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In this letter, we study the tunable stiffness and the multi-stability of corrugated tubes consisting
of serially interconnected hexagonal frusta based on the Kresling origami pattern. Depending on the
appropriate geometric designs, the corrugated origami tube either has straw-like behavior with an
axial inversion and bending multi-stability, or has multiple axial stable states via a twisting motion.
We focus on the latter category and reveal another stable “pop-up” configuration via outward popping
of the valley creases. By switching among the three types of stable configurations, the corrugated
tube can exhibit drastically different axial and bending stiffness. Moreover, the deformation mode can
switch from twisting to inversion after the pop-up. To quantify the tunable mechanical properties, we
employ an elasticity-based bar and hinge model and perform parametric studies that give insight on
the relationships between geometry and mechanics. The results suggest that designs with a higher
initial twisting angle and a lower initial slope will provide more significant stiffness and shape tuning,
and that for specific designs the frustum stiffness can be increased by four orders of magnitude after
pop-up. To validate the numerical results, we fabricate proof-of-concept origami frusta and corrugated
tubes. These prototypes demonstrate the desired multi-stable behavior, the tunable stiffness, and
mode switching deformations. These corrugated origami tubes have potential applications including
mechanical devices of tunable properties, deployable structures, reconfigurable robotic components,
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1. Introduction

Structural stiffness is of great importance in many engineer-
ing applications, and the capability to manipulate the stiffness
through a non-destructive way can offer tunable stiffness for
novel application in mechanical metamaterials and adaptable
structures [1]. Already, stiffness manipulation has been used for
applications which are otherwise not achievable through conven-
tional structures, such as the tunable robotic fish that can swim
significantly faster [2], a tunable vibration isolator [3], the pre-
cise movement of octopus arms based on the localized stiffness
tuning [4], minimally invasive surgery using a jamming mecha-
nism with tunable stiffness [5], and a quadcopter frame that can
soften during accidental collisions [6]. Among various means of
creating tunable stiffness, multi-stable structures naturally offer
different stiffness associated with the different stable configura-
tions [7-10]. The recoverable deformation between stable states
is often enabled by elastic buckling of confined beams and thin

* Corresponding author at: Deployable and Reconfigurable Structures Labora-
tory, Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109, USA.

E-mail address: filipov@umich.edu (E.T. Filipov).

https://doi.org/10.1016/j.em1.2022.101941
2352-4316/© 2022 Elsevier Ltd. All rights reserved.

shells [11-15]. Such local buckling behaviors help the multi-
stable structures to find valuable applications, including reusable
energy absorbers [13,16], the fast-encapsulating mechanism of
flytraps [14], and reversible planar-to —3D transformations [17].

In addition to conceptual designs that have not been mass
produced, there is a simple yet effective multi-stable mechanism
that has been used in everyday life for decades: the flexible
drinking straw [18,19]. The functional portion of the bendy straw
is a corrugated cylindrical shell, which is composed of identical
unit cells that are serially interconnected [20,21]. Each unit cell
consists of two opposing frusta that are connected by a crease
line (Fig. 1(A), the inset). In their most common realization, the
bendy straw can morph and lock in both axial and bending
deformations (Fig. 1(A)), allowing for continuous and variable
change of orientations over the tube length. Those functions allow
the corrugated tube to conform to different shapes [22], and
transport fluids and gases [23,24]. By utilizing their unique shape-
morphing and multi-stable features, researchers have deliberately
created programmable and reusable energy absorbers [21,25]
and a reconfigurable wire that can fit arbitrary 3D paths [22].
Owing to the wide spectrum of suitable applications, various
research has been performed to better understand the under-
lying mechanics, including the influences of geometry [20], the
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Fig. 1. Geometry of the Kresling cone and the corrugated tube. (A) A multi-stable straw in its three stable states. (B) An origami unit can be decomposed into
Kresling frusta, for which the geometry can be described by the planar views. (C) A Kresling corrugated tube in its extended, bent, and collapsed states, illustrated
by computer models (top row) and paper prototypes (bottom row). The two angles are §; = 30°, t = 0° (top frusta) and 6; = 70°, 7 = 0° (bottom frusta) (D) A
different Kresling frustum (6; = 65°, t = 50°) with a twisted, initial, and pop-up stable states shown by computer models (top row) and paper prototypes (bottom
row). (E) Three components of the bar and hinge model shown on the single frustum. (F) The numerical predictions of stability for different geometry of the Kresling
tube. (G) A ten-frusta corrugated tube showing three types of stable states (9, = 65°, t = 50°).

effects of pre-stress on the multi-stability [26], critical force of
the constituent frustum [18,27], and the dynamics of pneumatic
straws [28]. However, the curved surface makes it difficult to fab-
ricate the exact shape as desired, and the conventional molding
process for straw-like tubes introduces an uncertain amount of
pre-stress [26]. Bernardes and Viollet thus introduced an origami
design of the bendy straw that can be constructed without the
casting process [29].

Origami, the ancient art of folding paper sheets into com-
plex 3D geometries, has emerged as a predictable and pro-
grammable way to create multi-stable structures with tunable
properties [30-36]. The Kresling origami [37] and its deriva-
tives, have been extensively applied into the design of tubular
mechanisms for the multi-stability, shape-morphing, and tunable
stiffness. Multiple axial stable states allow the Kresling module to
be a mechanical memory storage device [38], and the adjustable

stiffness can create a tunable vibration isolator [3]. By synthesiz-
ing the above three features, the Kresling origami demonstrated
its use in achieving complex robotic motions with simple actua-
tion sources, such as the multi-directional deformations [39,40],
crawling robots [41-43], and a reconfigurable robotic arm with
joint-link duality [44]. However, while Kresling-based designs can
easily switch between different stable states via twisting motions,
typically these tubes cannot bear axial loads. From the mechanics
perspective, topology of the panels and creases are determined
by the geometry and cannot be changed by deforming among
different axial states. The deployment and retraction are guided
by antisymmetric twisting motions with identical energy barri-
ers, which implies that the deploying force will simultaneously
increase with the load-bearing capacity. Zhai et al. [45] created a
Kresling-inspired truss that can bear much higher uniaxial load,
while the deployment is flexible. However, such design requires
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bar members with asymmetric tension/compression behavior and
it can only be realized in the form of truss structures rather than
origami.

In this letter, we propose a versatile origami design of corru-
gated tubes consisting of conical Kresling units that shows dras-
tically different multi-stability with different geometries. More
importantly, these systems can be reconfigured into shapes with
high load-bearing capacity. The corrugated tube is inspired by
the bendy straw, but instead, the circular frusta are replaced by
conical Kresling units to allow for easy fabrication to expand
the space of programmable parameters. By tuning the geometry,
the tube can behave either like a straw with axial and bending
multi-stability, or as a tube that can switch among multiple
stable states via a twisting motion. Furthermore, for the latter
category, we revealed that another stable state, the pop-up, can be
achieved through local snap-through buckling of panels around
valley creases. After the snap-through, the Kresling module is
turned into a pop-up dome shape with a topologically different
arrangement of the panels and creases. As a result, crease folding
and the twisting motion both become prohibited. The Kresling
module gains high stiffness because the in-plane deformations
of panels will be substantially involved in global deformations.
Thus, axial and bending rigidity of the origami corrugated tube
are both significantly increased by triggering the pop-up stable
state of the Kresling units. This letter introduces and investigates
the properties of the pop-up stability and is organized as fol-
lows: In Section 2, we introduce the geometric parameters of
the Kresling corrugated tube and show different stability behav-
iors. Using a reduced-order numerical model, we capture and
predict the multi-stability of inversion and twisting, as well as
the pop-up (Section 3). We then present the underlying energy
behaviors to understand why the pop-up process can be bi-stable.
The shape change is quantified, and the subsequent tuning of
the deformation mode is predicted and demonstrated. Section 4
investigates the influence of pop-up on the axial and bending
stiffness. The pop-up and stiffness tuning are directly related
to the origami pattern, and we perform parametric studies to
explore how these behaviors are affected by geometric design.
The pop-up multi-stability and the tunable stiffness are both
demonstrated by paper prototypes. Finally, Section 5 provides
a discussion on the main findings from this work and presents
three conceptual applications based on the tunable properties.

2. Geometry, global multi-stability, and numerical model

The origami corrugated tube is inspired by the flexible drink-
ing straw (Fig. 1(A)) and the Kresling origami pattern. A typical
bendy straw is composed of identical units, where each unit
(Fig. 1(A), the inset) consists of two frusta that are connected by a
curved crease. A full inversion of the frustum can axially shorten
the corrugated tube (Fig. 1(A), the right photo), while a partial in-
version enables global rotation (Fig. 1(A), the middle photo). Our
design started by mimicking the constituent circular frustum with
a origami frustum (Fig. 1(B)), which is constructed using the con-
ical Kresling pattern [46-49]. By eliminating the need to achieve
a curved surface, the complicated molding process and associated
pre-stress can be avoided. Here, we do not focus on realizing
the straw-like behavior using the origami design, although it can
be replicated with appropriate geometries (Fig. 1(C)). Instead, for
another set of geometries, we find a “pop-up” stable state which
offers tunable stiffness in both the axial and bending directions.
This feature, to the best extent of our knowledge, has not been
identified and analyzed in the existing literatures.
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2.1. Geometry definition

The basic unit of the corrugated system presented in this letter
is a single cell that is composed of two origami frusta (Fig. 1(B)).
The circular cross-sections are approximated by regular polygons,
and the curved shells are broken into flat panels connected by
creases. For a single frustum (Fig. 1(B)), the crease pattern is
inspired by a triangulated cone pattern that is reported to have
multi-stability via twisting motions [46]. The frustum geometry
is defined by five independent parameters: the radius of the
circumscribed circle of the outer (R) and the inner (r) edges, the
number of sides of the polygon (N), the relative twisting angle
between the inner and outer polygons (7), and the slant angle of
the frustum (6,). In this letter, we choose the number of sides to
be N = 6 (hexagons), and the ratio R/r to be fixed at 1.55. The
two angles 6 and t, will be systematically varied to explore the
geometric influences on the pop-up stability and the subsequent
stiffness change.

2.2. Different types of multi-stability

Two origami frusta are connected by creases to form a single
unit cell, and a corrugated tube can be created by serially in-
terconnecting several identical unit cells. With different frustum
geometries, the origami tubes show different categories of multi-
stable behavior. When the frustum is shallow and less twisted,
i.e.,, 61 and t are small, the tube can undergo a bi-stable inversion
(Fig. 1(B)). We fabricate a prototype of a five-unit tube, using 6; =
30°, T =0° and 6; = 70°, T = 0° for the top and bottom frusta
in the unit cell, respectively. Those values are adapted from the
measurements of commercial bendy straw [21], and the resulting
corrugated tube can bend and shorten like a straw (Fig. 1(C),
the bottom row). This multi-stable axial inversion and bending
can be predicted (Fig. 1(C), the top row), using the reduced-
order simulation tool that will be introduced in the following
subsection.

On the other hand, when the frustum is steeper and more
twisted, i.e., 6, and t are greater, the origami frustum can collapse
through a bi-stable twisting motion. As shown by the left part
of Fig. 1(D), a frustum with 6; = 65°, T = 50° is collapsed
to a more compact state via a twisting motion. Notice that, for
a frustum in a corrugated tube, there exist two unique effects
that cannot be captured by a single stand-alone frustum: (i)
the confinement from neighboring frusta and (ii) the folding of
creases that connect separate frusta. Therefore, extra strips of the
same material are connected to the edges of the origami frustum
to supplement those mechanical effects (photograph in Fig. 1(D)).
During the twisting collapse, the folding of creases contributes
to the axial displacement, while the in-plane deformations of
the panels generate an energy barrier that separates two stable
states [50]. The bi-stable twisting motion can be captured and
predicted using an elastic truss model, in which the bars are
arranged in the same manner as the crease network.

In addition to the crease folding and the in-plane panel de-
formations, another mechanism of deformable origami could be
considered: the out-of-plane panel bending [51]. For instance,
the panel bending is involved in the pop-through defects that
create tunable stiffness in the Miura-ori tessellation [33]. Here
we adopt a similar strategy to trigger a pop-up state that gains
high stiffness. By applying forces and popping the valley creases
(Fig. 1(D)), the frustum pops into a different mechanically stable
state, which is referred as the pop-up state in the following
discussions. The localized snap-through buckling is reversible
because it does not involve plastic deformations of the panels
(Section 3). After the pop-up, the frustum becomes stiffer by
several orders of magnitude (Section 4), as the flexible twisting
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motion is prohibited in the topologically different crease net-
work. The tunable stiffness, combining with the shape-morphing
capability, make the corrugated system a suitable candidate for
several applications in different areas (Section 5). Based on the
observations of the prototypes, once the system reaches the pop-
up state, it will not switch back to the initial state under external
axial or twisting forces.

2.3. Numerical model and predictions

We use a bar and hinge model (Fig. 1(E)) to simulate the pop-
up process, quantify the shape change, and to investigate the
intrinsic tunable properties. The model treats deformable origami
structures as pin-jointed truss structures with hinges. Recent
advancements allow the model to simulate in-plane deformations
and out-of-plane bending, as well as the crease folding, in both
straight-crease origami [51-53] and curved-crease origami [54].
Based on elasticity, the simulation tool is capable of approximat-
ing nonlinear large-displacement responses rapidly and reliably,
with much less convergence issues than the finite-element (FE)
model. It has been carefully verified for various structures, and
the predictions are in good agreement with those of analytical
formulation, FE simulation, and experiments [20,54,55].

In the bar and hinge model, the folding of creases is rep-
resented by torsional springs defined along the crease lines, as
illustrated in Fig. 1(E). The out-of-plane bending of panels is also
represented using torsional springs that span across the panels,
where the exact location will be discussed in Section 3. For this
triangulated frustum (Fig. 1(B)), the in-plane deformations are
captured by bars that outline the perimeter and along the same
direction as the bending hinges. For a more in-depth discussion
of the formulation and the usage of the model, please refer
to [51,53].

The stiffness matrix of the system is comprised of contribu-
tions of the above three components, as well as a penalty term
for preventing the contact between adjacent panels [53]. The
stiffness of each of the three components is derived based on
linear elasticity and the geometry. Here, we use a representative
material with Young’s modulus E = 1.3 x 10°, Poisson’s ratio
v = 0.3, and a normalized thickness t/R = 4 x 1073, We use
arbitrary units and parameters of realistic relative magnitudes
to discover the fundamental pop-up stability and the stiffness
change. More details regarding the stiffness formulation, as well
as the calibration with respect to finite-element results, can be
found in Appendix A.

In order to understand the relationship between the geometry
and the category of the multi-stable behaviors, we perform a
parametric study with respect to the slant angle 6#; and the twist-
ing angle 7. In other words, under a specific geometry, we explore
whether a tube will exhibit the straw-like multi-stability of bend-
ing and inversion, or the twisting multi-stability. As compared to
the finite-element method, the running time of the bar and hinge
model is several orders of magnitude lower, making it an efficient
yet sufficiently precise tool for exploring the parameters in a
wide range. Here, we show the stability predictions for evenly-
distributed 6, € [20°, 65°] and t € [0°, 60°], with a gap of five
degrees (Fig. 1(F)). The numerical results match the conceptual
observations of the paper prototypes, in which a combination of
small T and 6, can provide a bi-stable inversion. Under an axial
load, the origami frustum will be inverted to a nearly-mirrored
configuration (Fig. 1(B), bottom left) when t is small (Fig. 1(F),
bottom). More realistically, this inversion can only be observed
with paper prototypes when 6, is also small because the strains
increase with 6;. To demonstrate a realistic range where the pa-
per prototypes only experience minor damage, i.e., the peak strain
is less than 5% (the dark blue region). Regarding the bending
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simulation, we fix §; = 70° and t = 0° for the bottom frustum
of a unit, and only vary the two angles for the top frustum. We
use a four-point bending test to check the bending stability of the
corrugated tube [20], and a multi-stable bending can only occur
with small 6; and t as well (Fig. 1(F)). The parameters of the
bottom frustum can also have limited influence on the bending
stability, but it will not change the trend with respect to the
parameters of the top frustum [20,22].

As 607 and t increase, the axial response will change from in-
version to twisting, and a combination of large 6; and t generate
bi-stability (Fig. 1(F), top right). All other cases in-between will
undergo a mono-stable twisting deformation, and the adjacent
panels will come into contact before the strain energy reaches
a local minimum.

A corrugated tube is constructed when the origami frusta
shown in Fig. 1(D) are serially interconnected (Fig. 1G). Let m
denote the number of frusta, there are up to 3™ different states of
the tube since each frustum has three stable states. However, we
focus on three representative stable states of the tube as shown
in Fig. 1G: from left to right: when all frusta stay at the twisted
state, the initial state, and the pop-up state. Those states have
different bending stiffness that will discussed in Section 4.

3. The pop-up deformation

In paper prototypes, we observe that the origami frustum can
deform into and stay at a pop-up state (Fig. 1(D)). Using the
bar and hinge model described in Section 2, we capture this bi-
stability of the pop-up and understand the underlying energy
behaviors, We then vary the two angles 6; and t to investigate
the geometric influences on the stability and the shape change.
A mode tuning of deformation, as well as a global bending de-
formation due to partial pop-up, will be discussed in Section 3.2.

3.1. Pop-up and the resulting shape change

For modeling the pop-up with the bar and hinge model, we
need to determine the location of the bending hinges. Due to
restriction of bending by adjacent panels, a parallelogram panel
in an origami will bend along the short diagonal [56-59], es-
pecially in large deformations. Here, we observe a similar phe-
nomenon for the triangular panels during the pop-up deforma-
tion (Fig. 2(A)). For the two adjacent triangular panels that are
connected by a valley crease, there are two vertices that are not
located on the connecting crease. After the pop-up (from (i) to
(ii)), we draw a dashed line that connects those two vertices
(Fig. 2(A), part (ii)). The two triangular panels bend with a single
curvature over the dashed line (part (iii)), and such bending can
be simplified and represented by the concentrated torsion of a
hinge, within the bar and hinge model.

The simulation of the pop-up deformation with the bar and
hinge model is shown in Fig. 2(B) for a frustum with 6; =
50°, t = 35°. In the planar pattern (Fig. 1(B)), each side of the
frustum corresponds to a quadrilateral ABCD (Fig. 2(B)), in which
one diagonal corresponds to the valley crease. We define bending
hinges along the other diagonal to be able to capture the pop-up
(Fig. 2(B), process (1)). The quadrilateral is thus divided into four
triangles that intersect at a node E, and these intersecting nodes
will be loaded with outward concentrated forces to trigger the
snap-through buckling (Fig. 2(B), process (2)). Under an appro-
priate loading magnitude, the frustum will pop into a dome-like
shape (Fig. 2(B), process (3)).

The pop-up state is a stable state, which indicates that the
strain energy reaches a local minimum. This underlying energy
behavior is captured in the bar and hinge simulation (Fig. 2(C)).
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Fig. 2. Pop-through of valley creases converts the cone to a dome-like shape. (A) A paper cone in its initial state (i) and pop-up state (ii). The zoom-in photo (iii)
shows the panel curvature after pop-up. (B) By placing a node on the valley crease, the pop-up process can be simulated by the bar and hinge model. (C) The
energy landscape of a bi-stable pop-up process. (D) The bar strains experienced during the pop-up process. (E) The energy distribution at the pop-up state. The
folding (F), stretching (S), and bending (B) energy plots are arranged counterclockwise. (F) Left: Numerical predictions of the pop-up stability with respect to the
geometric parameters and the sheet thickness; Right: underlying energy behaviors of two mono-stable cases. (G) Shape change from the initial state to the pop-up
state, including the enclosed volume (Left), the twisting angle (Middle), and the slant angle (Right).

There are three sources of strain energy that correspond to dif-
ferent mechanical deformations. The stretching strain energy first
increases then decreases, while the bending and folding strain
energies show monotonically increasing trends during the pop-
up (Fig. 2(C)). Effectively, the total energy has a valley point that
corresponds to the pop-up state. This bi-stable energy behavior
is similar to the bi-stable bending of corrugated straws [20],
where the in-plane strain energy is the only driving factor for
bi-stability.

The pop-up deformation occurs without significant panel
stretching as shown by the simulation results in Fig. 2(D), where
the peak bar strains remain less than 1.5% during the pop-up.
Because of these low strains, our physical prototypes do not
experience visible damage after undergoing multiple cycles of the
pop-up, i.e., remaining within the linear regime for construction
paper [60]. Given that the deformation mode is axially symmetric,
we only show the bar strains of one parallelogram, using the
naming conventions of Fig. 2(B). The bar strains are plotted
versus the normalized displacement Ag/R of the intersecting
node. At the pop-up state, the in-plane strain energy is negligible,
as compared to the crease folding and sheet bending energies
(Fig. 2(C), (E)).

From these analyses, we know that a pop-up deformation
is bi-stable when the stretching energy dominates the process.
Based on classical plate theory, the stretching energy is a linear
function of the shell thickness t, while the bending energy is
proportional to t3. In the bar and hinge model, the folding energy
and sheet bending energy are also both modeled as cubic func-
tions of t (see Appendix A.1). Therefore, for the same geometry,
the pop-up of frustum can be bi-stable with thinner sheets and
mono-stable with thicker sheets. This relationship is confirmed
by the parametric study shown in Fig. 2(F). Using a normalized
thickness t/R = 4x 1073, the pop-up process is bi-stable for most
geometries (the light pink and dark pink region). When the sheet
thickness is roughly quadrupled, the bi-stable region shrinks to
the top right corner (the dark pink region). Fig. 2(F) (part i) shows
the energy behavior and bar strains for the frustum as in Fig. 2(B),
(C), (D), but with higher thickness. During this mono-stable de-
formation, the bar strains show similar profiles as those of the
thinner counterpart. However, the folding and bending energies
occupy a greater portion, and there is no valley point in the
total energy. A pop-up process can still be mono-stable with thin
sheets (t/R = 4 x 1073), and part ii of Fig. 2(F) shows an example
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where the frustum geometry is 6; = 25°, v = 20°. With the
new geometry, the initial state is less twisted. The change in bar
strains is similar, whereas the strain magnitude is significantly
decreased from ~ 1.4% to ~ 0.3%. The stretching energy becomes
less important and cannot counteract the increasing trends of
the bending and folding energy. Therefore, the pop-up process is
mono-stable.

The pop-up deformation converts a twisted Kresling frustum
to a dome-like shape that has a different slant angle 6;, twist-
ing angle 7, and enclosed volume (Fig. 1(D)). These geometric
changes are quantified using the simulation results (Fig. 2G).
The frustum becomes a convex shape as the valley creases pop
out, thus the enclosed volume is always increased. For most
cases, the volume is elevated only slightly, while an extremely
shallow and twisted frusta will see an sharp increase in enclosed
volume by around seven times (Fig. 2G, the top-left corner of the
first contour plot). After the pop-up, the frustum will become
less twisted, as compared to the initial state. In other words,
the relative twisting angle between the two polygons become
smaller. As the initial 7 increases, the difference becomes more
significant (Fig. 2G, the second contour plot). On the other hand,
the slant angle, will become larger after the pop-up, i.e., the
frustum becomes steeper (Fig. 2G, the third contour plot). Thus, a
shallower and more twisted frustum gains a larger increase of the
slant angle. As a summary, frusta with smaller 6; and t angles can
result in more tunable systems that experience larger geometric
shape change from the pop-up deformation.

3.2. Tunable deformation

We observe two phenomena that connect the pop-up with the
multi-stable inversion and bending behaviors in Section 2. As we
showed in Fig. 1(E), under an axial load, shallow and less twisted
frusta can be inverted to a flipped configuration, while those
that are steep and more twisted frustum experience a bi-stable
twisting deformation. Those frusta in-between will undergo a
mono-stable twisting deformation, and the adjacent panels will
come into contact to prevent further axial displacement. Here,
we set 67 = 35°, t = 35° and while such a geometry does
not have the classified twisting and inversion bi-stabilities, it
can experience a bi-stable pop-up deformation. The mono-stable
twisting deformation and the bi-stable pop-up deformation can
be captured by both the bar and hinge model (Fig. 3(A)) and the
paper prototype (Fig. 3(B)). After pop-up, when an axial load is
applied to the top edge, the frustum can now also be inverted to
a flipped configuration (Fig. 3(A), B, bottom row). Therefore, with
certain geometries, a frustum can have two deformation modes
under axial load: a mono-stable twisting or a bi-stable inversion
after pop-up.

Besides the axial deformation, the bending stability can also be
tuned by the pop-up. When we apply forces to all valley creases,
a frustum is popped into a dome-like shape, where the top edge
is still parallel to the bottom edge (Fig. 1(D)). However, the top
edge becomes tilted with respect to the bottom edge when only
one valley crease is popped (Fig. 3(C)). A relative rotation is thus
created within a frustum, and a corrugated tube consisting of
multiple tilted frusta will result in a globally rotated configura-
tion. Here, we set ; = 65°, t = 50° so this corrugated tube
typically remains mono-stable for bending and cannot snap into
different bent states like a bendy straw (Fig. 1(C), (E)). However,
we simulate a corrugated tube consisting of sixty interconnected
frusta, where each frustum is tilted by popping only one valley
crease. This tube, which otherwise has no stable state under a
bending moment, now turns into and stays at a knot-like shape
(Fig. 3(D), top). When we only tilt a portion of the units in the
middle, the tube will be turned into a stable L-shape (Fig. 3(D),
bottom) This ability to selectively tilt the tube could potentially
be used to fit target shapes, similar to what can be done with
flexible straws [22].
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4. Tunable stiffness

The pop-up deformation not only provides the change of shape
and stability, but it also allows for the stiffness tuning in the axial
and bending directions. We observe the tunable stiffness with
the paper prototypes, then quantify the stiffness tuning using
the bar and hinge model. The following subsections describe the
multi-step analysis used to explore stiffness tuning, as well as the
underlying mechanics and geometric influence on these tunable
behaviors.

4.1. Tunable axial stiffness

4.1.1. Numerical predictions

The conical Kresling allows for tunable stiffness where the
pop-up state is significantly stiffer than the initial state. A frustum
with a large twisting angle t is flexible in its initial state that
allows motion and deployment, but is stiff after reaching the pop-
up state. Fig. 4(A) shows that, under the axial load from a plastic
panel that weighs ~ 20 g, a frustum (~ 2.8 g) collapses to a
nearly-flat configuration via a twisting motion (from (i) to (ii)).
However, after the pop-up (from (i) to (iii)), it support a masses
of more than 1.5 kg without any visible deformation (iv).

This tunable axial stiffness can be captured using the bar and
hinge model, and Fig. 4(B) illustrates the multi-step analysis for
computing the axial stiffness. During pop-up step (step (1)), all
the bottom nodes are fully restrained, and the valley creases are
popped out by forces applied at the intersecting nodes (defined
in Section 3.1). Next, the bottom nodes are released to slide
(step (2)), and the pop-up frustum will settle into a slightly
different configuration. Finally, using displacement control, the
pop-up frustum is axially loaded to compute the stiffness (step
(3)). Let A denotes the axial displacement, then both the initial
and pop-up states are compressed by A = 1.3 x 1073R. This
displacement is small compared to the frustum dimensions so
nonlinear behaviors can be neglected.

After the pop-up, the axial stiffness is increased by more than
four orders of magnitude (Kp/Ko &~ 1.2 x 10*) for the geometry
of ; = 50°, T = 60°, as shown in Fig. 4(C). The rationale behind
this drastic increase can be understood from the perspective of
the fundamental mechanisms of the Kresling origami. The change
of the energy distribution is plotted in Fig. 4(D) and E for the axial
compression of the initial state and the pop-up state, respectively.
For the initial state, the change of bending energy and in-plane
energy in the panels are negligible, as compared to the crease
folding energy (Fig. 4(D)). During axial compression in this initial
state, the stiffness may vary due to the materials and fabrication
process [61-64], but will remain flexible because only crease
folding occurs. When popping the frustum into the pop-up state,
the crease network is rearranged to be topologically different. As
a consequence, the axial deformation mode requires stretching
and shearing of the thin panels and thus a significantly higher
amount of energy change occurs for the same applied displace-
ment (Fig. 4(E)). Here, the crease folding and the panel bending
energies are barely changed during the axial compression, while
the in-plane energy of the panels increases substantially. Thus,
the pop-up state is substantially stiffer than the initial state. Using
a sensitivity analysis in Appendix B.1, we show that the value of
the folding stiffness does not affect this conclusion.

The stiffness tunability strongly depends on the geometry of
conical Kresling, specifically, the slant angle #; and twisting angle
7. The ratio of the pop-up stiffness to the initial stiffness is
computed for those geometries that show bi-stable pop-up defor-
mation (Fig. 4(F)). The parametric results indicate that, increasing
the initial twisting angle 7, or decreasing the slant angle 6;, can
lead to a higher stiffness ratio. In other words, a shallower and
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Mono-stable twisting Collapse

Continuous bending stability due to
the partial pop-up

Fig. 3. Pop-through of valley creases enables the switching of deformation modes. (A) Under vertical loading, many Kresling frusta geometries are mono-stable and
collapse via a twisting motion from their initial states. However, they can also be axially inverted after experiencing a pop-up deformation. (B) The axial mode switch
demonstrated with a paper prototype. (C) By pop-through of only one crease, the Kresling frustum reaches a tilted state, which allows for continuously-changing

orientations and bending-like multi-stability over the tube length, as shown in (D).

more twisted frustum offers more prominent stiffness tuning.
This finding is correlated to the shape change in the pop-up
(Fig. 2G), i.e., the stiffness sees a higher increase as the shape
changes more.

In addition to the stiffness tunability, the actual stiffness can
also be programmed by the two design angles (r and ). The
initial axial stiffness and the pop-up axial stiffness are plotted
with respect to the twisting angle t for three slant angles 6; =
40°, 50°, 60° (Fig. 4G, H). All axial stiffness values are nor-
malized by the maximum pop-up stiffness within the range of
T € [20°, 60°], 6; € [20°, 65°]. The axial stiffness of the initial
state decreases when the twisting angle t increases, whereas the
pop-up axial stiffness shows an increasing trend versus t. On the
other hand, both the initial and the pop-up stiffness will increase
with the slant angle 64, i.e., when the frustum gets steeper.

4.1.2. Experimental verification of the axial stiffness tuning

The axial stiffness tuning is experimentally quantified using
axial compression tests as described in detail in Appendix A.4.
Here, we fabricate origami frusta of four geometries (6, €
{50°, 65°}, T € {35°, 50°}), and compress each specimen at
the initial state and the pop-up state (Fig. 5(A)). We run seven
tests for each of the specimens, and Fig. 5(B) shows the average
and the range of the loading responses. The compression distance
is set to be small as compared to the frustum dimension, thus
the loading responses are approximately linear. Based on linear
regression of the experimental data, we compute the initial and
pop-up stiffness, as well as the stiffness ratio (Fig. 5(C)). The
experimentally-derived stiffness ratios are in good agreement
with those of the bar and hinge model, and the largest relative
error among the four geometries is 8.8%.

4.2. Tunable bending stiffness

A corrugated tube made of conical Kresling frusta will be
multi-stable, where the number of stable states grow exponen-
tially with the number of frusta. As shown in Fig. 1G, we focus
on three representative states: where all frusta are configured
to the twisted, initial, or pop-up states. In this section, we use
eigenvalue analyses to compare the global bending stiffness, and
cantilever tests to explore the bending isotropy.

To compare the tube bending stiffness at the three representa-
tive states, we perform an eigen analysis, where each eigenmode
represents a unique deformation mode of the structure, and the
associated eigenvalue is proportional to the total energy (kinetic
and strain energy). A higher eigenvalue indicates a higher exci-
tation energy and thus a higher stiffness for the corresponding
mode. No boundary constraints are applied on the structure so
the first six eigenmodes represent rigid body motions. We omit
these modes and start the numbering at the seventh mode, i.e., A3
would be Ag if those rigid-body modes are counted.

We set the tube geometry as §; = 65°, andt = 50°,
and the global bending eigenmodes for each state are shown
in Fig. 6(A). We select the first global bending mode, which
effectively represents the most flexible way to bend the tube. By
varying the initial twisting angle t, the eigenvalue corresponding
to global bending is plotted for all three states (Fig. 6(B)). All
eigenvalues are normalized by the maximum within the range
of T € [35°, 55°]. Frusta on the ends are reinforced to limit the
localized eigenmodes, and as shown in Appendix B.2, these end
reinforcements do not affect the global bending characteristics.
Fig. 6(B) shows that the eigenvalue for global bending is highest
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Fig. 4. The conical Kresling has a tunable axial stiffness. (A) The paper frustum can be collapsed by a thin plastic panel when it is in the initial state, but can
support three calibration weights (1.5 kg) when in a pop-up state. (B) The simulation setup using the bar and hinge model. (C) Numerical predictions of the axial
force-displacement (A) curves of the initial frustum and the pop-up frustum show that the structure is stiffer by more than ten thousand times. (D) The change
of energy in different bending, folding, and stretching elements during the vertical loading for the initial frustum and (E) the pop-up frustum. (F) The ratio of the

pop-up stiffness to the initial stiffness for different geometric parameters. (G) The normalized axial stiffness of the initial state (Ko) and (H) the pop-up state (Kp)
vs. the twisting angle for three frustum slopes.
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Fig. 5. Numerical predictions of the stiffness tuning are verified using axial compression tests. (A) A paper frustum being quasi-statically compressed in its initial
state (top) and pop-up state (bottom). (B) The axial loading responses of paper frusta with four geometries. The solid lines are the averaged responses, and the

shaded region denote the range of experimental data. (C) Comparison of the stiffness ratio between the bar and hinge model and the experimental results. The bars
show one standard deviation of seven tests.
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Fig. 6. Multi-stability of twisting and pop-up leads to tunable bending stiffness of the Kresling corrugated tube. (A) Deformation eigenmodes that correspond to the
global bending of the twelve-frustum tube at its twisted state (top), initial state (middle), and pop-up state (bottom). (B) The normalized bending eigenvalue (%) vs.
the initial twisting angle for the three stable states. (C) Deformation of the corrugated tube when used as cantilevers at different stable configurations. The left end
is fixed, and a uniform load is applied on the right end. The deformed shapes are scaled so the maximum displacement for each case is equal to the difference of the
inner and the outer radius. (D) The equivalent section modulus (mm?) at the three stable states based on the cantilever test for loads in the X-Y plane represented
as a polar plot. Here, the outer radius R is set to be 31 mm, and the section modulus is shown as distance from origin.

for the pop-up state, it is intermediate for the initial state, and is
lowest for the twisted state.

The bending eigenvalues of both the initial state and the pop-
up state decrease when the twisting angle 7 increases. On the
other hand, the bending eigenvalues for the twisted state shows
an increasing trend versus 7. These opposing trends allow for
designs where the bending stiffness can be highly tuned. For
example, a tube with 7 = 40° will have normalized eigenvalues
of 0.97, 0.30, 0.01 for the pop-up, initial, and twisted states
respectively, while a tube with T = 55° will have normalized
eigenvalues of 0.86, 0.19, 0.14 for the same three states.

We next use a cantilever test to explore the bending isotropy
of the corrugated Kresling tube. The corrugated tube can find a
suitable application as a reconfigurable cantilever with tunable
stiffness. At the supported end, all nodes are fully fixed, whereas
a total force of 1 is distributed on the other end of the tube
(Fig. 6(C)). The cantilever stiffness is calculated as K = 1/§, where
8 is the maximum tip displacement. Based on the cantilever
stiffness, we compute an equivalent section modulus (the second
moment of area, I) for different directions orthogonal to the Z
axis (Fig. 6(D)). Here, we use a fixed radius R of 31 mm. Using
the section modulus for the bending comparison eliminates the
effects of the tube length, thus giving a fair comparison among all
three states. A convergence study shows that a tube with twelve
frusta provides the equivalent section modulus that is within 0.1%
of a tube with twenty frusta (see Appendix B.3). By deploying and

popping a tube from the twisted state, the section modulus can
be increased by around fifty times.

Interestingly and beneficially, the section modulus is highly
isotropic (Fig. 6(D)). Although the frusta are hexagonal, there are
relative twists between the adjacent frusta that makes the cross-
sections of the tube look like a circular shape, as depicted by the
X-Y plane view (Fig. 6(C)). As a consequence, the tube is nearly-
isotropic when used as a cantilever, meaning the loading response
is consistent for all directions.

5. Discussion
5.1. Key findings

Using the reduced-order model and paper prototypes, we ex-
plored and demonstrated the versatile shape-morphing and stiff-
ness tuning of the conical Kresling tubes. In particular, the paper
has demonstrated the following characteristics of the system.

Geometrically governed multi-stability. Each frustum unit of
the Kresling tube can have a different multi-stable behavior that
is governed by the pattern geometry, namely the twisting angle
7 and the slant angle 6;. Kresling frusta with a high twisting
angle and a high slant angle possesses a twisting type bi-stability,
while frusta with low twisting and slant angles can experience an
inversion type bi-stability. A subset of Kresling geometries that
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collapse via a twisting motions can also bend into a partially
inverted state similar to the bending of a flexible drinking straw.

Pop-up bi-stability. The pop-up bi-stability occurs when the
valley folds on the side of the Kresling frustum pop outward,
and the two triangular panels become bent across a diagonal
roughly perpendicular to the valley fold. An exploration on the
geometric properties reveals that a more twisted frustum and
one that is made of thinner sheets is more likely to be bi-
stable for the pop-up deformation. When a Kresling frustum has
pop-up deformations around the full perimeter, it can be axially
inverted to a mirrored stable state. When only a single side of the
frustum is popped out, the system undergoes a global bending-
type deformation similar to a bent straw. As such, the pop-up
bi-stability further enhances the range of deformed multi-stable
configurations.

Pop-up for stiffness tuning.The pop-up bi-stability allows for
tuning of both the axial and bending stiffness of the tube. As the
pop-up distorts the frustum, the crease network is rearranged,
and the flexible twisting motion becomes prohibited. The axial
compression of a pop-up frustum thus primarily engages panel
stretching rather than the crease folding, leading to a stiffness in-
crease by up-to-four orders of magnitude. By varying the frustum
geometry, we find that a shallower and more twisted frustum
provides a more significant change in stiffness due to the pop-
up. For certain geometries, the bending stiffness can be further
tuned as the frustum can enter a twisted stable state that is more
flexible than the initial state.

5.2. Conceptual applications

The conical Kresling system offers advanced shape-morphing
and property tunability. Design of the Kresling geometry can
change the multi-stability type and stiffness properties. Ulti-
mately, each frustum could be designed individually to provide
a different local behavior along the tube length. Based on the
tunable properties and shape morphing, we propose the follow-
ing three conceptual applications. We envision that the conical
Kresling could be adapted for even more complicated scenarios.

Tunable energy absorber. When popped into the dome-like
shape, the origami frustum gains a substantially higher resis-
tance to axial compression. As compared to the initial state,
the pop-up frustum is expected to generate significantly higher
reaction forces during the quasi-static crushing and dissipate
much more energy. A tunable energy absorber can be created,
without using additional mechanisms to lock the system into a
stiff and functional state [65]. We employ a finite-element model
(ABAQUS/Explicit [66]) to simulate the crushing response, using
the elastoplastic properties of a mild steel [67] and a twisting
geometry (; = 55°, t = 60°). We set the outer radius R =
31 mm and t/R =4 x 1073

Under an axial compression, the initial frustum crushes to a
nearly-flat configuration via a twisting motion that is guided by
the crease pattern (Fig. 7(A)). The panels are barely stretched,
sheared, or bent, and the majority of the axial resistance comes
from the flexible folding at the creases. The reaction force curve
increases linearly with the crushing distance and remains rel-
atively low. With the material properties of a mild steel [67],
the initial frustum absorbs 0.76 ]. The pop-up frustum, however,
crushes similar to a conventional prismatic crash-box type energy
absorber [67] and generates substantially higher reaction forces.
When the pop-up frustum is compressed, the crushing results
in more panel deformations and material yielding (the insets of
Fig. 7(A)). The pop-up crushes with a substantially higher force
plateau and absorbs significantly more impact energy. For this
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tube design, the pop-up absorbs 7.5 ], showing a roughly tenfold
increase as compared to the initial frustum.

Deployable traffic cone.Given the conical shape and large ge-
ometric reconfigurability, the Kresling frustum can be used to
construct practical deployable structures such as a traffic cone
that allows for compact storage. As shown in Fig. 7(B), three
frusta with shrinking radii are axially stacked to mimic a cone.
The frustum geometry is set to be §; = 65°, v = 40° such that
the twisted state is nearly-flat when collapsed. Here, we set the
outer radius of the bottom unit to R = 120 mm, and twisted
state is about 46 mm high. By pulling up, all frusta switch back to
their initial state and the cone deploys to about 222 mm. In this
state, the structure remains flexible and can be readily collapsed
back. As an alternative, the valley creases can be pushed into
the pop-up state which increases the axial load-bearing capacity
and ensures that the structure will not collapse back to a stowed
state. At the pop-up state, the cone height is 271 mm, showing a
nearly-six times increase from the twisted state. The traffic cone
is reusable since the deployment and the pop-up will not engage
plastic deformations.

Reconfigurable robotic arm. Another potential application of
the system is to create robotic arms with localized tuning of
bending stiffness. Soft robotic arms can maneuver effectively
in complicated environments because they can undergo large
bending deformations without failure [68]. However, continuum
system made of soft material have infinite degrees of freedom
(DOFs), causing overly flexible systems and increased complexity
of achieving accurate motion control [44]. On the other hand, tra-
ditional robotic arms made of rigid links and flexible joints allow
for precise movement but poor conformability. Utilizing the pop-
up deformation which tunes the bending stiffness, one can build
a reconfigurable robotic arm that switches between a compliant
mode and a joint-link mode [44]. Here, we illustrate the idea us-
ing a tube of twenty four frusta (Fig. 7(C)). When every frustum is
configured to be in a twisted state, the tube is flexible allowing for
compliant deformations that can conform to a circular shape. The
structure can then be transformed into a joint-link mechanism
where some frusta stay in the twisted state to serve as a flexible
joint, while others are popped up to form rigid links. According
to the cantilever analysis in Section 4.2, there is a more-than-fifty
times difference of bending stiffness between the flexible joint
and the rigid links. This concept for a reconfigurable robotic arm
can allow for versatile maneuverability and transformation into a
more controllable joint-link system.

6. Concluding remarks

In this letter, we explored corrugated tubes made of coni-
cal Kresling origami. These offer a wide range of multi-stable
deformations and tunable stiffness characteristics. By applying
concentrated forces to pop the valley creases outward, an initially
twisted unit can be “popped into” a unique dome-like state. We
use an elasticity-based model to investigate the pop-up behav-
ior, its shape-morphing characteristics, and the stiffness tuning
that it offers. Proof-of-concept prototypes were fabricated from
construction paper and are used to demonstrate the predicted
bi-stability, as well as the subsequent stiffness change. Finally,
we propose and discuss three potential applications, correspond-
ing to the axial tunable response, the shape-morphing, and the
tunable bending stiffness.

This work focuses on the identification of stability, under-
standing of the underlying mechanics, and quantification of the
associated stiffness tuning. Future work on the system could
explore the practical realization and usage of the tunability. For
example, the tube could be appropriately sealed and pneumat-
ically actuated to achieve state transitions. Moreover, studies
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Fig. 7. Conceptual applications of Kresling corrugated tubes. (A) Tunable and deployable energy absorption system. The axial loading response is shown for the initial
and pop-up frustum states, with the corresponding Von Mises stresses at the final crushed states. (B) Kresling frusta with decreasing radii are axially stacked to
construct a deployable traffic cone that allows compact storage. (C) The different frusta of a reconfigurable robotic arm, can deform between the compliant mode

and the stiff joint-link mode.

could explore modifications to the design where panels on one
side of the polygonal frustum are made of thinner sheets such
that they pop out at a lower pressure threshold. As shown in
Fig. 3, the single-side pop out enables multi-stable rotation of
the tube. By strategically placing the thinner side along the tube
length, the tube can rotate towards various directions at different
pressure levels. Additional studies could explore realization of
these origami at a large scale where the thickness of panels would
need to be accommodated, and creases would need to undergo
large strains without failure. Finally, the pop-up stable state is
likely not limited to the Kresling origami. A statistical model from
a topological perspective would explore the relationship between
different crease patterns and this type of pop-up behavior.
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Appendix A. Evaluating stiffness of the conical Kresling tube

A.1. Definition of stiffness parameters in the bar and hinge model

In this work, we use a bar and hinge model to simulate the
pop-up deformation and the subsequent behaviors. Mechanical
stiffness and deformations of the origami structure are repre-
sented using a combination of three elements (Fig. A.1). The
in-plane stiffness for stretching and shearing deformations are
represented by space bar elements (Fig. A.1(B)). The out-of-plane
bending stiffness of the sheet is lumped into discrete hinges that
are placed along the diagonal of the quadrilateral (Fig. A.1(C)).
Another type of hinge element, called the folding hinge, is placed
along the crease to the capture stiffness related to folding the
crease (Fig. A.1(D)). Each of those elements is assigned a stiff-
ness that has been calibrated to the elastic material properties
(Young’s modulus E and Poisson’s ratio v), the sheet thickness t,
as well as the panel geometries [51,53,54,69].

The in-plane stretching stiffness is represented by the space
bar stiffness, which is a function of the material properties, the
bar length, and the bar area. Formulations of bar cross-sectional
areas for different polygonal panels have been established in
the literature [51,69]. Our modeling strategy, however, involves
subdivision of triangular panels in the conical Kresling, which
require new bar area definitions for accuracy. Based on previous
work, we modified the bar area definition such that the local (in-
plane stretching and shearing) and global (axial compression of
a conical Kresling) behavior matches the result of finite-element
simulation A.3. For a triangular panel of thickness t and polygonal
area S, we assign an area A; for bar No. i belonging to this panel
(Fig. A.1(B)):

4 036t hi\"?
A=Y w \w

where wj, h; is the length and height corresponding to bar i. For
a bar that intersects two triangles, its area is calculated by adding
up the above values from both of the involved triangular panels.

The panel bending stiffness Kz depends on the material prop-
erties as well as the panel geometry. For a bending hinge of length

(A.1)
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Fig. A.1. Stiffness definition of the bar and hinge model. (A) A frustum is discretized into bars and hinges. (B) The in-plane bars and the area definition. (C) The
hinges for capturing the out-of-plane bending of the panels. (D) The hinges for representing the folding of the creases.

Lg, the stiffness definition is modified from previous work [51] in
an effort to match the finite-element result of axial compression:
Et?

i (7).

The folding stiffness can be affected by case-specific factors
and a precise description has not been established yet. As shown
in Fig. A.1(D), for a crease line of length L, the stiffness is approxi-
mated by the following equation based on previous work [51,61]:

Lr Et?
* 12(1-12)

Complicated and localized effects such as the material
anisotropy, fabrication process, and bending history, are simpli-
fied and reduced into a single parameter, called the length scale
factor L*. This factor is typically believed to be proportional to
the sheet thickness [61]. Given that in our work the thickness ¢ is
normalized by the radius R to enable a scalable analysis, L* is also
normalized as L*/R for a fully scalable analysis. In this work, we
set L*/R = 3 unless specifically mentioned. Using a sensitivity
analysis in the next section, we show that the value of L* does
not affect the qualitative results of the pop-up stability and the
stiffness tuning.

Kz = 0.23 (A2)

Kr = (A.3)

A.2. Energy calculation in the bar and hinge model

In this work, the stability type is determined by the landscape
of the strain energy. In the bar and hinge model, the strain energy
is separated into two parts: one stored in the bar elements (Up,;)
and the other stored in the rotational hinges (Usp,).

For a bar element of length L, the bar area can be calculated
using Eq. (A.1). Based on previous work [53], the stored energy of
a bar element is then given by

Upr = WA - L (A4)
In Eq. (A.4), W is the strain energy density given by
N .
w=S"H9_3 (A5)
— O
Jj=1

where A denotes the principal stretch, and N, pu;, and «; are the
material constants. The principal stretch A = /2E, + 1, where
E, is the Green-Lagrange strain that can be calculated using the
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nodal displacements of the bar element. Based on the aforemen-
tioned work, we select a special case with N = 2. The material
properties can be determined by providing oy = 5, @ = 1 and
setting the initial tangential modulus to be the Young’s modulus.
For the rotational hinges, the strain energy is calculated as
1 1

Uspr = S Ka(0” — 0g)” + SKe(9" — 0g)* (A.6)
where Kg, Kr are the stiffness of the bending and folding hinges,
respectively. ¢® ¢f denote the rotational angles of the bending
and folding hinges, while the angles <pg, (pg are the neutral angles
at which the bending and folding springs are stress-free.

A.3. Finite-element verifications

We perform finite-element simulations (ABAQUS/Standard
[66]) on triangular panels and the origami frusta to verify the bar
and hinge model. To examine the in-plane performance of the
bar and hinge model, different triangular panels are stretched and
sheared and compared to a similar simulation with a discretized
FE model (Fig. A.2(A), B, D, and E). By varying the aspect ratio
and the skew angle g (Fig. A.2(A)), the comparison can be made
for triangular panels of various shapes. Fig. A.2(C) and F show the
comparison, where the stiffness are normalized by the maximum
value within each parametric range. For both of the character-
istic deformation modes, the truss stiffness qualitatively match
with the FE stiffness, while the error varies with the triangular
shape. For less skewed triangles the bar and hinge model tends
to underestimate the axial stiffness but overestimate the shear
stiffness. For more skewed triangles (~ B > 90°), the bar and
hinge model is reasonably accurate for both stretching and shear
deformations.

While the accuracy of the truss model for in-plane deforma-
tions does vary, typically the global response of most origami
structures is determined by the geometry-dominated competition
of kinematics and stiffness, not the localized material strains [52].
Thus, the global stiffness and the geometric influences could be
predicted with reasonable accuracy even if the in-plane stiffness
is only crudely approximated. In order to demonstrate this fea-
ture, we build a finite-element model of the origami frustum to
provide a high-fidelity benchmark for the results (Fig. A.2G). Pan-
els are meshed with S3 general purpose elements, where adjacent
panels are connected via connector elements with prescribed
stiffness to simulate crease rotations (the same stiffness as de-
fined in Eq. (A.3)). Linear-elastic material properties are set to be
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Fig. A.2. Comparison of the numerical predictions between the finite-element (FE) model and the bar and hinge model. In-plane deformations of triangular panels
are simulated as stretching and shearing using the bar and hinge model (A, D) and the FE model (B, E), respectively. The normalized stiffness of stretching and
shearing are shown in (C) and (F) for triangles of various shapes. (G) Finite-element model of the Kresling frustum shown with a representative sketch of the meshing
scheme, while a finer mesh is used for the actual analyses. The zoom-in plot shows the details of the connections between adjacent panels. (H) Predictions of the
axial stiffness of the frustum with the bar and hinge model and the FE model. (I) A sample bi-stable axial loading response of the frustum, where the critical force
and the corresponding axial displacement are denoted by P, and A, respectively. (J) Predictions of P, and A with the bar and hinge model and the FE model.

the same as the bar and hinge model. Convergence with respect
to the mesh density is examined, and a mesh size of roughly
0.03R x 0.03R can provide a stiffness estimation that is within
0.5% of a mesh with 0.01R x 0.01R elements. Aiming to minimize
the discrepancy of the global axial stiffness, the calibration of the
model returns the stretching and bending stiffness definitions as
shown in Eq. (A.1)(A.2).

With the calibration, a close match of the axial stiffness is
achieved for various geometries. In Fig. A.2H, we show the com-
parison for three categories of frusta. From left to right are
frusta that would undergo twisting collapse, large-strain inver-
sion, and small-strain inversion if the prescribed displacement is
big enough. In each category, we vary either the twisting angle
T or the slant angle 6; to enable a parametric comparison. The
axial stiffness of the bar and hinge models are in good agreement
with those of the FE models. Furthermore, we compare the large-
displacement response between the bar and hinge model and
the FE model. Specifically, the critical force and the associated
axial displacement (Fig. A.21), are computed using both numerical
models. The results are listed in Fig. A.2], and a good agreement is
also achieved for the representative case from each of the above
categories.

A.4. Experimental proof-of-concept verification

A.4.1. Sample fabrication

In this work, we fabricated physical models with different
construction papers, and the normalized thickness is fixed at
t/R = 4 x 1073, For the axial compression tests, the specimens
are fabricated from paper sheets with a thickness of 0.25 mm, and
the outer radius R is set to be 62 mm. For illustrating the multi-
stable behaviors, however, we fabricate larger paper prototypes
(R = 93 mm) using thicker paper sheets (0.37 mm). For each
frustum, the planar crease pattern is input into a CAD software
and then cut into a paper sheet using a laser cutter (Universal
Laser VLS6.60). The patterned sheet is then manually folded into
the frustum shape. Each planar cut of the frustum has extra
tabs for connecting them to neighboring units. For a stand-alone
frustum, strips are attached to a hexagonal top and bottom edge
that offers a similar confinement as that provided by an adjacent
frustum.

We recognize that these physical models are made of paper
and as such embody complexity that is not captured in our mod-
els, e.g., anisotropy [70]. However, the physical specimens are
used primarily as a proof-of-concept verification to show that the
types of multi-stable behavior observed in the simulations also
occur in physical models with the same geometric parameters.
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Fig. B.1. Sensitivity of the axial stiffness tuning with respect to the crease stiffness.

Fig. B.2. Reinforcing the ends of the tube prevents localized deformation modes but does not lead to a significant change in the bending eigenvalues. The deformation
modes of global bending, as well as the normalized eigenvalues, are shown for tubes with (A) reinforced ends and (B) unreinforced ends. For the reinforced cases,
the end frusta will not be popped or axially compressed. All eigenvalues are normalized by the maximum eigenvalue of the reinforced tube within the range of

T €[35°, 55°].

A.4.2. Setup of the axial compression test

In order to quantify the stiffness tunability experimentally,
the frusta are loaded using a Mark-10 testing stand (ESM1500G)
and a force gauge (M5-50). As shown in Fig. 4, the global com-
pression strain (compression/frustum height) is controlled below
1% to avoid nonlinear effects. Each specimen is compressed at
a strain rate of 1 mm/min. We observe that the axial compres-
sion response stabilizes after 20 load-unload cycles, thus every
specimen is compressed 20 times prior to data collection.

Appendix B. Sensitivity of the analyses

B.1. Sensitivity of the stiffness tuning

In Section 4.1 of the main text, we show the axial stiffness of
the frustum can be increased after the pop-up, with the magni-
tude increase primarily affected by the twisting angle 7. A more
twisted frustum will provide more significant stiffness tuning.
Those results are collected with a user-defined crease stiffness
L*/R = 3, where in reality the actual L* can vary depending on the
type of origami structures. To investigate the effects of the case-
specific L* on the stiffness tuning, we perform a parametric study
for three levels of crease stiffness (Fig. B.1). With stiffer creases,
the bi-stable region shrinks, and the axial stiffness becomes less
tunable (i.e., the stiffness ratios are smaller). This behavior is ex-
pected because folding energy has a negative impact on achieving
bi-stable pop-up (Fig. 2(C)). Moreover, the axial stiffness of the
initial state is mainly affected by the crease folding, whereas the
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stiffness of the pop-up state is dominated by panels stretching
and shearing. Therefore, stiffer creases only stiffen the initial state
while have little effect on the pop-up state. The overall stiff-
ness ratios thus become smaller. On the other hand, with softer
creases, the bi-stable region expands and the stiffness ratios are
greater. However, the value of crease stiffness does not change
the trend of stiffness tuning of the overall findings reported
earlier. A more twisted frustum still causes a more significant
stiffness change, no matter what the crease stiffness is.

B.2. Reinforcement of the tube ends

In Section 4.2, we study the global bending stiffness of tubes
made of the Kresling frusta. In our study, we reinforce the end
frusta of the tube to avoid eigenmodes that only involve local
deformations. Specifically, we reinforce and stiffen the creases
within the end frustum by 10* times to restrict the local de-
formations. This subsection verifies that this reinforcement does
not substantially alter the global bending stiffness. Fig. B.2 shows
the global bending eigenmodes and the normalized eigenvalues
for both reinforced and unreinforced tubes at the three stable
states. The eigenvalues are normalized by the maximum value
within the range of T € [35°, 55°] (see Fig. 6). Due to the
reinforcement, the end frusta will not be popped or compressed
when simulating the global bending of the pop-up tube and the
twisted tube, respectively. With the reinforcement, the global
bending is always mode # 3 for the twisted tube, # 2 for the initial
tube, and # 1 for the pop-up tube (Fig. B.2(A)). The modes before
the global bending correspond to flexible axial deformations.



Z. Wo and E.T. Filipov

Figure 5
100% X
3 Twisted |
-~ ~ p 1
N S Initial |
<] o ]
i 10% S = = = Pop-up 1
© S 1
= S !
kS N |
2 1% o~ N !
bl
~ 1
.

1

0.1%

4

Fig. B.3. The estimated equivalent section modulus converges with the number
of frusta. A tube with twenty frusta is used as a point of comparison to find the
relative error. For the cantilever tests that are presented in Fig. 6, the relative
errors are below 1%.

In Fig. B.2(B), we present the global bending eigenmodes for
the corresponding tubes without the reinforcement. Notice that,
now the global bending modes are 3, 5, 4 for the three states.
Without the ends reinforcement, there exist some low-energy
eigenmodes that only involve local deformations at the ends.
In fact, the mode number of the global bending can vary for
different geometries because of these local deformations. One
must visually identify the bending eigenmode case by case, and
manually collect the associated eigenvalue for the parametric
analysis. The reinforcement at the ends allow us to automate
this process, without bringing substantial differences into the
eigenvalues. The relative error for the initial tube is lower than
0.5%, while the other states observe errors between 5% and 8%.
For the reinforced tube, the twisted state is longer than the unre-
inforced counterpart because the end frusta are not compressed.
As a consequence, the bending eigenvalue is smaller. On the
other hand, for the pop-up state, the reinforced tube is shorter,
and the bending eigenvalue is slightly greater than that of the
unreinforced pop-up tube.

B.3. Convergence of the equivalent section modulus with respect to
the number of frusta used

In Section 4.2, the corrugated tubes are loaded as cantilevers
at the three stable states. We calculate the equivalent section
modulus based on this cantilever loading scenario, using a tube
consisting of twelve identical frusta. Here, we show that, in the
cantilever test, the twelve-frustum tube provides estimates of the
section modulus that are within 1% of a twenty-frustum tube
(Fig. B.3). This claim holds for all three stable states.
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