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THE SLOPE ROBUSTLY DETERMINES CONVEX FUNCTIONS

ARIS DANIILIDIS AND DMITRIY DRUSVYATSKIY

(Communicated by Ryan Hynd)

Abstract. We show that the deviation between the slopes of two convex

functions controls the deviation between the functions themselves. This re-
sult reveals that the slope—a one dimensional construct—robustly determines
convex functions, up to a constant of integration.

1. Introduction

The recent paper [2, Theorem 3.8] established the following intriguing result.
Two C2-smooth, convex and bounded from below functions f, g defined on a Hilbert
space H are equal up to an additive constant if and only if their gradient norms
coincide:

(1.1) ‖∇f‖ = ‖∇g‖ ⇐⇒ f = g + cst.

This result is ostensibly surprising since it readily yields that the function x �→
‖∇f(x)‖, which takes values in the real line, determines the entire gradient map
x �→ ∇f(x), which takes values in H. In the follow up work [11], the assumption
on smoothness of f was further weakened to continuity with the gradient norm
‖∇f(x)‖ replaced by the slope sf (x) := dist(0, ∂f(x)). Here ∂f(x) denotes the
subdifferential of the convex function f at x.1

In this work, we ask whether the slope (or the gradient norm in the smooth case)
robustly determines the function itself. That is, if the slopes for two functions are
close, then how close are the function values? Roughly speaking, we will show that
for any two convex continuous functions f and g defined on a Hilbert space, the
following estimate is true:

‖g − f‖U � ‖sg − sf‖U +
√
‖sg − sf‖U + ‖g − f‖Cf ∪Cg

.

Here U is any bounded set where f is bounded, ‖ · ‖U denotes the sup-norm over
U , and Cf and Cg are the sets of minimizers of f and g, respectively. In particular,
the deviation ‖g−f‖U exhibits a dependence on ‖sg−sf‖U that is at worst Hölder
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awards.
1We note that further generalizations of the determination result [11] have recently been

achieved: for convex continuous bounded from below functions in Banach spaces (see [12]) and
for Lipschitz coervice functions in metric spaces ([5]). For the time being, we do not pursue our
sensitivity analysis in this generality.
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with exponent 1/2. In the finite-dimensional setting H = R
n, we show that this

undesirable square root dependence may be dropped:

‖g − f‖U � ‖sg − sf‖U + ‖g − f‖Cf∪Cg
.

The downside is that the hidden constant in this bound depends on the length of
subgradient curves initialized in U and at worst grows super exponentially in the
dimension n.

2. Notation and preliminaries

Let H denote a Hilbert space and let f : H → R be a convex continuous function.
We denote the set of minimizers of f by

Cf := argmin f,

and suppose that Cf is nonempty (therefore the infimum value f∗ := inf f is at-
tained). The key object we will focus on is the slope sf (x) = dist(0, ∂f(x)), where
∂f(x) denotes the subdifferential:

(2.1) ∂f(x) = {v ∈ H : f(y)− f(x) ≥ 〈v, y − x〉, ∀x, y ∈ H}.
Equivalently, sf (x) measures the fastest instantaneous rate of decrease of f from x.

Our goal is to show that the deviation between the slopes of two convex functions
controls the deviation between the functions themselves. Our arguments will make
heavy use of subgradient dynamical systems, a topic we review now following [1,3].
Namely, [1, Theorem 17.2.2] shows that for every initial point x ∈ H, there exists a
unique, maximally defined, injective, absolutely continuous curve γ : [0, Tmax) → H,
such that

(GS)

{
γ̇(t) ∈

a.e
−∂f(γ(t))

γ(0) = x.

Subgradient curves γ satisfy a number of useful properties, summarized below.

(P1) Equality

‖γ̇(t)‖ = sf (γ(t)) holds for a.e. t ∈ [0, Tmax),

and the slope function t �→ sf (γ(t)) is nonincreasing on [0, Tmax).
(P2) The function r(t) = f(γ(t)) is convex and strictly decreasing on [0, Tmax),

and

lim
t→Tmax

f(γ(t)) = f∗.

(P3) The distance function t �→ d(γ(t), Cf ) is strictly decreasing on [0, Tmax).
Moreover, for every x∗ ∈ Cf , the function t �→ ‖γ(t) − x∗‖ is strictly de-
creasing on [0, Tmax).

Property (P1) follows from [1, Theorem 17.2.2 (iii)–(iv)], (P2) is given in [1, Propo-
sition 17.2.7 (i)], while (P3) follows easily after differentiation, using (GS) and (2.1).

Next, we will require two estimates on the length of subgradient curves. The
first (Lemma 2.1) is an easy consequence of (P1) and (P2) (we provide a proof for
convenience), while the second (Proposition 2.2) was essentially proved in [10] for
a particular class of Lipschitz curves (therein called Γ-curves, ultimately known as
self-contracted curves, definition coined in [7]) and became explicit for subgradient
curves in [6, 8].
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Lemma 2.1 (Length estimation I). Let f : H → R be a convex continuous function
with nonempty set of minimizers and let γ : [0, Tmax) → H be the solution of (GS).
Then for every T ∈ (0, Tmax), setting γT := γ(T ) we have:∫ T

0

|γ̇(t)| dt ≤ [sf (γT )]
−1

(f(x)− f∗) .

Proof. Set r(t) := f(γ(t)) and denote by h the inverse function of the mapping
t �→ r(t) on the interval [0, Tmax). Then for the reparametrization γ̃(ρ) = γ(h(ρ))
we have f(γ̃(ρ)) = ρ. Differentiating gives

d

dρ
[γ̃(ρ)] =

∂f(γ̃(ρ))◦

sf (γ̃(ρ))2
, for a.e. ρ ∈ (f∗, f(x)],

where ∂f(γ̃(ρ))◦ is the element of ∂f(γ̃(ρ)) of minimal norm, thus ‖∂f(γ̃(ρ))◦‖ =
sf (γ̃(ρ)). Taking into account that the function ρ �→ sf (γ̃(ρ)) is increasing, we
deduce:

T∫
0

‖γ̇(t)‖ dt =

f(x)∫
f(γT )

1

sf (γ̃(ρ))
dρ ≤ f(x)− f(γT )

sf (γT )

and the result follows. �

Proposition 2.2 (Length estimation II). Assume H = R
n. There exists a constant

Kn depending only on dimension such that for every x ∈ R
n the solution γ(·) of

the subgradient system (GS) has length bounded by Kn · d(x, Cf ).

The above result provides a universal bound Kn for the ratio between the length
of a subgradient curve and its diameter, the drawback being that that the depen-
dence of Kn on the dimension is of the order of nn/2+1 (see [9, 10]).

3. Main results

For any function ω : H → R and set U ⊂ H, we will use the notation

‖ω|U := sup
x∈U

(max {ω(x), 0}) and ‖ω‖U = sup
x∈U

|ω(x)|.

Note that ‖ω|U provides a one-sided bound,2 while ‖ω‖U is the standard two-sided
sup-norm.

The following is the main theorem of the paper.

Theorem 3.1. Let f, g : H → R be convex continuous functions. Assume Cf =
argmin f �= ∅ and set f∗ = min f . For each r > 0 define the tube around Cf by

(3.1) Ur := {x ∈ H : d(x, Cf ) ≤ r}.
Then for every x ∈ Ur, the estimate holds:

(3.2) g(x)−f(x) ≤ ‖sg−sf |Ur
+ ‖g−f |Cf

+2
√
d(x, Cf ) · ‖sg − sf |Ur

· (f(x)− f∗).

Moreover, in the finite-dimensional setting H = R
n, there exists a constant Kn > 0

depending only on the dimension n such that

(3.3) g(x)− f(x) ≤ Kn ‖sg − sf |Ur
d(x, Cf ) + ‖g − f |Cf

.

2Notice that ‖ · |U is the canonical asymmetrization of the seminorm ‖ · ‖U of uniform conver-
gence, see [4].
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Proof. Let x ∈ Ur \ Cf be arbitrary and fix δ > 0. Our goal is to show the estimate
(3.4)

g(x)− f(x) ≤ (‖sg − sf |Ur
+ δ) d(x, Cf ) +

‖sg − sf |Ur

δ
(f(x)− f∗) + ‖g − f |Cf

,

from which (3.2) follows by setting δ =
√

‖sg−sf |Ur ·(f(x)−f∗)
d(x,Cf )

.

We consider two cases:
(i) Suppose that sf (x) ≤ δ and let x̂ := projCf

(x) be the projection of x̂ to the

closed convex set Cf (therefore f(x̂) = f∗ ≤ f(x)). Then we compute

g(x)− g(x̂) ≤ sg(x) ‖x− x̂‖ ≤ (‖sg − sf |Ur
+ δ) d(x, Cf ),

where the first inequality follows from convexity of g. We therefore conclude

g(x)− f(x) = (g(x)− g(x̂)) + (g(x̂)− f(x̂)) + (f(x̂)− f(x))

≤ (‖sg − sf |Ur
+ δ) d(x, Cf ) + ‖g − f |Cf

,

thus verifying (3.4).
(ii) Suppose now that sf (x) > δ and let γ : [0, Tmax) → H denote the unique

maximal solution of the subgradient system (GS) for f . Define the function

a(t) := f(γ(t))− g(γ(t)).

Differentiating, for a.e. t ∈ [0, Tmax), we have (c.f. [1, Proposition 17.2.5]):

ȧ(t) = −sf (γ(t))
2 − 〈∂g(γ(t))◦, γ̇(t)〉,

where ∂g(γ(t))◦ is the element of minimal norm of ∂g(γ(t)), that is, sg(γ(t)) =
‖∂g(γ(t))◦‖. From the Cauchy-Schwarz inequality we conclude:

(3.5)

ȧ(t) ≤ −sf (γ(t))
2 + sg(γ(t)) · sf (γ(t))

= (sg(γ(t))− sf (γ(t))) sf (γ(t))

≤ ‖sg − sf |Ur
‖γ̇(t)‖.

Define

T := sup {t ∈ [0, Tmax) : sf (γ(t)) > δ}.
Setting γT := γ(T ) and integrating (3.5) on [0, T ] we obtain:

(3.6) g(x) ≤ f(x) + [g(γT )− f(γT )] + ‖sg − sf |Ur

∫ T

0

‖γ̇(t)‖ dt.

By Lemma 2.1 and the definition of T for every τ < T we get:

(3.7)

∫ τ

0

‖γ̇(t)‖ dt ≤ sf (γ(τ ))
−1 (f(x)− f∗) ≤ δ−1 (f(x)− f∗) .

Let γ̂ = projCf
(γT ) be the projection of γT to the set of minimizers Cf . Then

f(γ̂) = f∗ ≤ f(γT ) and ‖γT − γ̂‖ = d(γT , Cf ) ≤ d(x, Cf ).
Since for every τ ∈ (0, T ) we have sf (γ(τ )) ≤ δ, we deduce that
sg(γ(τ ))≤‖sg − sf |Ur

+ δ and consequently

g(γ(τ ))− g(γ̂) ≤ sg(γ(τ )) ‖γ(τ )− γ̂‖ ≤ (‖sg − sf |Ur
+ δ) d(x, Cf ),

where the first inequality follows from convexity of g. We readily obtain that:

(3.8)
g(γT )− f(γT ) ≤ (g(γT )− g(γ̂)) + (g(γ̂)− f∗)

≤ (‖sg − sf |Ur
+ δ) d(x, Cf ) + ‖g − f |Cf

.

Licensed to Univ of Washington. Prepared on Thu Jul 27 14:25:46 EDT 2023 for download from IP 205.175.118.186.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE SLOPE ROBUSTLY DETERMINES CONVEX FUNCTIONS 5

Combining (3.6), (3.7), and (3.8) yields the claimed estimate (3.4). Finally, the
estimate (3.3) follows by letting T ↑ Tmax in (3.6) and using Proposition 2.2 to
bound the length of γ(·). �

An easy consequence of the above is the following guarantee of asymptotic con-
sistency.

Corollary 3.2 (Robust (one-sided) determination). Let f, {fk}k≥0 : H → R be
convex continuous functions and suppose that Cf is nonempty and bounded. Assume
further that

(i) lim sup
k≥1

‖sfk − sf |U ≤ 0, for all bounded sets U ⊂ H; and

(ii) lim sup
k≥1

‖fk − f |Cf
≤ 0.

Then lim sup
k≥1

‖fk − f |U ≤ 0 for all bounded sets U ⊂ H.

Proof. Recalling from Theorem 3.1 the definition of Ur, we observe that Ur is
bounded. Our assumption can then be restated as follows:

∀r > 0 : lim sup
k≥1

‖sfk − sf |Ur
≤ 0 and lim sup

k≥1
‖fk − f |Cf

≤ 0.

An application of Theorem 3.1 for each r > 0 completes the proof. �

A symmetric version of the corollary follows by an analogous argument.

Corollary 3.3 (Robust (two-sided) determination). Let f, {fk}k≥1 : H → R be
convex continuous functions such that

Cfk �= ∅, ∀k ≥ 1 and C := Cf ∪ (∪k≥1Cfk) is bounded.

Assume further that:

(i) sfk converge to sf uniformly on bounded sets,
(ii) fk converge to f uniformly on C.
Then fk converge to f uniformly on bounded sets.

Remark 3.4 (Open question). Our approach is heavily based on the existence of
minimizers. We do not know if the results of this work can be extended to the class
of lower semicontinuous convex functions, which are bounded for below. This is a
challenging question that merits investigation.
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