

D. RF for Surface Roughness Prediction

Although the scale powers encode the constituent spatial
frequencies that form the surface topology, a quantitative rela-
tionship between these features and the surface roughness is
yet to be determined. For this purpose, a data-driven predictive
model that relates the scale powers with surface roughness is
established in this study, which has the form of f

f(G) = f(Ps(s1), P6(52), - .., Po(sn), 08) = Rag (12)

it is noted that 8% is included as an input such that the model
is aware of the texture direction, and the anisotropy of the
measurement can be explicitly considered when predicting the
feed and stepover direction roughness.

In this study, a RF-based predictive model is developed,
which is a supervised ensemble of binary DTs. In RF, each
tree is formulated using a subset of the training data [18].
Specifically, each tree is trained by recursively partitioning the
input feature space until each partitioned region (known as a
“leaf”) contains as few unique roughness values as possible,
ideally only 1. Each partition is associated with a “decision
rule,” thus the name “DT.” Once trained, the inference in
each tree is performed for a given input by traversing the tree
and heeding each decision rule until a leaf is reached. A RF
prediction for a given input is then taken as the mean response
of the trained tree ensemble to the same input.

Compared to other methods, a RF-based surface roughness
prediction approach has two distinct advantages:

1) It uses a set of decision rules to map the inputs to
surface roughness prediction, instead of relying on the
computation between the input and model parameters
such as weights in neural networks. As a result, it does
not require data normalization and each input can differ
in terms of the order of magnitude. This benefits the
usage of scale power as model input as it can range
over 5 orders of magnitude, for which the normalization
process can induce numerical instability in computation
and limit the model capability to generalize to unseen
data.

2) It simultaneously considers multiple possible models
(as DTs) rather than betting on a single model. The
advantage of such approach is the ability to quantify
the uncertainty associated with the predictive model and
obtain and fuse the information regarding the underlying
association between scale powers and surface roughness

Eenvopy = — /_ ) fo p(RTs (s, : 05)) loga[ p(RTe (5, 7 0))dsd

(10)
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from multiple models to improve not only the prediction
accuracy, but also the robustness to variation in training
data that individual models can suffer from.

Mathematically, given training input samples indexed by
i, a; = (Pg(s),0%); € R¥! and labeled training outputs
pi = Rag,; € RT, the DT algorithm recursively partitions the
feature space of a. For the m™ partition p,,, each candidate
split of feature j at threshold f,, is evaluated, which partitions
data into two disjoint subsets

P = (@, B) |aljl <ta}, PP ={(a, B)laljl> tn).
(13)

The effectiveness of the partition is then evaluated using a loss
function computed from p{" and p!?). In this study, the mean
absolute percentage error, or MAPE, is evaluated [35]. MAPE
describes the mean prediction error relative to the scale of the
actual surface roughness values and is expressed as

1 N
MAPE:EZ

i=1

Rag; — ﬁEG,;‘ 14)

Ra G.i

where K’Eg‘g denotes the surface roughness predicted by the
DT algorithm for o; € p, which is equal to the mean of
pi € p. The loss function for the mth partition is expressed
as sum of MAPEs computed using p{ and p{?, weighted by
the fraction of elements in each partition

Py
Pl + 1ol
|Pi|
Pl + i |
The optimal decision rule is obtained as the one with parame-
ters j, f, that lead to the minimization of (15)

L(j, tm) = MAPE(p;,’)

MAPE(p). (15)

J* by, = argmin(L(j, tn))- (16)
Jotm

The recursive splitting process continues until each parti-

tion contains only e; that have the same corresponding S

value [36]. Once trained, the results from individual trees in a

forest allow for the evaluation of model uncertainty in surface

roughness prediction, and the predicted roughness from the

RF takes the mean of prediction results from all the DTs.

E. Data Uncertainty of Predicted Surface Roughness

Based on the texture-aware RT description, the algorithm
requires that each surface image to be analyzed has only one
dominant line direction such that the Radon transform can
pinpoint the direction that is most relevant for inducing surface
roughness. To facilitate such conformity for optimal sur-
face roughness analysis, optical images of the machined
surface are split into sub-image patches. The actual surface
roughness reading of the surface is then the result of fusing
the contribution (e.g., prediction result) from each patch.
Depending on the locations in the original surface, the single-
line angle patches over which the stylus directly passes would
be better correlated with the surface roughness readings than
those that are off the stylus trajectory or have multiple line

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

Algorithm 1 Surface Image Processing and Roughness Pre-
diction
Input: surface image set G; candidate wavelet set, ¥
Output: surface roughness predictions, Ra*
1 for each G in G:
2 Find 8¢, using (8)
3 Calculate energy-to-entropy ratio of
candidate wavelets on texture-aligned
surface profile using (9) and (10)
end for
Determine best wavelet
(highest average energy-to-entropy ratio)

e

6 for each G in G:

7 Calculate scale powers using (11)
8 Make (e, £) tuple for G

9 end for

10 Train random forest of N decision trees using (16)
11 Estimate PDF of each machined surface using (17)
12 return Ra* for each surface using G and (19)

angles. Consequently, prediction results from each image patch
can be considered as representing a probability distribution
that is inherent to the surface roughness data. The surface
roughness that corresponds to the highest probability indicates
the most probable roughness value of the whole machined
surface, obtained through fusion of all patches.

To estimate the PDF of the predicted surface roughness
distribution, the method of kernel density estimation is investi-
gated [37]. The basic idea is to allocate higher probability den-
sity to the locations where surface roughness predictions are
more clustered (which are expected from patches with a single
dominant line angle) than the locations where predictions are
less clustered (which are expected from patches with varying
mixture of line angles). For a total of n surface roughness
predictions from (12): E&G,j, i = 1,2,...,n, the density
estimate, k, is expressed as

1 " Ra — ﬁlg;‘
k(Ra; h) = — K| ——— 17
(Ra; h) = — Z} ( - (17)
where K is a Gaussian kernel function such that
Ra?
k(Ra; h) xexp| ——— 18
( ) p( th) (18)

and h is a smoothing parameter. The higher the &, the smoother
the PDF. Once the PDF is determined using (17), the final
surface roughness prediction can be obtained as

Ra* = argmax(k(Ra; h)). (19)
Ra

A pseudocode summary of the proposed signal processing and

ML methods is shown in Algorithm 1.

III. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the developed method,
hardened AISI H13 tool steel (50 + 1 HRC) was machined
under dry conditions on a CNC mill using a two-flute, 20 mm
diameter end mill equipped with (Ti, AI)N/TiN coated tungsten
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TABLE I
MACHINING PARAMETERS AND SURFACE ROUGHNESS

G Speed Feed/tooth Radial DOC Rag., Rajeeq
(mm/min) (mm/tooth) (mm) (nm)  (nm)
1 200 0.1 0.3 241 87
2 200 0.1 0.5 520 372
3 200 0.1 0.5 384 105
4 200 0.05 0.5 360 83
5 200 0.1 0.4 646 145
6 100 0.1 0.5 440 216
7 200 0.1 0.5 480 118
8 300 0.1 0.5 650 75
9 200 0.05 0.5 372 116
10 200 0.1 0.4 329 116
11 100 0.1 0.5 399 133
12 300 0.1 0.5 396 111
13 200 0.1 0.3 426 137
14 200 0.05 0.5 374 78
15 200 0.2 0.5 488 134
16 100 0.1 0.5 356 191
17 200 0.1 0.3 265 158
18 200 0.1 0.4 399 151
19 200 0.2 0.3 584 241
20 300 0.1 0.5 657 79
21 200 0.2 0.5 1059 380

carbide inserts. Each workpiece measured 100 x 20 x 12 mm
and each linear cut removed a 1 mm thick layer from the
100 x 20 mm face. A total of 21 samples were machined
at varying speeds, feeds per tooth, and radial DOC. The
experimental design with the machining parameters and the
resulting Ra values found through contact profilometry are
shown in Table I.

For photographic profilometry, a 1600 x 1000 px image
(G) was taken of each machined surface using an optical
microscope, with 1 image pixel corresponding to a surface
region of size 2 x 2 um. Each image was then broken into
160 non-overlapping image patches g of size 100 x 100 px.
In total, 3360 image patches are generated, which are then split
into a training and a testing dataset with a split ratio of 67-33
(i.e., 2240 image patches for the training dataset, 1120 image
patches for the testing dataset).

For image processing using RT, the dominant line angles
are first determined for each image patch using (8), and the
increment of angle @ in performing the radon transform is
1°. To evaluate the performance of the 1-D base wavelet
in terms of information extraction, the energy-to-entropy
ratio is evaluated on seven wavelet families with training
data: complex Gaussian, complex Morlet, frequency B-spline,
Gaussian, Morlet, Ricker, and Shannon, representing some of
the most investigated 1-D base wavelets in signal processing.
In Table II, representative wavelets and their respective expres-
sions and energy-to-entropy ratios are tabulated. As a result,
the Ricker wavelet is chosen as it had the highest ratio of all
the wavelets investigated. The scale parameter of 1-D wavelet
follows 273, 2-2875 23,
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To correlate the scale powers from the RT with surface
roughness, two RF models were trained to predict Rage, and
Rayeqq, respectively. Each model had 100 DTs and each tree
was trained on a set of 2240 image patches from the training
dataset, sampled with replacement. Each tree was fit to its
training data until it exhibited 0% MAPE. The smoothing
parameter i in the kernel density estimation to extract the
PDF of the predicted surface roughness distribution is set to
15 through cross-validation.

IV. RESULTS AND DISCUSSION

The performance of the developed surface roughness predic-
tion method is illustrated and compared with several existing
techniques.

A. Surface Roughness Predictive Accuracy

The trained RF models were used to predict the surface
roughness in the feed and stepover directions (Fig. 1) for
the testing dataset. Specifically, the image patches from a
machined surface were fed into the model to obtain the
individual predictions Rag;. Subsequently, these individual
predictions are fused using kernel density estimation to obtain
the PDF of surface roughness prediction. The final surface
roughness prediction is determined using (19).

The scatterplots of the surface roughness prediction in
the feed and stepover directions are shown in Fig. 4. The
horizontal axes represent the predicted surface roughness
results, whereas the vertical axes denote the measured surface
roughness values. The 45° line indicates the perfect predic-
tion. It is noted that predicted results as reflected in the
dots/triangles are closely aligned with the ideal line, indicating
good performance. To obtain quantitative evaluation, both the
MAPE and the coefficient of determination R? are computed.
The R? specifically reflects on the proportion of the variance
in the data that is explained by the predictors in the RF
model, namely, the scale powers and the dominant line angle.
The developed method achieved MAPE of 0.5% and R? of
0.99 in surface roughness prediction in both feed and stepover
directions, demonstrating good performance.

The inset of Fig. 4 shows the mean prediction errors of RF
over all the testing samples as compared to the mean prediction
errors that would have been achieved using individual DTs in
the forest. The vertical axis is expressed in log-scale. It is seen
that by fusing the prediction results from all the 100 trees,
the predictive errors are significantly reduced. Quantitatively,
the mean prediction error is reduced from 38 to 0.5 nm for
Rageq and from 59 to 0.7 nm for Ragep. This indicates that
through data fusion, ensemble-based methods such as RF, can
be effective in reducing the variability in surface texture and
the uncertainty regarding the underlying association between
the texture and roughness.

Fig. 5 shows comparison of surface roughness predic-
tion performance quantified by MAPE among the devel-
oped method (RT + RF), four alternative surface roughness
prediction models (SVM, MLP, CNN, and DT), and three
alternative signal processing methods (STFT, GAF, and WT)
for the surface profile. The SVM, MLP, DT, and RF models
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RT + RF exhibits the lowest MAPE as well as the smallest
uncertainty amongst the techniques investigated. Interestingly,
by replacing the ensemble method RF with non-ensemble
SVM, MLP, or DT, the prediction error in MAPE is shown
to have increased by 4-16 times (from 0.5% to over 2.0%
for DT and from 0.5% to over 8.0% for SVM). This shows
that by relying on a single predictive model rather than fusing
results from multiple possible models as in RF, the expected
prediction error can increase significantly, which confirms the
trend as shown in the inset of Fig. 4.

B. Prediction Uncertainty as PDF of Surface Roughness

To evaluate the surface roughness prediction performance
and quantify prediction uncertainty, the PDFs of the prediction
from individual patches in the feed direction for workpiece #2
and in the stepover direction for workpiece #21 are plotted in
Fig. 6(a) and (b), respectively. The PDFs are obtained through
kernel density estimation and the raw prediction results from
individual patches are shown as dots below the PDF curve.
It is noted that both PDFs contain a dominant peak along
with several smaller peaks on the side as prediction outliers.

To further investigate the prediction under these peaks,
four sample image patches corresponding to the individual

STFT +RF

Fig. 5. Performance comparison of surface roughness prediction when RT is
chosen as the signal processing model (top) and RF is chosen as the prediction
model (bottom). RT + RF consistently produces the lowest error as compared
to the other techniques, indicating the advantages of the proposed method in
surface roughness prediction. (RT: ridgelet transform, SVM: support vector
machine, MLP: multi-layer perceptron, CNN: convolutional neural network,
DT: decision tree, RT: ridgelet transform, RF: RF, STFT: short-time Fourier
transform, GAF: Gramian angular field).

prediction results are shown to the left of the PDFs in Fig. 6.
The locations of these patches in the original surface images
are illustrated on the right. It is seen that the results under
the main peak of the PDF all come from the image patches
where there is a single dominant line direction (e.g., @ and @),
while the results under the smaller peaks come from the image
patches with the presence of multiple texture angles (e.g., @
and @).

These angles are induced by scalloping, a process charac-
teristic of milling wherein the surface texture differs between
adjacent parallel cuts due to the cutter stepover, which is equiv-
alent to the radial depth of cut. The texture between stepover
regions, annotated in Fig. 6 is induced by the endmill’s
diametric edges whereas the texture within the stepover region
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Fig. 6. PDF of surface roughness prediction from kernel density estimation
and corresponding locations of image patches. (a) Surface roughness predic-
tion in feed direction. (b) Surface roughness prediction in stepover direction.

is induced by the endmill’s bottom edges. Chip formation
dynamics and rake angles differ between these cutting edges,
causing the intersecting surface textures to differ and become
nonparallel.

It is seen from Fig. 6 that the developed methods based on
RT and RF can provide consistent prediction for the image
patches that are within the uniform region, as reflected by the
narrow peaks in the PDFs. In addition, it demonstrated the
effectiveness of kernel density estimation in effectively fusing
these “inline” predictions while being robust to the outlier pre-
dictions, induced by image patches containing mixture of line
angles, in producing the final surface roughness prediction.

V. CONCLUSION

To advance the state of research in photographic profilome-
try for contactless characterization and roughness prediction of
machined surfaces, a texture-aware method based on RT and
ML has been developed. The rotation, translation, and scaling
properties of ridgelets allow for tailored surface characteriza-
tion in terms of matching the dominant surface line directions
as well as the varying spatial frequencies of the surface profile.
The measure of energy-to-entropy ratio is then investigated
to optimize surface feature extraction as ridgelet coefficients.
Taking the powers of the extracted features at different spatial
frequency bands as input, the PDF of the surface roughness is
obtained using RF and kernel density estimation, enabling final
roughness prediction and uncertainty quantification. Experi-
mental evaluation on machined H13 tool steel showed that
the developed method achieves a surface roughness prediction
mean absolute percentage error of 0.5% and a prediction R?
value of 0.99, in both the feed and stepover directions. These
results outperform the existing methods based on 2-D WT and
CNNs and indicate ridgelet as an effective image processing

2520110

approach for machined surface analysis. Future research will
extend the ridgelet-based method for surface characterization
of other manufacturing processes. Also, research will be
directed toward understanding uncertainty involved in surface
roughness prediction to further improve the accuracy and
robustness of the developed predictive method.
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