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Recent studies have shown the surprising effectiveness of the small mass-ratio approximation (SMR) in

modeling the relativistic two-body problem even at comparable masses. Up to now this effectiveness has

been demonstrated only during inspiral, before the binary transitions into plunge and merger. Here we

examine the binding energy of nonspinning binary black hole simulations with mass ratios from 20∶1 to

equal mass. We show for the first time that the binaries undergo a transition to plunge as predicted by

analytic theory, and estimate the size of the transition region, which is ∼10 gravitational wave cycles for

equal mass binaries. By including transition, the SMR expansion of the binding energy is accurate until the

last cycle of gravitational wave emission. This is true even for comparable mass binaries such as those

observed by current gravitational wave detectors, where the transition often makes up much of the observed

signal. Our work provides further evidence that the SMR approximation can be directly applied to current

gravitational wave observations.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) [1–14]

has provided a new view of the Universe, revealing pop-

ulations of binaries composed of black holes and neutron

stars [15–17] and enabling tests of relativity in the dynamical

and strong-field regime, e.g. [18–24]. Accurate modeling of

the relativistic two-body problem is crucial for carrying out

sensitive GW searches and measuring the parameters of

detected binaries. For example, effective one-body models

(e.g. [25–33]) and phenomenological models (e.g., [34–41])

predict the GWs emitted during the binary inspiral, merger,

and postmerger phases.
The construction of such models requires input from a

number of methods, such as post-Newtonian (PN), gravi-

tational self-force (GSF) and numerical relativity (NR)

techniques, each with different limitations. For example,

the PN approximation is valid at large separations and slow

velocities. It worsens late in the inspiral, and can be a poor

approximation for systems with small mass ratios (SMRs)

q−1, where q ¼ m1=m2 ≥ 1, which spend many cycles at

close separations. In contrast, for SMR binaries, GSF

methods based on an expansion of the metric about a

black hole background are more accurate. GSF is well

suited to describe extreme-mass-ratio inspirals (EMRIs)

with q−1 ∼ 10−4–10−6, which are promising targets for

the LISA mission [42]. It has recently been pushed to

second order (2GSF) for nonspinning binaries [43–46].

Meanwhile, numerical relativity (NR) provides two-body

solutions exact up to numerical errors, and can be used to

assess the validity of the PN and SMR approximations in

the regime of comparable masses and small separations

accessible to NR [47]. NR is also used to calibrate full

inspiral-merger-postmerger models, or to build surrogates

which can interpolate waveform predictions between sim-

ulations, e.g. [48–54].

Surprisingly, comparisons between NR and SMR approx-

imations of binary black hole systems have shown that the

latter is effective at describing even comparable mass ratio

systems, e.g. [45,46,55–60], These include the binding

energy, GW fluxes and GW phasing, and is achieved by

reexpanding the SMR series in the symmetric mass ratio ν≡

m1m2=ðm1 þm2Þ
2 rather than q−1 [46,57,58]. This prom-

ising result indicates that GSF methods could model GWs

from binaries detectable by current [61–63] and future

ground-based detectors [64–66], and may be key for model-

ing intermediate-mass-ratio inspirals (IMRIs), q−1∼

10−2–10−4, a regime which remains challenging for NR

[67–70]. It is especially exciting when considering recent

detections of systems with q−1 ∼ 10−1, such as GW190814

[3,4,71] and GW191219 [5]. These lie in a challenging

regime where current models are not well calibrated to NR

simulations.

In this study we tackle an important limitation of

previous analyses. In all cases, the agreement between

NR and SMR predictions breaks down as the binary

approaches the innermost stable circular orbit (ISCO).
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This is expected: first because higher-order SMR coeffi-
cients may grow at high frequencies, but also because
previous SMR predictions expand around adiabatic inspi-
ral, and must eventually fail as the binary transitions into
plunge and merger. Distinguishing between these two
effects is crucial for modeling the binary near merger
and is particularly relevant for IMRIs and comparable-mass
systems, such as those currently observed by ground-based
GW detectors, where the transition region is large.
The transition can be understood as a singular boundary

layer in between the slow inspiral through a sequence of
circular orbits and a direct plunge with timescale T ∼M,M
the total mass. In the SMR approximation, this transition

occurs over a region of characteristic size ∼Mν2=5 around
the location of the ISCO r� ¼ 6M, and with a dynamical

timescale T ∼Mν−1=5. Following the initial description of
the transition dynamics [26,72], a number of studies have
refined and generalized the analytic approximations to the
dynamics [73–79]. Recently, GSF corrections have been
incorporated into a generic expansion of transition equa-
tions and their solutions [80,81], which we use here.

Here we investigate the binding energy E of nonspinning,

quasicircular binary black holes at comparable masses and

show that E follows well-behaved SMR inspiral and tran-

sition expansions even through the ISCO.During the inspiral

we recover the geodesic and postgeodesic coefficients as

functions of in invariant radius rΩ ≡M1=3
Ω

−2=3. During the

transition, we find that E follows the expected fractional

power expansion in ν [81], with the coefficient functions of

the rescaled transition radius RΩ ≡ ν−2=5ðrΩ − r�Þ. This

expansion breaks down near merger and towards inspiral

as expected, and we estimate the region of validity to be

−2≲ RΩ=M ≲ 7, corresponding to rΩ ∼ r� − 2Mν2=5. The

leadingOðν4=5Þ coefficient from the transition fits is in good

agreement with predictions. We extract higher-order coef-

ficients up to Oðν9=5Þ, where unknown 2GSF contributions

first appear, and we find them to be negligible within the

uncertainty of our analysis. Thus, our results indicate that an

SMR expansion can provide accurate predictions for gravi-

tational waves for comparable mass systems up to the final

GW cycle before merger, consistent with recent success of

EMRI surrogate models [52,53] and 2GSF-accurate inspiral

waveforms [46]. Our analysis also shows that the transition

constitutes a large portion of many signals observed by

current ground-based detectors, indicating that an SMR

approximation scheme augmented by transition dynamics

may have direct application to GW astronomy in the near

future.

From here we set G ¼ c ¼ M ¼ 1 and use 0 for deriv-

atives with respect to rΩ or RΩ, depending on the context.

Quantities evaluated at the ISCO are indicated by �.

II. NR SIMULATIONS

We select a set of high-resolution, nonspinning and

quasicircular binary black hole simulations produced with

the spectral Einstein code (SpEC) [82,83] with mass ratios
ranging from q ¼ 1 to q ¼ 20. These simulations have low

initial eccentricity e≲ 10−4, a relatively large number of
orbital cycles Ncycles ∼ 20–45, and in most cases two

resolution levels, which allows us to assess numerical
uncertainties.

Fromeach simulationwe take theGWstrainh extrapolated
to infinity [82,84] and corrected for the binary center of mass

motion [85,86]. From the strain we define the invariant radius

rΩ using an orbital frequency Ω inferred from the l ¼ 2,

m ¼ 2 mode of the gravitational waves, h22. Although the

quantity of interest for our analysis isE, only the energy flux _E
is directly accessible from the strain. Thus, we analyze the

gradients E0ðrΩÞ ¼ _E=_rΩ during inspiral and E0ðRΩÞ ¼
_E= _RΩ during the transition as an indirect measure of E.
We find that h22 exhibits small modulations beyond those

expected from quasicircular inspiral, which become particu-

larly noticeable in _Ω.While the origin of thesemodulations is
uncertain, during early inspiral they are dominated by
residual junk radiation and at later times appear to be due
tomodulations of the center ofmass, see e.g. [60]. Tomitigate

them,we apply a low-pass filter to _Ω during the early inspiral,
with a cutoff frequency chosen conservatively high so that

the overall chirping of _Ω is not biased. Towards the transition
regime the dynamics are fast enough that the filtering can still
potentially bias the result. For r < 9.5 we smooth the
modulations with a rolling fit of E0ðRΩÞ to a quadratic over
a fiducial window size of ΔRΩ ¼ �2. Further details of
these procedures are in the Supplemental Material [87].

III. INSPIRAL EXPANSION

During the adiabatic inspiral, postgeodesic corrections to
E can be calculated from 1GSF corrections to the redshift
factor z, an invariant quantity constructed from the
conservative piece of the metric perturbation [88]. The
connection between E and z is a consequence of the first
law of binary mechanics (FLBM) [89,90], which assumes a
helical symmetry with killing vector field K ¼ ∂t þ Ω∂ϕ.

While this symmetry does not hold for dynamical binaries,
the FLBM has been found to be surprisingly accurate when
comparing analytic predictions to NR, e.g. [56,91]. In our
comparison we require the OðνÞ corrections to the deriva-
tive of the binding energy, E0ðrΩÞ. For that, we use E and z
expressions given in Ref. [56] and translate these directly
into predictions for E0ðrΩÞ as detailed in the Supplemental
Material [87]. Without assuming the relationships derived
from the FLBM, 2GSF information is required to compute
OðνÞ contributions to E [43]. We compare our NR result to
both of these predictions.

IV. INSPIRAL RESULTS

To compare NR and SMR approximations during the

inspiral, we perform a least-square fit of E0ðrΩÞ to an

expansion in integer powers of ν,
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E0ðrΩÞ ¼
X

i¼0

E0
iðrΩÞν

i: ð1Þ

Following the approach of [59,60], we first fit the NR data

at fixed r values to both a first and second degree

polynomial in ν, without reference to the SMR prediction.

From this we extract values for the coefficients as a

function of rΩ, and we recover the geodesic prediction

E0
0
ðrΩÞ from the NR data alone. This is shown in the top

panel of Fig. 1, where we plot the difference of E0
0
and Egeo,

finding remarkable agreement.

Having confirmed the test particle limit, we fit the

remainder ν−1½E0ðrΩÞ − E0
geoðrΩÞ� which allows us to

extract the OðνÞ and Oðν2Þ coefficients more accurately.

Figure 1 shows the fitted coefficients E0
1
and E0

2
. The result

is in good agreement with the first-order prediction from

the FLBM, with systematic deviations starting rΩ ≲ 10.

The NR data agrees better with the FLBM than with the

postadiabatic result [43] for E based on a 2GSF calculation.

This shows the importance of understanding subtle

differences in the definitions of energy and orbital fre-

quency that are used when comparing NR and GSF

methods, see [43]. We also find evidence of a small but

nonzero Oðν2Þ term during the inspiral.

We have repeated the inspiral analysis using the orbital

angular momentum L0 derived from the angular momentum

flux. As with the binding energy, a fit to Oðν2Þ provides

excellent agreement throughout the inspiral regime, with a

breakdown for rΩ ≲ 10. We also find that the adiabatic

condition for circular orbits is satisfied for each of our

extracted coefficients during inspiral, with E0
i=L

0
i ¼ Ω to

within the uncertainty in our fits, including the Oðν2Þ
coefficients. This agreement provides further evidence for

the accuracy of the FLBM during inspiral.

V. TRANSITION EXPANSION

Using an SMR expansion around the Schwarzschild

metric, the binding energy and radius of the orbit during the

transition take the form [81]

E ¼ E� þ Ω�½ν
4=5ξðν; sÞ þ ν6=5Yðν; sÞ�; ð2Þ

r ¼ r� þ ν2=5Rðν; sÞ; ð3Þ

where s≡ ν1=5ðτ − τ�Þ is the transition time parameter. The

transition variables can be expanded in fractional powers of

ν: ξ ¼
P

ξiν
i=5, Y ¼

P
Yiν

i=5, R ¼
P

Riν
i=5. The tran-

sition equations provide a method for iteratively solving for

each of ξi, Ri and Yi, with their boundary conditions fixed

by matching to inspiral at early times s → −∞. They also

take as input the self-force Fμ in the neighborhood of r�.

For example, angular momentum conservation reveals ξ ¼

F1

ϕ�sþOðν
2=5Þ [81]. For the self-force F1

ϕ�, we use first-

order flux data at the ISCO, taken from [76,92]. Note that

our gauge-invariant RΩ differs from R at Oðν2=5Þ, and we

have reexpanded the small parameter q−1 in terms of ν

which alters the usual transition expansion at Oðν9=5Þ,
where 2GSF corrections appear. This means that our final

fitted transition functions differ from those of [80,81]

beyond the leading order. For our analysis we numerically

solve for the leading order terms R0ðsÞ and ξ0ðsÞ. The
leading transition equations we use are in the Supplemental

Material [87].

VI. TRANSITION RESULTS

For the transition analysis we follow the same method as

for the inspiral but we fit the NR data at fixed RΩ to the

fractional power expansion

E0ðRΩÞ ¼
Ximax

i¼4

E0
i=5ðRΩÞν

i=5: ð4Þ

Following the expectation from Eq. (2), we set E0
5=5 ¼ 0 in

our first fit and let imax ¼ 8, which includes all transition

FIG. 1. Top panel: difference between the leading coefficient

E0
0
from a free fit to our simulations and the geodesic limit,

showing the recovery of the energy gradient E0ðrΩÞ from the data

during inspiral. Middle panel: inspiral results when using the

geodesic limit as a baseline for our fit. We plot the subleading

coefficients E0
1
(solid red) and E0

2
(solid green) of the inspiral

expansion of E0. Also plotted is the corresponding E04PN
1

prediction [58] and two SMR results: one based on the FLBM

[56] and one a postadiabatic expansion including 2GSF correc-

tions [43]. Bottom panel: difference between the NR and FLBM

results for E0
1
.
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orders where only 1GSF effects are present. We find this

number of terms is required to guarantee the stability of the

fit and leave no structure in the residuals. Figure 2 shows

the results of the transition coefficients E0
4=5 from this fit.

The leading SMR result is in excellent agreement for

−2≲ RΩ ≲ 7, confirming the predicted transition dynamics

even at comparable masses.

Having recovered the leading prediction ν4=5Ω�dξ0=dR0

purely from the NR data, we next fit the residual betweenE0

and it. In principle, the term we subtract is not accurate

throughOðνÞ and can introduce a term at E0
5=5. As such, we

first fit the NR data including this coefficient, and find the

result is fully consistent with E0
5=5 ¼ 0.

1
We then set E0

5=5 ¼

0 and fit the scaled residual ½E0 − ν4=5ESMR
4=5 �ν−2=5. This

allows us to extract accurate coefficients using either imax ¼
8 or imax ¼ 9, with the latter providing an estimate for the

Oðν9=5Þ term.

Figure 3 shows the resulting higher-order coefficients.

Generally the coefficients are comparable to E4=5ðRΩÞ in a

region around the ISCO but grow at larger RΩ, consistent

with a breakdown of the transition expansion towards

inspiral. The coefficient E0
7=5 is consistently larger than

E0
6=5 and similar to E0

8=5, which is why we require terms up

to E0
8=5 to recover the leading-order result. The leading

result alone is never accurate at these mass ratios. Including

E0
9=5 results in clear overfitting of the residuals, and itself

is consistent with zero, which further demonstrates that

truncating the series at imax ¼ 8 is appropriate when

describing E0 using a transition expansion. Our expansion

fails for RΩ ≳ 7, as is clear from the failure to recover the

leading-order result, and from the blowup of the subleading

coefficients. Similar results for the angular momentum and

the variable Y which describes the departure from circular-

ity are given in the Supplemental Material [87]. The latter

analysis demonstrates that the combination of higher order

transition terms E0
6=5 −Ω�L

0
6=5 is also in agreement with

analytic predictions.

VII. CONCLUSIONS

We have extracted for the first time the SMR limit from

nonspinning, quasicircular NR simulations in the transition

region around the ISCO. Our work extends previous

analyses of the validity of the SMR approximation at

comparable masses, which were restricted to the inspiral

region (but see also [53]). We find that an adiabatic SMR

expansion, together with the FLBM, is in good agreement

with our simulations for rΩ ≳ 10. The failure of the FLBM

result at smaller radii can be explained by the onset of

transition dynamics. Using a transition expansion for the

binding energy and angular momentum as functions of

RΩ ≡ ν−2=5ðrΩ − riscoÞ, we can recover the leading-order

FIG. 2. Top panel: leading order coefficient E0
4=5ðRΩÞ of the

transition expansion of E0ðRΩÞ obtained from the NR fit (blue)

compared to the leading-order SMR prediction (red). The

recovery of the analytic prediction gives direct evidence for

transition dynamics in comparable-mass NR simulations. Bottom

panel: difference between the SMR transition prediction and the

NR result.

FIG. 3. Subleading coefficients of the transition expansion for

E0ðRΩÞ from a fit to the NR data, fixing the first two coefficients.

The solid lines correspond to the result of the fit with terms up to

Oðν8=5Þ, and include our estimated uncertainties. The dashed

color lines represent the result of the fit including a Oðν9=5Þ term
where 2GSF effects first enter. This term (bottom panel) is

consistent with zero within our uncertainties.

1
This result is potentially surprising, since it seems to imply

that the leading radial self-force effect, fr½0� in [80,81], vanishes so
that the Oðν1=5Þ term in R, R1, can be set to zero along with Y1.
We speculate this may be because we work with the gauge-
invariant RΩ and the energy directly, while the piece fr½0� sourcing

R1 is instead gauge-dependent.
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SMR result [26,72] in a region of width −2≲ RΩ ≲ 7

around the ISCO. We find that terms up to Oðν8=5Þ are

necessary to recover this result. We also give a prediction

for the value of the higher-order coefficients and show that

the Oðν9=5Þ contribution is zero to within our uncertainties,
suggesting a small 2GSF contribution to E.
Our results are summarized in Fig. 4, which shows the

NR data for dE=drΩ, for three binaries with q ¼ 1, q ¼ 5,

and q ¼ 20. We compare our raw NR data with the

smoothed and filtered data that we fit, along with the

OðνÞ-accurate FLBM inspiral prediction and the results of

our transition fit up toOðν8=5Þ. This illustrates the failure of

the inspiral treatment near the ISCO for higher q, the

narrowing of the transition region with increasing q, and
the fact that a combination of the two treatments describes

the energy accurately until the last cycle before merger in

all cases using only 1GSF information.

The next step would be to explore transition contribu-

tions to the GW phasing, extending the results of [59] to

merger. SMR predictions in this regime would be enabled

by combining transition modeling [80] with 2GSF-accurate

fluxes [45] and waveforms [46]. It then is critical to include

spins using an SMR expansion around Kerr. Another

direction would be to examine eccentric binaries. These

areas represent the frontier of 2GSF calculations. If

achieved, GSF could provide a complete, first-principles

model for the two-body problem, applicable from EMRIs

to equal masses.
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