996 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Distributed Traffic Flow Consolidation for Power
Efficiency of Large-Scale Data Center Network

Kuangyu Zheng™, Xiaorui Wang

, Senior Member, IEEE, and Jia Liu

, Senior Member, IEEE

Abstract—Power optimization for data center networks (DCNs) has recently received increasing research attention, since a DCN can
account for 10 to 20 percent of the total power consumption of a data center. An effective power-saving approach for DCNs is traffic
consolidation, which consolidates traffic flows onto a small set of links and switches such that unused network devices can be shut down
dynamically for power savings. While this approach has shown great promise, existing solutions are mostly centralized and do not scale
well for large-scale DCNSs. In this article, we propose DISCO, a DIStributed traffic flow COnsolidation framework, with correlation analysis
and delay constraints, for large-scale data center network. DISCO features two distributed traffic consolidation algorithms that provide
different trade-offs (as desired by different DCN architectures) between scalability, power savings, and network performance. First, a
flow-based algorithm is proposed to conduct consolidation for each flow individually, with greatly improved scalability. Second, an even
more scalable switch-based algorithm is proposed to consolidate flows on each individual switch in a distributed fashion. We evaluate the
DISCO algorithms both on a hardware testbed and in large-scale simulations with real DCN traces. The results show that, compared with
state-of-the-art centralized solutions, DISCO can achieve nearly the same power savings while decomposing the global problem into
sub-problems that are three orders of magnitude smaller. As a result, DISCO can run 10* to 10° times faster for a DCN at the scale of 10K
servers. The convergence of DISCO has also been proven theoretically and examined experimentally.

Index Terms—Data center network, power savings, scalability, correlation analysis, traffic consolidation

1 INTRODUCTION

HE LARGE amount of power consumption of Internet data
Tcenters has become a serious concern in the last decade.
Many recent studies have shown that there are typically
three major power consumers in a data center: servers, cool-
ing systems, and the data center network (DCN) [1], [2], [3].
As the power efficiency of data center cooling has been sig-
nificantly improved in recent years (e.g., by using cold river
water for cooling [4]), power consumptions by servers and
the DCN are expected to be more dominant in the near
future. Compared to the large body of existing research on
power-efficient computer servers, power optimization for
DCNs, which account for 10 to 20 percent of the total power
consumption of a data center [1], [2], [3], has received
increasing attention in recent years [5], [6], [7].

Among the DCN power optimization strategies, one of
the most effective approaches is termed dynamic traffic con-
solidation [5], [8], which consolidates traffic flows onto a
small set of links and switches, such that unused network
devices can be dynamically turned off for power savings'

1. Similar to related work [5], [6], [8], we use power and energy inter-
changeably here, because data center is typically required to be always on.

o K. Zheng is with the School of Electronic and Information Engineering,
Beihang University, Beijing 100083, China, and also with the Department
of Electrical and Computer Engineering, Ohio State University, Columbus,
OH 43210 USA. E-mail: zheng.722@osu.edu.

o X. Wang is with the Department of Electrical and Computer Engineering, Ohio
State University, Columbus, OH 43210 USA. E-mail: wang.3596@osu.edu.

o . Liu is with the Department of Computer Science, lowa State University,
Ames, IA 50011 USA. E-mail: jialiu@iastate.edu.

Manuscript received 21 Apr. 2019; revised 7 Dec. 2019; accepted 20 Jan. 2020.
Date of publication 30 Jan. 2020; date of current version 7 June 2022.
(Corresponding author: Kuangyu Zheng.)

Recommended for acceptance by C. Wu.

Digital Object Identifier no. 10.1109/TCC.2020.2970403

and woken up later if the workload increases. Traffic consol-
idation is based on the key observation that DCNs are com-
monly provisioned for the worst-case workloads that rarely
occur. As a result, a DCN can often be underutilized, lead-
ing to excessive power consumption. Similar to server con-
solidation [9], DCN traffic consolidation can also achieve a
significant amount of power savings because the idle power
(power consumption without workload) of a typical net-
work switch is much higher than its dynamic power (power
consumption corresponding to the workload) [5], [8].

While traffic consolidation has shown great promise,
existing solutions are mostly centralized and do not scale
well for large-scale DCNs. For example, ElasticTree [5]
employs a centralized optimization framework, where all
links and switches in the DCN are managed by a single cen-
tralized optimizer for consolidation. Likewise, CARPO [8]
adopts a centralized analysis process to identify the correla-
tion among traffic flows, such that different flows can be
better consolidated if they do not peak at exactly the same
time. A fundamental limitation of these centralized schemes
is that their computational complexities increase dramati-
cally with the DCN size. As shown in Table 1, the computa-
tion time of consolidation is longer than three hours for a
DCN with only 10,000 servers. For DCNs with hundreds of
thousands of servers, the computation time can become
unacceptably long. As a result, highly scalable traffic consol-
idation algorithms are much needed for future DCNs whose
sizes are expected to grow rapidly [7], [10].

However, there are two major challenges in designing scal-
able traffic consolidation schemes. First, when decomposing
the global DCN power optimization problem into sets of
smaller optimization sub-problems, great care should be
taken for the trade-off between scalability and consolidation
performances, i.e., how to efficiently decompose and design
the optimizers for sub-problems such that the resulting power

2168-7161 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5831-6935
https://orcid.org/0000-0002-5831-6935
https://orcid.org/0000-0002-5831-6935
https://orcid.org/0000-0002-5831-6935
https://orcid.org/0000-0002-5831-6935
https://orcid.org/0000-0001-9633-1418
https://orcid.org/0000-0001-9633-1418
https://orcid.org/0000-0001-9633-1418
https://orcid.org/0000-0001-9633-1418
https://orcid.org/0000-0001-9633-1418
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
mailto:zheng.722@osu.edu
mailto:wang.3596@osu.edu
mailto:jialiu@iastate.edu

ZHENG ET AL.: DISTRIBUTED TRAFFIC FLOW CONSOLIDATION FOR POWER EFFICIENCY OF LARGE-SCALE DATA CENTER NETWORK 997

TABLE 1
Computation Time? at Different DCN Scales
Algorithms 1,000 servers 10,000 servers 100,000 servers
ElasticTree 7.2 min 230.4 min 13,286.0 min
CARPO 8.5 min 304.3 min 15,703.3 min

savings remain close to that of a centralized scheme, while the
desired scalability could be achieved. Second, there are vari-
ous types of DCN architecture designs, such as fat-tree [11],
VL2 [10], BCube [12], QFabric [13], and FBFLY [14]. Those dif-
ferent DCN architectures may require different decomposi-
tion schemes. For example, in fat-tree (an example shown in
Fig. 4), which is a typical hierarchical DCN, switches are orga-
nized at three levels: core, aggregation, and edge. Hence, it is
natural to decompose the global problem according to the
switch levels. However, different from the switch-centric and
tree-like topologies used in fat-tree, a different DCN architec-
ture, such as BCube [12], adopts a sever-centric topology.
Each server in BCube has multiple network cards for packet
forwarding, thus demanding a different design of decomposi-
tion strategy. Therefore, how to design efficient decomposi-
tion schemes that are suitable for different DCN architectures
is non-trivial and remains under-explored.

In this paper, we propose DISCO, a scalable power opti-
mization framework based on traffic consolidation for
large-scale DCNs. Similar to existing studies [8], [9], DISCO
also leverages traffic correlation analysis to significantly
reduce the DCN power consumption. However, in contrast
to previous centralized solutions, DISCO features two scal-
able traffic consolidation algorithms that provide different
trade-offs (as desired by different DCN demands) between
scalability, power savings, and network performance. First,
a flow-based algorithm (DISCO-F) is proposed to conduct
consolidation for each flow individually for better scalabil-
ity, but with slightly less power savings. Second, an even
more scalable switch-based algorithm (DISCO-S) is pro-
posed to consolidate flows on each individual switch in a
distributed fashion with better scalability and power sav-
ings, at the cost of slightly longer convergence time and
delay. Moreover, since the network delay performance has
been identified as an important metric in DCN services [15],
[16], delay constraints are included in the traffic consolida-
tion to guarantee the network performance. Specifically, the
major contributions of this paper are:

e We propose the framework of DISCO with two var-
iants and analytically compare them against the
state-of-the-art centralized solutions. Results show
that DISCO can lead to a problem size that is more
than three orders of magnitude smaller for each
individual optimizer. The network delay constraints
are incorporated into the traffic consolidation of
DISCO. It significantly improves the DCN delay per-
formance, compared to previous schemes that
ignored this important metric.

e We theoretically analyze the convergence of DISCO,
and prove that both DISCO algorithms converge to a
stable state within a finite number of execution rounds.
Experiment results also confirm that DISCO stabilizes
quickly compared with the consolidation period.

e We evaluate DISCO algorithms both on a hardware
testbed and in large-scale simulations with real DCN

traces. Extensive experiments are conducted on the
two typical DCN topologies, fat-tree and BCube,
under different scenarios. Our results show that
DISCO achieves nearly the same power savings and
network delay as those centralized solutions, but at a
much smaller communication overhead.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 provides the background of
correlation analysis. Section 4 introduces the design of the
proposed DISCO algorithms. Section 5 analyzes the conver-
gence. Section 6 presents the evaluation results of DISCO algo-
rithms in experiments with different DCN topologies and
scenarios. Section 7 concludes the paper.

2 RELATED WORK

There are several existing approaches designed for DCN
power optimization [5], [8], [17], [18], [19]. One approach is
link adaptation [6], [20], which dynamically adjusts the speed
of each switch link according to flow bandwidth requirements
to save port power. Another more efficient approach is traffic
consolidation, which consolidates traffic flows onto a small
set of links and switches, such that unused network devices
can be dynamically shut down for power savings [5], [8], [21].
We note, however, that these existing works are centralized
schemes, which require global information and do not scale
well in terms of computational complexity and control over-
head as the DCN size increases.

On the other hand, scalability of DCN management has
also been studied, but mainly on network performance man-
agement rather than power efficiency. For example, DARD
[22] and DiFS [23] propose distributed adaptive routing meth-
ods to achieve load balancing by moving elephant flows from
overloaded paths to underloaded paths. EATe [24] is one of
the earliest studies to use edge routers in switch-centric topol-
ogies to aggregate traffic flows in a distributed manner to save
power. REsPoNse [25] is another DCN power saving method
to address the scalability issue by identifying a few always-on
energy-critical paths offline to save computation efforts. Dif-
ferent from them, both DISCO algorithms are not dependent
on any specific type of DCN topology, and utilize the correla-
tion-aware consolidation, which has been proven to provide
much better power savings [8], [9].

3 CORRELATION-AWARE CONSOLIDATION: A
PRIMER

We first introduce the basic concept of correlation-aware
traffic consolidation, which will serve as the foundation of
our DISCO power optimization design. Correlation-aware
consolidation has been shown to provide over 20 percent more
power savings [8] than traditional method like ElasticTree [5].
Fig. 1 illustrates two traffic consolidation examples: posi-
tively correlated flows and negatively correlated flows,
where the flows are normalized to the link capacity. As
shown in Fig. 1a, the more positively two traces are corre-
lated, the more likely they will have their peak/valley val-
ues appear at the same time, such that their sum (the
dashed line) will have a magnified variation. In the exam-
ple, the total load of the two consolidated flows exceeds the
link capacity. In contrast, for two non-positively correlated
traces, (e.g., fi and f; in Fig. 1b), their sum will have less
variation, thus requiring less capacity for consolidation. The
correlation degree can be quantified by the Pearson

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

998 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

o s

\ B
¥d \ capacity
\, /s 1
N 4
\\ ’
N, ’,

capacity

[y

4

-~

Normalized
Flow Bandwidth

—f1 —f2 === 142, —fL ——f3 === f14f3
(a) t (b) t

o

Fig. 1. Correlation-aware consolidation of two example flows leads to
lower capacity requirement and so better consolidation (the dashed line
is the aggregated load). (a) Positively correlated, with variation magni-
fied in the aggregation. (b) Negatively correlated, with variation canceled
in the aggregation.

Correlation Coefficient [8] between each flow pair by

YT — DT) Yi 1)
Vet - (Sa) oS e - (S u)?

where x; and y; are the bandwidth demands of flows x and
y at each sample point within one consolidation period.

In a correlation-aware consolidation approach, different
DCN flows are consolidated based on their non-peak values
and correlation relationship. This is based on the observa-
tions that: 1) most of the time, the load of a DCN flow is
much lower than its peak value [26], [27], and 2) most of the
loads of different traffic flows are weakly correlated, and
hence do not always peak at the same time [8], [18].

Based on these two observations, a correlation-aware
solution consolidates different traffic flows using their non-
peak workloads, under the constraint that the correlations
between these traffic flows are below a certain threshold.
This approach has been demonstrated to yield more power
savings [8], [9]. Different from previous work that focus
mostly on centralized correlation-aware traffic or server
consolidation, our DISCO algorithms decompose correla-
tion analysis into localized power optimizers for scalable
distributed traffic consolidation in large-scale DCNs.

Toy =

4 DESIGN ofF DISCO

In this section, we present our proposed DISCO optimiza-
tion framework, which includes two scalable traffic consoli-
dation algorithms, namely DISCO-F and DISCO-S.

4.1 The DISCO Framework

Since the traffic consolidation problem is known to be NP-
hard [8], [28], we propose a feasible algorithmic framework
DISCO featuring two different algorithms, with performance
guarantee. Before diving into details, we first provide an
overview for the two proposed algorithms with the frame-
work illustrated in Fig. 2. Both DISCO algorithms share the
same two general processes: 1) Correlation Analysis. DISCO-
F uses the optimizer on each flow source host server;
DISCO-S uses the optimizer on each switch. 2) Traffic Con-
solidation. The local optimizers (flow-host-based ones for
DISCO-F; switch-based ones for DISCO-S) in a distributed
way, determine the paths of related flows, conduct adjust-
ment when monitoring congestion, then dynamically turn
on\off devices for power savings. These two processes are
performed periodically to adapt to the traffic variations
(details are in the designs of each algorithm below).
Incorporating Delay Constraints. DISCO incorporates the
delay constraints during the traffic consolidation based on
the DCTCP protocol [29]. DCTCP leverages the Explicit
Congestion Notification (ECN) function by setting a clear

Traffic flow Turn On/Off
w Data Center Network Links and Switches

(a) DISCO-F 1T >

0 On-Switch

Congestion
Monitor

On-Host
Flow Path
Consolidation

= On-Host
Correlation Analysis

)
(b) DISCO-S
S On-Switch 0n-SW|th?
R i | Local Traffic
Correlation Analysis Consolidation
N AN)

Y Y
Correlation Analysis Process Consolidation Process

Fig. 2. The DISCO framework includes two scalable consolidation algo-
rithms that are designed for different DCN architectures and can be
selected based on the different trade-offs between scalability, power
savings, and delay performance: (a) the flow-based DISCO-F; (b) the
switch-based DISCO-S.

queuing packet number notification threshold K to provide
more fair bandwidth sharing and less queuing delay. It is
proved that the steady-state queue-length will be at most as
Quax = K + Ny x W, [29], [30], where N, is the number of
flows, Wy = (C'x« RTT + K)/N; is the window size of the
short flow in one round trip time (RTT) under link capacity
C. Then, following the same model in [31], the total flow
completion time (FCT) for a flow with L, packets can be esti-
mated as FCT = (Ly/W;)* (RTT + D, + > ;_, D;), where
Dy = Quax/C is the maximum queuing delay; D; is the
packet processing delay of switch ¢ along the flow path; n is
the number of switches on the path. Therefore, during the
traffic consolidation, DISCO can estimate the FCT) for a flow
f; based on the existing flows and the number of switch on a
candidate path, and only consider the paths satisfying the
delay constraint FCT; < D,., where D, is the delay
requirement. In what follows, depending on the DCN archi-
tecture, we discuss two decentralized schemes.

Flow-Based DISCO. To overcome the limitations of cen-
tralized algorithms and design a practical decomposition
strategy, we first identify the general common features of
DCN structures. For all DCN architectures including both
hierarchical ones or non-hierarchical ones, since all flows in a
DCN start from a server, it is intuitive to decompose the con-
solidation problem at the flow level. One feasible method is
let each source server manage the paths of the flows starting
from it. To be specific, each flow can have an optimizer on its
source server to conduct consolidation only for this flow, such
that the problem size is reduced to the length of the flow path
(i.e., the number of switches this flow passes through). Hence,
each optimizer can make decision independently with a
much reduced problem size, which is more scalable and does
not depend on any particular type of DCN topology. We
name this algorithm DISCO-F.

As a distributed algorithm, DISCO-F also has some limi-
tations: Due to the lack of global information, the consolida-
tion decision of each flow is local-optimal in general. As a
result, DISCO-F may provide less power savings than the
centralized solutions. On the other hand, since each opti-
mizer still needs the knowledge of all the switches on the
flow path, the computational problem size dependents on
the length of the path. This problem size could still be high
in a large-scale DCN that has many long flows.

Switch-Based DISCO. To further reduce the problem size
and achieve better power savings, we propose an even

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

ZHENG ET AL.: DISTRIBUTED TRAFFIC FLOW CONSOLIDATION FOR POWER EFFICIENCY OF LARGE-SCALE DATA CENTER NETWORK 999

...

7777777777777 (Priority ordering of all flows)
v

(For £ (1 <i<m), search its paths set {Pathy(m)})

| Flow Parts ||r Switch Parts
SI[On-Host correlation analysis of neighbor flows]I I[Each switch SW; (1<j<q) does]ls
H

|

distribute state monitoring

' [
i [Distribute path setting for f;] |I Ik

' |
i (Try the leftmost available path in (Path/i(m))) | : \ H
H K

Hi A i SW; monitors the traffic Ii
i (Inform related Switches {SW;})_ _: [condition on its links
|

H H
H H
! s (Votion) — — —|— —1 | i
| No Iy sw; adjustsits links and| I3
] (f,- settles its path as Path;,-(m)) h ON/OFF states i
g ——— o~ _ I

...

Fig. 3. The algorithm flowchart of algorithm DISCO-F.

more scalable switch-based algorithm DISCO-S. In this algo-
rithm, each switch has a distributed optimizer running on
its processor to consolidate only the flows that pass through.
Therefore, in DISCO-S, the problem size of each optimizer is
even lower than that of DISCO-F. Moreover, we design
DISCO-S to conduct traffic consolidation aggressively, for
more possible power savings. In addition, DISCO-S is also
not dependent on any particular type of DCN structures.

DISCO Implementation. To implement DISCO, for DISCO-F,
the optimizer of each flow runs on its source server. For
DISCO-S, the optimizer runs on the main processor of each
switch. Moreover, the current software defined network
(SDN) switches (e.g., Open-Flow [32] based switch) already
offer the traffic forwarding table management with remote on-
server controller, which can control groups of switches at the
same time. Note that even though most of current Open-Flow
systems work in a centralized scheme, we propose to utilize
Open-Flow technology distributively to address the scalability
issue specifically for the DCN power optimization problem.
Meanwhile, there are already some systems developed based
on Open-Flow in a distributed manner by having multiple
controllers for different switch groups [33], [34], which shows
the feasibility of this direction. In addition, the Open-Flow
switch can also provide functions for per-flow/per-port statis-
tics, which enable the large-scale implementation of the DISCO
algorithms. Similar to previous work [5], [8], DISCO uses the
traffic load information in the previous period as the estima-
tion for current period. But even when unpredictable traffic
occurs, DISCO is designed to have follow-up path adjust-
ments. In addition, prediction methods [5] can be integrated
with DISCO, but is not the focus of this paper.

4.2 DISCO-F: Flow-Based Algorithm
DISCO-F includes two parts as shown in Fig. 3.

1) Initial Flow Consolidation. In DISCO-F, each flow opti-
mizer begin with the search of the available flow path sets
for each f;, denoted as {Pathy,(m)} (1<m<P,), where P, is
the number of available paths for flow f;. In each period,
the flow-level optimizer shares its flow bandwidth require-
ments with other optimizers in the same pod, and conducts
the local correlation analysis of the neighboring flows. Here,
we define neighboring flows as the flows originating from
the same server or the other servers in the same pod, who
have higher chances to share the same links. Based on this
analysis, each optimizer knows the correlations among the

neighboring flows and the non-peak (e.g., 90-percentile)
bandwidth requirement of each f;. To avoid the redundant
computations within the neighborhood, this correlation analy-
sis can be done on one single optimizer (e.g., the leftmost one
in the neighborhood), then send the result to other neighbor
optimizers. Then, each optimizer tries to assign f; to an avail-
able path in { Pathy,(m)} according to the lexicographic order
(i.e., from the path with smaller index in a general DCN topol-
ogy) to save power. Here we define the consolidation constraints
as follows: 1) the bandwidth requirements of f; should be
smaller than the remaining capacity of the candidate link, 2)
the correlation coefficient between f; and any flow on the can-
didate link should be lower than the threshold, and 3) the
estimated delay should be smaller than the delay constraint.
If there is any constraint violation, the optimizer will try the
next path in order. However, since different optimizers
choose paths independently, there may be transient network
congestion on some links. Therefore, these congested path
settings need to be adjusted in the second step.

Note that, to avoid the impact of flow workload estima-
tion error due to DCN traffic burst, similar to previous
work [5], [8], during consolidation, DISCO can reserve a
link bandwidth margin (e.g., 2 percent) as redundancy for
error tolerance. Meanwhile, there are also many studies on
DCN traffic prediction based on machine learning algo-
rithms [35], [36] (e.g., neural network, sequential pattern
mining). However, we focus on the distributed design of
DISCO in this paper, as prediction is not our focus here. In
addition, during the correlation analysis, redundant compu-
tations within the neighborhood may exist, which is a trade-
off for the distributed design. Further improvement scheme
like computation on one single node then sharing with
neighbors will be considered in our future work.

We assume there is a priority order of the DCN traffic
flows, which can be based on different service types, impor-
tance, or bandwidth requirements. This priority order will
be used in the processes of path adjustment.

2) Flow Path Adjustment. For all @) switches, each switch
SW; inspects the rate of each passing flow and the utiliza-
tion of its links. When congestion occurs, SW; identifies
related flows starting from the lowest-priority to resolve the
congestion condition, by notifying the corresponding flow
optimizers for path adjustments. This process keeps run-
ning until the congestion is resolved or all options are tried.
The convergence of this process will be proved in Section 5.

After all flow paths are settled, each unused switch puts
itself to sleep until the beginning of the next period. In the
implementation, this decision is made after the global con-
vergence time (details in Section 5).

Example. Fig. 4 shows a 4-pod fat-tree with four flows
(without loss of generality, we assume that f; to f; are of
decreasing priority). It illustrates an example that uses two
periods to converge to a stable state that has no congestion.
First, the flow optimizers on the leftmost source servers in
pod G.e., Si, S5) perform local correlation analysis among
neighboring flows, and calculates the percentile bandwidth
requirement value of each flow (normalized percentile
bandwidth are marked in the parentheses in Fig. 4). For
example, for f;, only f, is its neighboring flow. So, S will
only calculate the correlation coefficient between f; and fo.
Then, it sends the result to Ss. Similarly, S5 will perform cor-
relation analysis between the neighboring flows f; and f,
and send result to S7. In this example, only f; and f; are

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

1000

Pod1l 4

Eaéégegiia

S9 S10 S11 S12 S13 S14 S15 S16

(0. 3) (0. 7' (0. 6) (0 5)
cl c2

(a)

\ Podl 4 Pod2 4 Pod 3 Pod 4

Qaéé§a¢969é36aéa

S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

0.3 07 OG 0.
(0.3) (0.7) (0.6) (5) ()

Fig. 4. Example of DISCO-F on a 4-pod fat-tree topology. (a) First step:
Each flow is individually consolidated to the leftmost side of the network
for power-saving in a distributed way. Congestion occurs on the dash-
circled switches. (b) Second step: with the congestion notification from
switches ¢, a3 and a;, flow f; (with a lower priority) adjusts its path from
¢1 1o ¢, to relieve the congestion.

positively correlated, which violates the correlation thresh-
old. Then, all flow optimizers begin the distributed consoli-
dation by choosing the available leftmost paths for their
flows. However, the result (Fig. 4a) shows congestions occur
on switches ¢, a3 and a; (in red-dashed circle) due to the
lack of knowledge of other flow paths. Then, the congested
switches exam the corresponding flows (f; to fi here) and
find that f, has the lowest priority. Thus, the congestion can
be resolved by removing f; from the congested links. In the
second step (Fig. 4b), the optimizer of f; on S; updates its
path to the next leftmost path, which resolves the
congestion.

4.3 DISCO-S: Switch-Based Algorithm

DISCO-S is also a fully distributed algorithm, in which every
switch performs traffic consolidation individually. As shown
in Fig. 6, the switch optimizer on SW; starts the correlation
analysis only among the flows that pass itself. Since there are
usually multiple available forwarding links for each flow,
SW; performs traffic consolidation by choosing links in the
lexicographic order. When all passing flows f;; are settled,
SW; will be put to sleep by its optimizer if it is unused. Similar
to DISCO-F, in the implementation, this decision is made after

S1 s2
fl f2 f3 f4
(0.4) (0.7) (0.3) (0.8)

(a)

(0 4) (0 7) (D 3) (0 8)

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

the global convergence time (Section 5). Note that, due to the
local correlation analysis and limited path information, each
switch can only choose the new flow path according to its
own current knowledge. Thus, switches may aggressively
consolidate flows to some shared paths, which leads to fewer
usage of switches/links, but causes new congestion and
requires further adjustments. Hence, DISCO-S may use fewer
devices with more power savings, but result in larger network
delay and longer adjustment time.

Example. Fig. 5 shows an example that uses three steps
to converge to a stable state that has no congestion. First, all
switches try to use the leftmost links for their flows. This
aggressive step causes congestion on all the switches with
flows (in dashed red circle) in Fig. 5a.

In the second step (Fig. 5b), each switch finds the con-
gested links with the related flows, then starts to change the
paths from the flow with the lowest priority. For switch e;,
the congested link between e; and a; involves flows f; and
fa. Since f; has a lower priority, e; only forwards f> to as.
Similarly, for switch ey, congestion involves f; and fi. So e;
updates the path of f; (lower priority) to as.

Note that the adjustments could lead to new congestion
due to the distributed nature. For example, when e; for-
wards f> to the ay, and e, also forwards f; to as, new con-
gestion occurs on switch ay, ¢; and a4 in Fig. 5b.

In the third step, switches run another round of path
adjustments. Similar to the previous step, the congested
switch a; compares the priority of related flows f, and fi.
Since fy has a lower priority, a; changes its forward path from
¢1 to ¢o. The final paths of all flows are shown in Fig. 5c.

4.4 DISCO With BCube Topology
BCube [12] is another popular type of DCN structures that
has a hierarchical architecture constructed with commodity
switches. Different from the switch-centric tree-like topolo-
gies that are used in the previous section (e.g., fat-tree),
BCube is a sever-centric topology. Each server in BCube has
multiple network cards for packet forwarding. According to
the definition of BCube, as a recursive topology, a level-k
BCube structure unit, BCube;, (k > 1), is constructed from n
level-(k — 1) BCubej,_; blocks and n* n-port switches. Each
server in a BCubej, has k + 1 ports. Thus, each BCube;, has
N = nFtl servers and (k+ 1)n* switches in total. Fig. 14
illustrates an example of BCube topology with k= 1,n =4,
in which a BCube; topology is constructed with 4 BCube
and 4 4-port switches, with in total 16 servers.

The BCube topology has many advantages, such as con-
venient to scale-up for large-size DCNs, short server-

S1 S2 S3 s4 S5 S6 S7 S8

fl f2 f3 f4
(0.4) (0.7) (0.3) (0.8)

(b) (c)

Fig. 5. Example of DISCO-S on a 2-pod fat-tree topology. (a) First step: all switches try to use the leftmost side of the topology distributively. Conges-
tion occurs on some switches (in red dash circle). (b) Second step: congested switches do path adjustments beginning from flows with lower priori-
ties. Paths of f, and f, are adjusted. However new congestions occur on switches a,, ¢; and ay. (c) Third step: because f, and f; cause congestion,
switches as, ¢; and a, adjust the path of f; (with a lower priority). Then the congestion is relieved.

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

ZHENG ET AL.: DISTRIBUTED TRAFFIC FLOW CONSOLIDATION FOR POWER EFFICIENCY OF LARGE-SCALE DATA CENTER NETWORK

Y
Try the leftmost available link /, of SW,-)
No SW; adjusts its links and]

(fii settles its path link as I, ON/OFF states

Fig. 6. The algorithm flowchart of the algorithm DISCO-S.

to-server network distance (i.e., hop number) and providing
multiple parallel paths between every pair of servers. Spe-
cifically, for a level-k BCubey, there will always be k + 1 par-
allel paths between any two servers. This feature of path
redundancy provides DISCO algorithms the chance to do
traffic consolidation, and turn off unused switches/links for
power savings. Note that, because of the recursive nature of
BCube that is different from fat-tree which have the same
fixed length for the multiple shortest path between every
pair of servers, the k4 1 parallel paths between servers
have different lengths (hop number). Therefore, for each
flow in the path ordering phase of DISCO algorithms, we
order the sequence of its paths first from the shortest to the
longest length, then use the lexicographic order for the
paths with the same length. In general, DISCO algorithms
still try to consolidate flows to the path with a shorter length
first for possible less delay. We further test the DISCO algo-
rithms with BCube in the evaluation in Section 6.5.

5 THEORETICAL ANALYSIS

In this section, we first analyze the size of solution search
space of the two DISCO algorithms. Then, we prove the con-
vergence of DISCO algorithms.

5.1 Search Space and Communication Overhead

The size of solution search space of each optimizer directly
determines the time complexity of an algorithm and
impacts its scalability [33], [34]. Meanwhile, the communi-
cation overhead incurred by the optimizers (e.g., to collect
and exchange information) is also an importance factor for
scalability [22], [23]. Thus, we analyze and compare these
two metrics of a single optimizer used in each algorithm.

We define the following notation under the fat-tree topol-
ogy: k is the scale degree of a fat-tree; N is the number of
servers; () is the number of switches; M is the number of
flows; M ppq, is the max number of flows in a pod.

Solution Search Space Analysis. Consider a k-pod fat-tree
DCN with Q=5k?/4 switches and N=k?/4 servers. Due to
space limitation, we assume a network setup as follows for
simplicity: 1) there is only one traffic flow between a pair of
servers, and 2) each server only connects with one flow.
Then, the total flow number M is N/2=k?/8. Note that for
general DCNs with multiple flows between a pair of serv-
ers, by simply adjusting the value of M accordingly, the
analysis still holds.

Centralized CARPO and ElasticTree determine the paths
of all the M flows. For each flow, they need to consider both

1001

TABLE 2
Size of Solution Search Space

CARPO / ElasticTree Hier-CA DISCO-F DISCO-S
General Case O(MkY) O(ME* +Mppak) O(KY) O(M)
Simple Case O(k™) oK) O(kYy O(k®)

k/2 aggregation switches in the source/destination pods,
and the %k?/4 core switches, which leads to a combination of
up to k'/16 conditions. Thus, the solution search space is
O(ME*) = O(k"). In Hier-CA, for each flow, the core-level
optimizer only determines the core switches to use, with a
solution search space of O(Mk?). The pod level optimizer
determines the local flow paths with a solution search space
of O(Mppark/2) (Mpper <k*/4 in the example case).
Therefore, the solution search space of Hier-CA is O(Mk?) +
O(Mpinazk/2) = O(K®). In DISCO-F, each flow-based opti-
mizer searches all possible switch conditions but only for
one flow. So, its solution search space is O(k'). In DISCO-S,
the solution search space of each switch-level optimizer
depends on the number of passing flows, which is O(M) =
O(k?).

Table 2 summarizes the sizes of solution search space
of the algorithms. Compared with CARPO, DISCO-F suc-
cessfully reduces the search space by at least three orders of
magnitude of k. As shown with the log scale in Fig. 16a, the dif-
ference can lead to as much as 10* to 10° times less computa-
tion overhead for a DCN at the scale of 10,000 servers.
DISCO-S further reduce this overhead to 10° times less.

5.2 Convergence Analysis
Due to the nature of distributed design that may not pro-
vide the global optimal result directly as the centralized
design, it is possible that at links for some flows, both
DISCO-F and DISCO-S could have transient flow conges-
tions, and need path adjustment for several rounds. Hence,
it is important to first ensure that the DCN system can con-
verge to a stable state, i.e., the DISCO algorithms can stop
flow path adjustment within a finite number of iterations.
We define the convergence time as the time interval from the
time point when the algorithms start to make adjustments
to the point when the system reaches the stable state. To
facilitate the convergence analysis, we assume that the traf-
fic workload is quasi-stationary in our time-scale of interest
(i.e., the bandwidth requirement of each flow is approxi-
mately constant within each period). This is consistent with
the observation made from real DCN flow traces in previ-
ous studies [8], [18], for adopting the non-peak percentile
workload for the correlation analysis in Section 3.
Theoretically, we also model and prove the convergence
feature of both DISCO-F and DISCO-S for general DCN
topologies.

5.2.1 Notation
We use the following notation for modeling and analysis.

e S:Setof servers, with |S| = N.
SW : Set of switches, with [SW| = Q.
L ={l(z,y)} : Set of links, with |£| = L, where I(z, y)
€ L represents that switches SWW, and SW, are con-
nected by link /.

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

1002

o F ={fi}: Set of flows, with |F| = M. Let M, denote
the flow number passing the switch SW,.

e {Paths(m)} : The set of routing paths for flow f;,
(1< m < P), where P, =|{ Pathy,(m)}| is the number
of available paths for flow f;.

e {l}(n)} : The forwarding link set for flow f; on SW,
(1< n < Ly). Ly =[{I5(n)}] is the number of avail-
able forwarding links for flow f;.

e K : the degree of the fat-tree topology, which equals
to the number of pods and the number of links of
each switch.

C': the capacity of each link.
W; : the bandwidth requirement of flow f; in current
period. W; < C, (1 <i < M).

For link /(z, y) with M, passing flows, congestion occurs

when "MW, > €.

In the analysis, we assume that the bandwidth require-
ment of each flow is quasi-stationary, i.e., the requirement is
a finite constant within each period and updates from one
period to the next. This is reasonable since through the cor-
relation-aware consolidation (Section 3), all DISCO variants
use a percentile value (e.g., 90 percent) of the bandwidth
requirement to represent the demand of each flow in one
period, which has been demonstrated to provide better
power saving performance.

As mentioned in Section 4, each algorithm of DISCO
begins with a priority ordering of all flows (f;, 1<i<M),
sorted in decreasing priorities.

Moreover, for a given DCN topology, {Pathy(m)} is
finite and determined in the initialization stage of DISCO.
Further, we let paths in Pathy,(m) be ordered in a lexico-
graphic fashion under the given switches’ labeling. It means
the path with the smaller alphabetical switch-label sequence
will be ranked with a lower index. For example, in tree-like
DCN topology such as the fat-tree (e.g., Fig. 4), paths are
ordered from the leftmost side, where all core/aggrega-
tion/edge switches have smaller labels, to the rightmost
side. For the other central symmetric topologies (e.g., DCell
[7] and QFabric [13]), an arbitrarily chosen path can be
named the first path with label m = 1. We then labels the
remaining paths in the clockwise manner. As a result, dis-
tributed optimizers can do flow consolidation by trying to
use paths with smaller indices.

Similarly, for a known DCN topology, {l}.(n)} is finite,
fixed and determined in the initialization stage of DISCO-S
according to the source and destination host of each flow.
Similar to {Pathy,(m)}, the forwarding links of f; for each
switch are also labeled in a lexicographical order (e.g.,
from the leftmost side to the rightmost side in the fat-tree
topology).

5.2.2 Analysis of DISCO-S

As mentioned in Section 4.3, when SW, detects congestion
on any of its incident link I(x,y), the DISCO-S optimizer
performs forwarding link adjustments. Among all the A,
passing flows {f;}, (1<i<M,), the optimizer removes all
the f; needed, starting from the lowest priorities, i.e., i= M,,
M,-1, M,-2, ..., until link {(z, y) is not congested, or until all
forwarding options in {I{ (n)} are tested. In DISCO-S, when
forwarding link needs adjustment for f;, the optimizer uses
the next available link I, (Ynew)s Ynew=Yold + 1, unless g, (Yord)
is the last available forwarding link for f;, i.e., Yoi=La;.
Based on this process, we have the following result:

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

100%

100%
75% JJ_'Jr 75% |
[T
0% | §50%

259 ——o— DISCO-S 259% | = it DISCO-F
5% 1 —— DISCO-F °1T pisco-s
0% — 0% +—<— : : :

0 2 4 6 8 10 12 0 10 20 30 40 50

Adjustment Rounds Convergence Time (seconds)
(a) (b)

Fig. 7. CDF of (a) adjustment rounds, and (b) convergence time, for all the
optimizers (512 in DISCO-F and 320 in DISCO-S) in the 1024-server simula-
tion. Each server has 3 flows randomly connecting to 3 paired servers.

Proposition 1. The congestion adjustments of DISCO-S ter-
minates within a finite number of rounds.

Proof. Consider the worst case with the largest possible
amount of adjustments, where each of the switches {SW, },
(1<x<Q), is congested by all the passing M, flows f;
(M, < M), and each switch needs to test the largest possible
rounds for all flows. Without loss of generality, we assume
that flows are sorted in a decreasing order of priority.

For each switch SW,, start from the initial state that
each f; (1<i<M,) uses its respective first forwarding
link l%(l) € lji(n), (I1<n<L,). Since only the flows with
lower priorities (larger indices) will need to be adjusted,
after the first round, in the worst case only f; will settle
its forwarding link /% (1), and all the other M, —1 flows
are adjusted to their next forwarding links. In the second
round, f» will settle its forwarding link [} (2), and the
remaining M, — 2 flows are adjusted to their next for-
warding links. Therefore, for SW,, this process will stop
after A, rounds (when M, <L,;), or L,; rounds (when
M, > L,;). For convenience, we denote the upper bound
number of search rounds on each switch as B =
Min{M,, L,;}, 1<i<M,). Since the workload of each
flow is considered quasi-stationary as mentioned within
a period, once the paths of flows with higher priorities
are settled, they do not need to be changed in this period.

Hence, in the worst case, for one switch optimizer of
DISCO-S, it will stop after B rounds as the upper bound.
Meanwhile, similar to the analysis in DISCO-F, as each
distributed optimizer reduces its own option search
space in every iteration, the total global solution search
space of DISCO-S is also reduced. After all optimizers
terminate adjustments, which is reachable as shown
above, the whole system of DISCO-S will become global
stable. The global search space of DISCO-S is upper
bounded by @ - B= O(Q - M). As a special case of the
above process, for the k-pod fat-tree topology, each
switch has k links, so that B = Min{M,, k}. Meanwhile,
there are in total Q = 5/4k® switches. Thus, the total
global search space of link options for DISCO-S is upper
bounded by O(Mk?).

For the congestion adjustments of DISCO-S, there will
be fewer flows to be adjusted each round, with reduced
remaining path set search space. Hence, DISCO-S will
terminate within a finite number of rounds. This com-
pletes the proof. O

Fig. 7a compares the Cumulative Distribution Function
(CDF) of the number of rounds for convergence of each
optimizer in the 1024-server simulation (each servers has 3
flows randomly connecting to another 3 paired servers). In

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

ZHENG ET AL.: DISTRIBUTED TRAFFIC FLOW CONSOLIDATION FOR POWER EFFICIENCY OF LARGE-SCALE DATA CENTER NETWORK

DISCO-F, about 90 percent of the flows finish the adjust-
ment within 5 rounds, while in DISCO-S, it needs 9 rounds
to settle 90 percent of switches. These results show that
DISCO algorithms can successfully reduce the computation
time, even with some more rounds of adjustments.

Convergence speed is another important performance
metric for distributed algorithms. As the experiment
results shown in Fig. 7b, 90 percent of the flows in DISCO-
F can converge within 20 seconds. The convergence time
of DISCO-S is a little longer: 90 percent of the switches fin-
ish adjustments within about 34 seconds. However, com-
pared to the 10-minute period adopted by the correlation
analysis design, the convergence time-scale of DISCO is
sufficiently small.

Note that, based on the observation in correlation analy-
sis (Section 3), the flow conditions are stable within each
period, which is consistent with previous work [5], [8].
However, if the flows are shorter or longer in other scenar-
ios, the algorithm period can be adjusted according to the
specific cases, while the convergence of algorithms should
still hold as proved.

6 EVALUATION

In this section, we first introduce the baselines used for com-
parison, then evaluate DISCO in terms of power savings
and network performance (i.e., packet transmission delay),
both on a hardware testbed and in large-scale simulation.

6.1 Baselines Used for Performance Comparison
ElasticTree [5] is a state-of-the-art DCN power optimization
scheme. It periodically consolidates flows based on their
peak workloads with a centralized controller.

CARPO [8] is another centralized scheme for DCN power
optimization, which consolidates traffic flows with low cor-
relations together based on their 90-percentile bandwidth
demands to achieve better power savings.

Optimal is the optimal solution derived by the exhaustive
search approach from the same consolidation model
[8] with the delay constraint. Due to its high computational
complexity, Optimal is only evaluated in small-scale
experiments.

Hier-CA Here, we also carefully design a hierarchical
algorithm called Hier-CA (Hierarchical algorithm with Cor-
relation Analysis). It decomposes the computation to differ-
ent levels of DCNs.

Design. Hier-CA includes three steps. 1) Initialization.
Hier-CA begins with a priority ordering of all the M flows.
2) Core-level consolidation. The core-level optimizer first peri-
odically collects the data of all the M flows that pass
through the core level, then conducts global correlation
analysis between every pair of flows, and calculates the per-
centile bandwidth demands of each flow. The results are
shared with the optimizer in each pod (denoted as {Pod,}).
Then, the core-level optimizer begins the consolidation by
trying to set every flow to the paths following the lexico-
graphic order. This process stops when all the M flows are
set to links between the core switches and the pods. 3) Pod-
level consolidation. Each pod-level optimizer in {Pod,} then
conducts pod-level consolidation parallelly for the A, flows
passing through itself. For a flow f; (1<i<M,), each opti-
mizer uses the leftmost available switches and links in the
pod under the consolidation constraints. This process keeps

1003

% 6

(05) (03) (08) (02) %
(a)

S6

Fig. 8. Example of the Hier-CA algorithm. (a) First step: the core-level
consolidation decides the flow paths only between core switches and
pods. (b) Second step: the pod-level consolidation. Each pod decides
the final within-pod paths for the related traffic flows.

running until all flow paths in a pod are set. Finally, all
unused links and switches are put to the sleep mode to save
power.

Example. Fig. 8 shows an example with four flows (f; to
f1 with decreasing priority). In the initial step, the core-
level optimizer collects the flows information from core
switches (e.g., fi is from S with Pod; to S5 with Pody). It
then conducts the correlation analysis for every pair of the
flows, and calculates the percentile bandwidth requirement
value of each flow. In the example, only f; and f; are posi-
tively correlated. These results are shared with Pod; and
Pody. Then the core-level begins the consolidation (Fig. 8a)
based on the consolidation constraints: f;, f, are set to core
switch ¢;, then due to capacity limit, f; is set to ¢;. Since f,
and f; have correlation violation, f; is set to c,.

Then, in the second step, Pod; and Pod, begin the pod-
level consolidation in parallel to choose the specific switches
and links for each flow. In Fig. 8b, under the consolidation
constraints, the optimizer of Pod, sets all the flows to switch
ai. Thus, when all the flows are settled, the unused switch
ay can be put to sleep to save power. At the same time, the
Pod, optimizer independently consolidates its flows.

Limitation of Hier-CA. Even though Hier-CA tries to
decompose the computation to different levels of DCNs, it
is still not fully distributed and thus less scalable. In addi-
tion, it can only be applied to DCNs with a clear hierarchical
topologies (e.g., Tree, Fat-tree, BCube). These limitations
motivate us to design a fully distributed framework.

6.2 Experiment Setup

For the experiments, we use real DCN traffic traces from
Wikipedia [26] data centers. There are 61 trace files from the
7-day Wikipedia DCN traces, each of which has a data gran-
ularity of one sample per second. We have also tested
DISCO with Yahoo! DCN traces [27]. The results are
skipped here due to space limitations but can be found in
the conference version of this paper [37]

Testbed Setup. We set up the hardware testbed with one
48-port Open-Flow-enabled Pica8 3,290 switch (shown in
Fig. 9), and six servers. To build a standard 2-pod fat-tree
network topology, we configure the switch into 10 four-port
virtual switches. The Open-Flow switch is connected to an
independent control server. To test the baseline CARPO, we
follow the setup in [8] to implement its centralized opti-
mizer on the control server to conduct correlation-aware
traffic consolidation. For DISCO, both the two algorithms
have multiple sub-problem optimizers that can be deployed
in a distributed way on selected switches or servers and run

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

1004

VS VS VS VS VS Vs

VS VS VS Vs

w
~

el e2 e3 e4 al a2 a3 a4 ¢l c2 S N Hier-CA

§34

a3

Fig. 9. Hardware testbed with 10 virtual switches 528
(VSs) configured with a Pica8 48-port Open-Flow s B

switch. The VSs are numbered in the same way as
in Fig. 8.

Fig. 10. Average power savings in the
testbed experiments with Wikipedia traces.

simultaneously in the DCN implementation. Since we have
only one physical Open-Flow switch in our evaluation,
we have to simplify the implementation to run all the sub-
problem optimizers on one control server, but still in
parallel. Note that DISCO can be easily implemented and
extended to multiple distributed Open-Flow controllers at
larger DCN scales. As the DISCO implementation discussed
in Section 4, there are already multiple systems [33], [34]
developed based on OpenFlow in the distributed manner,
which shows the feasibility. To measure the switch power,
we use the WattsUp power meter, which has the accuracy
of 0.1 W with the rate of one sample per second.

In the hardware experiments, we use the 7-day Wikipe-
dia traces as the network workloads. We randomly choose
three traffic flows from the 61 Wikipedia trace files, and
assign them to three pairs of servers. For a fair comparison,
in all experiments, we use the same 10-minute operation
period and a correlation threshold of 0.3 as used by CARPO
[8]. The delay constraints are usually related to specific ser-
vice requirements and DCN condition. According to the
test measurement, we set RTT=100 us and delay require-
ment as D, = 30 ms for the flow with a length of 100 pack-
ets (on average 300 ps/packet), which is similar to [29], [31].

Simulation Setup. To investigate the performance of
DISCO in large-scale DCNs, we conduct simulations with a
packet-level simulator OPNET 16.1. Due to the significant
amount of simulation time when the problem size increases,
we simulate a 16-pod fat-tree topology (with 1,024 servers
and 320 switches). For the Wikipedia flows, we duplicate 8
sets of the 61 traces and randomly choose another 24 traces
(512 = 8*61+24), then randomly assigned to the 512 pairs of
servers. In addition, we further conduct the simulation on a
BCube (n = 8, k =2) DCN topology with 512 servers and 192
switches. Similarly, we duplicate 4 sets of the 61 Wikipedia
flow traces and randomly choose another 12 traces to form
the 256 network flow traces (256 = 4*61 + 12), and randomly
assigned to the 256 pairs of servers.

6.3 Hardware Testbed Results

Power Savings. The hardware results of different algorithms
are shown in Fig. 10. It presents the average power saving
results using the 7-day Wikipedia DCN traces as the net-
work workloads, for a long-term evaluation. We calculate
the power savings of each schemes by comparing with the
original case without any traffic consolidation and power
optimization. As the results shown, the average power sav-
ings of CARPO (34.6 percent) and Hier-CA (34.5 percent)
are nearly the same to the Optimal baseline in each test, and
outperform the other algorithms. This is due to the fact that
the centralized design in CARPO and the top-level of
Hier-CA can collect the information of all flows to conduct

global optimization. Meanwhile, their average power
Authorized licensed use limited to: lowa State University Library.

M ElasticTree

ownloaded on July 27,2023 at 18:25:18

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

W ElasticTree
Hier-CA

= (il il

4 5 6 7 AVG
Day

CARPO
W DISCO-F

O Optimal
O DISCO-S

CARPO
W DISCO-F

O Optimal
O DISCO-S

Delay (us)
N N w
~N ©o =
o o

N
Q
=)

4 5 6 7 AvVG

Fig. 11. Average packet delay in the testbed
experiments with Wikipedia traces.

savings are also better than those of the centralized Elastic-
Tree (28.4 percent), which directly demonstrates the advan-
tage of correlation-aware consolidation. However, note that
all these centralized algorithms have scalability limitation,
and can not be practical when the DCN size scales up. In addi-
tion, all of them do not consider delay.

Due to the more aggressive consolidation strategy, as well
as its more limited local information, DISCO-S usually
achieves more average power savings (34.0 percent here) by
using fewer numbers of active switches and links, compared
with that of DISCO-F (33.1 percent), but at the cost of a
slightly longer average network delay (shown in Delay Per-
formance below). Note that, power savings of both DISCO
algorithms are are only 0.9 to 2.1 percent less than Optimal
(34.9 percent), which are relatively small compared to
the total saving percentage around 30 percent. More impor-
tantly, both DISCO-F and DISCO-S have much lower compu-
tation overhead, which are more practical for the large-scale
DCNs. Besides, from the long-term evaluation (i.e., 7-day
traces), the performance results of DISCO algorithms are
nearly the same as those of the centralized algorithms with
small variations. This demonstrates the relatively stable per-
formance of DISCO.

Delay Performance. Accordingly, we compare the network
performance in Fig. 11. It shows the average flow packet
delays. Optimal has the shortest delay (252.2us) that with a
brutal-force path search. However, it is not feasible for
large-scale DCNs due to its high computation cost. The cor-
relation-unaware ElasticTree (263.314s) is the second best,
since it uses the peak flow demands and thus has less con-
gestion violation. However, it also has the trade-off of much
reduced power savings. Due to more aggressive consolida-
tion, DISCO-S (270.61es) has slightly longer average delay
than DISCO-F (264.3j1s). As both are designed with the
delay constraints, their performances are even better than
the centralized algorithms CARPO (275.6,s) and Hier-CA
(276.3s).

Note that CARPO and Hier-CA have average delays
exceeding the 300 s requirement, but both DISCO methods
have better performance due to the delay constraints during
the consolidation.

The testbed results show that, DISCO-F and DISCO-S
can achieve slightly less or nearly the same power sav-
ings, but improved network delays performance than the
centralized CARPO and the hierarchical method Hier-CA.
Most importantly, DISCO algorithms are much more scalable
as shown in Section 5.1.

6.4 Simulation Results on Fat-Tree Topology
To better understand the differences between DISCO and
other algorithms, Fig. 12 plots their power usage traces (first

180 s in one 10 min period) during a typical run in the
C from |IEEE Xplore. Restrictions apply.

ZHENG ET AL.: DISTRIBUTED TRAFFIC FLOW CONSOLIDATION FOR POWER EFFICIENCY OF LARGE-SCALE DATA CENTER NETWORK 1005
12000 ----ElasticTree ——CARPO -+ Hier-CA B ElasticTree CARPO Hier-CA 104 = -
5 —DISCO-F —DISCO-S _ ., EDISCO-F 0 DISCO-S —ElasticTree —CARPO - Hier-CA
2 11000 S, R 50 ——DISCO-F ——DISCO-S 1
£ 10000 s 3z
Il H >10°
L 9000 v 40 &
H , 5 a
& so00 3 35
a
7000 | t t t t t 1 30 102
0 30 60 9 120 150 180 1 2 3 4 5 6 7 AVG 0 24 48 72 9 120 144 168

Time (Seconds)

Fig. 12. Power usage traces (first 180s of one 10min
period) in the simulation. DISCO algorithms adjust flow
paths dynamically at the beginning, and can settle paths
within a short time.

simulation. For ElasticTree, CARPO and Hier-CA, their flow
paths are calculated with fixed numbers of active switches
before the start of each period. Therefore, the change of their
power traces are mainly due to the dynamic flow work-
loads. Different from them, at the beginning of each period,
DISCO-F and DISCO-S use fewer switches with less power,
under aggressive consolidation strategy. Then, when con-
gestions are detected, DISCO algorithms adjust their flow
paths dynamically by utilizing new links and switches. This
is demonstrated clearly by their increasing power usages.
After the settlement of paths, from Fig. 12, we can see
DISCO algorithms usually have slightly higher power con-
sumption with more active devices than the baselines. On
one hand, this is due to the limitation of distributed consoli-
dation with only local information, thus cannot achieve the
near-optimal consolidation result as in the centralized algo-
rithms. Meanwhile, DISCO also incorporates the network
delay requirements, which results in more resource usage.
The detailed comparison of power savings and network
delay are shown as follows.

Power Savings. Fig. 13a shows the power-saving results
on the 16-pod fat-tree simulation with 1,024 servers and 320
switches. From the result we can see, similar to the trend in
the small-scale testbed evaluation, both CARPO and Hier-
CA use only 144.6 switches on average and have the best
average power savings as much as 46.8 percent, due to the
centralized design with the global flow information for bet-
ter optimization result. With the advantage of correlation-
aware consolidation, they also have 8.9 percent more power
savings than ElasticTree. Due to the limitation of local infor-
mation during the path optimization as well as the delay
constraints during consolidation, DISCO-S uses a larger
number of switches on average (146.8) and DISCO-F uses
even more (152.1). Despite their using more switches, both
the two DISCO algorithms have only 1.6-2.9 percent less
average power savings than CARPO and Hier-CA. Com-
pared with the total average power savings around 43 per-
cent, this reduction is small.

Time (hour)

()

Fig. 13. Simulation with the 1024-server topology: (a) Average power savings. (b)
Average packet delay variation. DISCO-S aggressively saves more power but has
the trade-off of longer delay.

Delay Performance. The simulation results in Fig. 13b show
the average package delay of the algorithms in the
7-day simulation. During the experiment, ElasticTree has
the shortest delay by using peak flow workload values in
the consolidation. Then it is followed by DISCO-F and
DISCO-S with the delay constraints. In contrast, CARPO
and Hier-CA have much longer delays, especially under
heavy traffic (e.g., at 60, 80, 135 and 150 hours). Note that,
even all methods have long delays on the last day, delays
of both DISCO algorithms are shorter, and recover sooner
than other methods.

More importantly, since the centralized schemes Elastic-
Tree and CARPO are not feasible for the large-scale DCNs
due their high computation cost, the above results demon-
strate the DISCO algorithms not only are more practical for
large-scale DCNs with better scalability, but also have simi-
lar or even better delay performance.

6.5 Simulation Results on BCube Topology

In this section, we further evaluate the performance of the
DISCO algorithms, and present their simulation results on
the BCube DCN topology. We test the performance of both
DISCO-F and DISCO-S and the baselines on a BCube topol-
ogy with (n = 8,k = 2), which has n**! = 512 servers and
(k+ 1)n* = 192 switches.

Power Savings. Fig. 15a shows the average power-saving
results on the 512-server BCube topology. Compared to the
result in the fat-tree topology, all the approaches have
reduced power savings. This is due to the fact that BCube is
a server-centric topology, which has fewer switch devices
than the switch-centric fat-tree topology at a similar scale.
To be specific, during the test on average CARPO and Hier-
CA use 136.7 and 138.0 switches, respectively. Even though
they have the top average power savings (28.8 and 28.1 per-
cent) with the global centralized information, distributed
algorithm DISCO-F and DISCO-S use 140.0 and 142.3
switches on average, and provide nearly the same average

M ElasticTree CARPO Hier-CA . .
35 W ElasticTree CARPO Hier-CA
—_ W DISCO-F O DISCO-S
< 30 I N7 00 DDISCOS mDISCO-F
v 7 N 7% e T S
2 -G N NN AN = F 8N R 8N 8§ 5 §
0 7
S NANNNANANANANN 272 24 a2 A 2
© 20 N A N 78 78 N N 7 > A N AN N A N N A
N A N 78 7 7N N NL A Ah NL ANp AL A4 A
/)/ ‘) 2 N |4 SHANRANAENA DA 5100 A Ak Ak Ak ABRAR AL A
I | I I 5 15 20 1A NI AN A | T A I 3 NTIATATALALAL AT A
Nl (A N N T [T [TA [P a AN A 1A LA A LA A §LA
| h 1 | 3 N A N N 78 78 N 78 N AN N N N N N A
SHARANZRNARNA A LA A LA LA RIA BRI IR
! i I I s 10 A 14 NI I A | I A A 50 N HA HA HA HA HA HA HA
7 N 78 78 N N N 2 23 N A AN N AN 7
‘ i [& N (Y SHAUNARUNARAUNA WA NI A LA LA AL LA
I it I | N M7 AN I | [N | I | BN AN NI 1A 1IN I 1IN |IA |
‘ a ‘ ! 3 4 5 6 7 AV 1 2 3 4 5 6 7

S1 S2 S3 sS4

ss s6 s7 s8Il s9 s10 s11 s12
N2 2L ~

N2 2L NI P ihin i

Fig. 14. Example of a Level 1 BCube; topology (k=1,n=
4), which is formed with 4 Level 0 BCube, blocks and 4 4-
port switches. The connection links on the first switch at
Level 0 and Level 1 are highlighted in the colors of red
and blue, respectively.

AVG

o
o
<

Day

(2) (b)

Fig. 15. Simulation with the 512-server BCube topology: (a) Average power savings. (b)
Average packet delay variation. DISCO-S aggressively saves more power but has the
trade-off of longer delay.

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

1006

TABLE 3
Communication Overhead Comparison

CARPO / ElasticTree

O(MK?)
O(k)

Hier-CA DISCO-F DISCO-S

O(Mk) O(M+Q) O(M)
O(k*) O(k*) Ok

General Case
Simple Case

power savings (27.1 and 25.9 percent, respectively), which is
only 1.0 to 2.9 percent less than CARPO and Hier-CA. Elas-
ticTree has the least power savings as 19.9 percent without
taking the advantage of correlation analysis during the traf-
fic consolidation.

Delay Performance. Fig. 15b shows the average traffic
delays with the Wikipedia traces in the BCube topology.
The correlation-unaware ElasticTree (73.3us) using peak
flow demands has the shortest delay on average. DISCO-F
(100.53us) and DISCO-S (117.63us) with the delay con-
straints are slightly behind, which is better than the cen-
tralized algorithms CARPO (148.47us) and Hier-CA
(180.91s). The results demonstrate that the DISCO algo-
rithms have shorter average delay with the flow comple-
tion time constraints. DISCO-S aggressively saves more
power but it has the trade-off by having a slightly longer
delay.

6.6 Communication Overhead

In order to manage the network, each DISCO optimizer (on
host server or switch) needs to communicate with involved
switches, which generates non-negligible communication
overhead in a large-scale DCN.

Consider the example k-pod fat-tree topology. CARPO
or ElasticTree needs to manage all M flows and @
switches, thus both having communication overhead of
M % Q=O(MK?). For Hier-CA, the overhead depends on the
flows and switches number at the core and pod level, plus
the flow information shared between them, which is
O(Mk). For DISCO-F, when the flow optimizer sets the
path for a flow, its communication overhead depends on
the number of switches on a flow path, which is upper
bounded by . Moreover, when congestion occurs, the
optimizer will be notified about the related flow condition
for path adjustment, which is upper bounded by O(M).
Thus, its total overhead is O(M+Q). For DISCO-S, each
switch optimizer only collects local information, which
depends on the number of flows passing through itself.
Hence, its overhead is O(M).

The communication overhead of all algorithms are sum-
marized in Table 3. Fig. 16b also shows the overhead at differ-
ent DCN scales. Note that, in DCNs where servers are
connected with multiple flows, the above analysis is still
applicable, and can be extended by adjusting the flow

10V 4+ cARPO
—~DISCO-F

©-ElasticTree -O-Hier-CA

% DISCO-S @@9

101

1000 e o 0.0,—&.@. RS

=
1=

000
00000070702

53¢

o

-0--=-0

2

%

B

(log scale)

B S——

..
)
<

it
53 —+CARPO
108 o piscoF

L
10,

© ElasticTree -O-Hier-CA
- DISCO-S

Computation Overhead
(log scale)
=
(=]
2

Communication Overhead

100

102 10° 10° 10° 25 50 75
Number of Servers (log scale) Number of Servers (k)

(a) Solution search space (b) Communication overhead
Fig. 16. Comparison of (a) Size of solution search space and (b)
Communication overhead (both in logarithmic scale on Y axis) of each
optimizer in all algorithms at different data center scale.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

number M. Generally, both variants of DISCO optimizers
have significantly lower overhead than CARPO/ElasticTree.

7 CONCLUSION

In this paper, we have presented DISCO, a highly scalable
power optimization framework for large-scale DCNs, which
does not depend on specific DCN architectures. DISCO
features two scalable traffic consolidation algorithms that
provide trade-offs between scalability, power savings, and
network delay performance. First, the flow-based DISCO-F
conducts consolidation on each individual flow optimizer,
which provides much improved scalability but slightly less
power savings. It can be used for large-scale DCNs with
short flow paths or with relatively stringent delay require-
ments. Second, an even more scalable switch-based DISCO-
S consolidates flows on each individual switch, which pro-
vides more power savings at the cost of longer network
delay. It is more suitable for large-scale DCNs, where scal-
ability is more important and a certain degree of network
delay can be tolerated. We have evaluated both DISCO algo-
rithms on a hardware testbed as well as in large-scale simu-
lations with real DCN traces from Wikipedia and Yahoo!
data centers. The results show that DISCO significantly
reduces the solution search space by more than three orders
of magnitude, while achieving nearly the same power sav-
ings and improved network delays compared to the state-
of-the-art centralized solutions.

ACKNOWLEDGMENTS

This work was supported, in part, by US National Science
Foundation under Grants CNS-1421452, CCF-1758736, CNS-
1758757, ECCS-1818791, and ONR N00014-17-1-2417.

REFERENCES

[1] S. Pelley et al., “Understanding and abstracting total data center
power,” in Proc. Workshop Energy Effcient Des., 2009, vol. 11, pp. 1-6.

[2] A. Greenberg et al., “The cost of a cloud: Research problems in
data center networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 1, pp. 68-73, 2008.

[3] A.Shehabi et al., “United states data center energy usage report,”
Lawrence Berkeley National Laboratory Report, 2016.

[4] Data center efficiency: How we do it, 2012. [Online]. Available:
http:/ /www.google.com/about/datacenters/efficiency /
internal/

[5] B. Heller ef al., “ElasticTree: Saving energy in data center
networks,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2010, Art. no. 17.

[6] D. Abts et al., “Energy proportional datacenter networks,” in Proc.
37th Annu. Int. Symp. Comput. Archit., 2010, pp. 338-347.

[7] A.Hammadi et al., “Review: A survey on architectures and energy
efficiency in data center networks,” Comput. Commun., vol. 40,
pp- 1-21,2014.

[8] X.Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “CARPO: Correla-
tion-aware power optimization in data center networks,” in Proc.
IEEE INFOCOM, 2012, pp. 1125-1133.

[9] A. Verma ef al., “Server workload analysis for power minimiza-

tion using consolidation,” in Proc. Conf. USENIX Annu. Tech.

Conf., 2009, Art. no. 28.

A. Greenberget al., “VL2: A scalable and flexible data center network,”

in Proc. ACM SIGCOMM Conf. Data Commun., 2009, pp. 51-62.

M. Al-Fares ef al., “A scalable, commodity data center network

architecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,

2008.

C. Guoet al., “BCube: A high performance, server-centric network

architecture for modular data centers,” in Proc. ACM SIGCOMM

Conf. Data Commun., 2009, pp. 63-74.

[10]

[11]

[12]

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

http://www.google.com/about/datacenters/efficiency/internal/
http://www.google.com/about/datacenters/efficiency/internal/

ZHENG ET AL.: DISTRIBUTED TRAFFIC FLOW CONSOLIDATION FOR POWER EFFICIENCY OF LARGE-SCALE DATA CENTER NETWORK

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

The QFabric Architecture: Implementing a flat data center net-
work, 2011. [Online]. Available: http://www.enpointe.com/
images/pdf/The-Qfabric-Architecture.pdf

J. Kim et al., “Flattened butterfly: A cost-efficient topology for
high-radix networks,” in Proc. 34th Annu. Int. Symp. Comput.
Archit., 2007, pp. 126-137.

N. Dukkipati et al., “Why flow-completion time is the right metric
for congestion control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 1, pp. 59-62, 2006.

M. Chowdhury et al, “Managing data transfers in computer
clusters with orchestra,” in Proc. ACM SIGCOMM Conf., 2011,
pp- 98-109.

L. Wang et al., “GreenDCN: A general framework for achieving
energy efficiency in data center networks,” IEEE]. Sel. Areas Com-
mun., vol. 32, no. 1, pp. 4-15, Jan. 2014.

K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in
Proc. IEEE INFOCOM, 2014, pp. 2598-2606.

Z. Guo, S. Hui, Y. Xu, and H. J. Chao, “Dynamic flow scheduling
for power-efficient data center networks,” in Proc. IEEEJACM 24th
Int. Symp. Quality Serv., 2016, pp. 1-10.

C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, “Reducing
the energy consumption of Ethernet with adaptive link rate
(ALR),” IEEE Trans. Comput., vol. 57, no. 4, pp. 448-461, Apr. 2008.
Y. Shang et al., “Energy-aware routing in data center network,” in
Proc. 1st ACM SIGCOMM Workshop Green Netw., 2010, pp. 1-8.

X. Wu and X. Yang, “DARD: Distributed adaptive routing for
datacenter networks,” in Proc. IEEE 32nd Int. Conf. Distrib. Comput.
Syst., 2012, pp. 32-41.

W. Cui and C. Qian, “DiFS: Distributed flow scheduling for adap-
tive routing in hierarchical data center networks,” in Proc. ACM/
IEEE Symp. Archit. Netw. Commun. Syst., 2014, pp. 53-64.

N. Vasi¢ and D. Kosti¢, “Energy-aware traffic engineering,” in
Proc. 1st Int. Conf. Energy-Efficient Comput. Netw., 2010, pp. 169-178.
N. Vasi¢, P. Bhurat, D. Novakovi¢, M. Canini, S. Shekhar, and
D. Kosti¢, “Identifying and using energy-critical paths,” in Proc.
7th Conf. Emerg. Netw. Experiments Technol., 2011, pp. 1-12.

G. Urdaneta et al., “Wikipedia workload analysis for decentralized
hosting,” Elsevier Comput. Netw., vol. 53, pp. 1830-1845, 2009.

Y. Chen, S. Jain, V. K. Adhikari, Z. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via Yahoo! Datasets,” in
Proc. IEEE INFOCOM, 2011, pp. 1620-1628.

M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,” in
Proc. IEEE INFOCOM, 2011, pp. 71-75.

M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, pp. 63-74, 2010.

M. Alizadeh et al., “Analysis of DCTCP: Stability, convergence,
and fairness,” in Proc. ACM SIGMETRICS Joint Int. Conf. Meas.
Model. Comput. Syst., 2011, pp. 73-84.

K. Zheng, X. Wang, and X. Wang, “PowerFCT: Power optimiza-
tion of data center network with flow completion time con-
straints,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2015,
pp- 334-343.

N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp- 69-74, Mar. 2008.

A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed con-
trol plane for OpenFlow,” in Proc. Internet Netw. Manage. Conf.
Res. Enterprise Netw., 2010, Art. no. 3.

M. Yu et al., “Scalable flow-based networking with DIFANE,” in
Proc. ACM SIGCOMM Conf., 2010, pp. 351-362.

J. J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi, “Prediction
of cloud data center networks loads using stochastic and neural
models,” in Proc. 6th Int. Conf. Syst. Syst. Eng., 2011, pp. 276-281.
M. Amiri ef al., “A sequential pattern mining model for applica-
tion workload prediction in cloud environment,” |. Netw. Comput.
Appl., vol. 105, pp. 21-62, 2018.

K. Zheng, X. Wang, and]. Liu, “DISCO: Distributed traffic flow
consolidation for power efficient data center network,” in Proc.
IFIP Netw. Conf., 2017, pp. 1-9.

1007

Kuangyu Zheng received the PhD degree in
computer engineering from the Ohio State Uni-
versity, Columbus, Ohio, in 2018, supervised by
Dr. Xiaorui Wang. He is currently a faculty mem-
ber of Beihang University, China. His current
research interests include energy-efficient com-
munication, computer, and network systems
(e.g., data center and networks, mobile systems,
loT), Cloud\Edge\Mobile computing, 5G\6G sys-
tems and applications.

Xiaorui Wang (Senior Member, IEEE) received
the DSc degree in computer science from Wash-
ington University in St. Louis, Missouri, in 2006. He
is currently a professor with the Department of
Electrical and Computer Engineering, Ohio State
University. He is the recipient of the US Office of
Naval Research (ONR) Young Investigator (YIP)
Award in 2011 and the US NSF CAREER Award in
2009. He also received the Best Paper Award from
the 29th IEEE Real-Time Systems Symposium
(RTSS) in 2008. He is an author or co-author of
more than 100 refereed publications. From 2006 to 2011, he was an assis-
tant professor with the University of Tennessee, Knoxville, where he
received the Chancellor's Award for Professional Promise and the College
of Engineering Research Fellow Award. His research interests include
computer architecture and systems, data center power management, and
cyber-physical systems. He is the general chair of the 14th IEEE Interna-
tional Conference on Autonomic Computing (ICAC 2017) and the TPC co-
chair of the 24th IEEE/ACM International Symposium on Quality of Service
(IWQoS 2016). He is also an associate editor of the IEEE Transactions on
Parallel and Distributed Systems (TPDS), IEEE Transactions on Com-
puters (TC), and IEEE Transactions on Cloud Computing (TCC). He is a
senior member of the IEEE Computer and Communication Societies.

dJia Liu (Senior Member, IEEE) received the PhD
degree from the Bradley Department of Electrical
and Computer Engineering, Virginia Tech, Blacks-
burg, Virginia, in 2010. Since August 2017, heis an
assistant professor with the Department of Com-
puter Science, lowa State University. He was a
postdoctoral researcher from February 2010 to
November 2014, and subsequently a research
assistant professor from November 2014 to July
2017, both with the Department of Electrical and
Computer Engineering, Ohio State University. His
research areas include theoretical foundations of control and optimization
for stochastic networked systems, distributed algorithms design, optimiza-
tion of cyber-physical systems, Internet-of-Things, data analytics infrastruc-
ture, and machine learning. He is a member of the ACM. His work has
received numerous awards at top venues, including IEEE INFOCOM’'16
Best Paper Award, IEEE INFOCOM’'13 Best Paper Runner-up Award,
IEEE INFOCOM’11 Best Paper Runner-up Award, and IEEE ICC’08 Best
Paper Award. He is a recipient of Bell Labs President Gold Award in 2001
and China National Award for Outstanding PhD Students Abroad in 2008.
His research has been supported by NSF, AFOSR, AFRL, and ONR.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 18:25:18 UTC from IEEE Xplore. Restrictions apply.

http://www.enpointe.com/images/pdf/The-Qfabric-Architecture.pdf
http://www.enpointe.com/images/pdf/The-Qfabric-Architecture.pdf

