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Abstract

Parameter learning for high-dimensional, partially observed, and nonlinear stochastic pro-
cesses is a methodological challenge. Spatiotemporal disease transmission systems provide
examples of such processes giving rise to open inference problems. We propose the iter-
ated block particle filter (IBPF) algorithm for learning high-dimensional parameters over
graphical state space models with general state spaces, measures, transition densities and
graph structure. Theoretical performance guarantees are obtained on beating the curse of
dimensionality (COD), algorithm convergence, and likelihood maximization. Experiments
on a highly nonlinear and non-Gaussian spatiotemporal model for measles transmission
reveal that the iterated ensemble Kalman filter algorithm (Li et al., 2020) is ineffective and
the iterated filtering algorithm (Ionides et al., 2015) suffers from the COD, while our IBPF
algorithm beats COD consistently across various experiments with different metrics.

Keywords: Sequential Monte Carlo, Parameter learning, Spatiotemporal inference, Curse
of dimensionality, Graphical state space models

1. Introduction

We firstly give the background and motivation in Section 1.1 and then state our contribu-
tions in Section 1.2, followed by the organization of the paper in Section 1.3.

1.1 Background and motivation

Spatiotemporal data arises when measurements are made through time at a collection of
spatial locations. Spatiotemporal inference for epidemiological and ecological systems is
arguably the last remaining open problem from the six challenges in time series analysis of
nonlinear systems posed by Bjørnstad and Grenfell (2001). A disease transmission system is
stochastic and imperfectly observable, thus it is commonly modeled by a partially observed
Markov process (POMP), otherwise known as state space model or hidden Markov model,
which consists of a latent Markov process representing the time evolution of the system and
a measurement process by which stochastic observations of this latent process are collected
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at specified time points. Particle filters (PFs), also known as sequential Monte Carlo (SMC)
methods, are recursive algorithms that enable estimation of the likelihood of observed data
and the conditional distribution of the latent process given data from a POMP model
(Doucet et al., 2001; Cappé et al., 2007; Doucet and Johansen, 2009).

For the purpose of parameter learning, two iterated filtering (IF) approaches were de-
veloped, Ionides et al. (2006) and its subsequent improvement Ionides et al. (2015) referred
to as IF1 and IF2 algorithms respectively, which coerce a particle filter into maximizing
the likelihood function for unknown parameters. PF methods and the parameter learning
algorithms based on them (such as IF2) are capable of handling highly nonlinear latent pro-
cesses (King et al., 2008; Ionides et al., 2011). In epidemiological applications, IF1 and IF2
can considerably increase the accuracy of outbreak predictions while also allowing models
whose structures reflect different underlying assumptions to be compared (Dobson, 2014).
Unfortunately, PF suffers from rapid deterioration in performance as the model dimension
increases (Bengtsson et al., 2008; Snyder et al., 2008). Rebeschini and Van Handel (2015)
rigorously showed that PF suffers the curse of dimensionality (COD) phenomenon, which
says that the upper bound of the algorithmic filter error is exponential in the dimension
of the state space of the underlying model. As expected, PF-based parameter learning
algorithms suffer from the COD, limiting their applicability in high-dimensional problems.

The ensemble Kalman filter (EnKF) is a recursive filter suitable for problems with a
large number of variables. EnKF represents uncertainty in the latent state space using a
finite collection of state values, and we refer to these ensemble members as particles by
analogy with PF. EnKF differs from PF by adopting a Gaussian approximation in the rule
used to update the particles when filtering. EnKF methods have been used for geophysi-
cal models in data assimilation due to their computational scalability to high dimensions
(Houtekamer and Mitchell, 2001; Evensen, 1994; Katzfuss et al., 2020). For the parame-
ter learning purpose, the iterated EnKF (IEnKF) algorithm extends the IF2 approach for
parameter estimation by replacing a PF with an EnKF; it propagates the ensemble mem-
bers by simulation from the dynamic model and then updates the ensemble to assimilate
observations using a Gaussian-inspired rule (Li et al., 2020). Given that EnKF relies on
locally linear and Gaussian approximations, it can be ineffective for highly nonlinear and
non-Gaussian systems (Ades and Van Leeuwen, 2015; Lei et al., 2010; Miller et al., 1999).
Unsurprisingly, the corresponding unsuitability carries to EnKF-based parameter learning
algorithms (such as IEnKF).

Block sampling strategies for PF were proposed with temporal blocks in (Doucet et al.,
2006). Rebeschini and Van Handel (2015) investigated spatial blocks and proved that a
block PF (BPF) beats the COD under certain conditions. However, the beautiful work of
Rebeschini and Van Handel (2015) is theoretical in nature and was not anticipated to be
applicable to real high-dimensional problems (page 2812 therein). In recent years, many
efforts have been undertaken to develop practical methods for these problems by developing
the “block” concept, which include, but are not limited to, the following: Johansen (2015)
proposed a method for systems identification based on both the block sampling idea and
the annealed importance sampling approach; Singh et al. (2017) applied the particle Gibbs
algorithm inside a generic Gibbs sampler over temporal blocks to handle long time series;
Park and Ionides (2020) proposed a twisted particle filter model (Whiteley and Lee, 2014)
with iterated auxiliary PFs (Guarniero et al., 2017) to infer on moderately high-dimensional
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spatiotemporal models where its particle filtering corresponds to an adapted version of the
block sampling method; Goldman and Singh (2021) proposed a blocked sampling scheme
for latent state inference in high-dimensional state space models; Ionides et al. (2021) pro-
posed the bagged filter for partially observed interacting systems and showed that BPF can
perform well on practical scientific models.

So far there is no high-dimensional parameter learning approach that is generically
applicable over partially observed, highly nonlinear, stochastic spatiotemporal processes.
The goal of this paper is to develop such an algorithm that is generically applicable and able
to beat the COD. Unlike the limited theoretical understanding of EnKF and hence IEnKF,
the proposed algorithm has rigorous convergence analysis with a precise error bound.

1.2 Our contributions

In this paper, we propose the iterated BPF (IBPF) algorithm. The contributions of the
paper fall into four distinct categories:

1. General graphical model structure. In this paper, we consider a general graphical
POMP model having general state spaces and measures, general transition densities,
and a general graph structure. Specifically, the latent state (Xn)n≥0, the observation
sequence (Yn)n≥1 that is conditionally independent given (Xn)n≥1, and the auxiliary
Markov chain (Θn)n≥0 for parameter learning purpose, have their own state spaces
which are all Polish spaces endowed with their own general reference measures. The
transition densities of Xn, Yn, and Θn are all time-inhomogeneous and in the general
form where only standard conditions are required. The state of (Xn, Yn,Θn) at each
time n is a random field (Xv

n, Y
v
n ,Θ

v
n)v∈V indexed by a general finite undirected graph

with V being the set of vertices. We consider the graph having a partition, which is
a collection of nonoverlapping blocks whose union is the graph.

2. Innovative methodology. The BPF algorithm in Rebeschini and Van Handel (2015)
is the first PF algorithm that has rigorous guarantees on beating COD, however
“it is far from clear whether this simple algorithm is of immediate practical utility
in the most complex real-world applications” (page 2812 therein). IBPF embeds
BPF on an extended state space in an iterative scheme that constructs parameter
values approaching the maximum of the likelihood function. It inherits from BPF the
property that only observations in each block are used to update predictions, which
is the key to scalability. When all vertices are in a single block, IBPF is in nature
IF2; when there is inference on the latent process, all vertices are in a single block,
and parameters are known, IBPF is PF; when there is inference on the latent process
and parameters are known, IBPF is BPF; when all vertices are in a single block and
there is no particle involved, IBPF is the iterated importance sampling.

3. Theoretical contribution. Our IBPF algorithm has rigorous performance guaran-
tees in terms of graph dimensions, time steps, algorithm convergence, and likelihood
maximization. In Theorem 1, under standard assumptions, we rigorously show that
the algorithmic error can be bounded using the dimension of a local block, uniformly
both in time and in the model dimension. Our result generalizes that of Rebeschini
and Van Handel (2015) to the time-inhomogeneous setting. They introduced the
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mathematical machinery of a local particle filtering algorithm in high dimension that
had not previously been applied in the study of nonlinear filtering, however being
time-homogeneous is a limitation in practical applications. Furthermore, with our
precise bound, we provide exact sufficient conditions needed and reveal the influences
of crucial quantities (such as the range of interacting neighborhoods and the maximal
number of blocks of interaction) on the error bound.

4. Excellent performance. For spatiotemporal modeling, it is appropriate and some-
times necessary to have some parameters vary across locations, for instance, for
measles transmission modeling the basic reproduction number regarding the epidemic
transmission speed. To demonstrate how to use IBPF and compare its performance
with IF2 and IEnKF, we generalize the spatiotemporal model for measles transmission
covered in Park and Ionides (2020) and Ionides et al. (2021), by allowing location-
specific parameters. Extensive experiments reveal that IF2 does not scale well which
confirms the phenomenon that PF does not scale well with dimensions (e.g. Bengtsson
et al. (2008)), and IEnKF performs very badly for highly nonlinear and non-Gaussian
problems confirming the same phenomenon of EnKF (e.g. Ades and Van Leeuwen
(2015)). In all experiments, IBPF is able to find parameter values with a likelihood
on or better than that of the true parameters consistently. The performances of
IBPF with respect to iterations and block sizes are further examined, and confirm our
theoretical findings.

1.3 Organization of the paper

The rest of the paper proceeds as follows. In Section 2, we set up our general model and pro-
vide necessary definitions. In Section 3, we provide the main results of this paper, by firstly
describing IBPF in Section 3.1, conducting preliminary algorithmic analyses in Section 3.2,
providing theoretical results in Section 3.3, and then investigating likelihood convergence
in Section 3.4. In Section 4, we conduct performance analysis through a generalized spa-
tiotemperal model for measles covered in Section 4.1, over the dataset covered in Section
4.2, and evaluate the performance of IBPF, IF2 and IEnKF in Section 4.3. We conclude
with discussion and extensions in Section 5. In Appendix A, we provide the algorithms
of IF2 and IEnKF for comparison. In Appendix B, existing technical results are provided
which are needed for rigorous proofs following. In Appendix C, we prepare for mathematical
derivations by properly defining filtering and correlation measurement quantities. We defer
all the lemmas and propositions in bounding the bias and variance of the algorithmic error,
to Appendix D and Appendix E, respectively. In Appendix F, we provide a rigorous proof
of our main theorem. Original parameter learning results without rescaling to account for
spatial and time dimensions, are provided in Appendix H.

2. Model and analysis setups

In this section, we firstly describe the extended POMP model (Xn, Yn ; Θn) on graph G in
Section 2.1, and then the partition K that separates G into nonoverlapping blocks in Section
2.2, followed by the global and local metrics necessary to conduct analysis in Section 2.3.
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2.1 Extended POMP model on graph

A general POMP model is a Markov chain (Xn, Yn), where (Xn)n≥0 is a Markov chain in a
Polish state space X, while (Yn)n≥1 is conditionally independent given (Xn)n≥1 in a Polish
state space Y. Here, Xn is not directly observable while Yn serves as its partial and noisy
observations made at time n. Define the reference measure of Xn (resp. Yn) on its state
space X (resp. Y) as ψ (resp. φ). Suppose that there is an unknown auxiliary Markov
chain Θn for parameter learning, which has its own Polish state space Θ and reference
measure λ. For n ≥ 1, with respect to ψ we define the emission density (or measurement
density) of Xn as fXn|Xn−1

(xn|xn−1 ; θn), with respect to φ we define the transition density
of Yn as fYn|Xn(yn|xn ; θn), and with respect to λ we define the transition density of Θn as
fΘn|Θn−1

(θn|θn−1 ;σ) where σ is a nonnegative constant. That is, with our extended Markov
chain model (Xn, Yn ; Θn), its transition probability is given by

P (A|(xn−1, yn−1) ; θn)

=

∫
1A(xn, yn)fXn|Xn−1

(xn|xn−1 ; θn)fYn|Xn(yn|xn ; θn)ψ(dxn)φ(dyn).

The state of (Xn, Yn,Θn) at each time n is a random field (Xv
n, Y

v
n ,Θ

v
n)v∈V indexed by

a finite undirected graph G = (V,E), where V stands for the set of vertices and E stands
for the set of edges. The graph describes the location relationship of data and the spatial
degrees of freedom of the model. Based on the network structure, the state spaces X, Y,
and Θ can be written as the product forms

X =
∏
v∈V

Xv, Y =
∏
v∈V

Yv, and Θ =
∏
v∈V

Θv.

Define the reference measure of Xv
n on its state space Xv as ψv. Define the reference measure

of Y v
n on its state space Yv as φv. Define the reference measure of Θv

n on its state space
Θv as λv. Similarly, based on the network structure, we have the following product-formed
expressions:

ψ =
∏
v∈V

ψv, φ =
∏
v∈V

φv, λ =
∏
v∈V

λv.

With respect to ψv we define the transition density of Xv
n as fXv

n|Xn−1
, with respect to

φv we define the transition density of Y v
n as fY vn |Xv

n
, and with respect to λv we define the

transition density of Θv
n as fΘvn|Θn−1

. Similarly, based on the network structure, we have
the following product-formed expressions:

fXn|Xn−1
(xn|xn−1 ; θn) =

∏
v∈V

fXv
n|Xn−1

(xvn|xn−1 ; θvn),

fYn|Xn(yn|xn ; θn) =
∏
v∈V

fY vn |Xv
n
(yvn|xvn ; θvn), (1)

fΘn|Θn−1
(θn|θn−1 ;σ) =

∏
v∈V

fΘvn|Θn−1
(θvn|θn−1 ;σ).
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2.2 Partition of the graph

We consider a partition K that partitions V into nonoverlapping blocks, i.e.,

V =
⋃
K∈K

K, K ∩K ′ = ∅ for K 6= K ′, K,K ′ ∈ K.

Based on the partition, we can write

Ξ = (ΞK)K∈K = (Ξv)v∈V , ΞW := (Ξv)v∈W for ∀W ⊆ V,

where Ξ can be Xn, Yn or Θn, as well as the associated state space X, Y, or Θ. For any set
W ⊆ V , we use (X× Θ)W and XW × ΘW interchangeably and define

ψW (dxWn ) :=
∏
v∈W

ψv(dxvn) and λW (dθWn ) :=
∏
v∈W

λv(dθvn). (2)

We define the distance d as the length of the shortest path in the graph G connecting
two vertices, based on which we define for each vertex v ∈ V the r-neighborhood N(v) as

N(v) := {v′ ∈ V : d(v, v′) ≤ r}.

For integers 0 ≤ m ≤ n, denote

Ξm:n := {Ξm,Ξm+1, · · · ,Ξn},

where Ξ can be X, Y , or Θ. Suppose that, for n ≥ 1, the conditional distribution of Xv
n

given X0:n−1 depends on X
N(v)
n−1 only and then we have

fXv
n|Xn−1

(xvn|xn−1 ; θvn) = fXv
n|Xn−1

(xvn|xn−1 ; θvn),

whenever x
N(v)
n−1 = x

N(v)
n−1 where x, x ∈ X and x 6= x. That is, if xn−1 and xn−1 coincide

on the neighbouring vertices of v, then their associated transition densities are the same.
Similarly suppose that, for n ≥ 1, the conditional distribution of Θv

n given Θ0:n−1 depends

on Θ
N(v)
n−1 only and then we have

fΘvn|Θn−1
(θvn|θn−1 ;σ) = fΘvn|Θn−1

(θvn|θn−1 ;σ),

whenever θ
N(v)
n−1 = θ

N(v)
n−1 where θ, θ ∈ Θ and θ 6= θ. An illustration of the dependence with

r = 1 is provided in Figure 1.
For any sets W,W ′ ⊆ V , define

d(W,W ′) := min
v∈W

min
v′∈W ′

d(v, v′), (3)

based on which we can define the collection of blocks that interact with any block K ∈ K
in one step of the dynamics as

N(K) := {K ′ ∈ K : d(K,K ′) ≤ r}. (4)
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Figure 1: Illustration of 1-neighborhood dependence.

Given a set W ⊆ V , denote the r-inner boundary of W as the subset of vertices in W that
can interact with vertices outside W ,

∂W := {v ∈W : N(v) *W}, (5)

and denote the interior of W as

int(W ) := W\∂W. (6)

We now denote some quantities which will be used frequently throughout the paper: the
maximal size of one single block in the partition K

|K|∞ := max
K∈K

card(K), (7)

where card(K) denotes the cardinality of K; the maximal number of vertices that interact
with one single vertex in its r-neighborhood in one step of the dynamics

∆ := max
v∈V

card{v′ ∈ V : d(v, v′) ≤ r}; (8)

the maximal number of blocks that interact with one single block in one step of the dynamics

∆K := max
K∈K

card{K ′ ∈ K : d(K,K ′) ≤ r}. (9)
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2.3 Metrics

We assume that the process (X,Y ; Θ) is realized on its canonical probability space; denote
P and E as the probability measure and expectation on that space, respectively. We use the
functional analytic notation ρ(g) for the integral of a measurable function g with respect to
the measure ρ (provided this integral exists),

ρ(g) :=

∫
gdρ =

∫
g(x)dρ(x) =

∫
g(x)ρ(dx).

Between two random measures ρ and ρ′ on space S, we define the distance∣∣∣∣∣∣ρ− ρ′∣∣∣∣∣∣ := sup
g∈S:|g|≤1

[
E|ρ(g)− ρ′(g)|2

]1/2
, (10)

where S denotes the class of measurable functions g : S→ R, and define the local distance,
for k ⊆ V , ∣∣∣∣∣∣ρ− ρ′∣∣∣∣∣∣

k
:= sup

g∈Sk:|g|≤1

[
E|ρ(g)− ρ′(g)|2

]1/2
. (11)

Here, Sk denotes the class of measurable functions g : S → R such that g(x) = g(x)
whenever xk = xk. That is, Sk is the class of measurable functions such that when x and
x coincide on the set k then their associated function values are the same. Similarly, we
define the total variation distance between two probability measures ρ and ρ′ on S

‖ρ− ρ′‖ := sup
g∈S:|g|≤1

|ρ(g)− ρ′(g)|, (12)

and define the local total variation distance, for k ⊆ V ,

‖ρ− ρ′‖k := sup
g∈Sk:|g|≤1

|ρ(g)− ρ′(g)|. (13)

3. Main results

In this section, we describe our IBPF algorithm for parameter learning over general graphical
POMP models in Section 3.1, conduct its preliminary algorithmic analyses in Section 3.2,
establish its theoretical guarantees on algorithm performances and convergences in Section
3.3, and then investigate maximum likelihood estimates (MLEs) in Section 3.4.

3.1 Algorithm

We propose the IBPF algorithm in Algorithm 1. For notational convenience, we set

1:N := {1, 2, . . . , N} for N ∈ N

throughout the paper. In Algorithm 1, ΘF,m
n,j (resp. XF,m

n,j ) is the j-th particle in the Monte
Carlo representation of the m-th iteration of a filtering recursion at time n, where this
filtering recursion is coupled with a prediction recursion represented by ΘP,m

n,j (resp. XP,m
n,j ).

The IBPF algorithm allows users to infer initial values of latent states by incorporating
initial values into the parameter set. That is, let θ = (θinit, θdynamic) where θdynamic stands
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for the parameters affecting fXn|Xn−1
and fYn|Xn for some or all n ∈ 1 : N . In this case,

the initial density fX0(x0; θ) is a Dirac mass function at x0 = θinit. This case is common for
scientific modeling and also is the situation addressed by our theory. Numerical experiments
on learning initial values can be seen in Section 4.3.

Algorithm 1 (The IBPF algorithm)

Initial value function fX0(θ)
Simulator for fXn|Xn−1

(xn | xn−1 ; θ), n ∈ 1:N

Evaluator for fYn|Xn(yn | xn ; θ), n ∈ 1:N

Data, y1:N

Number of iterations, M
Number of particles, J
Partition, K
Initial parameter swarm, {Θ0

j , j ∈ 1:J}
Perturbation density, fΘn|Θn−1

(θ | ϑ ;σ), n ∈ 1:N

Perturbation sequence, σ1:M

Output: Final parameter swarm, {ΘM
j , j ∈ 1:J} and log-likelihood l̂b

1. For m in 1 :M

2. Set ΘF,m
0,j = Θm−1

j for j ∈ 1:J

3. Set XF,m
0,j = fX0(ΘF,m

0,j ) for j ∈ 1:J

4. For n in 1 :N

5. Draw ΘP,m
n,j ∼ fΘn|Θn−1

(θn | ΘF,m
n−1,j ;σm) for j ∈ 1:J

6. Draw XP,m
n,j ∼ fXn|Xn−1

(xn | XF,m
n−1,j ; ΘP,m

n,j ) for j ∈ 1:J

7. For K ∈ K
8. Compute wK,mn,j =

∏
v∈K fY vn |Xv

n
(yvn | X

v,P,m
n,j ; Θv,P,m

n,j ) for j ∈ 1:J

9. Draw sK,m1:J with Prob(sK,mj = i) = wK,mn,i

/∑J
j=1w

K,m
n,j

10. End For

11. Set XF,m
n,j = (XK,F,m

n,j )K∈K where XK,F,m
n,j = XK,P,m

n,sK,mj

for j ∈ 1:J

12. Set ΘF,m
n,j = (ΘK,F,m

n,j )K∈K where ΘK,F,m
n,j = ΘK,P,m

n,sK,mj

for j ∈ 1:J

13. End For

14. Set Θm
j = (ΘF,m

n,j ) for j ∈ 1:J

15. End For

16. Set l̂b =
∑N

n=1

∑
K∈K log( 1

J

∑J
j=1w

K,M
n,j )

3.2 Preliminary analysis

Inspecting the IBPF pseudocode (Algorithm 1), we can see that the same set of observations
Y1, . . . , Yn is used in each of the M iterations. Let us first focus on one of the M iterations,
say m = 1, and ignore the m superscript/subscript.
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Given the observations Y1, . . . , Yn, we aim to approximate the joint nonlinear filter, for
n ≥ 1,

πn(A) = πn(Ax ×Aθ) = P[Xn ∈ Ax,Θn ∈ Aθ | Y1, . . . , Yn].

The filter πn for n ≥ 1 that we also call the true filter to differentiate with the IBPF
approximated filter, can be expressed in a recursive way

πn = Fnπn−1, π0 = δ(x, θ) = δxδθ, (14)

where δx stands for the point mass at x, with

Fn = CnPn (15)

evolving as follows:

πn−1
prediction−−−−−−→ πn|n−1 = Pnπn−1

correction−−−−−−→ πn = Cnπn|n−1

where Pn is defined as the prediction operator

(Pnρ)(g) =

∫
g(xn, θn)fXn|Xn−1

(xn | xn−1 ; θn)fΘn|Θn−1
(θn | θn−1 ;σ)

× ψ(dxn)λ(dθn)ρ(dxn−1, dθn−1),

(16)

and Cn is defined as the correction operator

(Cnρ)(g) =

∫
g(xn, θn)fYn|Xn(Yn | xn ; θn)ρ(dxn, dθn)∫

fYn|Xn(Yn | xn ; θn)ρ(dxn, dθn)
, (17)

for any probability measure ρ on X× Θ.

To facilitate analysis, we define an intermediate filter π̃n which can be expressed in a
recursive way

π̃n = F̃nπ̃n−1, π̃0 = δxδθ, (18)

with

F̃n = CnBPn (19)

evolving as follows:

π̃n−1
prediction−−−−−−→ π̃n|n−1 = Pnπ̃n−1

blocking−−−−−−→
correction

π̃n = CnBπ̃n|n−1,

where, for any measure ρ on X× Θ, B is defined as the blocking operator

Bρ :=
⊗
K∈K

BKρ, (20)

with BKρ being the marginal of ρ on (X× Θ)K . Before we can explicitly show the effect of
BK on F̃nρ for any n ≥ 1 and any measure ρ on X × Θ, we need to first define the block
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versions of the prediction operator Pn given in (16) and correction operator Cn given in
(17), as follows: define PKn as the prediction operator specific to block K

(PKn ρ1)(g) =

∫
g(xKn , θ

K
n )
∏
v∈K

fXv
n|Xn−1

(xvn | xn−1 ; θvn)fΘvn|Θn−1
(θvn | θn−1 ;σ)

× ψv(dxvn)λv(dθvn)ρ1(dxn−1, dθn−1),

(21)

for any measure ρ1 on (X × Θ)∪K′∈N(K)K
′
; define CKn as the correction operator specific to

block K

(CKn ρ2)(g) =

∫
g(xKn , θ

K
n )
∏
v∈K fY vn |Xv

n
(Y v
n | xvn ; θvn)ρ2(dxKn , dθ

K
n )∫ ∏

v∈K fY vn |Xv
n
(Y v
n | xvn ; θvn)ρ2(dxKn , dθ

K
n )

, (22)

for any measure ρ2 on (X× Θ)K . Then we can write

BK F̃nρ = CKn PKn
⊗

K′∈N(K)

ρK
′
, (23)

for any measure ρ on X× Θ.
The IBPF approximated filter denoted as π̂n can be expressed in a recursive way

π̂n = F̂nπ̂n−1, π̂0 = δxδθ, (24)

with
F̂n = CnBS

JPn (25)

evolving as follows:

π̂n−1
prediction−−−−−−→
sampling

π̂n|n−1 = SJPnπ̂n−1
blocking−−−−−−→

correction
π̂n = CnBπ̂n|n−1,

where SJ is defined as the sampling operator

SJρ =
1

J

J∑
j=1

δxj . (26)

for any probability measure ρ and {xj}{j=1,··· ,J} being i.i.d. samples distributed according

to ρ. We note that SJPn corresponds to lines 5 − 6 in Algorithm 1, and CnB corresponds
to lines 7− 12 in Algorithm 1.

3.3 Beating the curse of dimensionality

The following assumption is enforced in obtaining our main theoretical result (Theorem 1):

Assumption 1 For any v ∈ V , xn−1, xn ∈ X, yn ∈ Y, θn−1, θn ∈ Θ, and n ≥ 1, we impose
the following conditions:

(1) Suppose there exists εx > 0 such that

εx ≤ fXv
n|Xn−1

(xvn|xn−1 ; θvn) ≤ ε−1
x .
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(2) Suppose there exists εy > 0 such that

εy ≤ fY vn |Xv
n
(yvn|xvn ; θvn) ≤ ε−1

y .

(3) Suppose there exist εθ(σ) > 0 and σ ≥ 0 such that

εθ(σ) ≤ fΘvn|Θn−1
(θvn | θn−1 ;σ) ≤ [εθ(σ)]−1.

In Assumption 1, (1) and (2) are the same as the conditions enforced in Theorem 2.1 of
Rebeschini and Van Handel (2015) which are localized versions of standard assumptions that
are routinely employed in the analysis of PFs, and (3) is the same condition on the transition
density of Θ. Similar to the global mixing assumption implying that the underlying Markov
chain is strongly ergodic, a local transition density being bounded above and below as a
local counterpart of the global mixing assumption, could be viewed as a local ergodicity
assumption on the model.

Recall that |K|∞ defined in (7) is the maximal size of one single block in the partition K,
∆ defined in (8) is the maximal number of vertices that interact with one single vertex in its
r-neighborhood, and ∆K defined in (9) is the maximal number of blocks that interact with
a single block (including itself). In the following theorem, we bound the error generated by
our IBPF algorithmic filter π̂n defined in (24), to the unalgorithmic true filter πn defined
in (14), uniformly both in time n and in the model dimension card(V ):

Theorem 1 With εx, εθ(σ), and εy satisfying Assumption 1, when

εxεθ(σ) >

(
1− 1

16∆K∆2

) 1
2∆

, (27)

for every n ≥ 0, K ∈ K and k ⊆ K, we have

|||π̂n − πn|||k ≤
card(k)

1− e−β

[
7e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)

+
40√
J

[εθ(σ)]−4|K|∞ε−4|K|∞
x ε−2|K|∞(∆K+1)

y ∆K

]
,

where card( · ) stands for cardinality and

β =
1

2r
log

(
1

16∆K∆2(1− ε2∆
x [εθ(σ)]2∆)

)
. (28)

We first interpret the upper bound in Theorem 1 in terms of the graph dimension and the
time dimension. For the standard PF algorithm where all observations are used to update
the filtering distribution, the algorithmic error is exponential in the dimension of the model
under the global metric ||| · ||| defined in (10). For the IBPF algorithm, only observations in
a block, say K, are used to update the filtering distribution in that block. From Theorem
1, we can see that under the local metric ||| · |||k defined in (11), the algorithmic error is
merely exponential in the dimension of a set card(k) instead of the dimension of the graph
card(V ). That is, our IBPF algorithm has a rigorous performance guarantee in terms of

12
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the graph dimension, thus beating the COD. Next, since the upper bound in Theorem 1 is
uniform on all the time steps n, our IBPF algorithm has a rigorous performance guarantee
in terms of the time dimension. The second term of the bound quantifies the error due to
the variance of the Monte Carlo sampling of the IBPF algorithm. As in the standard PF
analysis, Monte Carlo sampling provides the 1√

J
factor under the local metric in this local

update setting. Given that each block interacts with at most ∆K neighbors in the previous
time step, the ∆K factor in the second term is expected.

Theorem 1 involves generalizing the important result of Rebeschini and Van Handel
(2015) (Theorem 2.1 therein) to a time-inhomogeneous setting. Many practical applica-
tions require time-inhomogeneity; for example, stochastic epidemic models may have a
time-varying population size, or other covariate, leading to time-inhomogeneity (see, e.g.
Bretó et al. (2009)). In this paper, the transition densities of Xn, Yn, and Θn are all
time-inhomogeneous which means they are different in each time step n. Furthermore, we
consider these time-inhomogeneous transition densities in a general form where only stan-
dard conditions are required. When our transition densities are the same for each time
step n (i.e. being time-homogeneous), our results covers the situation of Rebeschini and
Van Handel (2015) as a special case.

The rigorous proof of Theorem 1 is postponed to Appendix F. Our proof broadly follows
the approach of Rebeschini and Van Handel (2015) while differing in some details that
enable us to obtain stronger and more explicit bounds. We acknowledge that the proof from
Rebeschini and Van Handel (2015) can be adapted to the time-inhomogeneous case, but we
take the opportunity to make other adjustments while adding this extension. Specifically, we
follow Rebeschini and Van Handel (2015) by controlling the filtering error |||π̂n − πn|||k using
the algorithmic bias and the algorithmic variance with the help of the triangle inequality,
thus resulting in the two terms in the upper bound. An intermediate filter without sampling
and resampling, π̃n defined in (18), was used to separate the bias |||π̃n − πn|||k and the
variance |||π̃n − π̂n|||k. To control the bias generated by blocking, the decay of correlations
(DOCs) property was established. The DOCs property arises in statistical physics, in
regards to investigations of high-dimensional networks (see, e.g., Liu et al. (2018); Liu and
Ning (2019a,b, 2021)). In the current context, it means that the effect on the distribution
on block K of a perturbation made in another block K ′ decays rapidly in the distance
d(K,K ′) defined in (3).

Utilizing the Dobrushin comparison theorem (Theorem 2), we extended the mechanism
to the parameter space by showing that the DOCs property of the underlying model is
inherited by the IBPF algorithmic filter π̂n, which is the joint conditional distribution
of state Xn and Θn given the observations Y1, . . . , Yn. We showed that the influence of
blocking on the marginal distribution at a vertex v ∈ K should decay exponentially in the
distance from v to the boundary of the block ∂K. This idea is revealed in the e−βd(k,∂K)

factor in the first term of the bound. To control the variance, a major issue is that π̃n
cannot be interpreted as a regular marginal or conditional distribution, given that it is
only defined recursively in (18). Rebeschini and Van Handel (2015) solved this issue by
constructing a “computation tree”, which is in analogy with a similar notion that arises in
the analysis of the well-known belief propagation algorithms (Tatikonda and Jordan, 2002).
It is to introduce independent duplicates of the blocks in the previous time step and have
each block interact with its own set of duplicates, which hence unravels the dependence
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graph to a tree without blockwise interactions. Then one can interpret π̃n as the marginal
distribution on this tree.

Rebeschini and Van Handel (2015) focused on establishing scalability. Hence their error
bound (Theorem 2.1 therein) targets to reveal that property while being ambiguous in some
other regards, in the form as follows:

|||π̂n − πn|||k ≤α card(k)
[
e−β1d(k,∂K) + eβ2|K|∞/

√
J
]
, (29)

with k being a subset of the block K in partition K, where α, β1, and β2 are positive
finite constants. Although they did not provide a precise form of the error bound in their
main result, they provided a precise error bound for variance in Theorem 4.23 (page 2864
therein), as follows:

|||π̃n − π̂n|||k ≤card(k)
64√
J

eβ

1− e−β
ε−4|K|∞
x ε−4|K|∞∆K

y ∆K, (30)

where β = − log 6∆K∆2(1 − ε2∆) > 0. Although (30) shares similarites with the second
term of our bound in Theorem 1, with a close look we can see that (30) has an additional
factor eβ . β becomes large when ε is close to 1, which is how this mathematical framework
describes the situation where spatiotemporal mixing is fast. We expect the resulting bound
on the error of the block filter to be tighter in this case, and our bound has that property
whereas the bound of Rebeschini and Van Handel (2015) does not. Furthermore, we can see
that the exponent of ε−1

y (> 1) differs. Whereas ε, εx and εθ are required to be close to 1, εy

can be close to 0. Thus, an improvement from ε
−4|K|∞∆K
y to ε

−2|K|∞(∆K+1)
y can substantially

tighten the bound, especially when the maximal block size (|K|∞) is not small.
Throughout the proofs in Rebeschini and Van Handel (2015) and ours, a positive con-

stant β containing those quantities is used. We provide a precise definition of β in (28) for
the first time, which is used consistently in all the proofs. Our precise constant β is able to
rigorously reveal the influences of those crucial quantities on the error bound which have
been open problems: when r (the range of interacting neighborhoods) increases, the error
bound increases; when ∆ (the maximal number of vertices that interact with one single
vertex in its r-neighborhood) increases, the error bound increases; when ∆K (the maximal
number of blocks that interact with a single block) increases, the error bound increases;
when |K|∞ (the maximal size of one single block in the partition) increases, the error bound
increases. Furthermore, we provided a precise sufficient condition for the first time, and
used it throughout all the proofs. That is, the product of the assumed lower bound of X’s
local transition density (εx) and the assumed lower bound of Θ’s local transition density

(εθ(σ)) is larger than
(

1− 1
16∆K∆2

) 1
2∆

.

Although we followed the strategy in Rebeschini and Van Handel (2015) in general,
to adapt to the time-inhomogeneous setting some proof strategies need to be adjusted
correspondingly. For example, their Proposition 4.4 (Page 2839) achieves local filter stability
by bounding the term

‖Fn · · ·Fs+1µ− Fn · · ·Fs+1ν‖k,
where they used the Dobrushin comparison theorem on the distributions

ρ = Pµ[X0, . . . , Xn ∈ · | Y1, . . . , Yn] and ρ̃ = Pν [X0, · · · , Xn ∈ · | Y1, . . . , Yn].
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Our local filter stability is established in Proposition 6 by bounding the term

‖Fn · · ·Fs+1Fsπ̃s−1 − Fn · · ·Fs+1F̃sπ̃s−1‖k

where we used the Dobrushin comparison theorem on the distributions

ρ = PF̃sπ̃s−1 [Xs, Xs+1, . . . , Xn ∈ · ,Θs,Θs+1, . . . ,Θn ∈ · | Ys+1, . . . , Yn],

ρ̃ = PFsπ̃s−1 [Xs, Xs+1, · · · , Xn ∈ · ,Θs,Θs+1, · · · ,Θn ∈ · | Ys+1, . . . , Yn].

Note that, with time-inhomogeneous, to quantify the effect of Fs+1 on µ, it is appropriate
to use distributions on latent states starting from s instead of 0.

3.4 MLEs

The IBPF algorithm generalizes the data cloning method (Lele et al., 2007, 2010), which
is based on the observation that iterating a Bayes map converges to a point mass at the
maximum likelihood estimate. Combining such iterations with perturbations of model pa-
rameters improves the numerical stability of data cloning and provides a foundation for
stable algorithms (Ionides et al., 2015). To be specific, the same set of data Y1, . . . , YN is
used in any one of the M iterations of the IBPF algorithm, given the result of the m-th
iteration for m ∈ 1:(M −1) is simply the initial value of the (m+1)-th iteration, we can see
that all M iterations together can be represented as a filtering problem on M replications
of the data as follows:{

{Y1, . . . , YN}︸ ︷︷ ︸
1

, {Y1, . . . , YN}︸ ︷︷ ︸
2

, . . . , {Y1, . . . , YN}︸ ︷︷ ︸
M

}
.

As in the previous subsections, our strategy is to analyze the original theoretical quantity
and then explore its algorithmic approximation.

The joint density of the classical POMP model can be written as

fX0:N ,Y1:N
(x0:N , y1:N ; θ) = fX0(x0 ; θ)

N∏
n=1

fXn|Xn−1
(xn|xn−1 ; θ)fYn|Xn(yn|xn ; θ).

We write fY1:N
(y1:N ; θ) for the marginal density of Y1:N . Then the likelihood function is

defined to be `(θ) = fY1:N
(y1:N ; θ), where the data is a sequence of observations y1:N . A

MLE is a value θ̂ that maximizes `(θ). We define an extended likelihood function on ΘN+1

by

˘̀(θ0:N ) =

∫
. . .

∫
dx0 . . . dxN

{
fX0(x0 ; θ0)

N∏
n=1

fXn|Xn−1
(xn | xn−1 ; θn)fYn|Xn(yn | xn ; θn)

}
.

Each m iteration of data cloning corresponds to an operator Tσ, which is a composition of
a parameter perturbation with a Bayes map that multiplies the likelihood and renormalizes
(page 2 of Ionides et al. (2015)), i.e.,

Tσg(θN ) =

∫
˘̀(θ0:N )fΘ0:N

(θ0:N |ϑ ;σ)g(ϑ) dϑ dθ0:N−1∫
˘̀(θ0:N )fΘ0:N

(θ0:N |ϑ ;σ)g(ϑ) dϑ dθ0:N

, (31)
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with g and Tσg approximating the initial and final density of the parameter swarm, where

fΘ0:N
(θ0:N |ϑ ;σ) = fΘ0(θ0 |ϑ ;σ)

N∏
n=1

fΘn|Θn−1
(θn | θn−1 ;σ)

and ϑ is the mean of the distribution of Θ0. Iteration of the Bayes map alone has a central
limit theorem that forms the theoretical basis for the data cloning methodology (Lele et al.,
2007, 2010).

IBPF is the approximation to TMσ which is the M -th iterate of Tσ. Following Ionides
et al. (2015), we first show that limm→∞ T

m
σ g = gσ exists for every fixed σ > 0, and as the

noise intensity becomes small limσ→0 gσ approaches a point mass at the MLE if it exists.
Then we show that when the number of particals J and the number of iterations M become
large, the IBPF algorithm numerically approximates gσ. Proofs are provided in Appendix
G.

4. Application and performance analysis

In this section, we illustrate how IBPF can be used and compare its performances with
those of IF2 and IEnKF, using the spatiotemporal model covered in Section 4.1, over the
dataset covered in Section 4.2. We gradually increase the parameter learning difficulties in
4 cases, with consistent fairness in all experiments, in Section 4.3. We implement IF2 and
IEnKF through the spatPomp package (Asfaw et al., 2021).

4.1 Generalized spatiotemporal modeling for measles

Measles is a highly contagious infectious disease caused by the measles virus; it spreads
easily from one person to the next through coughs and sneezes of infected people. In this
section, we consider a generalized spatiotemporal model for disease transmission dynamics
of measles within and between multiple cities.

A compartment modeling framework for spatiotemporal population dynamics divides
the population at each spatial location into compartments. Specifically, measles transmis-
sion at each location is modeled according to the SEIR model with 6 compartments: (S)
represents susceptible individuals who have not been infected yet but may experience infec-
tion later, (E) represents individuals exposed and carrying a latent infection, (I) represents
infectious individuals that have been infected and are infectious to others, (R) represents
recovered individuals that are no longer infectious and are immune, (B) represents the
birth of individuals, and (D) represents the death of individuals. Park and Ionides (2020)
generalized the compartment model presented by He et al. (2010) to the spatiotemporal
modeling setting, which is analyzed in other literature such as Ionides et al. (2021). We fur-
ther generalize that spatiotemporal compartment model by allowing the dynamics in each
spatial location to have their own specific parameters, including different disease transmis-
sion speeds across locations. By demonstrating a methodology that scales to vertex-specific
parameters, we open up new possibilities for spatiotemporal inference, though we focus here
on testing statistical tools and so we do not engage directly in the scientific debates.

Different to the discrete-time based modelling and algorithm having time index n ∈ N in
the previous sections, here the spatiotemporal model under consideration is a continuous-
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time Markov chain model with time index t ∈ [0,∞). Time discretization is a common and
natural practice to link these two kinds of time notations. Specifically, for the continuous-
time latent process X(t) = (S(t), E(t), I(t), R(t)), the corresponding discrete-time latent
process is given by Xn = X(tn) with t0:n being observation time. The number of individuals
in compartments S, E, I, and R of city v at time t are denoted by integer-valued random
variables Sv(t), Ev(t), Iv(t), and Rv(t) respectively. Denote Nv

ij(t) as the counting process
enumerating cumulative transitions from compartment i to compartment j where i, j ∈
{B,S,E, I,R,D} and i 6= j, in city v up to time t. We model the 40 largest cities in the
UK, ordered in decreasing size with v = 1 corresponding to London. Our model is described
by the following system of stochastic differential equations, for v ∈ {1, . . . , 40},

dSv(t) = dNv
BS(t) − dNv

SE(t) − dNv
SD(t),

dEv(t) = dNv
SE(t) − dNv

EI(t) − dNv
ED(t),

dIv(t) = dNv
EI(t) − dNv

IR(t) − dNv
ID(t).

(32)

The total population
P v(t) = Sv(t) + Ev(t) + Iv(t) +Rv(t) (33)

is calculated by smoothing census data and is treated as known. Hence, by (32), the number
of recovered individuals Rv(t) in city v is defined implicitly.

The birth process Nv
BS(t) is a time-inhomogeneous Poisson process with rate µvBS(t)

given by interpolated census data. The transition processes Nv
EI(t), N

v
IR(t), Nv

SD(t), Nv
ED(t),

and Nv
ID(t) are modeled as conditional Poisson processes with per-capita rates µEI , µIR,

µSD, µED, and µID respectively. The transition process Nv
SE(t) is modeled as a negative

binomial death process according to Bretó et al. (2009) and Bretó and Ionides (2011) with
over-dispersion parameter σvSE and rate given by

E
[
Nv
SE(t+ dt)−Nv

SE(t)
]

(34)

= βv(t)Sv(t)

(Iv(t) + ι̃

P v(t)

)αv
+
∑
v′ 6=v

θvv′

P v(t)


(
Iv
′
(t)

P v′(t)

)αv′
−
(
Iv(t)

P v(t)

)αv
 dt+ o(dt).

Throughout this section, we consistently use an overline to indicate average across time
and use a tilde to indicate average across time across cities. Here, βv(t) models seasonality
driven by high contact rates between children at school, described by

βv(t) =

{(
1 + θ̃a(1− p̃)p̃−1

)
R
v
0µIR during school term,(

1− θ̃a
)
R
v
0µIR during vacation,

(35)

where p̃ is the proportion of the year taken up by the school terms, R
v
0 is the annual

average basic reproductive ratio, and θ̃a measures the reduction of transmission during
school holidays. In (34), αv is a mixing exponent modeling inhomogeneous contact rates
within the city v, and ι̃ models immigration of infected individuals which is appropriate
when analyzing a subset of cities that cannot be treated as a closed system. In (34), the
number of travelers from city v to v′ is denoted by θvv′ , constructed as fixed through time
and symmetric between any two arbitrary cities, using the gravity model of Xia et al. (2004),

θvv′ = G̃ · d̃
P̃ 2
· P

v · P v
′

d(v, v′)
,
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where G̃ is a coupling parameter, d(v, v′) denotes the distance between city v and city v′,
P
v

is the average population for city v across time, p̃ is the average population across time
across cities, and d̃ is the average distance between a randomly chosen pair of cities.

To complete the model specification, the measurement process for modeling the partial
observability is defined as follows: for t0:n being observation time and

Zvn = Nv
IR(tn)−Nv

IR(tn−1) (36)

being the number of removed infected individuals in the nth reporting interval, suppose that
they are quarantined once they are identified, so that reported counts comprise a fraction
%̃ of these removal events; the case report yvn is modeled as a realization of a conditionally
Gaussian random variable Y v

n via

P
[
Y v
n =y | Zvn=z

]
= N

(
y + 0.5; %̃z, %̃(1− %̃)z + ψ̃2%̃2z2

)
−N

(
y − 0.5; %̃z, %̃(1− %̃)z + ψ̃2%̃2z2

)
,

(37)

where N ( · ;µ, σ2) is the cumulative distribution function of Normal(µ, σ2) and ψ̃ models
overdispersion relative to the binomial distribution.

4.2 Spatiotemporal illustration

Figure 2 shows a simulation (Plot A) from our model covered in Section 4.1 and the real
measles data (Plot B). We note that the spatiotemporal model considered in Park and
Ionides (2020) and Ionides et al. (2021) is a special case of ours, by taking location-specific
parameters αv = 1 (in equation (34)), R

v
0 = 30 (in equation (35)) and σvSE = 0.15 year1/2

the same for all locations, and take all the initializations θSv0 = 0.032, θEv0 = 0.00005,
θIv0 = 0.00004, and θRv0 = 1−θSv0 −θEv0 −θIv0 the same for all locations. In our simulation, for
each location v, we draw the corresponding variables according to uniform distributions of
the [0.99, 1.0355]-scaled range of those in Ionides et al. (2021). That is, our αv ∼ Unif[0.99×
1, 1.0355 × 1] for each v. We take the other parameters as fixed values as those of Ionides
et al. (2021): µSD = µED = µID = 0.02 year−1, µEI = µIR = 52, p̃ = 0.759, %̃ = 0.5,
ψ̃ = 0.15, θ̃a = 0.5, ι̃ = 0, G̃ = 400. From Figure 2, we can see that the simulation
shares the biennial pattern with most cities locked in phase most of the time. In both
plots, each row is associated with a city, each column is associated with a date, and each
pixel in a row represents Log(reported counts +1) of the epidemics. We note that although
the simulated data and real data in Figure 2 are for 40 cities, in the next subsection we
gradually increase the number of cities in modeling and stop when the number of cities
involved in the spatiotemporal data analysis is sufficient to clearly reveal the performances
of algorithms in terms of COD. For example, in Figure 3, city number being 2 indicates
that we infer 4 parameters for each of these 2 cities only (8 parameters in total), and city
number being 20 indicates that we infer 4 parameters for each of these 20 cities only (80
parameters in total). We would stop the test if the performances of algorithms (measured
by log-likelihood) are sufficiently clear using spatiotemporal data of 14 cities (Case 2 in
Figure 3) instead of testing up to 40 cities.
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Figure 2: Log(reported counts +1) for (A) the measles simulation from our spatiotemperal model and (B)
the corresponding UK measles data.

4.3 Performance analysis

We gradually increase the parameter learning difficulties in 4 cases: in the first case, the goal
is to learn initial value parameters for measles transmission dynamics for each location: θSv0 ,
θEv0 , θIv0 , and θRv0 ; in the second case, in addition to these 4 initial values the goal is to also

learn the nonlinear parameter R
v
0 for each location; in the third case, in addition to these 4

initial value parameters the goal is to also learn the highly nonlinear parameter αv for each
location; in the fourth case, the goal is to learn all the location-specific parameters, namely,
θSv0 , θEv0 , θIv0 , θRv0 , αv, σvSE , and R

v
0. Table 1 provides an illustration of the parameters to

infer for each location v in four cases. Fairness is obtained over all experiments on all these
three algorithms, as follows:

• Each algorithm uses the same number of iterations M = 100 (see Algorithm 1 for
notations) and the same number of particles J = 80000.

• We conduct 10 replicates of all the parameter learning performance comparisons, in
the way that in each replicate all algorithms start with the same initial search values
drawn uniformly as follows:

αv ∼ Unif[0, 2], σvSE ∼ Unif[0, 1], R
v
0 ∼ Unif[25, 35],

θSv0 , θEv0 , θIv0 , θRv0 ∼ Unif[0, 1].

Here, we consider latent states of each city as portions of the population of that specific
city such that Sv(0) = θSv0P

v(0), Ev(0) = θEv0P
v(0), Iv(0) = θIv0P

v(0), Rv(0) =
θRv0P

v(0), and
θSv0 + θEv0 + θIv0 + θRv0 = 1.
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Parameters Case 1 Case 2 Case 3 Case 4

θSv0 Yes Yes Yes Yes

θEv0 Yes Yes Yes Yes

θIv0 Yes Yes Yes Yes

θRv0 Yes Yes Yes Yes

R
v
0 Yes Yes

αv Yes Yes

σvSE Yes

Table 1: Parameters to infer for each location v in four cases.

• Mathematically, there is only one likelihood function for the model and data in ques-
tion, and different algorithms are making various approximations to estimate this
quantity. The algorithms each compute the likelihood corresponding to an approxi-
mation to the exact filter distribution, and therefore they have a negative bias. The
highest estimated likelihood among the available filters may therefore be anticipated
to have the lowest bias. We note that this reasoning assumed that the model is cor-
rectly specified—substantial model misspecification could result in an approximate
filter estimating a substantially higher likelihood than the exact filter. Thus, each
algorithm has its own metric of log-likelihood: IEnKF uses the metric of EnKF on
log-likelihood estimation, denoted as l̂e whose algorithmic definition is provided in
Algorithm 3 in Appendix A; IF2 uses the metric of PF on log-likelihood estimation,
denoted as l̂p whose algorithmic definition is provided in Algorithm 2 in Appendix

A; IBPF uses the metric of BPF on log-likelihood estimation, denoted as l̂b whose
algorithmic definition is provided in Algorithm 1 in Section 3.1. We evaluate the best
parameters learned using each algorithm with the metrics of the other two algorithms,
in all the experiments. For example, we evaluate the best parameters learned using
the IEnKF algorithm through its l̂e metric, with the other two metrics (l̂p and l̂b).

• One additional setup needed with IBPF is to set up the block sizes. In all the com-
parisons with IF2 and IEnKF, we simply allow each block in our IBPF algorithm
to have exactly 2 cities in all the experiments. That is, the first block is city 1 and
city 2, the second block is city 3 and city 4, and so on. Hence, the number of blocks
card(K) = Number of cities/2.

Figure 3 reports the log-likelihood estimates per city per time step of various dimensions
for cases 1 and 2. The corresponding original parameter learning results are reported in
Tables 2 and 3 in Appendix H. In Figure 3, the original results are divided by the number
of cities and then by time steps which is 15 × 26 for biweekly data in years 1950 − 1965.
We can see in case 1 that when we only learn the initial values (θSv0 , θEv0 , θIv0 , and θRv0 ), the
best parameter learning results from 10 replicates of experiments of all three algorithms are
as good as the true parameter using the EnKF metric and the BPF metric, while the best
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IBPF for High-dimensional Parameter Learning

Figure 4 reports the log-likelihood estimates per city per time step of various dimen-
sions for cases 3 and 4, with the same transformation done as that of Figure 3 upon the
corresponding original parameter learning results that are reported in Tables 4 and 5 in
Appendix H. Recall that the goal of case 3 is to learn the initial values (θSv0 , θEv0 , θIv0 , θRv0 )
and the highly non-linear parameter αv. In equation (34), we can see that through αv, the
dynamic of one city has direct interactions with other cities. Case 4 is the hardest of all
these 4 cases. Its goal is to learn all the location-specific parameters (θSv0 , θEv0 , θIv0 , θRv0 , αv,

σvSE , and R
v
0). From Figure 4, we can see that, even for 2 cities using all these 3 metrics,

IEnKF performs very badly in case 3 and fails completely in case 4. The reason is that
IEnKF is based on EnKF, and hence it implicitly assumes a linear Gaussian state space
model. Specifically, when new observations become available, the ensemble is updated by
a linear “shift” based on the assumption of a linear Gaussian state space model. However,
cases 3 and 4 focus on highly nonlinear and non-Gaussian problems. This phenomenon that
EnKF may not perform well for highly nonlinear and non-Gaussian problems, was observed
earlier, such as in Ades and Van Leeuwen (2015); Lei et al. (2010); Miller et al. (1999). In
general, the EnKF-based parameter learning approaches are applicable to problems with a
relatively small number of parameters but more work is needed for cases where the param-
eter and state are both high dimensional (Katzfuss et al., 2016). From Figure 4, we can see
that the performance of IF2 drops in both cases using all three metrics. The performance
of our IBPF in both cases, is as good as that of the true parameter consistently with the
EnKF metric and the BPF metric, and much better than that of the true parameter with
the PF metric consistently.

Now we explore more properties of IBPF through experiments in case 4. Table 6 reports
IBPF’s parameters learned for 10 cities. This is the set of parameter values that produce
the maximum log-likelihood −18555 in the l̂b metric in Table 5. We can see that all learned
parameter values conform to common sense. Table 7 reports IBPF’s parameter learning
results in terms of log-likelihood for all 10 replicates conducted, where each replicate starts
with an initial search value drawn uniformly. The resulting log-likelihood values are ranked
from highest to lowest; for example, the value of replicate 1 for 10 cities in Table 7 is the log-
likelihood−18555 in l̂b metric in Table 5. When we calculate the per city per time step values
as that in Figures 3 and 4, all values are almost the same across replicates. For example,
the highest value of replicate 1 gives −18555/(26×15)/10 = −5.947 and the lowest value of
replicate 1 gives −18583/(26 × 15)/10 = −5.956. Thus the parameter learning results are
robust. Figure 5 reports IBPF’s parameter learning results in terms of log-likelihood for
iterations {20, 40, 60, 80, 100, 120, 160, 180} with different block sizes {1, 2, 3, 4} for 12 cities.
We also conducted analysis with block size 6, i.e., there are two blocks and each has 6 cities.
The log-likelihood values for block size 6 are {−75793,−96487,−88973,−84087,−76356}
for {20, 40, 60, 80, 100} iterations, respectively. These values are not included in Figure 5,
since they are much smaller than the values with block sizes {1, 2, 3, 4}. From Figure 5, we
can see that the performance of IBPF increases as block sizes decrease. In common sense,
an increase in the block size for a fixed J will make the variance term worse and the bias
term better in the error bound. A closer observation of the bias term, one can see that
e−βd(k,∂K) measures the distance to the boundary of the block, while in Figure 5 we have
that fixed and vary |K|∞ which is the maximal size of one single block in the partition.
That is, in Figure 5, block size being 1 means that |K|∞ = 1. Hence, Figure 5 confirms
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our technical finding of |K|∞. From Figure 5, we can also see that IBPF achieves likelihood
maximization as iterations increase which is consistent with the analysis in Section 3.4. For
any block size, the block particle filter computes the log-likelihood corresponding to a one-
step probabilistic forecast, with the forecast corresponding to the empirical distribution
of the particles. Log-likelihood is a proper scoring rule for such forecasts (Gneiting and
Raftery, 2007), meaning that the likelihood of a forecast cannot, on average, exceed that of
the ideal but inaccessible Bayesian filter. This provides a justification for comparing filters
by their corresponding log-likelihoods and preferring the highest.

Figure 5: Performance analysis of IBPF for iterations {20, 40, 60, 80, 100, 120, 160, 180} with different block
sizes {1, 2, 3, 4} for 12 cities of case 4.

At last, we discuss the computational cost. The computational cost of IF2 and IEnKF
are O(MJN |V |) (Asfaw et al., 2021) and IBPF as well, where M is the number of iterations,
J is the number of particles, N is the number of time steps, and |V | is the number of vertices.
Table 8 provides the performance and runtime comparison of top five replicates in terms of
log-likelihood for two cities in case 4. Each replicate is conducted with one node and 4GB
CPU on the Great Lakes Slurm cluster of the University of Michigan, Ann Arbor. We can
see that the time consumed is comparable: IEnKF is in the range of 15 − 16 hours, IF2 is
in the range of 17− 18 hours, and IBPF is in the range of 18− 19 hours. Furthermore, we
can see that IEnKF is still able to run but provides very bad results, and for this reason we
call it “Failed”.

5. Discussion and extensions

In this paper, we have proposed the IBPF algorithm for high-dimensional parameter learn-
ing over partially observed, nonlinear, stochastic spatiotemporal processes, established its
theoretical performance guarantees, and compared it with mainstream algorithms.
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5.1 Discussion

In this paper, we have only compared the EnKF-based parameter learning approach using
IF. There are two main approaches to parameter estimation within the EnKF framework
without using IF. The first is called state augmentation (Anderson, 2001) which works well
in many examples but implicitly assumes that the states and parameters jointly follow a
linear Gaussian POMP model. Hence, when some parameters violate this assumption, the
method fails completely (Stroud and Bengtsson, 2007). The second approach is based on
approximating likelihood functions constructed using the output from EnKF, which esti-
mates parameters either by maximum likelihood or Bayesian methods. Examples of these
approaches include sequential maximum likelihood (Mitchell and Houtekamer, 2000), offline
maximum likelihood (Stroud et al., 2010), and sequential Bayesian methods (Stroud and
Bengtsson, 2007; Frei and Künsch, 2012). In general, these methods have been successful
in examples with a relatively small number of parameters, and more work is needed for
cases where the parameter and state are both high dimensional (Katzfuss et al., 2016).
We note that our IBPF is designed to learn a large number of parameters for models with
high-dimensional parameters and states.

In recent years, approaches developed on learning high-dimensional parameters applying
the Bayesian method (specifically, Markov chain Monte Carlo (MCMC)) with multidimen-
sional time series data, including (Qiu et al., 2018, 2020; Jammalamadaka et al., 2019).
We note that these literatures are limited to only working for linear models while IBPF
is designed to work on general nonlinear models. Particle MCMC (PMCMC) methods,
introduced by Andrieu et al. (2010), make use of PF to construct efficient proposals for
the MCMC sampler, working for non-linear models. Particle Gibbs (PG) as a particularly
widely used PMCMC algorithm, modifies the PF step in the PMCMC algorithm to sample
the latent variables conditioned on an existing particle trajectory, resulting in what is called
a conditional SMC (CSMC) step. A drawback of PG is that it can be particularly adversely
affected by path degeneracy in the CSMC step, in the way that conditioning on an existing
trajectory means that whenever resampling of the trajectories results in a common ancestor
who must correspond to this trajectory (Rainforth et al., 2016). Efforts on combating the
path degeneracy effect, include but are not limited to, (Whiteley et al., 2010; Lindsten and
Schön, 2013; Lindsten et al., 2014; Chopin and Singh, 2015; Lindsten et al., 2015). We note
that IBPF does not have the path degeneracy problem.

5.2 Extensions

Algorithm 1 describes the IBPF algorithm in which the initial values of the latent states are
deterministically determined by model parameters, hence the theoretical treatment needs to
consider only Dirac measures as initial distributions are needed. Rebeschini and Van Handel
(2015) also considered a nonrandom initial condition which is a choice of convenience. For
comments on extending the results to general initial conditions, we refer interested readers
to Remark 2.3 (page 2823) of Rebeschini and Van Handel (2015). A corresponding extension
of Algorithm 1 permits fX0 to be a probability density function.

At first glance, it may seem that BPF needs an approximation of spatial independence
to justify the factorized distribution. The reality is more delicate. There is a possibility
for considerable dependence to arise during the proposal stage of the filter, for which the
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particles follow the full joint transition density. The block resampling then imposes a
conditional independence approximation given the data, but conditional independence can
be a much weaker assumption than unconditional independence. Recently, Min et al. (2022)
investigated the choice of blocks for a block particle filter, formulating the partitioning
problem as a clustering problem and proposed a data-driven partitioning method based
on constrained spectral clustering to automatically provide an appropriate partition. For
our measles model, we have found it surprisingly successful to have each city in its own
block, and we have not found an advantage from larger block sizes. To reason about how
this might be consistent with the previous section, consider two cities (say, London and
Birmingham). Suppose they are tightly coupled dynamically, such that there will be an
outbreak in London if and only if there is one in Birmingham. Now suppose that, once an
outbreak occurs, the dynamics in each city become dominated by local noise, and further
that each city has a reasonably effective case reporting system. Plausibly, the discrepancy
between the actual and reported counts in London and Birmingham may be well modeled
as close to independent, conditional on the reported counts. That is enough to suggest that
a block particle filter having Birmingham and London in different blocks may be successful
despite the close relationship between their epidemic outcomes.

A demonstration on real data is beyond the scope of the current manuscript, since it
requires further investigation of model misspecification and its consequences. We refer in-
terested readers to Ionides et al. (2022) for corresponding real data analysis. The IBPF
algorithm has been contributed to the the spatPomp package (Asfaw et al., 2021) as the
function ibpf. A tutorial (Ning and Ionides, 2023) introduces ibpf and validates its cor-
rectness on a simple Gaussian example which is tractable using the Kalman filter.

A. The IF2 algorithm and the IEnKF algorithm

In Algorithm 2, we provide the IF2 pseudocode in Ionides et al. (2015). In Algorithm 3, we
provide the IEnKF pseudocode in Asfaw et al. (2021).

B. Existing results

The following Dobrushin comparison theorem can be seen in Theorem 3.1 in Rebeschini
and Van Handel (2015) and Theorem 8.20 in Georgii (2011).

Theorem 2 (Dobrushin comparison theorem) Let I be a finite set. Let S =
∏
i∈I S

i

where Si is a Polish space for each i ∈ I. Define the coordinate projections Xi : x→ xi for
x ∈ S and i ∈ I. For probability measures ρ and ρ on S, define

ρix(A) = ρ(X i ∈ A|XI\{i} = xI\{i}),

ρix(A) = ρ(X i ∈ A|XI\{i} = xI\{i}),

ρix(A) = ρ(X i ∈ A|XI\{i} = xI\{i}),

Cij =
1

2
sup

x,x∈S:xI\{j}=xI\{j}
‖ρix − ρix‖ and bj = sup

x∈S
‖ρjx − ρjx‖.

26



IBPF for High-dimensional Parameter Learning

Algorithm 2 (The IF2 algorithm)

Input:

Simulator for fX0(x0 ; θ)
Simulator for fXn|Xn−1

(xn | xn−1 ; θ), n ∈ 1:N

Evaluator for fYn|Xn(yn | xn ; θ), n ∈ 1:N

Data, y1:N

Number of iterations, M
Number of particles, J
Initial parameter swarm, {Θ0

j , j ∈ 1:J}
Perturbation density, fΘn|Θn−1

(θ | ϑ ;σ), n ∈ 1:N

Perturbation sequence, σ1:M

Output: Final parameter swarm {ΘM
j , j ∈ 1:J} and log-likelihood l̂p

For m in 1 :M

Draw ΘF,m
0,j ∼ h0(θ | Θm−1

j ;σm) for j ∈ 1:J

Draw XF,m
0,j ∼ fX0(x0; ΘF,m

0,j ) for j ∈ 1:J

For n in 1 :N

Draw ΘP,m
n,j ∼ fΘn|Θn−1

(θn | ΘF,m
n−1,j ;σm) for j ∈ 1:J

Draw XP,m
n,j ∼ fXn|Xn−1

(xn | XF,m
n−1,j ; ΘP,m

n,j ) for j ∈ 1:J

Compute wmn,j = fYn|Xn(yn | XP,m
n,j ; ΘP,m

n,j ) for j ∈ 1:J

Draw s1:J with Prob(sj = i) = wmn,i

/∑n
u=1w

m
n,u

Set XF,m
n,j = XP,m

n,sj for j ∈ 1:J

Set ΘF,m
n,j = ΘP,m

n,sj for j ∈ 1:J

End For

Set Θm
j = (ΘF,m

n,j ) for j ∈ 1:J

End For

Set l̂p =
∑N

n=1 log( 1
J

∑J
j=1w

M
n,j)

If the Dobrushin condition

max
i∈I

∑
j∈I

Cij < 1,

holds, then for every J ⊆ I,

‖ρ− ρ‖J ≤
∑
i∈J

∑
j∈I

Dijbj ,

where D :=
∑

n≥0C
n <∞.

Theorem 3 (Lemma 4.1 of Rebeschini and Van Handel (2015)) Let probability mea-
sures ν, ν ′,F,F′ and ε > 0 be such that ν(A) ≥ εF(A) and ν ′(A) ≥ εF′(A) for every measur-
able set A. Then

‖ν − ν ′‖ ≤ 2(1− ε) + ε‖F− F′‖.
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Algorithm 3 (The IEnKF algorithm)

Input:

Simulator for fX0(x0 ; θ)
Simulator for fXn|Xn−1

(xn | xn−1 ; θ), n ∈ 1:N

Evaluators for eu,n(x, θ) and vu,n(x, θ), n ∈ 1:N
Data, y1:N

Number of iterations, M
Number of particles, J
Initial parameter, θ0

Random walk intensities, σ0:N,1:Dθ where Dθ is the dimension of θ
Cooling fraction in 50 interations, a

Output: Monte Carlo maximum likelihood estimate θM and log-likelihood l̂e

Initialize parameters ΘF,0
N,j = θ0

For m in 1 :M

Initialize parameters ΘF,m
0,j ∼ N (ΘF,m−1

N,j , a2m/50Σ0)

where (Σn)dθ,d′θ = σ2
n,dθ

1dθ=d′θ
for j ∈ 1:J

Initialize filter particles XF,m
0,j ∼ fX0(x0; ΘF,m

0,j ) for j ∈ 1:J

For n in 1 :N

Draw ΘP,m
n,j ∼ N (ΘF,m

n−1,j , a
2m/50Σn) for j ∈ 1:J

Draw XP,m
n,j ∼ fXn|Xn−1

(xn | XF,m
n−1,j ; ΘP,m

n,j ) for j ∈ 1:J

Process and ensemble parameter ZP,mn,j =

(
XP,m
n,j

ΘP,m
n,j

)
for j ∈ 1:J

Centered process and parameter ensemble Z̃P,mn,j = ZP,mn,j −
1
J

∑J
q=1 Z

P,m
n,q for j ∈ 1:J

Forecast ensemble Ŷ u,m
n,j = eu(Xu,P,m

n,j ,ΘP,m
n,j ) for j ∈ 1:J

Centered forecast ensemble Ỹ m
n,j = Ŷ m

n,j − 1
J

∑J
q=1 Ŷ

m
n,q for j ∈ 1:J

Forecast measurement variance Rmu,ũ =
(

1
J

∑J
j=1 vu(Xu,P,m

n,j ,ΘP,m
n,j )

)
u,ũ

Forecast sample covariance Σm
Y = 1

J−1

∑J
j=1(Ỹ m

n,j)(Ỹ
m
n,j)

T +Rm

Prediction and forecast sample covarince Σm
ZY = 1

J−1

∑J
j=1(Z̃P,mn,j )(Ỹ m

n,j)
T

Kalman gain Km = Σm
ZY (Σm

Y )−1

Artificial measurement noise εmn,j ∼ N (0, R) for j ∈ 1:J

Errors rmn,j = Ŷ m
n,j − yn for j ∈ 1:J

Filter update ZF,mn,j =

(
XF,m
n,j

ΘF,m
n,j

)
= ZP,mn,j +K(rmn,j + εmn,j) for j ∈ 1:J

End For
End For

Set θM = 1
J

∑J
j=1(ΘF,M

N,j )

Set l̂e =
∑N

n=1 log(φ(yn ; 1
J

∑J
j=1 Ŷ

M
n,j ,Σ

m
Y )) where φ is the normal density
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Theorem 4 (Lemma 4.2 of Rebeschini and Van Handel (2015)) Let ρ and ρ′ be prob-
ability measures and let Λ be a bounded and strictly positive measurable function. Define

ρΛ(A) :=

∫
1A(x)Λ(x)ρ(x)∫

Λ(x)ρ(x)
and ρ′Λ(A) :=

∫
1A(x)Λ(x)ρ′(x)∫

Λ(x)ρ′(x)
.

Then

‖ρΛ − ρ′Λ‖ ≤ 2
supx Λ(x)

infx Λ(x)
‖ρ− ρ′‖ and

∣∣∣∣∣∣ρΛ − ρ′Λ
∣∣∣∣∣∣ ≤ 2

supx Λ(x)

infx Λ(x)

∣∣∣∣∣∣ρ− ρ′∣∣∣∣∣∣.
Theorem 5 (Lemma 4.3 of Rebeschini and Van Handel (2015)) Let I be a finite set
and let m be a pseudometric on I. Let C = (Cij)i,j∈I be a matrix with nonnegative entries.
Suppose that

max
i∈I

∑
j∈I

em(i,j)Cij ≤ c < 1.

Then the matrix D =
∑

n≥0C
n satisfies

max
i∈I

∑
j∈I

em(i,j)Dij ≤
1

1− c
.

Theorem 6 (Lemma 4.16 of Rebeschini and Van Handel (2015)) Let

µ = µ1 ⊗ · · · ⊗ µd and ν = ν1 ⊗ · · · ⊗ νd

be product probability measures on

S = S1 × · · · × Sd

and let Λ : S→ R be a bounded and strictly positive measurable function. Let µΛ and νΛ be
probability measures

µΛ =

∫
1A(x)Λ(x)µ(dx)∫

Λ(x)µ(dx)
and νΛ =

∫
1A(x)Λ(x)ν(dx)∫

Λ(x)ν(dx)
.

Suppose that there exists a constant ε > 0 such that the following holds: for every i =
1, · · · , d, there is a measurable function Λi : S→ R such that

εΛi(x) ≤ Λ ≤ ε−1Λi(x),

for all x ∈ S such that Λi(x) = Λi(x̃) whenever x{1,...,d}\{i} = x̃{1,...,d}\{i}. Then

‖µΛ − νΛ‖ ≤
2

ε2

d∑
i=1

‖µi − νi‖.

Theorem 7 (Corollary 4.21 of Rebeschini and Van Handel (2015)) For any subset
of blocks L ⊆ K, we have∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣⊗
K∈L

BKµ−
⊗
K∈L

BKSJµ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ 4 card(L)√

J
,

for every probability measure µ.
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C. Preparation

For any probability measure µs−1 on X× Θ at time s− 1 for any integer s ≥ 1, any vertex
v ∈ V , any block K ′ ∈ K, and any set Av = Avx × Avθ where Avx ⊆ Xv and Avθ ⊆ Θv, we
define the following quantities with χ indicating (x, θ):

• µvχs−1
(Avx ×Avθ) (38)

:= Pµs−1

[
Xv
s−1 ∈ Avx,Θv

s−1 ∈ Avθ
∣∣ XV \{v}

s−1 = x
V \{v}
s−1 ,Θ

V \{v}
s−1 = θ

V \{v}
s−1

]
,

• µvχs−1,χs(A
v
x ×Avθ) (39)

:= Pµs−1

[
Xv
s−1 ∈ Avx,Θv

s−1 ∈ Avθ
∣∣ XV \{v}

s−1 = x
V \{v}
s−1 ,Θ

V \{v}
s−1 = θ

V \{v}
s−1 ,

Xs = xs,Θs = θs

]

=

∫
1Av(x

v
s−1, θ

v
s−1)

∏
ω∈N(v) fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v) fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)

,

• µvχs−1,χs
(Avx ×Avθ) (40)

:= Pµs−1

[
Xv
s−1 ∈ Avx,Θv

s−1 ∈ Avθ
∣∣ XV \{v}

s−1 = x
V \{v}
s−1 ,Θ

V \{v}
s−1 = θ

V \{v}
s−1 ,

Xs = xs,Θs = θs

]

=

∫
1Av(x

v
s−1, θ

v
s−1)

∏
ω∈N(v) fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v) fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)

,

• µv,K′χs−1,χs(A
v
x ×Avθ) (41)

:= Pµs−1

[
Xv
s−1 ∈ Avx,Θv

s−1 ∈ Avθ
∣∣ XV \{v}

s−1 = x
V \{v}
s−1 ,Θ

V \{v}
s−1 = θ

V \{v}
s−1 ,

XK′
s = xK

′
s ,ΘK′

s = θK
′

s

]

=

∫
1Av(x

v
s−1, θ

v
s−1)

∏
ω∈N(v)∩K′ fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v)∩K′ fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)

,

• µv,K
′

χs−1,χs
(Avx ×Avθ) (42)

:= Pµs−1

[
Xv
s−1 ∈ Avx,Θv

s−1 ∈ Avθ
∣∣ XV \{v}

s−1 = x
V \{v}
s−1 ,Θ

V \{v}
s−1 = θ

V \{v}
s−1 ,
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XK′
s = xK

′
s ,ΘK′

s = θK
′

s

]

=

∫
1Av(x

v
s−1, θ

v
s−1)

∏
ω∈N(v)∩K′ fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v)∩K′ fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)µvχs−1

(dxvs−1, dθ
v
s−1)

.

Based on the above quantities, with v′ ∈ V we define

• Cµs−1

vv′ :=
1

2
sup
xs∈X
θs∈Θ

sup
xs−1,xs−1∈X:x

V \{v′}
s−1 =x

V \{v′}
s−1

θs−1,θs−1∈Θ:θ
V \{v′}
s−1 =θ

V \{v′}
s−1

‖µvχs−1,χs − µ
v
χs−1,χs

‖, (43)

• C̃µs−1

vv′ :=
1

2
sup
K′∈K

sup
xs∈X
θs∈Θ

sup
xs−1,xs−1∈X:x

V \{v′}
s−1 =x

V \{v′}
s−1

θs−1,θs−1∈Θ:θ
V \{v′}
s−1 =θ

V \{v′}
s−1

‖µv,K′χs−1,χs − µ
v,K′

χs−1,χs
‖, (44)

and with β being a finite positive constant we further define

• Corr(µs−1, β) := max
v∈V

∑
v′∈V

eβd(v,v′)C
µs−1

vv′ . (45)

• C̃orr(µs−1, β) := max
v∈V

∑
v′∈V

eβd(v,v′)C̃
µs−1

vv′ . (46)

Then, for Fs defined in (14) and F̃s defined in (18), any probability measure νs−1 on
X× Θ at time s− 1 for any integer s ≥ 1, and any set A ⊆ X× Θ, we have

• (Fsνs−1)(A) (47)

=

∫
1A(xs, θs)

∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

× fY ωs |Xω
s

(Y ω
s | xωs ; θωs )νs−1(dxs−1, dθs−1)ψ(dxs)λ(dθs)∫ ∏

ω∈V fXω
s |Xs−1

(xωs | xs−1 ; θωs )fΘωs |Θs−1
(θωs | θs−1 ;σ)

× fY ωs |Xω
s

(Y ω
s | xωs ; θωs )νs−1(dxs−1, dθs−1)ψ(dxs)λ(dθs)

,

• (F̃sνs−1)(A) (48)

=

∫
1A(xs, θs)

∏
K∈K

[ ∫ ∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θωs )

×fΘωs |Θs−1
(θωs | θs−1 ;σ)fY ωs |Xω

s
(Y ω
s | xωs ; θωs )νs−1(dxs−1, dθs−1)

]
× ψ(dxs)λ(dθs)∫ ∏

K∈K
[ ∫ ∏

ω∈K fXω
s |Xs−1

(xωs | xs−1 ; θωs )

×fΘωs |Θs−1
(θωs | θs−1 ;σ)fY ωs |Xω

s
(Y ω
s | xωs ; θωs )νs−1(dxs−1, dθs−1)

]
× ψ(dxs)λ(dθs)

.

According to the definition of µvχs−1
given in (38), for any K ∈ K and v ∈ K, we have

• (Fsνs−1)vχs(A
v) (49)
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=

∫
1Av(x

v
s , θ

v
s )
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

× fY vs |Xv
s
(Y v
s | xvs ; θvs )νs−1(dxs−1, dθs−1)ψv(dxs)λv(dθs)∫ ∏

ω∈V fXω
s |Xs−1

(xωs | xs−1 ; θωs )fΘωs |Θs−1
(θωs | θs−1 ;σ)

× fY vs |Xv
s
(Y v
s | xvs ; θvs )νs−1(dxs−1, dθs−1)ψv(dxs)λv(dθs)

,

• (F̃sνs−1)vχs(A
v) (50)

=

∫
1Av(x

v
s , θ

v
s )
∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

× fY vs |Xv
s
(Y v
s | xvs ; θvs )νs−1(dxs−1, dθs−1)ψv(dxs)λv(dθs)∫ ∏

ω∈K fXω
s |Xs−1

(xωs | xs−1 ; θωs )fΘωs |Θs−1
(θωs | θs−1 ;σ)

× fY vs |Xv
s
(Y v
s | xvs ; θvs )νs−1(dxs−1, dθs−1)ψv(dxs)λv(dθs)

.

By (49) and (50), according to the definition of µvχs−1,χs(A
v
x × Avθ) given in (39), for any

K ∈ K and v ∈ K, we have

• (Fsνs−1)vχs,χs+1
(Av) (51)

=

∫
1Av(x

v
s , θ

v
s )
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)∫ ∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)

,

• (F̃sνs−1)vχs,χs+1
(Av) (52)

=

∫
1Av(x

v
s , θ

v
s )
∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)∫ ∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)

.

By (49) and (50), according to the definition of µvχs−1,χs
given in (40), for any K ∈ K and

v ∈ K, we have

• (Fsνs−1)vχs,χs+1
(Av) (53)

=

∫
1Av(x

v
s , θ

v
s)
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θ

ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)∫ ∏

ω∈V fXω
s |Xs−1

(xωs | xs−1 ; θ
ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)

,

• (F̃sνs−1)vχs,χs+1
(Av) (54)
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=

∫
1Av(x

v
s , θ

v
s)
∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θ

ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)∫ ∏

ω∈K fXω
s |Xs−1

(xωs | xs−1 ; θ
ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)

.

By (49) and (50), according to the definition of µv,K
′

χs−1,χs given in (41), for any K,K ′ ∈ K
and v ∈ K, we have

• (Fsνs−1)v,K
′

χs,χs+1
(Av) (55)

=

∫
1Av(x

v
s , θ

v
s )
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)∫ ∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)

,

• (F̃sνs−1)v,K
′

χs,χs+1
(Av) (56)

=

∫
1Av(x

v
s , θ

v
s )
∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)∫ ∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θvs )

∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθvs )νs−1(dxs−1, dθs−1)

.

By (49) and (50), according to the definition of µv,K
′

χs−1,χs
given in (42), for any K,K ′ ∈ K

and v ∈ K, we have

• (Fsνs−1)v,K
′

χs,χs+1
(Av) (57)

=

∫
1Av(x

v
s , θ

v
s)
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θ

ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)∫ ∏

ω∈V fXω
s |Xs−1

(xωs | xs−1 ; θ
ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)

,

• (F̃sνs−1)v,K
′

χs,χs+1
(Av) (58)

33



Ning and Ionides

=

∫
1Av(x

v
s , θ

v
s)
∏
ω∈K fXω

s |Xs−1
(xωs | xs−1 ; θ

ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)∫ ∏

ω∈K fXω
s |Xs−1

(xωs | xs−1 ; θ
ω
s )fΘωs |Θs−1

(θ
ω
s | θs−1 ;σ)

×fY vs |Xv
s
(Y v
s | xvs ; θ

v
s)
∏
u∈N(v)∩K′ fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv(dxvs)λ

v(dθ
v
s)νs−1(dxs−1, dθs−1)

.

D. Proofs for bounding bias

Lemma 2 Under condition (27), for β defined in (28), the following holds:

(i) (1− ε2∆
x [εθ(σ)]2∆)e2βr∆2 ≤ 1

16 ;

(ii) (1− ε2x[εθ(σ)]2)eβ(r+1)∆ ≤ (1− ε2∆
x [εθ(σ)]2∆)e2βr∆2.

Proof By the definition of β, we have

eβ =

(
1

16∆K∆2(1− ε2∆
x [εθ(σ)]2∆)

) 1
2r

.

That is,

e2rβ =
1

16∆K∆2(1− ε2∆
x [εθ(σ)]2∆)

.

Since r,∆,∆K ≥ 1 and 0 ≤ εx, εθ(σ) ≤ 1, we have

(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2 ≤ (1− ε2∆

x [εθ(σ)]2∆)∆2

16∆K∆2(1− ε2∆
x [εθ(σ)]2∆)

≤ 1

16

(1− ε2x[εθ(σ)]2)eβ(r+1)∆ ≤ (1− ε2x[εθ(σ)]2)e2βr∆ ≤ (1− ε2∆
x [εθ(σ)]2∆)e2βr∆2.

Lemma 3 Under Assumption 1 in Section 3.3, for any n ≥ 0, we have

C̃orr(π̃n, β) <
1

8
,

where C̃orr( · , β) is defined in (46) and β is given in (28).

Proof Since π̃0 = π0 = δxδθ which is non-random, by the definition of C̃orr( · , β) given in

(46), we have C̃orr(π̃0, β) = 0. In the following, we prove by the method of induction and
assume that for n ≥ 1

C̃orr(π̃n−1, β) <
1

8
.
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Let K,K ′ ∈ K, v ∈ K, v′ ∈ V and v 6= v′. Let xn, xn ∈ X such that x
V \{v′}
n = x

V \{v′}
n .

Let θn, θn ∈ Θ such that θ
V \{v′}
n = θ

V \{v′}
n . Define I = ({n − 1} × V ) ∪ (n, v) and S =

(X× Θ)× (Xv × Θv). Define

ρ(A) =

∫
1A(xn−1, θn−1, x

v
n, θ

v
n)
∏
ω∈K fXω

n |Xn−1
(xωn | xn−1 ; θωn)

×fΘωn |Θn−1
(θωn | θn−1 ;σ)

∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)

×fΘun+1|Θn(θun+1 | θn ;σ)fY vn |Xv
n
(Y v
n | xvn ; θvn)

× ψv(dxvn)λv(dθvn)π̃n−1(dxn−1, dθn−1)∫ ∏
ω∈K fXω

n |Xn−1
(xωn | xn−1 ; θωn)

×fΘωn |Θn−1
(θωn | θn−1 ;σ)

∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)

×fΘun+1|Θn(θun+1 | θn ;σ)fY vn |Xv
n
(Y v
n | xvn ; θvn)

× ψv(dxvn)λv(dθvn)π̃n−1(dxn−1, dθn−1)

and

ρ(A) =

∫
1A(xn−1, θn−1, x

v
n, θ

v
n)
∏
ω∈K fXω

n |Xn−1
(xωn | xn−1 ; θωn)

×fΘωn |Θn−1
(θ
ω
n | θn−1 ;σ)

∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)

×fΘun+1|Θn(θun+1 | θn ;σ)fY vn |Xv
n
(Y v
n | xvn ; θ

v
n)

× ψv(dxvn)λv(dθ
v
n)π̃n−1(dxn−1, dθn−1)∫ ∏

ω∈K fXω
n |Xn−1

(xωn | xn−1 ; θωn)

×fΘωn |Θn−1
(θ
ω
n | θn−1 ;σ)

∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)

×fΘun+1|Θn(θun+1 | θn ;σ)fY vn |Xv
n
(Y v
n | xvn ; θ

v
n)

× ψv(dxvn)λv(dθ
v
n)π̃n−1(dxn−1, dθn−1)

.

Then according to the definitions of (F̃sνs−1)v,K
′

χs,χs+1 in (56) and (F̃sνs−1)v,K
′

χs,χs+1
in (58) for

s ≥ 1, we have

‖(F̃nπ̃n−1)v,K
′

χn,χn+1
− (F̃nπ̃n−1)v,K

′

χn,χn+1
‖ = ‖ρ− ρ‖(n,v).

In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound
‖ρ− ρ‖(n,v), we need to bound Cij and bi with i = (k, t) and j = (k′, t′). Set

ρi = ρi(xn−1,θn−1,xvn,θ
v
n) and ρi = ρi

(xn−1,θn−1,xvn,θ
v
n)
,

whose definitions are given in Theorem 2 in Appendix B. Note that

ρi 6= ρi
(xn−1,θn−1,xvn,θ

v
n)
.

We display our discussions as follows:

• When k = n− 1, we have

ρi(A) =

∫
1A(xtn−1, θ

t
n−1)

∏
ω∈N(t)∩K fXω

n |Xn−1
(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)∫ ∏

ω∈N(t)∩K fXω
n |Xn−1

(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)

.
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We can see that ρi = π̃t,Kχn−1,χn , by the definition of π̃t,Kχn−1,χn given in (41). Therefore,

if k′ = n − 1, by the definition of C̃
π̃n−1

tt′ given in (44), we know that Cij ≤ C̃
π̃n−1

tt′ .
Note that

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xtn−1, θ

t
n−1)

∏
ω∈N(t)∩(K\{v}) fXω

n |Xn−1
(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)∫ ∏

ω∈N(t)∩(K\{v}) fXω
n |Xn−1

(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)

,

and then we have Cij ≤ 1 − ε2x[εθ(σ)]2 if k′ = n and v ∈ N(t) by Theorem 3 in
Appendix B, and Cij = 0 otherwise. Recalling that at the beginning of this proof we

set v ∈ K, v′ ∈ V , v 6= v′, xn, xn ∈ X such that x
V \{v′}
n = x

V \{v′}
n , and θn, θn ∈ Θ such

that θ
V \{v′}
n = θ

V \{v′}
n , then we have ρi = ρi if v′ /∈ N(t)∩K. Furthermore, note that

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xtn−1, θ

t
n−1)

∏
ω∈N(t)∩(K\{v′}) fXω

n |Xn−1
(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)∫ ∏

ω∈N(t)∩(K\{v′}) fXω
n |Xn−1

(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)

,

and

ρi(A) =

∫
1A(xtn−1, θ

t
n−1)

∏
ω∈N(t)∩K fXω

n |Xn−1
(xωn | xn−1 ; θ

ω
n)

× fΘωn |Θn−1
(θ
ω
n | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)∫ ∏

ω∈N(t)∩K fXω
n |Xn−1

(xωn | xn−1 ; θ
ω
n)

× fΘωn |Θn−1
(θ
ω
n | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)

≥ ε2x[εθ(σ)]2

∫
1A(xtn−1, θ

t
n−1)

∏
ω∈N(t)∩(K\{v′}) fXω

n |Xn−1
(xωn | xn−1 ; θ

ω
n)

× fΘωn |Θn−1
(θ
ω
n | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)∫ ∏

ω∈N(t)∩(K\{v′}) fXω
n |Xn−1

(xωn | xn−1 ; θ
ω
n)

× fΘωn |Θn−1
(θ
ω
n | θn−1 ;σ)π̃tn−1(dxtn−1, dθ

t
n−1)

.

Hence, we have bi = 0 if v′ /∈ N(t) ∩K, and by Theorem 3 in Appendix B we have
bi = 2(1− ε2x[εθ(σ)]2) otherwise.

• When k = n, we have

ρi(A) =

∫
1A(xvn, θ

v
n)fXv

n|Xn−1
(xvn | xn−1 ; θvn)fΘvn|Θn−1

(θvn | θn−1 ;σ)

×
∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)fΘun+1|Θn(θun+1 | θn ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fXv
n|Xn−1

(xvn | xn−1 ; θvn)fΘvn|Θn−1
(θvn | θn−1 ;σ)

×
∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)fΘun+1|Θn(θun+1 | θn ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)
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≥ ε2x[εθ(σ)]2

∫
1A(xvn, θ

v
n)
∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)

× fΘun+1|Θn(θun+1 | θn ;σ)fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫ ∏

u∈N(v)∩K′ fXu
n+1|Xn(xun+1 | xn ; θun+1)

× fΘun+1|Θn(θun+1 | θn ;σ)fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

.

Then we have Cij ≤ 1 − ε2x[εθ(σ)]2 if k′ = n − 1 and t′ ∈ N(v) by Theorem 3 in
Appendix B, and Cij = 0 otherwise. Note that bi = 0 if v′ /∈ ∪ω∈N(v)∩K′N(ω).
Furthermore,

ρi(A) ≥ ε2∆
x [εθ(σ)]2∆

∫
1A(xvn, θ

v
n)fXv

n|Xn−1
(xvn | xn−1 ; θvn)fΘvn|Θn−1

(θvn | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fXv
n|Xn−1

(xvn | xn−1 ; θvn)fΘvn|Θn−1
(θvn | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

and

ρi(A) =

∫
1A(xvn, θ

v
n)fXv

n|Xn−1
(xvn | xn−1 ; θ

v
n)fΘvn|Θn−1

(θ
v
n | θn−1 ;σ)

×
∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)fΘun+1|Θn(θun+1 | θn ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θ

v
n)ψv(dxvn)λv(dθ

v
n)∫

fXv
n|Xn−1

(xvn | xn−1 ; θ
v
n)fΘvn|Θn−1

(θ
v
n | θn−1 ;σ)

×
∏
u∈N(v)∩K′ fXu

n+1|Xn(xun+1 | xn ; θun+1)fΘun+1|Θn(θun+1 | θn ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θ

v
n)ψv(dxvn)λv(dθ

v
n)

≥ ε2∆
x [εθ(σ)]2∆

∫
1A(xvn, θ

v
n)fXv

n|Xn−1
(xvn | xn−1 ; θ

v
n)fΘvn|Θn−1

(θ
v
n | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θ

v
n)ψv(dxvn)λv(dθ

v
n)∫

fXv
n|Xn−1

(xvn | xn−1 ; θ
v
n)fΘvn|Θn−1

(θ
v
n | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θ

v
n)ψv(dxvn)λv(dθ

v
n)

.

By Theorem 3 in Appendix B, we have bi = 2(1−ε2∆
x [εθ(σ)]2∆) if v′ ∈ ∪ω∈N(v)∩K′N(ω).

Define the matrix (Cij(v))i,j∈I whose entries are given below:

C(n−1,t)(n−1,t′)(v) =C̃
π̃n−1

tt′ ,

C(n−1,t)(n,v)(v) =C(n,v)(n−1,t)(v) = (1− ε2x[εθ(σ)]2)1t∈N(v),

C(n,v)(n,v)(v) =0.

In sum, we have that∑
(k′,t′)∈I

eβ|k−k
′|eβd(t,t′)C(k,t)(k′,t′) ≤

∑
(k′,t′)∈I

eβ|k−k
′|eβd(t,t′)C(k,t)(k′,t′)(v)

≤ C̃orr(π̃n−1, β) + (1− ε2x[εθ(σ)]2)eβ(r+1)∆

<
1

8
+

1

16
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<
1

2
, (59)

where the third inequality is by the assumption of the induction method and Lemma 2 in
Appendix D.

Next, applying Theorem 2 (Dobrushin comparison theorem) in Appendix B, we obtain
that

‖ρ− ρ‖(n,v) ≤2(1− ε2x[εθ(σ)]2)1{v′∈K}
∑

t′∈N(v′)

D(n,v)(n−1,t′)(v)

+ 2(1− ε2∆
x [εθ(σ)]2∆)1{v′∈∪ω∈N(v)∩K′N(ω)}D(n,v)(n,v)(v),

where D(v) =
∑

s≥0[C(v)]s. Therefore,

1

2
sup
K′∈K

sup
xn+1∈X
θn+1∈Θ

sup
xn,xn∈X:x

V \{v′}
n =x

V \{v′}
n

θn,θn∈Θ:θ
V \{v′}
n =θ

V \{v′}
n

‖(F̃nπ̃n−1)v,K
′

χn,χn+1
− (F̃nπ̃n−1)v,K

′

χn,χn+1
‖

≤ (1− ε2x[εθ(σ)]2)1{v′∈K}
∑

t′∈N(v′)

D(n,v)(n−1,t′)(v)

+ (1− ε2∆
x [εθ(σ)]2∆)1{v′∈∪ω∈N(v)∩K′N(ω)}D(n,v)(n,v)(v).

By the definition of C̃
µs−1

vv′ in equation (44), we have

C̃ π̃nvv′ ≤(1− ε2x[εθ(σ)]2)1{v′∈K}
∑

t′∈N(v′)

D(n,v)(n−1,t′)(v)

+ (1− ε2∆
x [εθ(σ)]2∆)1{v′∈∪ω∈N(v)∩K′N(ω)}D(n,v)(n,v)(v).

Note that∑
v′∈V

eβd(v,v′)C̃ π̃nvv′ ≤(1− ε2x[εθ(σ)]2)
∑
v′∈K

eβd(v,v′)
∑

t′∈N(v′)

D(n,v)(n−1,t′)(v)

+ (1− ε2∆
x [εθ(σ)]2∆)

∑
v′∈∪ω∈N(v)∩K′N(ω)

eβd(v,v′)D(n,v)(n,v)(v)

≤(1− ε2x[εθ(σ)]2)
∑
v′∈K

∑
t′∈N(v′)

eβd(v,v′)D(n,v)(n−1,t′)(v)

+ (1− ε2∆
x [εθ(σ)]2∆)

∑
v′∈∪ω∈N(v)∩K′N(ω)

eβd(v,v′)D(n,v)(n,v)(v)

≤(1− ε2x[εθ(σ)]2)
∑
v′∈K

∑
t′∈N(v′)

eβd(v,t′)eβd(t′,v′)D(n,v)(n−1,t′)(v)

+ (1− ε2∆
x [εθ(σ)]2∆)

∑
v′∈∪ω∈N(v)∩K′N(ω)

eβd(v,ω)eβd(ω,v′)D(n,v)(n,v)(v)

≤(1− ε2x[εθ(σ)]2)
∑
v′∈K

∑
t′∈N(v′)

eβd(v,t′)eβrD(n,v)(n−1,t′)(v)
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+ (1− ε2∆
x [εθ(σ)]2∆)e2βr∆2D(n,v)(n,v)(v)

≤(1− ε2x[εθ(σ)]2)∆eβr
∑
v′∈V

eβd(v,v′)D(n,v)(n−1,v′)(v)

+ (1− ε2∆
x [εθ(σ)]2∆)e2βr∆2D(n,v)(n,v)(v)

≤(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2

∑
(k′,v′)∈I

eβ{|k−k
′|+d(v,v′)}D(n,v)(k′,v′)(v).

By the definition of C̃orr( · , β) in equation (46), we have

C̃orr(π̃n, β) = max
v∈V

∑
v′∈V

eβd(v,v′)C̃ π̃nvv′

≤max
v∈V

(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2

∑
(k′,v′)∈I

eβ{|k−k
′|+d(v,v′)}D(n,v)(k′,v′)(v)

<2(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2

≤1

8
,

where the second inequality holds by (59) and Theorem 5 in Appendix B, and the last
inequality holds by Lemma 2 in Appendix D.

Lemma 4 Under Assumption 1 in Section 3.3, when condition (27) holds, for any n ≥ 0,
we have

Corr(π̃n, β) <
1

3
,

where Corr( · , β) is defined in (45) and β is given in (28).

Proof For µvχs−1,χs defined in (39) and µv,K
′

χs−1,χs defined in (41), we have

π̃vχn,χn+1
(A) =

∫
1A(xvn, θ

v
n)
∏
ω∈N(v)\K fXω

n+1|Xn(xωn+1 | xn ; θωn+1)

× fΘωn+1|Θn(θωn+1 | θn ;σ)π̃v,Kχn,χn+1(dxvn, dθ
v
n)∫ ∏

ω∈N(v)\K fXω
n+1|Xn(xωn+1 | xn ; θωn+1)

× fΘωn+1|Θn(θωn+1 | θn ;σ)π̃v,Kχn,χn+1(dxvn, dθ
v
n)

.

Let xn, xn ∈ X be such that x
V \{v′}
n = x

V \{v′}
n , and θn, θn ∈ Θ be such that θ

V \{v′}
n = θ

V \{v′}
n .

If v′ /∈ ∪ω∈N(v)N(ω), for µvχs−1,χs
defined in (40) and µv,K

′

χs−1,χs
defined in (42), by Theorem

4 in Appendix B, we have

‖π̃vχn,χn+1
− π̃vχn,χn+1

‖ ≤ 2ε−2∆
x [εθ(σ)]−2∆‖π̃v,Kχn,χn+1

− π̃v,Kχn,χn+1
‖.

Note that

π̃vχn,χn+1
(A) ≥ε2∆

x [εθ(σ)]2∆π̃v,Kχn,χn+1
(A),
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π̃vχn,χn+1
(A) ≥ε2∆

x [εθ(σ)]2∆π̃v,Kχn,χn+1
(A),

and then by Theorem 3 in Appendix B we have that if v′ ∈ ∪ω∈N(v)N(ω)

‖π̃vχn,χn+1
− π̃vχn,χn+1

‖ ≤ 2(1− ε2∆
x [εθ(σ)]2∆) + ε2∆

x [εθ(σ)]2∆‖π̃v,Kχn,χn+1
− π̃v,Kχn,χn+1

‖.

One can establish the inequality

Corr(π̃n, β)

≤(1− ε2∆
x [εθ(σ)]2∆) max

v∈V

∑
v′∈∪ω∈N(v)N(ω)

eβd(v,v′) + 2ε−2∆
x [εθ(σ)]−2∆C̃orr(π̃n, β)

≤(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2 + 2ε−2∆

x [εθ(σ)]−2∆C̃orr(π̃n, β).

Under condition (27) that

εxεθ(σ) >

(
1− 1

16∆K∆2

) 1
2∆

,

since ∆,∆K ≥ 1, we have

ε−2∆
x [εθ(σ)]−2∆ <

1

1− 1
16∆K∆2

≤ 1

1− 1/16
.

Hence, by Lemmas 2 and 3 in Appendix D, we have

Corr(π̃n, β) ≤(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2 + 2ε−2∆

x [εθ(σ)]−2∆C̃orr(π̃n, β)

<
1

16
+

2

8
ε−2∆
x [εθ(σ)]−2∆

<
1

16
+

2

8

1

1− 1/16

<
1

3
.

Proposition 5 Under Assumption 1 in Section 3.3, when condition (27) holds, for every
n ≥ 1, K ∈ K and k ⊆ K, we have that

‖Fnπ̃n−1 − F̃nπ̃n−1‖k ≤ 4e−β(1− ε2∆
x [εθ(σ)]2∆)e−βd(k,∂K)card(k),

where β is given in (28).

Proof Define I = {n− 1, n} × V and S = (X× Θ)2. Fix K ∈ K and define

ρ(A) =

∫
1A(xn−1, θn−1, xn, θn)

∏
ω∈V fXω

n |Xn−1
(xωn | xn−1 ; θωn)

×fΘωn |Θn−1
(θωn | θn−1 ;σ)fY ωn |Xω

n
(Y ω
n | xωn ; θωn)

× ψ(dxn)λ(dθn)π̃n−1(dxn−1, dθn−1)∫ ∏
ω∈V fXω

n |Xn−1
(xωn | xn−1 ; θωn)

×fΘωn |Θn−1
(θωn | θn−1 ;σ)fY ωn |Xω

n
(Y ω
n | xωn ; θωn)

× ψ(dxn)λ(dθn)π̃n−1(dxn−1, dθn−1)

,
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and

ρ̃(A) =

∫
1A(xn−1, θn−1, xn, θn)

∏
v∈K fXv

n|Xn−1
(xvn | xn−1 ; θvn)

×fΘvn|Θn−1
(θvn | θn−1 ;σ)

∏
ω∈V fY ωn |Xω

n
(Y ω
n | xωn ; θωn)

× ψ(dxn)λ(dθn)π̃n−1(dxn−1, dθn−1)∫ ∏
v∈K fXv

n|Xn−1
(xvn | xn−1 ; θvn)

×fΘvn|Θn−1
(θvn | θn−1 ;σ)

∏
ω∈V fY ωn |Xω

n
(Y ω
n | xωn ; θωn)

× ψ(dxn)λ(dθn)π̃n−1(dxn−1, dθn−1)

.

Then for any k ⊆ K and K ⊆ V , we have

‖Fnπ̃n−1 − F̃nπ̃n−1‖k = ‖ρ− ρ̃‖{n}×k.

In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound
‖ρ− ρ̃‖{n}×k, we need to bound Cij and bi with i = (k, v) and j = (k′, v′). Set

ρi = ρi(xn−1,θn−1,xn,θn) and ρ̃i = ρ̃i(xn−1,θn−1,xn,θn),

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:

• When k = n− 1, we have

ρi(A) =

∫
1A(xvn−1, θ

v
n−1)

∏
ω∈N(v) fXω

n |Xn−1
(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃vn−1(dxvn−1, dθ

v
n−1)∫ ∏

ω∈N(v) fXω
n |Xn−1

(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃vn−1(dxvn−1, dθ

v
n−1)

.

We can see that ρi = π̃vχn−1,χn , according to the definition of µvχs−1,χs defined in (39).

Therefore, if k′ = n− 1, by the definition of C
µs−1

vv′ in equation (43), we know that

Cij ≤ C π̃n−1

vv′ . If k′ = n, since

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xvn−1, θ

v
n−1)

∏
ω∈N(v)\{v′} fXω

n |Xn−1
(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃vn−1(dxvn−1, dθ

v
n−1)∫ ∏

ω∈N(v)\{v′} fXω
n |Xn−1

(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃vn−1(dxvn−1, dθ

v
n−1)

,

we have Cij ≤ 1− ε2x[εθ(σ)]2 if v′ ∈ N(v) by Theorem 3 in Appendix B, and Cij = 0
otherwise. Hence, by the definition of Corr(µs−1, β) in (45), we have∑

(k′,v′)∈I

eβ|k
′−k|eβd(v,v′)C(k,v)(k′,v′) ≤ Corr(π̃n−1, β) + (1− ε2x[εθ(σ)]2)eβ(r+1)∆. (60)

Next we take care of bi. When k = n− 1, we have

ρ̃i(A) =

∫
1A(xvn−1, θ

v
n−1)

∏
ω∈N(v)∩K fXω

n |Xn−1
(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃vn−1(dxvn−1, dθ

v
n−1)∫ ∏

ω∈N(v)∩K fXω
n |Xn−1

(xωn | xn−1 ; θωn)

× fΘωn |Θn−1
(θωn | θn−1 ;σ)π̃vn−1(dxvn−1, dθ

v
n−1)

.
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Note that, if N(v) ⊆ K, we have ρi = ρ̃i which yields bi = 0 if v ∈ int(K). Further
note that

ρi(A) ≥ ε2∆
x [εθ(σ)]2∆

∫
1A(xvn−1, θ

v
n−1)π̃vn−1(dxvn−1, dθ

v
n−1)∫

π̃vn−1(dxvn−1, dθ
v
n−1)

,

ρ̃i(A) ≥ ε2∆
x [εθ(σ)]2∆

∫
1A(xvn−1, θ

v
n−1)π̃vn−1(dxvn−1, dθ

v
n−1)∫

π̃vn−1(dxvn−1, dθ
v
n−1)

,

which by Theorem 3 in Appendix B yields that bi = 2(1− ε2∆
x [εθ(σ)]2∆) if v /∈ int(K).

• When k = n, we have

ρi(A) =

∫
1A(xvn, θ

v
n)fXv

n|Xn−1
(xvn | xn−1 ; θvn)fΘvn|Θn−1

(θvn | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fXv
n|Xn−1

(xvn | xn−1 ; θvn)fΘvn|Θn−1
(θvn | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

≥ ε2x[εθ(σ)]2
∫
1A(xvn, θ

v
n)fY vn |Xv

n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

.

Hence, ∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) ≤ (1− ε2x[εθ(σ)]2)eβ(r+1)∆. (61)

Note that, if v ∈ K we have ρi = ρ̃i which yields bi = 0, otherwise given that

ρ̃i(A) =

∫
1A(xvn, θ

v
n)fY vn |Xv

n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

≥ε2x[εθ(σ)]2
∫
1A(xvn, θ

v
n)fY vn |Xv

n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

we have bi = 2(1− ε2x[εθ(σ)]2) by Theorem 3 in Appendix B .

Summing up (60) for k = n− 1 and (61) for k = n, we have that

max
(k,v)∈I

∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) ≤ Corr(π̃n−1, β) + (1− ε2x[εθ(σ)]2)eβ(r+1)∆.

Furthermore, by Lemma 4 in Appendix D we have that

Corr(π̃n, β) <
1

3
,

and by Lemma 2 in Appendix D we have that

(1− ε2x[εθ(σ)]2)eβ(r+1)∆ ≤ 1

16
.
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Hence,

max
(k,v)∈I

∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) < 1/2.

Next, applying Theorem 2 (Dobrushin comparison theorem) in Appendix B and Theorem
5 in Appendix B, we obtain that

‖Fnπ̃n−1 − F̃nπ̃n−1‖k = ‖ρ− ρ̃‖{n}×k

= 2(1− ε2x[εθ(σ)]2)
∑
v∈k

 ∑
v′∈V \ int(K)

D(n,v)(n−1,v′) +
∑

v′∈V \K

D(n,v)(n,v′)


≤ 4e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)card(k).

Proposition 6 Under Assumption 1 in Section 3.3, when condition (27) holds, we have
that for every k ⊆ K, K ∈ K and s ∈ {1, . . . , n− 1},

‖Fn · · ·Fs+1Fsπ̃s−1 − Fn · · ·Fs+1F̃sπ̃s−1‖k

≤48

23
e−β(n−s)

∑
v∈k

max
v′∈V

e−βd(v,v′) sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(Fsπ̃s−1)v
′
χs,χs+1

− (F̃sπ̃s−1)v
′
χs,χs+1

‖,

where β is given in (28).

Proof Define I = {s, . . . , n} × V and S = (X× Θ)n−s+1. Define

ρ = PF̃sπ̃s−1 [Xs, Xs+1, . . . , Xn ∈ · ,Θs,Θs+1, . . . ,Θn ∈ · | Ys+1, . . . , Yn],

ρ̃ = PFsπ̃s−1 [Xs, Xs+1, · · · , Xn ∈ · ,Θs,Θs+1, · · · ,Θn ∈ · | Ys+1, . . . , Yn].

Then we have

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k = ‖ρ− ρ̃‖{n}×k.

In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound
‖ρ− ρ̃‖{n}×k, we need to bound Cij and bi with i = (k, v) and j = (k′, v′). Set

ρi = ρi(xs,...,xn,θs,...,θn) and ρ̃i = ρ̃i(xs,...,xn,θs,...,θn),

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:
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• When k = s, we have

ρi(A) = π̃vχs,χs+1
(A) =

∫
1A(xvs , θ

v
s )
∏
ω∈N(v) fXω

s+1|Xs(x
ω
s+1 | xs ; θωs+1)

× fΘωs+1|Θs(θ
ω
s+1 | θs ;σ)π̃vχs(dx

v
s , dθ

v
s )∫ ∏

ω∈N(v) fXω
s+1|Xs(x

ω
s+1 | xs ; θωs+1)

× fΘωs+1|Θs(θ
ω
s+1 | θs ;σ)π̃vχs(dx

v
s , dθ

v
s )

≥ε2∆
x [εθ(σ)]2∆π̃vχs(A)

according to the definition of µvχs−1,χs given in (39). Therefore, when k′ = s, by the

definition of C π̃svv′ in equation (43), we know that Cij ≤ C π̃svv′ . When k′ = s + 1, we
have Cij ≤ 1 − ε2∆

x [εθ(σ)]2∆ if v′ ∈ N(v) by Theorem 3 in Appendix B, and Cij = 0

otherwise. Hence, by the definition of C̃orr(µs−1, β) in (45),∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) ≤ Corr(π̃s, β) + (1− ε2∆

x [εθ(σ)]2∆)eβ(r+1)∆. (62)

• When k ∈ {s+ 1, . . . , n− 1}, we have

ρi(A) =

∫
1A(xvk, θ

v
k)fXv

k |Xk−1
(xvk | xk−1 ; θvk)fΘvk|Θk−1

(θvk | θk−1 ;σ)

×
∏
ω∈N(v) fXω

k+1|Xk(xωk+1 | xk ; θωk+1)fΘωk+1|Θk(θωk+1 | θk ;σ)

× fY vk |Xv
k
(Y v
k | xvk ; θvk)ψv(dxvk)λ

v(dθvk)∫
fXv

k |Xk−1
(xvk | xk−1 ; θvk)fΘvk|Θk−1

(θvk | θk−1 ;σ)

×
∏
ω∈N(v) fXω

k+1|Xk(xωk+1 | xk ; θωk+1)fΘωk+1|Θk(θωk+1 | θk ;σ)

× fY vk |Xv
k
(Y v
k | xvk ; θvk)ψv(dxvk)λ

v(dθvk)

.

Note that xvk depends on xv
′
k−1 if v′ ∈ N(v), and

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xvk, θ

v
k)
∏
ω∈N(v) fXω

k+1|Xk(xωk+1 | xk ; θωk+1)

×fΘωk+1|Θk(θωk+1 | θk ;σ)fY vk |X
v
k
(Y v
k | xvk ; θvk)

× ψv(dxvk)λv(dθvk)∫ ∏
ω∈N(v) fXω

k+1|Xk(xωk+1 | xk ; θωk+1)

×fΘωk+1|Θk(θωk+1 | θk ;σ)fY vk |X
v
k
(Y v
k | xvk ; θvk)

× ψv(dxvk)λv(dθvk)

.

Further note that xvk depends on xv
′
k+1 if v′ ∈ N(v), xvk depends on xv

′
k if v′ ∈

∪ω∈N(v)N(ω), and

ρi(A) ≥ ε2∆
x [εθ(σ)]2∆

∫
1A(xvk, θ

v
k)fXv

k |Xk−1
(xvk | xk−1 ; θvk)

×fΘvk|Θk−1
(θvk | θk−1 ;σ)fY vk |X

v
k
(Y v
k | xvk ; θvk)

× ψv(dxvk)λv(dθvk)∫
fXv

k |Xk−1
(xvk | xk−1 ; θvk)

×fΘvk|Θk−1
(θvk | θk−1 ;σ)fY vk |X

v
k
(Y v
k | xvk ; θvk)

× ψv(dxvk)λv(dθvk)

.
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By Theorem 3 in Appendix B we have Cij ≤ 1−ε2x[εθ(σ)]2, if k′ = k−1 and v′ ∈ N(v);
Cij ≤ 1− ε2∆

x [εθ(σ)]2∆, if k′ = k + 1 and v′ ∈ N(v); Cij ≤ 1− ε2∆
x [εθ(σ)]2∆, if k′ = k

and v′ ∈ ∪ω∈N(v)N(ω); Cij = 0, otherwise. Therefore∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) ≤ (1− ε2∆

x [εθ(σ)]2∆)(e2βr∆2 + 2eβ(r+1)∆)

≤ 3(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2. (63)

• When k = n, note that xvn only depends on xv
′
n−1 where v′ ∈ N(v), and

ρi(A) =

∫
1A(xvn, θ

v
n)fXv

n|Xn−1
(xvn | xn−1 ; θvn)fΘvn|Θn−1

(θvn | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fXv
n|Xn−1

(xvn | xn−1 ; θvn)fΘvn|Θn−1
(θvn | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

≥ε2x[εθ(σ)]2
∫
1A(xvn, θ

v
n)fY vn |Xv

n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)∫

fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxvn)λv(dθvn)

.

By Theorem 3 in Appendix B we have Cij ≤ 1−ε2x[εθ(σ)]2 if k′ = n−1 and v′ ∈ N(v);
Cij = 0, otherwise. Therefore∑

(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) ≤ (1− ε2x[εθ(σ)]2)eβ(r+1)∆. (64)

Summing up (62) for k = s, (63) for k ∈ {s + 1, . . . , n − 1}, and (64) for k = n, by
Lemma 2 in Appendix D, we have

max
(k,v)∈I

∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′)

≤ Corr(π̃s, β) + 3(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2.

Furthermore, by Lemma 4 in Appendix D we have that

Corr(π̃s, β) <
1

3
,

and by Lemma 2 in Appendix D we have that

(1− ε2∆
x [εθ(σ)]2∆)e2βr∆2 ≤ 1

16
.

Hence,

max
(k,v)∈I

∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) <

1

3
+

3

16
=

25

48
.
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By Theorem 5 in Appendix B we have

max
(k,v)∈I

∑
(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)D(k,v)(k′,v′) <

48

23
. (65)

Note that, ρi = ρ̃i when i = (k, v) with k > s. For k = s, we have ρ̃i = (Fsπ̃s−1)vχs,χs+1
and

ρi = (F̃sπ̃s−1)vχs,χs+1
. By Theorem 3 in Appendix B, we have

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k
=‖ρ− ρ̃‖{n}×k
≤
∑
v∈k

∑
v′∈V

D(n,v)(s,v′) sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(F̃sπ̃s−1)v
′
χs,χs+1

− (Fsπ̃s−1)v
′
χs,χs+1

‖

=
∑
v∈k

e−β(n−s)
∑
v′∈V

eβ((n−s)+d(v,v′))D(n,v)(s,v′)

× e−βd(v,v′) sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(F̃sπ̃s−1)v
′
χs,χs+1

− (Fsπ̃s−1)v
′
χs,χs+1

‖

≤48

23
e−β(n−s)

∑
v∈k

max
v′∈V

e−βd(v,v′) sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(F̃sπ̃s−1)v
′
χs,χs+1

− (Fsπ̃s−1)v
′
χs,χs+1

‖,

where we used (65) in the last inequality.

Proposition 7 Under Assumption 1 in Section 3.3, when condition (27) holds, we have
that for every s ≥ 1, K ′ ∈ K, and v′ ∈ K ′,

sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(Fsπ̃s−1)v
′
χs,χs+1

− (F̃sπ̃s−1)v
′
χs,χs+1

‖ ≤ 96

29
e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(v′,∂K′),

where β is given in (28).

Proof According to the expressions of (Fsνs−1)vχs,χs+1
given in (51) and (F̃sνs−1)vχs,χs+1

given in (52), we have

(Fsπ̃s−1)v
′
χs,χs+1

(A)

=

∫
1A(xv

′
s , θ

v′
s )
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s )
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)∫ ∏

ω∈V fXω
s |Xs−1

(xωs | xs−1 ; θωs )fΘωs |Θs−1
(θωs | θs−1 ;σ)

×fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s )
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)

46



IBPF for High-dimensional Parameter Learning

and

(F̃sπ̃s−1)v
′
χs,χs+1

(A)

=

∫
1A(xv

′
s , θ

v′
s )
∏
ω∈K′ fXω

s |Xs−1
(xωs | xs−1 ; θωs )fΘωs |Θs−1

(θωs | θs−1 ;σ)

×fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s )
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)∫ ∏

ω∈K′ fXω
s |Xs−1

(xωs | xs−1 ; θωs )fΘωs |Θs−1
(θωs | θs−1 ;σ)

×fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s )
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)

.

Define I = ({s − 1} × V ) ∪ (s, v′) and S = (X × Θ) × (Xv
′ × Θv

′
), and the probability

measures on S as follows:

ρ(A) =

∫
1A(xs−1, θs−1, x

v′
s , θ

v′
s )
∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )

×fΘωs |Θs−1
(θωs | θs−1 ;σ)fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv

′
s )

×
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)fΘus+1|Θs(θ

u
s+1 | θs ;σ)

× ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)∫ ∏
ω∈V fXω

s |Xs−1
(xωs | xs−1 ; θωs )

×fΘωs |Θs−1
(θωs | θs−1 ;σ)fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv

′
s )

×
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)fΘus+1|Θs(θ

u
s+1 | θs ;σ)

× ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)

and

ρ̃(A) =

∫
1A(xs−1, θs−1, x

v′
s , θ

v′
s )
∏
ω∈K′ fXω

s |Xs−1
(xωs | xs−1 ; θωs )

×fΘωs |Θs−1
(θωs | θs−1 ;σ)fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv

′
s )

×
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)fΘus+1|Θs(θ

u
s+1 | θs ;σ)

× ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)∫ ∏
ω∈K′ fXω

s |Xs−1
(xωs | xs−1 ; θωs )

×fΘωs |Θs−1
(θωs | θs−1 ;σ)fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv

′
s )

×
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)fΘus+1|Θs(θ

u
s+1 | θs ;σ)

× ψv′(dxv′s )λv′(dθv′s )π̃s−1(dxs−1, dθs−1)

.

Then we have

‖(Fsπ̃s−1)v
′
χs,χs+1

− (F̃sπ̃s−1)v
′
χs,χs+1

‖ = ‖ρ− ρ̃‖(s,v′).

In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound

‖ρ− ρ̃‖(s,v′), we need to bound Cij and bi with i = (k, v) and j = (k, v). Set

ρi = ρi
(xs−1,θs−1,xv

′
s ,θ

v′
s )

and ρ̃i = ρ̃i
(xs−1,θs−1,xv

′
s ,θ

v′
s )
,

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:
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• When k = s− 1, we have

ρi(A) =

∫
1A(xvs−1, θ

v
s−1)

∏
ω∈N(v) fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)π̃vχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v) fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)π̃vχs−1

(dxvs−1, dθ
v
s−1)

and

ρ̃i(A) =

∫
1A(xvs−1, θ

v
s−1)

∏
ω∈N(v)∩K′ fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)π̃vχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v)∩K′ fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)π̃vχs−1

(dxvs−1, dθ
v
s−1)

,

where π̃vχs−1
is defined according to the definition of µvχs−1

given in (38). Therefore,

by the definition of µvχs−1,χs given in (39), we have ρi = π̃vχs−1,χs . Furthermore, by the

definition of C
µs−1

vv′ in equation (43), we know that Cij ≤ C π̃s−1

v v
if k = s− 1. If k = s,

since

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xvs−1, θ

v
s−1)

∏
ω∈N(v)\{v′} fXω

s |Xs−1
(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)π̃vχs−1

(dxvs−1, dθ
v
s−1)∫ ∏

ω∈N(v)\{v′} fXω
s |Xs−1

(xωs | xs−1 ; θωs )

× fΘωs |Θs−1
(θωs | θs−1 ;σ)π̃vχs−1

(dxvs−1, dθ
v
s−1)

,

we have Cij ≤ 1 − ε2x[εθ(σ)]2 if v = v′ ∈ N(v) by Theorem 3 in Appendix B, and
Cij = 0 otherwise. Hence, by the definition of Corr(µs−1, β) in (45),∑

(k,v)∈I

eβ|k−k|eβd(v,v)C
(k,v)(k,v)

≤ Corr(π̃s−1, β) + (1− ε2x[εθ(σ)]2)eβ(r+1)∆. (66)

To handle bi, note that if N(v) ⊆ K ′ we have ρi = ρ̃i, and note that

ρi(A) ≥ ε2∆
x [εθ(σ)]2∆π̃vχs−1

, ρ̃i(A) ≥ ε2∆
x [εθ(σ)]2∆π̃vχs−1

.

Therefore, we have that bi = 0 if v ∈ int(K ′), and by Theorem 3 in Appendix B we
have bi = 2(1− ε2∆

x [εθ(σ)]2∆) otherwise.

• When k = s, we have

ρi(A) = ρ̃i(A)

=

∫
1A(xv

′
s , θ

v′
s )fXv′

s |Xs−1
(xv

′
s | xs−1 ; θv

′
s )fΘv

′
s |Θs−1

;σ)

×fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s )
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv′(dxv′s )λv′(dθv′s )∫

fXv′
s |Xs−1

(xv
′
s | xs−1 ; θv

′
s )fΘv′s |Θs−1

;σ)

×fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s )
∏
u∈N(v′) fXu

s+1|Xs(x
u
s+1 | xs ; θus+1)

× fΘus+1|Θs(θ
u
s+1 | θs ;σ)ψv′(dxv′s )λv′(dθv′s )

.
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Therefore, we have bi = 0, and Cij ≤ 1 − ε2x[εθ(σ)]2 if k = s − 1 and v ∈ N(v′) and
Cij = 0 otherwise. Hence,∑

(k,v)∈I

eβ|k−k|eβd(v′,v)C
(k,v′)(k,v)

≤ (1− ε2x[εθ(σ)]2)eβ(r+1)∆. (67)

Summing up (66) for k = s− 1 and (67) for k = s, we have

max
(k,v)∈I

∑
(k,v)∈I

eβ|k−k|eβd(v,v)C
(k,v)(k,v)

≤ Corr(π̃s−1, β) + (1− ε2x[εθ(σ)]2)eβ(r+1)∆.

Furthermore, by Lemma 4 in Appendix D we have that

Corr(π̃s−1, β) <
1

3
,

and by Lemma 2 in Appendix D we have that

(1− ε2x[εθ(σ)]2)eβ(r+1)∆ ≤ 1

16
.

Hence,

max
(k,v)∈I

∑
(k,v)∈I

eβ|k−k|eβd(v,v)C
(k,v)(k,v)

=
19

48
.

By Theorem 2 (Dobrushin comparison theorem) in Appendix B and Theorem 5 in Appendix
B, we have

‖(Fsπ̃s−1)v
′
χs,χs+1

− (F̃sπ̃s−1)v
′
χs,χs+1

‖ = ‖ρ− ρ̃‖(s,v′)
≤2(1− ε2∆

x [εθ(σ)]2∆)
∑

v∈V \ int(K′)

D(s,v′)(s−1,v)

≤96

29
e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(v′,∂K′),

which is uniform for all xs, xs+1 ∈ X and all θs, θs+1 ∈ Θ.

E. Proofs for bounding variance

Proposition 8 Under Assumption 1 in Section 3.3, for integer s ≥ 1, one has

max
K∈K

[
E
∥∥F̃s+1F̃sπ̂s−1 − F̃s+1F̂sπ̂s−1

∥∥2

K

]1/2

≤ 16√
J

[εθ(σ)]−2|K|∞ε−2|K|∞
x ε−2|K|∞(∆K+1)

y ∆K,

where |K|∞ is the maximal size of a block in K defined in (7).
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Proof For any K ∈ K, by Theorem 4 in Appendix B, we have∥∥F̃s+1F̃sπ̂s−1 − F̃s+1F̂sπ̂s−1

∥∥
K

=
∥∥Cs+1BPs+1F̃sπ̂s−1 − Cs+1BPs+1F̂sπ̂s−1

∥∥
K

=
∥∥CKs+1B

KPs+1F̃sπ̂s−1 − CKs+1B
KPs+1F̂sπ̂s−1

∥∥
≤2ε−2|K|∞

y ‖BKPs+1F̃sπ̂s−1 − BKPs+1F̂sπ̂s−1

∥∥. (68)

For ψK(dxK· ) and λK(dθK· ) defined in (2), we have(
BKPs+1F̃sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

=

∫ ∏
v∈K fXv

s+1|Xs(x
v
s+1 | xs ; θvs+1)fΘvs+1|Θs(θ

v
s+1 | θs ;σ)

×
∏
K′∈N(K)

∏
v′∈K′ fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv′s ) [BK′Psπ̂s−1] (dxK′s , dθK′s )∫ ∏

K′∈N(K)

∏
v′∈K′ fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv′s ) [BK′Psπ̂s−1] (dxK′s , dθK′s )

,

and (
BKPs+1F̂sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

=

∫ ∏
v∈K fXv

s+1|Xs(x
v
s+1 | xs ; θvs+1)fΘvs+1|Θs(θ

v
s+1 | θs ;σ)

×
∏
K′∈N(K)

∏
v′∈K′ fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv′s ) [BK′SJPsπ̂s−1] (dxK′s , dθK′s )∫ ∏

K′∈N(K)

∏
v′∈K′ fY v′s |Xv′

s
(Y v′
s | xv

′
s ; θv′s ) [BK′SJPsπ̂s−1] (dxK′s , dθK′s )

,

where N(K) is defined in (4) as the collection of blocks that interact with the block K. By
equation (8.1) in Georgii (2011), we have∥∥BKPs+1F̃sπ̂s−1 − BKPs+1F̂sπ̂s−1

∥∥
=

∫ ∣∣∣∣∣∣∣∣
(
BKPs+1F̃sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

−

(
BKPs+1F̂sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

∣∣∣∣∣∣∣∣ψ
K(dxKs+1)λK(dθKs+1).

Therefore, by Minkowski’s integral inequality,[
E
∥∥BKPs+1F̃sπ̂s−1 − BKPs+1F̂sπ̂s−1

∥∥2
]1/2

≤

∫ E
∣∣∣∣∣∣∣∣
(
BKPs+1F̃sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)
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−

(
BKPs+1F̂sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

∣∣∣∣∣∣∣∣
2


1/2

ψK(dxKs+1)λK(dθKs+1)

≤ψK(XK)λK(ΘK) sup
xK∈XK
θK∈ΘK

E
∣∣∣∣∣∣∣∣
(
BKPs+1F̃sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

−

(
BKPs+1F̂sπ̂s−1

)
(dxKs+1, dθ

K
s+1)

ψK(dxKs+1)λK(dθKs+1)

∣∣∣∣∣∣∣∣
2


1/2

.

By Assumption 1 in Section 3.3 and the fact that fXv
s+1|Xs(x

v
s+1 | xs ; θvs+1) is a transition

density, we have that

εxψ
v(Xv) ≤

∫
fXv

s+1|Xs(x
v
s+1 | xs ; θvs+1)ψv(dxvs+1) = 1,

and then

ψv(Xv) ≤ ε−1
x , ψK(XK) ≤ ε−|K|∞x .

Similarly, by Assumption 1 in Section 3.3 and the fact that fΘvs+1|Θs(θ
v
s+1 | θs ;σ) is a

transition density, we have that

εθ(σ)λv(Θv) ≤
∫
fΘvs+1|Θs(θ

v
s+1 | θs ;σ)λv(dθvs+1) = 1,

and then

λv(Θv) ≤ [εθ(σ)]−1, λK(ΘK) ≤ [εθ(σ)]−|K|∞ .

Furthermore, by Assumption 1 in Section 3.3, we have∏
v∈K

fXv
s+1|Xs(x

v
s+1 | xs ; θvs+1)fΘvs+1|Θs(θ

v
s+1 | θs ;σ) ≤ ε−|K|∞x [εθ(σ)]−|K|∞

and

ε|K|∞∆K
y ≤

∏
K′∈N(K)

∏
v′∈K′

fY v′s |Xv′
s

(Y v′
s | xv

′
s ; θv

′
s ) ≤ ε−|K|∞∆K

y .

Hence, by Theorem 4 in Appendix B and Assumption 1 in Section 3.3,[
E
∥∥BKPs+1F̃sπ̂s−1 − BKPs+1F̂sπ̂s−1

∥∥2
]1/2

≤ 2[εθ(σ)]−2|K|∞ε−2|K|∞
x ε−2|K|∞∆K

y

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
⊗

K′∈N(K)

BK
′
Psπ̂s−1 −

⊗
K′∈N(K)

BK
′
SJPsπ̂s−1

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
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≤ 8[εθ(σ)]−2|K|∞ε−2|K|∞
x ε−2|K|∞∆K

y

∆K√
J
,

where the last inequality is by Theorem 7 in Appendix B. Plugging in equation (68), the
proof is complete.

Lemma 9 Under Assumption 1 in Section 3.3, when condition (27) holds, one has that
for every K ∈ K, k ⊆ K and s ∈ {1, . . . , n},

‖F̃n · · · F̃sδxδθ − F̃n · · · F̃sδxδθ‖k ≤
32

13
e−β̃(n−s+1)card(k),

where

β̃ =
1

2r
log

(
1

16∆2(1− ε2∆
x [εθ(σ)]2∆)

)
. (69)

Proof We first tackle the s = 1 case that

‖F̃n · · · F̃1δxδθ − F̃n · · · F̃1δxδθ‖k

and then generalize to all s ∈ {1, . . . , n}.
Recalling that N(K) is defined in (4) as the collection of blocks that interact with the

block K in one time step, we define a “block” tree T as

T =
{

[Ku · · ·Kn] : 0 ≤ u ≤ n, Kl ∈ N(Kl+1), u ≤ l ≤ n
}
,

where Kn = K. That is, [Ku · · ·Kn] is the block Ku at time u that has interactions with
the block K at time n after n−u time steps; note that this type of representation describes
the block-wised interaction trace from time u up to time n. By the effect of block operator
BK on F̃nρ for any n ∈ N and any measure ρ on X× Θ, given in (23), we can write

BK F̃n · · · F̃1δxδθ =CKnn PKnn
⊗

Kn−1∈N(Kn)

[
C
Kn−1

n−1 P
Kn−1

n−1

⊗
Kn−2∈N(Kn−1)

[
C
Kn−2

n−2 P
Kn−2

n−2 · · ·

⊗
K1∈N(K2)

[
CK1

1 PK1
s

⊗
K0∈N(K1)

δK0
x δK0

θ

]
· · ·
]]
,

where PKn is defined in (21) and CKn is defined in (22).
The vertex set of the tree is defined as

I = {[Ku · · ·Kn]v : [Ku · · ·Kn] ∈ T, v ∈ Ku}.
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Clearly, the following equivalence holds:

[Ku · · ·Kn] = {[Ku · · ·Kn]v : v ∈ Ku}.

Define the index set of leaves of the tree T as

T0 = {[K0 · · ·Kn] : Kl ∈ N(Kl+1), 0 ≤ l < n}.

Further define the children c(i) of i ∈ I as

c([Ku · · ·Kn]v) = {[Ku−1 · · ·Kn]v′ : Ku−1 ∈ N(Ku), v′ ∈ N(v)},

define the location v(i) of i ∈ I as

v([Ku · · ·Kn]v) = v,

define the depth d(i) of i ∈ I as

d([Ku · · ·Kn]v) = u,

and then define the set of non-leaf vertices of the tree as

I+ = {i ∈ I : 0 < d(i) ≤ n}.

Define
S =

∏
i∈I

Xi × Θi,

for [t]v ∈ I define
Y[t]v = Yv, X[t]v = Xv and Θ[t]v = Θv,

and for any [Ku · · ·Kn] ∈ T and any measure ρ define

ρ[Ku···Kn] = ρKu .

We define two probability measures on S as

ρ(A) =

∫
1A(x, θ)

∏
i∈I+ fXi

d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))

×fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))

× ψv(i)(dxid(i))λ
v(i)(dθid(i))

∏
t∈T0

δt(dxt0, dθ
t
0)∫ ∏

i∈I+ fXi
d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))

×fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))

× ψv(i)(dxid(i))λ
v(i)(dθid(i))

∏
t∈T0

δt(dxt0, dθ
t
0)

and

ρ(A) =

∫
1A(x, θ)

∏
i∈I+ fXi

d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))

×fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))

× ψv(i)(dxid(i))λ
v(i)(dθid(i))

∏
t∈T0

δt(dxt0, dθ
t
0)∫ ∏

i∈I+ fXi
d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))

×fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))

× ψv(i)(dxid(i))λ
v(i)(dθid(i))

∏
t∈T0

δt(dxt0, dθ
t
0)

,
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where δ(x, θ) is defined in (14). Therefore,

‖F̃n · · · F̃1δxδθ − F̃n · · · F̃1δxδθ‖k = ‖ρ− ρ‖[Kn]k.

In the following, we are going to use Theorem 2 (Dobrushin comparison theorem) in
Appendix B to bound ‖ρ − ρ‖[Kn]k. We will bound Cij and bi with i = [Ku · · ·Kn]v and
j = [K ′u′ · · ·K ′n]v′ where Kn = K ′n = K and 0 ≤ u, u′ ≤ n. Set

ρi = ρi(x,θ) and ρi = ρi(x,θ),

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:

• When u = 0, we have ρi = δxv0δθv0 and ρi = δxv0δθv0
. Hence

Cij = 0 (70)

and bi ≤ 2.

• When u ∈ {1, . . . , n− 1}, we have

ρi(A) =

∫
1A(xiu, θ

i
u)fXi

u|Xu−1
(xiu | xu−1 ; θiu)fΘiu|Θu−1

(θiu | θu−1 ;σ)

×
∏
l∈I+:i∈c(l) fXl

d(l)
|Xd(l)−1

(xld(l) | xd(l)−1 ; θld(l))

×fΘl
d(l)
|Θd(l)−1

(θld(l) | θd(l)−1 ;σ)fY vu |Xv
u
(Y v
u | xvu ; θvu)

× ψv(dxiu)λv(dθiu)∫
fXi

u|Xu−1
(xiu | xu−1 ; θiu)fΘiu|Θu−1

(θiu | θu−1 ;σ)

×
∏
l∈I+:i∈c(l) fXl

d(l)
|Xd(l)−1

(xld(l) | xd(l)−1 ; θld(l))

×fΘl
d(l)
|Θd(l)−1

(θld(l) | θd(l)−1 ;σ)fY vu |Xv
u
(Y v
u | xvu ; θvu)

× ψv(dxiu)λv(dθiu)

.

We can see that ρi(A) = ρi(A) and then bi = 0. Next we take care of Cij . Note that
when j ∈ c(i) we have

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xiu, θ

i
u)
∏
l∈I+:i∈c(l) fXl

d(l)
|Xd(l)−1

(xld(l) | xd(l)−1 ; θld(l))

×fΘl
d(l)
|Θd(l)−1

(θld(l) | θd(l)−1 ;σ)fY vu |Xv
u
(Y v
u | xvu ; θvu)

× ψv(dxiu)λv(dθiu)∫ ∏
l∈I+:i∈c(l) fXl

d(l)
|Xd(l)−1

(xld(l) | xd(l)−1 ; θld(l))

×fΘl
d(l)
|Θd(l)−1

(θld(l) | θd(l)−1 ;σ)fY vu |Xv
u
(Y v
u | xvu ; θvu)

× ψv(dxiu)λv(dθiu)

,
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when i ∈ c(j) we have

ρi(A) ≥ ε2x[εθ(σ)]2

∫
1A(xiu, θ

i
u)fXi

u|Xu−1
(xiu | xu−1 ; θiu)fΘiu|Θu−1

(θiu | θu−1 ;σ)

×
∏
{l∈I+:i∈c(l)}\{j} fXl

d(l)
|Xd(l)−1

(xld(l) | xd(l)−1 ; θld(l))

×fΘl
d(l)
|Θd(l)−1

(θld(l) | θd(l)−1 ;σ)fY vu |Xv
u
(Y v
u | xvu ; θvu)

× ψv(dxiu)λv(dθiu)∫
fXi

u|Xu−1
(xiu | xu−1 ; θiu)fΘiu|Θu−1

(θiu | θu−1 ;σ)

×
∏
{l∈I+:i∈c(l)}\{j} fXl

d(l)
|Xd(l)−1

(xld(l) | xd(l)−1 ; θld(l))

×fΘl
d(l)
|Θd(l)−1

(θld(l) | θd(l)−1 ;σ)fY vu |Xv
u
(Y v
u | xvu ; θvu)

× ψv(dxiu)λv(dθiu)

,

and when j ∈ ∪l∈I+:i∈c(l)c(l) we have

ρi(A) ≥ ε2∆
x [εθ(σ)]2∆

∫
1A(xiu, θ

i
u)fXi

u|Xu−1
(xiu | xu−1 ; θiu)fΘiu|Θu−1

(θiu | θu−1 ;σ)

× fY vu |Xv
u
(Y v
u | xvu ; θvu)ψv(dxiu)λv(dθiu)∫

fXi
u|Xu−1

(xiu | xu−1 ; θiu)fΘiu|Θu−1
(θiu | θu−1 ;σ)

× fY vu |Xv
u
(Y v
u | xvu ; θvu)ψv(dxiu)λv(dθiu)

.

By Theorem 3 in Appendix B, we have Cij ≤ 1 − ε2x[εθ(σ)]2 if j ∈ c(i) or i ∈ c(j),
Cij ≤ 1− ε2∆

x [εθ(σ)]2∆ if j ∈ ∪l∈I+:i∈c(l)c(l), and Cij = 0 otherwise. Hence,∑
j∈I

eβ̃|d(i)−d(j)|Cij ≤2(1− ε2x[εθ(σ)]2)eβ̃∆ + (1− ε2∆
x [εθ(σ)]2∆)∆2. (71)

• When u = n, we have

ρi(A) =

∫
1A(xin, θ

i
n)fXi

n|Xn−1
(xin | xn−1 ; θin)fΘin|Θn−1

(θin | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxin)λv(dθin)∫

fXi
n|Xn−1

(xin | xn−1 ; θin)fΘin|Θn−1
(θin | θn−1 ;σ)

× fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxin)λv(dθin)

.

We can see that ρi(A) = ρi(A) and then bi = 0. When j ∈ c(i) we have

ρi(A) ≥ ε2x[εθ(σ)]2
∫
1A(xin, θ

i
n)fY vn |Xv

n
(Y v
n | xvn ; θvn)ψv(dxin)λv(dθin)∫

fY vn |Xv
n
(Y v
n | xvn ; θvn)ψv(dxin)λv(dθin)

.

By Theorem 3 in Appendix B, we have Cij ≤ 1 − ε2x[εθ(σ)]2 if j ∈ c(i), and Cij = 0
otherwise. Hence, ∑

j∈I
eβ̃|d(i)−d(j)|Cij ≤ (1− ε2x[εθ(σ)]2)eβ̃∆. (72)

Summing up (70) for u = 0, (71) for u ∈ {1, . . . , n− 1}, and (72) for u = n, we have

max
i∈I

∑
j∈I

eβ̃|d(i)−d(j)|Cij ≤ 2(1− ε2x[εθ(σ)]2)eβ̃∆ + (1− ε2∆
x [εθ(σ)]2∆)∆2.
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Under Assumption 1 in Section 3.3, when condition (27) holds, since ∆K ≥ 1 and ∆ ≥ 1,
we have

1

16∆2
>

1

16∆K∆2
> 1− ε2∆

x [εθ(σ)]2∆ > 0,

therefore, for β̃ defined in (69), we have that

β̃ =
1

2r
log

(
1

16∆2(1− ε2∆
x [εθ(σ)]2∆)

)
> 0,

and

max
i∈I

∑
j∈I

eβ̃|d(i)−d(j)|Cij ≤ 3(1− ε2∆
x [εθ(σ)]2∆)eβ̃∆2 ≤ 3

16
.

By Theorem 2 (Dobrushin comparison theorem) in Appendix B and Theorem 5 in Appendix
B, we obtain

‖F̃n · · · F̃1δxδθ − F̃n · · · F̃1δxδθ‖k = ‖ρ− ρ̃‖[Kn]k

≤ 2× 1

1− 3
16

e−β̃ncard(k)

=
32

13
e−β̃ncard(k),

which is a special case of ‖F̃n · · · F̃sδxδθ − F̃n · · · F̃sδxδθ‖k for s = 1. Note that the above
bound holds uniformly in the sequence of Y , we can generalize to all s ∈ {1, . . . , n},

‖F̃n · · · F̃sδxδθ − F̃n · · · F̃sδxδθ‖k ≤
32

13
e−β̃(n−s+1)card(k).

Proposition 10 Under Assumption 1 in Section 3.3, when condition (27) holds, for any
two product measures

µ =
⊗
K∈K

µK and ν =
⊗
K∈K

νK ,

one has that for every s ∈ {1, . . . , n− 2}, k ⊆ K, and K ∈ K,

E
[
‖F̃n · · · F̃s+2µ− F̃n · · · F̃s+2ν‖2k

]1/2

≤ 32

13
ε−2|K|∞
x [εθ(σ)]−2|K|∞e−β(n−s−1)card(k) max

K∈K
E[‖µ− ν‖2K ]1/2,

where β is given in (28).

Proof Define functions

%A(xT0
0 , θT0

0 ) =

∫
1A(xkn, θ

k
n)
∏
i∈I+

fXi
d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))
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× fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)

× fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))

× ψv(i)(dxid(i))λ
v(i)(dθid(i)),

%(xT0
0 , θT0

0 ) =

∫ ∏
i∈I+

fXi
d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))

× fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)

× fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))

× ψv(i)(dxid(i))λ
v(i)(dθid(i)),

and then we can write

(F̃n · · · F̃1µ)(A) =

∫
%A(xT0

0 , θT0
0 )
∏
t∈T0

µt(dxt0, dθ
t
0)∫

%(xT0
0 , θT0

0 )
∏
t∈T0

µt(dxt0, dθ
t
0)
.

Further define the measure

ζ(A) =

∫
1A(xT0

0 , θT0
0 )%(xT0

0 , θT0
0 )
∏
t∈T0

µt(dxt0, dθ
t
0)∫

%(xT0
0 , θT0

0 )
∏
t∈T0

µt(dxt0, dθ
t
0)

,

and then we can write

(F̃n · · · F̃1µ)(A) =

∫
%A(xT0

0 , θT0
0 )

%(xT0
0 , θT0

0 )
ζ(dxT0

0 , dθT0
0 ). (73)

Analogously define the measure

ς(A) =

∫
1A(xT0

0 , θT0
0 )%(xT0

0 , θT0
0 )
∏
t∈T0

νt(dxt0, dθ
t
0)∫

%(xT0
0 , θT0

0 )
∏
t∈T0

νt(dxt0, dθ
t
0)

and then we can write

(F̃n · · · F̃1ν)(A) =

∫
%A(xT0

0 , θT0
0 )

%(xT0
0 , θT0

0 )
ς(dxT0

0 , dθT0
0 ). (74)

Recall that the local total variation distance is given by

‖ρ− ρ′‖k := sup
g∈Sk:|g|≤1

|ρ(g)− ρ′(g)|,

and by equation (8.1) in Georgii (2011) that

sup
A
|ρ(A)− ρ′(A)| = sup

g
|ρ(g)− ρ′(g)|/osc(g)

where g is a bounded function with oscillation

osc(g) = sup
x,y
|g(x)− g(y)| = sup

x
g(x)− inf

x
g(x).
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Since osc(g) = 2 for |g| ≤ 1, by (73) and (74), we have∥∥∥F̃n · · · F̃1µ− F̃n · · · F̃1ν
∥∥∥
k

=2 sup
A

∣∣∣∣∫ %A
%
dζ −

∫
%A
%
dς

∣∣∣∣ . (75)

Since %A
% is the filter obtained when the initial condition is a point mass on the leaves of

the computation tree, by Lemma 9 we have

2 sup
z,z′∈(X×Θ)T0

sup
A∈(X×Θ)k

∣∣∣∣%A(z)

%(z)
− %A(z′)

%(z′)

∣∣∣∣ ≤ 32

13
e−β̃ncard(k),

i.e.,

osc

(
%A
%

)
≤ 16

13
e−β̃ncard(k).

Also by the local total variation distance definition of this paper and by equation (8.1) in
Georgii (2011), we have∣∣∣∣∫ %A

%
dζ −

∫
%A
%
dς

∣∣∣∣ ≤ 1

2
osc

(
%A
%

)
‖ζ − ς‖ ≤ 8

13
e−β̃ncard(k)‖ζ − ς‖.

Plugging in equation (75), we have∥∥∥F̃n · · · F̃1µ− F̃n · · · F̃1ν
∥∥∥
k
≤16

13
e−β̃ncard(k)‖ζ − ς‖. (76)

Note that %(xT0
0 , θT0

0 ) depends on (xt0, θ
t
0) for t ∈ T0 through the terms

fXi
d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)

when c(i) ∩ t 6= ∅. Write t = [K0 · · ·Kn], and then c(i) ∩ t 6= ∅ requires i ∈ [K1 · · ·Kn],
therefore

card
{
i ∈ I+ : c(i) ∩ t 6= ∅

}
≤ card(K1) ≤ |K|∞.

Define

%t(xT0
0 , θT0

0 ) =

∫ ∏
i∈I+:c(i)∩t=∅

fXi
d(i)
|Xd(i)−1

(xid(i) | xd(i)−1 ; θid(i))fΘi
d(i)
|Θd(i)−1

(θid(i) | θd(i)−1 ;σ)

× fY i
d(i)
|Xi
d(i)

(Y i
d(i) | x

i
d(i) ; θid(i))ψ

v(i)(dxid(i))λ
v(i)(dθid(i)),

and then we have

ε|K|∞x [εθ(σ)]|K|∞%t(xT0
0 , θT0

0 ) ≤ %(xT0
0 , θT0

0 ) ≤ ε−|K|∞x [εθ(σ)]−|K|∞%t(xT0
0 , θT0

0 ).

By Theorem 6 in Appendix B, we have

‖ζ − ς‖ ≤ 2ε−2|K|∞
x [εθ(σ)]−2|K|∞

∑
t∈T0

‖µt − νt‖.
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Plugging into equation (76), we have∥∥∥F̃n · · · F̃1µ− F̃n · · · F̃1ν
∥∥∥
k
≤ 32

13
e−β̃ncard(k)ε−2|K|∞

x [εθ(σ)]−2|K|∞
∑
t∈T0

‖µt − νt‖.

Since the branching factor of T0 is at most ∆K for each layer of n layers, we have

E
[
‖F̃n · · · F̃1µ− F̃n · · · F̃1ν‖2k

]1/2

≤ 32

13
ε−2|K|∞
x [εθ(σ)]−2|K|∞e−β̃n∆n

Kcard(k) max
K∈K

E[‖µK − νK‖2]1/2

=
32

13
ε−2|K|∞
x [εθ(σ)]−2|K|∞e−βncard(k) max

K∈K
E[‖µK − νK‖2]1/2

=
32

13
ε−2|K|∞
x [εθ(σ)]−2|K|∞e−βncard(k) max

K∈K
E[‖µ− ν‖2K ]1/2,

where β is given in (28). Note that the above bound holds uniformly in the sequence of Y ,
we can generalize to

E
[
‖F̃n · · · F̃s+2µ− F̃n · · · F̃s+2ν‖2k

]1/2

≤ 32

13
ε−2|K|∞
x [εθ(σ)]−2|K|∞e−β(n−s−1)card(k) max

K∈K
E[‖µ− ν‖2K ]1/2.

F. Proof for Theorem 1

Proof of Theorem 1 With ||| · |||k defined in (11), by the triangle inequality, we have

|||π̂n − πn|||k ≤|||π̃n − πn|||k + |||π̃n − π̂n|||k. (77)

In the following, we are going to bound |||π̃n − πn|||k in Step 1, bound |||π̃n − π̂n|||k in Step
2, and sum them up in Step 3.

Step 1. Bounding |||π̃n − πn|||k.
Let us firstly use the local total variation distance ‖ · ‖k defined in (13) to bound ‖π̃n−πn‖k.
By (14), we have that

πn = FnFn−1 · · ·Fk+1FkFk−1 · · ·F1π0.

By (18), we have that

π̃n = F̃nF̃n−1 · · · F̃k+1F̃kF̃k−1 · · · F̃1π̃0.

Given that π0 = π̃0, we can bound ‖π̃n − πn‖k by means of error decomposition

‖π̃n − πn‖k ≤
n∑
s=1

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k. (78)
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We note that (78) is in the sense of the error decomposition in Chapter 7 of (Del Moral,
2004) with the corresponding diagram on page 215 therein as a great illustration. We
display our discussions as follows:

• When s = n in (78), by Proposition 5 in Appendix D, we have

‖F̃nπ̃n−1 − Fnπ̃n−1‖k ≤ 4e−β(1− ε2∆
x [εθ(σ)]2∆)e−βd(k,∂K)card(k). (79)

• When s ∈ {1, . . . , n− 1} in (78), by Proposition 6 in Appendix D we have that

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k (80)

≤48

23
e−β(n−s)

∑
v∈k

max
v′∈V

e−βd(v,v′) sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(Fsπ̃s−1)v
′
χs,χs+1

− (F̃sπ̃s−1)v
′
χs,χs+1

‖.

By Proposition 7 in Appendix D, we have that for every s ≥ 1, K ′ ∈ K, and v′ ∈ K ′,

sup
xs,xs+1∈X
θs,θs+1∈Θ

‖(Fsπ̃s−1)v
′
χs,χs+1

− (F̃sπ̃s−1)v
′
χs,χs+1

‖ ≤ 96

29
e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(v′,∂K′).

(81)

With the condition

εxεθ(σ) >

(
1− 1

16∆K∆2

) 1
2∆

,

by Assumption 1 in Section 3.3 and the fact that ∆,∆K ≥ 1, we have

0 < 16∆K∆2(1− ε2∆
x [εθ(σ)]2∆) < 1.

Then the definition of β given in (28) and the fact that r ≥ 1 yield

β = log

(
1

16∆K∆2(1− ε2∆
x [εθ(σ)]2∆)

) 1
2r

> 0. (82)

By (82) and the fact that

d(v, v′) + d(v′, ∂K ′) ≥ d(v, ∂K ′),

we have
e−βd(v,v′)e−βd(v′,∂K′) ≤ e−βd(v,∂K′).

Hence, plugging (81) into (80), we have

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k

≤48

23
e−β(n−s)

∑
v∈k

max
v′∈K′,K′∈K

e−βd(v,v′) 96

29
e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(v′,∂K′)

≤48

23
e−β(n−s)

∑
v∈k

max
K′∈K

96

29
e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(v,∂K′)
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≤7e−β(n−s)
∑
v∈k

max
K′∈K

e−β(1− ε2∆
x [εθ(σ)]2∆)e−βd(v,∂K′). (83)

By the definition of ∂K ′ given in (5) which is the subset of vertices in K ′ that can
interact with vertices outside K ′, we have ∂K ′ ⊆ K ′ which together with the fact that
v ∈ K and ∂K ⊆ K yield

d(v, ∂K ′) ≥ d(v, ∂K). (84)

Then (83) and (84) give

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k
≤7e−β(n−s)

∑
v∈k

e−β(1− ε2∆
x [εθ(σ)]2∆)e−βd(v,∂K).

According to the definition of d(k,k′) in (3), we know that for any v ∈ k

min
v′∈∂K

d(v, v′) = d(v, ∂K) ≥ d(k, ∂K) = min
v∈k

min
v′∈∂K

d(v, v′).

Hence,

‖Fn · · ·Fs+1F̃sπ̃s−1 − Fn · · ·Fs+1Fsπ̃s−1‖k
≤7e−β(n−s+1)(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)card(k). (85)

Plugging (79) for the s = n case and (85) for the s ∈ {1, . . . , n− 1} case, into the error
decomposition equation (78), we have

‖π̃n − πn‖k ≤ 4e−β(1− ε2∆
x [εθ(σ)]2∆)e−βd(k,∂K)card(k)

+

n−1∑
s=1

7e−β(n−s+1)(1− ε2∆
x [εθ(σ)]2∆)e−βd(k,∂K)card(k),

which can be simplified, using the sum of geometric series due to the fact that e−β < 1 from
(82), as follows:

‖π̃n − πn‖k ≤
7e−β

1− e−β
(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)card(k).

Since there is no random sampling in ‖π̃n−πn‖k, we can replace it with |||π̃n − πn|||k in the
above inequality and then obtain

|||π̃n − πn|||k ≤
7e−β

1− e−β
(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)card(k). (86)

Step 2. Bounding |||π̃n − π̂n|||k.
By (24), we have that

π̂n = F̂nF̂n−1 · · · F̂k+1F̂kF̂k−1 · · · F̂1π̂0.

Given that π̂0 = π̃0, we can bound |||π̃n − π̂n|||k by means of error decomposition

|||π̃n − π̂n|||k ≤
n∑
s=1

∣∣∣∣∣∣∣∣∣F̃n · · · F̃s+1F̃sπ̂s−1 − F̃n · · · F̃s+1F̂sπ̂s−1

∣∣∣∣∣∣∣∣∣
k
. (87)

We display our discussions as follows:
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• When s = n in (87), by the definition of ||| · |||k in (11), we can see that for k ⊆ K,∣∣∣∣∣∣∣∣∣F̃nπ̂n−1 − F̂nπ̂n−1

∣∣∣∣∣∣∣∣∣
k
≤
∣∣∣∣∣∣∣∣∣F̃nπ̂n−1 − F̂nπ̂n−1

∣∣∣∣∣∣∣∣∣
K
.

Recalling that Pn is the prediction operator defined in (16), CKn is the block correction
operator defined in (22), BK is the blocking operator defined in (20), and SJ is the
sampling operator defined in (26), by the expressions of F̃n given in (19) and F̂n given
in (25), we have∣∣∣∣∣∣∣∣∣F̃nπ̂n−1 − F̂nπ̂n−1

∣∣∣∣∣∣∣∣∣
K

=
∣∣∣∣∣∣CnBPnπ̂n−1 − CnBS

JPnπ̂n−1

∣∣∣∣∣∣
K

=
∣∣∣∣∣∣CKn BKPnπ̂n−1 − CKn BKSJPnπ̂n−1

∣∣∣∣∣∣,
where the last inequality is obtained by the effect of BK on F̃n provided in (23) and
the definition of ||| · |||K given in (11). Furthermore, by Theorem 4 in Appendix B, we
have ∣∣∣∣∣∣∣∣∣F̃nπ̂n−1 − F̂nπ̂n−1

∣∣∣∣∣∣∣∣∣
K
≤2ε−2card(K)

y

∣∣∣∣∣∣Pnπ̂n−1 − SJPnπ̂n−1

∣∣∣∣∣∣.
Noting that by Lemma 4.7 in Van Handel (2008) for ρ being any probability measure∣∣∣∣∣∣ρ− SJρ

∣∣∣∣∣∣ ≤ 1√
J
,

and then we have ∣∣∣∣∣∣∣∣∣F̃nπ̂n−1 − F̂nπ̂n−1

∣∣∣∣∣∣∣∣∣
k
≤ 2ε

−2card(K)
y √

J
. (88)

• When s = n− 1 in (87), by the definition of ‖ · ‖k given in (13) and the definition of
||| · |||k given in (11), for k ⊆ K we have∣∣∣∣∣∣∣∣∣F̃nF̃sπ̂s−1 − F̃nF̂sπ̂s−1

∣∣∣∣∣∣∣∣∣
k
≤ max

K∈K

[
E
∥∥F̃s+1F̃sπ̂s−1 − F̃s+1F̂sπ̂s−1

∥∥2

K

]1/2

≤ 16√
J

[εθ(σ)]−2|K|∞ε−2|K|∞
x ε−2|K|∞(∆K+1)

y ∆K, (89)

where the last inequality follows by Proposition 8 in Appendix E.

• When s ∈ {1, . . . , n− 2} in (87), by the definitions of ‖ · ‖k and ||| · |||k, we have∣∣∣∣∣∣∣∣∣F̃n · · · F̃s+2F̃s+1F̃sπ̂s−1 − F̃n · · · F̃s+2F̃s+1F̂sπ̂s−1

∣∣∣∣∣∣∣∣∣
k

≤ E
[
‖F̃n · · · F̃s+2(F̃s+1F̃sπ̂s−1)− F̃n · · · F̃s+2(F̃s+1F̂sπ̂s−1)‖2k

]1/2
.

Then firstly by Proposition 10 in Appendix E we have∣∣∣∣∣∣∣∣∣F̃n · · · F̃s+2F̃s+1F̃sπ̂s−1 − F̃n · · · F̃s+2F̃s+1F̂sπ̂s−1

∣∣∣∣∣∣∣∣∣
k
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≤ 32

13
ε−2|K|∞
x [εθ(σ)]−2|K|∞e−β(n−s−1)card(k)

×max
K∈K

E
[
‖F̃s+1F̃sπ̂s−1 − F̃s+1F̂sπ̂s−1‖2K

]1/2
,

and then by Proposition 8 in Appendix E we have∣∣∣∣∣∣∣∣∣F̃n · · · F̃s+2F̃s+1F̃sπ̂s−1 − F̃n · · · F̃s+2F̃s+1F̂sπ̂s−1

∣∣∣∣∣∣∣∣∣
k

≤40
1√
J

[εθ(σ)]−4|K|∞ε−4|K|∞
x ε−2|K|∞(∆K+1)

y e−β(n−s−1)∆Kcard(k). (90)

Plugging (88) for the s = n case, (89) for the s = n − 1 case, and (90) for the s ∈
{1, . . . , n− 2} case, into the error decomposition equation (87), we have

|||π̃n − π̂n|||k ≤
2ε
−2card(K)
y √

J
+

16√
J

[εθ(σ)]−2|K|∞ε−2|K|∞
x ε−2|K|∞(∆K+1)

y ∆K

+

n−2∑
s=1

40
1√
J

[εθ(σ)]−4|K|∞ε−4|K|∞
x ε−2|K|∞(∆K+1)

y e−β(n−s−1)∆Kcard(k).

Since card(K) ≤ |K|∞ for any K ∈ K, using the sum of geometric series due to the fact
that e−β < 1 from (82), the above expression can be simplified as follows:

|||π̃n − π̂n|||k ≤ 40
1

1− e−β
1√
J

[εθ(σ)]−4|K|∞ε−4|K|∞
x ε−2|K|∞(∆K+1)

y ∆Kcard(k). (91)

Step 3. Summing up.
Now plugging (86) and (91) into (77), we have

|||π̂n − πn|||k ≤
7e−β

1− e−β
(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)card(k)

+ 40
1

1− e−β
1√
J

[εθ(σ)]−4|K|∞ε−4|K|∞
x ε−2|K|∞(∆K+1)

y ∆Kcard(k)

≤card(k)

1− e−β

[
7e−β(1− ε2∆

x [εθ(σ)]2∆)e−βd(k,∂K)

+
40√
J

[εθ(σ)]−4|K|∞ε−4|K|∞
x ε−2|K|∞(∆K+1)

y ∆K

]
.

Since the above bound is uniform on all k, we complete the proof.

G. Formal results for approximating an MLE

We develop the theory of likelihood maximization via IBPF using the framework of Ion-
ides et al. (2015). Let {Θ̆m

0:N , m = 1, 2, . . .} be a Markov chain such that Θ̆1
0:N has den-

sity
∫
fΘ0:N

(θ0:N |ϑ ;σ)g(ϑ) dϑ and Θ̆m
0:N has conditional density fΘ0:N

(θ0:N |ϑN ;σ) given
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Θ̆m−1
0:N = ϑ0:N for m ≥ 2. Suppose that {Θ̆m

0:N , m = 1, 2, . . .} is constructed on the canonical

probability space Ω = {(θ1
0:N , θ

2
0:N , . . .)} with θm0:N = Θ̆m

0:N (θ̃) for θ̃ = (θ1
0:N , θ

2
0:N , . . .) ∈ Ω.

To consider a time-rescaled limit of {Θ̆m
0:N , m = 1, 2, . . .} as σ → 0, let {Wσ(t), 0 ≤ t}

be a continuous-time, right-continuous, piecewise constant process defined at its points of
discontinuity by Wσ(kσ2) = Θ̆k+1

N when k is a nonnegative integer. Consider the following
assumptions, following Ionides et al. (2015):

(B1) {Wσ(t), 0 ≤ t ≤ 1} converges weakly as σ → 0 to a diffusion {W (t), 0 ≤ t ≤ 1},
in the space of right-continuous functions with left limits equipped with the uniform
convergence topology. For any open set A ⊂ Θ with positive Lebesgue measure and
ε > 0, there is a δ(A, ε) > 0 such that P

[
W (t) ∈ A for all ε ≤ t ≤ 1 |W (0)

]
> δ.

(B2) For some t0(σ) and σ0 > 0, Wσ(t) has a positive density on Θ, uniformly over the
distribution of W (0) for all t > t0 and σ < σ0.

(B3) `(θ) is continuous in a neighborhood {θ : `(θ) > λ1} for some λ1 < supϑ `(ϑ).

(B4) There is an ε > 0 with ε−1 > fYn|Xn(yn |xn ; θ) > ε for all 1 ≤ n ≤ N , xn ∈ X and
θ ∈ Θ.

(B5) There is a C1 such that fΘn|Θn−1
(θn|θn−1 ;σ) = 0 when |θn − θn−1| > C1σ, for all σ.

(B6) There is a C2 such that sup1≤n≤N |θn− θn−1| < C1 σ implies |˘̀(θ0:N )− `(θN )| < C2 σ,
for all σ and all n.

For the theoretical operator Tmσ , Ionides et al. (2015) proved that as m goes to infinity,
Tmσ converges to gσ, for every fixed σ > 0. Since there is no algorithmic approximation with
this result, it also applies here.

Theorem 8 (Theorem 1, Ionides et al. (2015)) Let Tσ be the operator in (31) and
suppose (B2) and (B4) hold. There is a unique probability density gσ such that for any
probability density g on Θ,

lim
m→∞

‖Tmσ g − gσ‖1 = 0,

where ‖g‖1 is the L1 normal of g.

Ionides et al. (2015) also showed that as the noise intensity σ goes to zero, gσ approaches
a point mass at the MLE if it exists, under (B1) - (B6). Since this is about a theoretical
operator, it can be applied here. But a slight modification on (B5) is needed, because in
Assumption 1 we assume that there exist εθ(σ) > 0 and σ ≥ 0 such that for any v ∈ V ,
θn−1, θn ∈ Θ, and n ≥ 1,

εθ(σ) ≤ fΘvn|Θn−1
(θvn | θn−1 ;σ) ≤ [εθ(σ)]−1,

which is a clear violation of (B5).

Theorem 9 Suppose (B1) - (B4) and (B6) hold. Suppose the following (B5′) holds:

(B5′) There is a C1 such that fΘn|Θn−1
(θn|θn−1 ;σ) = o(σ) when |θn − θn−1| > C1σ, for all

σ.
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Then, for λ2 < supϑ `(ϑ),

lim
σ→0

∫
gσ(θ)1{`(θ)<λ2}dθ = 0.

Proof Note that under the limit that σ goes to zero, (B5) and (B5′) are the same. Then
the proof can be finished simply by following that of Theorem 2 in Ionides et al. (2015).

At last, we aim to show that when the number of particals J and the number of iterations
M become large, the IBPF algorithm numerically approximates gσ. Our proof is similar to
that of the second part of Theorem 1 in (Ionides et al., 2015), where the difference is caused
by replacing equation [S26] therein which is a simplified form of Theorem 2 in (Crisan and
Doucet, 2002) with a simplified form of our Theorem 1.

Theorem 10 Suppose (B2) and (B4) hold. Let {ΘM
j , j = 1, . . . , J} be the output of IBPF,

with σm = σ > 0. There are positive finite constants C̃α, Cβ1, and Cβ2 such that under
conditions imposed in Theorem 1, for any function ğ : Θ→ R, all M , every n ≥ 0, K ∈ K
and k ⊆ K,

lim sup
M→∞

E

∣∣∣∣∣∣ 1J
J∑
j=1

ğ(ΘM
j )−

∫
ğ(θ)gσ(θ)dθ

∣∣∣∣∣∣ ≤ C̃α‖ğ‖∞card(k)

[
e−Cβ1

d(k,∂K) +
eCβ2

|K|∞
√
J

]
,

where ‖ğ‖∞ = supθ |ğ(θ)|.

Proof Let the inital particle swarm {Θ0
j , 1 ≤ j ≤ J} consist of independent draws from the

density g. For Tσ in the fractional form defined in (31), we write Tσg(θ) = Sσg(θ)/‖Sσg‖1.
Then Smσ , as the m-th iteration of Sσ can be written as

Smσ g(θ) =

∫
smσ (ϑ, θ)g(ϑ)dϑ.

Under conditions (B2) and (B4), and under conditions imposed in Theorem 1, there exist
m0 ≥ 1 and 0 < δm < ∞ such that for any m ≥ m0, any measurable set A ⊂ Θ, and any
θ ∈ Θ,

δmλ(A) ≤
∫
A
smσ (ϑ, θ)dϑ ≤ δ−1

m λ(A). (92)

That is, Sm0
σ is mixing according to Definition 3.2 of (Le Gland and Oudjane, 2004).

Consider M can be written as M = qm0 + r for some r ∈ {0, 1, . . . ,m0− 1}. Define the
empirical measures

µ(0) =
1

J

J∑
j=1

δΘrj
and µ(k) =

1

J

J∑
j=1

δ
Θ
km0+r
j

where k = 1, . . . , q. For any bounded measurable function ğ : Θ→ R, we have

1

J

J∑
j=1

ğ(ΘM
j )− [TMσ g](ğ)
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= µ(q)(ğ)− [TMσ g](ğ)

= µ(q)(ğ)− [Tm0q
σ µ(0)](ğ) + [Tm0q

σ µ(0)](ğ)− [Tm0q
σ T rσg](ğ)

=

q∑
i=1

{
[Tm0(i−1)
σ µ(q−i+1)](ğ)− [Tm0i

σ µ(q−i)](ğ)
}

+ [Tm0q
σ µ(0)](ğ)− [Tm0q

σ T rσg](ğ).

Denote

ρ = sup
ğ:‖ğ‖∞=1

E
∣∣∣µ(k)(ğ)− [Tm0

σ µ(k−1)](ğ)
∣∣∣ .

Then by the definition of |||·|||k given in (11) and by Theorem 1, we have that for every
n ≥ 0, K ∈ K and k ⊆ K,

ρ ≤ Cαcard(k)

[
e−Cβ1

d(k,∂K) +
eCβ2

|K|∞
√
J

]
(93)

where Cα, Cβ1 , and Cβ2 are some positive finite constants.
Let H(·, ·) be the Hilbert metric on nonnegative measures

H(ρ, ρ′) :=


log

supA:ρ′(A)>0 ρ(A)/ρ′(A)

infA:ρ′(A)>0 ρ(A)/ρ′(A) if ρ and ρ′ are comparable,

0 if ρ = ρ′ ≡ 0,
+∞ otherwise.

Here, the measures ρ and ρ′ are said to be comparable if they are both nonzero and there
exist constants 0 < a ≤ b such that a ρ′(A) ≤ ρ(A) ≤ b ρ′(A) for all measurable subsets A.
Since Sm0

σ is mixing and (92) holds, applying Lemmas 3.4, 3.5, and 3.8 and equation (7) in
(Le Gland and Oudjane, 2004), we have

E
∣∣∣[Tm0q

σ µ(0)](ğ)− [Tm0q
σ T rσg](ğ)

∣∣∣ ≤ ‖ğ‖∞E
∥∥∥Tm0q

σ µ(0) − Tm0q
σ T rσg

∥∥∥
≤ 2‖ğ‖∞

log 3
E
[
H(Sm0q

σ µ(0), Sm0q
σ T rσg)

]
≤ 2‖ğ‖∞

log 3

(
1− δ2

m0

1 + δ2
m0

)q−2
1

δ2
m0

E
∥∥∥Tm0

σ µ(0) − Tm0
σ T rσg

∥∥∥
≤ 4‖ğ‖∞

log 3

(
1− δ2

m0

1 + δ2
m0

)q−2
ρ

δ4
m0

.

Similarly, we have

E
∣∣∣[Tm0

σ µ(q−1)](ğ)− [T 2m0
σ µ(q−2)](ğ)

∣∣∣ ≤ 2‖ğ‖∞ρ
δ2
m0

,

and for i = 3, . . . , q

E
∣∣∣[Tm0(i−1)

σ µ(q−i+1)](ğ)− [Tm0i
σ µ(q−i)](ğ)

∣∣∣ ≤ 4‖ğ‖∞
log 3

(
1− δ2

m0

1 + δ2
m0

)i−3
ρ

δ4
m0

.
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Now plugging in the upper bound of ρ in (93) yields

E

∣∣∣∣∣ 1J
J∑
j=1

ğ(ΘM
j )− [TMσ g](ğ)

∣∣∣∣∣
≤ Cα‖ğ‖∞card(k)

[
e−Cβ1

d(k,∂K) +
eCβ2

|K|∞
√
J

]1 +
2

δ2
m0

+
4

log 3

1

δ4
m0

q−2∑
j=0

(
1− δ2

m0

1 + δ2
m0

)j
≤ C̃α‖ğ‖∞card(k)

[
e−Cβ1

d(k,∂K) +
eCβ2

|K|∞
√
J

]
,

which complete the proof by Theorem 8.

H. Original results for 4 cases

In Tables 2–5, we provide the original parameter learning results in terms of log-likelihood
for cases 1-4 respectively.
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Cities Parameters
IEnKF IF2

l̂e l̂p l̂b l̂e l̂p l̂b

2 8 -4802 -4382 -4382 -4733 -4385 -4383

4 16 -9142 -8408 -8278 -9116 -8462 -8278

6 24 -13089 -13027 -11942 -13073 -15643 -11948

8 32 -16901 -70338 -15304 -16843 -71233 -15299

10 40 -20644 -118655 -18596 -20623 -182148 -18596

12 48 -24277 -202817 -21829 -24248 -248841 -21834

14 56 -27761 -311222 -25077 -27721 -383853 -25081

16 64 -30699 -389299 -27756 -30667 -394666 -27758

18 72 -33562 -421416 -30329 -33545 -422739 -30330

20 80 -36656 -458302 -33279 -36645 -536362 -33279

Cities Parameters
IBPF θ

l̂e l̂p l̂b l̂e l̂p l̂b

2 8 -4733 -4383 -4385 -4812 -4393 -4393

4 16 -9114 -8368 -8283 -9234 -8825 -8290

6 24 -13092 -13095 -11945 -13267 -39422 -11962

8 32 -16842 -63041 -15306 -16949 -131278 -15318

10 40 -20632 -147454 -18606 -20699 -225806 -18953

12 48 -24226 -206977 -21836 -24294 -311348 -21923

14 56 -27716 -307622 -25077 -27789 -438979 -25248

16 64 -30682 -351668 -27767 -30726 -522343 -27978

18 72 -33540 -382098 -30338 -33590 -596846 -30423

20 80 -36623 -435034 -33293 -36679 -624310 -33379

Table 2: Parameter learning results in terms of log-likelihood for case 1. Three log-
likelihood metrics: l̂e representing the EnKF metric, l̂p representing the PF metric,

and l̂b representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter θ. The highest log-
likelihood values in each metric are highlighted.
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Cities Parameters
IEnKF IF2

l̂e l̂p l̂b l̂e l̂p l̂b

2 10 -4759 -4378 -4379 -4803 -4368 -4372

4 20 -9127 -8408 -8280 -9446 -8355 -8265

6 30 -13132 -15388 -11946 -14351 -23058 -12069

8 40 -16871 -59757 -15303 -20638 -127207 -16566

10 50 -20570 -132791 -18584 -27783 -184975 -20324

12 60 -24226 -209244 -21841 -33111 -252187 -24180

14 70 -27683 -306092 -25097 -43236 -332286 -32121

Cities Parameters
IBPF θ

l̂e l̂p l̂b l̂e l̂p l̂b

2 10 -4846 -4372 -4367 -4812 -4393 -4393

4 20 -9297 -8313 -8254 -9234 -8825 -8290

6 30 -13348 -12774 -11921 -13267 -39422 -11962

8 40 -17197 -38177 -15269 -16949 -131278 -15318

10 50 -20864 -94941 -18552 -20699 -225806 -18953

12 60 -24571 -201864 -21782 -24294 -311348 -21923

14 70 -28082 -315804 -25034 -27789 -438979 -25248

Table 3: Parameter learning results in terms of log-likelihood for case 2. Three log-
likelihood metrics: l̂e representing the EnKF metric, l̂p representing the PF metric,

and l̂b representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter θ. The highest log-
likelihood values in each metric are highlighted.
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Cities Parameters
IEnKF IF2

l̂e l̂p l̂b l̂e l̂p l̂b

2 10 -97124 -68887 -70099 -5133 -4368 -4396

4 20 -176541 -128562 -123847 -9540 -8314 -8280

6 30 -232078 -188457 -177508 -13884 -13044 -12016

8 40 -310994 -246252 -228446 -19075 -67133 -15705

10 50 -368104 -305596 -279035 -47616 -127703 -42846

12 60 -435576 -369515 -337833 -57865 -197042 -59511

Cities Parameters
IBPF θ

l̂e l̂p l̂b l̂e l̂p l̂b

2 10 -5054 -4384 -4368 -4812 -4393 -4393

4 20 -9633 -8348 -8251 -9234 -8825 -8290

6 30 -13738 -12506 -11918 -13267 -39422 -11962

8 40 -17600 -20904 -15276 -16949 -131278 -15318

10 50 -21295 -58647 -18570 -20699 -225806 -18953

12 60 -24931 -128163 -21814 -24294 -311348 -21923

Table 4: Parameter learning results in terms of log-likelihood for case 3. Three log-
likelihood metrics: l̂e representing the EnKF metric, l̂p representing the PF metric,

and l̂b representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter θ. The highest log-
likelihood values in each metric are highlighted.
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Cities Parameters
IEnKF IF2

l̂e l̂p l̂b l̂e l̂p l̂b

2 14 Failed Failed Failed -4904 -4358 -4361

4 28 Failed Failed Failed -9979 -8524 -8416

6 42 Failed Failed Failed -19795 -56072 -13550

8 56 Failed Failed Failed -32960 -111176 -19071

10 70 Failed Failed Failed -34320 -193060 -23217

Cities Parameters
IBPF θ

l̂e l̂p l̂b l̂e l̂p l̂b

2 14 -4928 -4374 -4358 -4812 -4393 -4393

4 28 -9169 -8267 -8231 -9234 -8825 -8290

6 42 -13296 -12340 -11893 -13267 -39422 -11962

8 56 -17065 -17407 -15248 -16949 -131278 -15318

10 70 -20788 -24892 -18555 -20699 -225806 -18953

Table 5: Parameter learning results in terms of log-likelihood for case 4. Three log-
likelihood metrics: l̂e representing the EnKF metric, l̂p representing the PF metric,

and l̂b representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter θ. The highest log-
likelihood values in each metric are highlighted.
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City θSv0 θEv0 θIv0 θRv0 αv σvSE R
v
0

1 0.15622 1e-04 3e-05 0.95509 0.91527 0.14969 21.2511

2 0.0634 3e-05 4e-05 0.98683 0.85549 0.13765 10.268

3 0.01233 7e-05 0.00016 0.99165 0.84884 0.16178 7.39276

4 0.03517 0.00026 4e-05 0.9827 0.91475 0.15096 21.88148

5 0.02691 3e-05 8e-05 0.80367 0.89105 0.1423 13.50283

6 0.02422 2e-05 1e-04 0.98636 0.94772 0.15283 18.7391

7 0.05803 6e-05 1e-05 0.98599 0.86154 0.15373 10.20071

8 0.00911 2e-04 7e-05 0.96099 0.85265 0.16587 8.94473

9 0.04624 2e-05 0.00015 0.97072 0.95923 0.17158 25.75231

10 0.00895 2e-05 0.00013 0.96844 0.81455 0.16696 7.08004

Table 6: Parameter learning results in terms of parameter values for 10 cities of case 4.
This set of parameter values gives log-likelihood −18555 in l̂b metric in Table 5.

Replicate 2 cities 4 cities 6 cities 8 cities 10 cities

1 -4358 -8231 -11893 -15248 -18555

2 -4358 -8231 -11893 -15248 -18555

3 -4359 -8233 -11894 -15249 -18557

4 -4360 -8233 -11894 -15250 -18558

5 -4361 -8233 -11896 -15251 -18559

6 -4362 -8235 -11897 -15252 -18559

7 -4362 -8238 -11900 -15255 -18559

8 -4364 -8239 -11901 -15257 -18569

9 -4364 -8241 -11904 -15258 -18570

10 -4366 -8243 -11906 -15263 -18583

Table 7: Parameter learning results in terms of log-likelihood for case 4. We conducted
10 replicates of all the parameter learning performance comparisons. In each
replicate, all algorithms start with the same initial search values drawn uniformly.
We listed results ranked from highest to lowest.
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Replicate
IEnKF IF2

Time l̂e l̂p l̂b Time l̂e l̂p l̂b

1 15.78 -97124 -70730 -70118 17.44 -4970 -4358 -4373

2 15.82 -97334 -70763 -70099 17.8 -4925 -4359 -4387

3 15.79 -97446 -70752 -71398 17.77 -4944 -4359 -4388

4 15.81 -97582 -70729 -70127 17.15 -4934 -4359 -4361

5 15.75 -97962 -70099 -70762 17.13 -4904 -4360 -4385

Replicate
IBPF

Time l̂e l̂p l̂b

1 18.46 -4929 -4380 -4358

2 18.45 -5051 -4381 -4358

3 18.41 -4948 -4381 -4359

4 18.39 -5019 -4399 -4360

5 18.4 -4976 -4374 -4361

Table 8: Performance and runtime comparison of top five replicates in terms of log-
likelihood for two cities in case 4. Time is measured in hours used to finish the
job. Three log-likelihood metrics: l̂e representing the EnKF metric, l̂p represent-

ing the PF metric, and l̂b representing the BPF metric, were applied to the best
parameters learned from IEnKF, IF2, and IBPF as well as the true parameter θ.
The highest log-likelihood values in each metric are highlighted.
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