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Abstract

Parameter learning for high-dimensional, partially observed, and nonlinear stochastic pro-
cesses is a methodological challenge. Spatiotemporal disease transmission systems provide
examples of such processes giving rise to open inference problems. We propose the iter-
ated block particle filter (IBPF) algorithm for learning high-dimensional parameters over
graphical state space models with general state spaces, measures, transition densities and
graph structure. Theoretical performance guarantees are obtained on beating the curse of
dimensionality (COD), algorithm convergence, and likelihood maximization. Experiments
on a highly nonlinear and non-Gaussian spatiotemporal model for measles transmission
reveal that the iterated ensemble Kalman filter algorithm (Li et al., 2020) is ineffective and
the iterated filtering algorithm (Ionides et al., 2015) suffers from the COD, while our IBPF
algorithm beats COD consistently across various experiments with different metrics.

Keywords: Sequential Monte Carlo, Parameter learning, Spatiotemporal inference, Curse
of dimensionality, Graphical state space models

1. Introduction

We firstly give the background and motivation in Section 1.1 and then state our contribu-
tions in Section 1.2, followed by the organization of the paper in Section 1.3.

1.1 Background and motivation

Spatiotemporal data arises when measurements are made through time at a collection of
spatial locations. Spatiotemporal inference for epidemiological and ecological systems is
arguably the last remaining open problem from the six challenges in time series analysis of
nonlinear systems posed by Bjgrnstad and Grenfell (2001). A disease transmission system is
stochastic and imperfectly observable, thus it is commonly modeled by a partially observed
Markov process (POMP), otherwise known as state space model or hidden Markov model,
which consists of a latent Markov process representing the time evolution of the system and
a measurement process by which stochastic observations of this latent process are collected
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at specified time points. Particle filters (PFs), also known as sequential Monte Carlo (SMC)
methods, are recursive algorithms that enable estimation of the likelihood of observed data
and the conditional distribution of the latent process given data from a POMP model
(Doucet et al., 2001; Cappé et al., 2007; Doucet and Johansen, 2009).

For the purpose of parameter learning, two iterated filtering (IF) approaches were de-
veloped, Tonides et al. (2006) and its subsequent improvement Ionides et al. (2015) referred
to as IF1 and IF2 algorithms respectively, which coerce a particle filter into maximizing
the likelihood function for unknown parameters. PF methods and the parameter learning
algorithms based on them (such as IF2) are capable of handling highly nonlinear latent pro-
cesses (King et al., 2008; Ionides et al., 2011). In epidemiological applications, IF1 and IF2
can considerably increase the accuracy of outbreak predictions while also allowing models
whose structures reflect different underlying assumptions to be compared (Dobson, 2014).
Unfortunately, PF suffers from rapid deterioration in performance as the model dimension
increases (Bengtsson et al., 2008; Snyder et al., 2008). Rebeschini and Van Handel (2015)
rigorously showed that PF suffers the curse of dimensionality (COD) phenomenon, which
says that the upper bound of the algorithmic filter error is exponential in the dimension
of the state space of the underlying model. As expected, PF-based parameter learning
algorithms suffer from the COD, limiting their applicability in high-dimensional problems.

The ensemble Kalman filter (EnKF) is a recursive filter suitable for problems with a
large number of variables. EnKF represents uncertainty in the latent state space using a
finite collection of state values, and we refer to these ensemble members as particles by
analogy with PF. EnKF differs from PF by adopting a Gaussian approximation in the rule
used to update the particles when filtering. EnKF methods have been used for geophysi-
cal models in data assimilation due to their computational scalability to high dimensions
(Houtekamer and Mitchell, 2001; Evensen, 1994; Katzfuss et al., 2020). For the parame-
ter learning purpose, the iterated EnKF (IEnKF) algorithm extends the IF2 approach for
parameter estimation by replacing a PF with an EnKF; it propagates the ensemble mem-
bers by simulation from the dynamic model and then updates the ensemble to assimilate
observations using a Gaussian-inspired rule (Li et al., 2020). Given that EnKF relies on
locally linear and Gaussian approximations, it can be ineffective for highly nonlinear and
non-Gaussian systems (Ades and Van Leeuwen, 2015; Lei et al., 2010; Miller et al., 1999).
Unsurprisingly, the corresponding unsuitability carries to EnKF-based parameter learning
algorithms (such as IEnKF).

Block sampling strategies for PF were proposed with temporal blocks in (Doucet et al.,
2006). Rebeschini and Van Handel (2015) investigated spatial blocks and proved that a
block PF (BPF) beats the COD under certain conditions. However, the beautiful work of
Rebeschini and Van Handel (2015) is theoretical in nature and was not anticipated to be
applicable to real high-dimensional problems (page 2812 therein). In recent years, many
efforts have been undertaken to develop practical methods for these problems by developing
the “block” concept, which include, but are not limited to, the following: Johansen (2015)
proposed a method for systems identification based on both the block sampling idea and
the annealed importance sampling approach; Singh et al. (2017) applied the particle Gibbs
algorithm inside a generic Gibbs sampler over temporal blocks to handle long time series;
Park and Tonides (2020) proposed a twisted particle filter model (Whiteley and Lee, 2014)
with iterated auxiliary PFs (Guarniero et al., 2017) to infer on moderately high-dimensional
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spatiotemporal models where its particle filtering corresponds to an adapted version of the
block sampling method; Goldman and Singh (2021) proposed a blocked sampling scheme
for latent state inference in high-dimensional state space models; Tonides et al. (2021) pro-
posed the bagged filter for partially observed interacting systems and showed that BPF can
perform well on practical scientific models.

So far there is no high-dimensional parameter learning approach that is generically
applicable over partially observed, highly nonlinear, stochastic spatiotemporal processes.
The goal of this paper is to develop such an algorithm that is generically applicable and able
to beat the COD. Unlike the limited theoretical understanding of EnKF and hence IEnKF,
the proposed algorithm has rigorous convergence analysis with a precise error bound.

1.2 Our contributions

In this paper, we propose the iterated BPF (IBPF) algorithm. The contributions of the
paper fall into four distinct categories:

1. General graphical model structure. In this paper, we consider a general graphical
POMP model having general state spaces and measures, general transition densities,
and a general graph structure. Specifically, the latent state (X,,)n>0, the observation
sequence (Yy,)n,>1 that is conditionally independent given (X,,)n>1, and the auxiliary
Markov chain (©;,),>0 for parameter learning purpose, have their own state spaces
which are all Polish spaces endowed with their own general reference measures. The
transition densities of X, Y;,, and ©,, are all time-inhomogeneous and in the general
form where only standard conditions are required. The state of (X,,Y,,©,) at each
time n is a random field (X}, Y,?, ©F) ey indexed by a general finite undirected graph
with V being the set of vertices. We consider the graph having a partition, which is
a collection of nonoverlapping blocks whose union is the graph.

2. Innovative methodology. The BPF algorithm in Rebeschini and Van Handel (2015)
is the first PF algorithm that has rigorous guarantees on beating COD, however
“it is far from clear whether this simple algorithm is of immediate practical utility
in the most complex real-world applications” (page 2812 therein). IBPF embeds
BPF on an extended state space in an iterative scheme that constructs parameter
values approaching the maximum of the likelihood function. It inherits from BPF the
property that only observations in each block are used to update predictions, which
is the key to scalability. When all vertices are in a single block, IBPF is in nature
IF2; when there is inference on the latent process, all vertices are in a single block,
and parameters are known, IBPF is PF; when there is inference on the latent process
and parameters are known, IBPF is BPF; when all vertices are in a single block and
there is no particle involved, IBPF is the iterated importance sampling.

3. Theoretical contribution. Our IBPF algorithm has rigorous performance guaran-
tees in terms of graph dimensions, time steps, algorithm convergence, and likelihood
maximization. In Theorem 1, under standard assumptions, we rigorously show that
the algorithmic error can be bounded using the dimension of a local block, uniformly
both in time and in the model dimension. Our result generalizes that of Rebeschini
and Van Handel (2015) to the time-inhomogeneous setting. They introduced the
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mathematical machinery of a local particle filtering algorithm in high dimension that
had not previously been applied in the study of nonlinear filtering, however being
time-homogeneous is a limitation in practical applications. Furthermore, with our
precise bound, we provide exact sufficient conditions needed and reveal the influences
of crucial quantities (such as the range of interacting neighborhoods and the maximal
number of blocks of interaction) on the error bound.

4. Excellent performance. For spatiotemporal modeling, it is appropriate and some-
times necessary to have some parameters vary across locations, for instance, for
measles transmission modeling the basic reproduction number regarding the epidemic
transmission speed. To demonstrate how to use IBPF and compare its performance
with IF2 and IEnKF, we generalize the spatiotemporal model for measles transmission
covered in Park and Ionides (2020) and Ionides et al. (2021), by allowing location-
specific parameters. Extensive experiments reveal that IF2 does not scale well which
confirms the phenomenon that PF does not scale well with dimensions (e.g. Bengtsson
et al. (2008)), and IEnKF performs very badly for highly nonlinear and non-Gaussian
problems confirming the same phenomenon of EnKF (e.g. Ades and Van Leeuwen
(2015)). In all experiments, IBPF is able to find parameter values with a likelihood
on or better than that of the true parameters consistently. The performances of
IBPF with respect to iterations and block sizes are further examined, and confirm our
theoretical findings.

1.3 Organization of the paper

The rest of the paper proceeds as follows. In Section 2, we set up our general model and pro-
vide necessary definitions. In Section 3, we provide the main results of this paper, by firstly
describing IBPF in Section 3.1, conducting preliminary algorithmic analyses in Section 3.2,
providing theoretical results in Section 3.3, and then investigating likelihood convergence
in Section 3.4. In Section 4, we conduct performance analysis through a generalized spa-
tiotemperal model for measles covered in Section 4.1, over the dataset covered in Section
4.2, and evaluate the performance of IBPF, IF2 and IEnKF in Section 4.3. We conclude
with discussion and extensions in Section 5. In Appendix A, we provide the algorithms
of IF2 and IEnKF for comparison. In Appendix B, existing technical results are provided
which are needed for rigorous proofs following. In Appendix C, we prepare for mathematical
derivations by properly defining filtering and correlation measurement quantities. We defer
all the lemmas and propositions in bounding the bias and variance of the algorithmic error,
to Appendix D and Appendix E, respectively. In Appendix F, we provide a rigorous proof
of our main theorem. Original parameter learning results without rescaling to account for
spatial and time dimensions, are provided in Appendix H.

2. Model and analysis setups

In this section, we firstly describe the extended POMP model (X,,Y,, ;0,) on graph G in
Section 2.1, and then the partition K that separates G into nonoverlapping blocks in Section
2.2, followed by the global and local metrics necessary to conduct analysis in Section 2.3.
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2.1 Extended POMP model on graph

A general POMP model is a Markov chain (X,,Y,), where (X,,)n>0 is a Markov chain in a
Polish state space X, while (Y},),>1 is conditionally independent given (X,,),>1 in a Polish
state space Y. Here, X,, is not directly observable while Y,, serves as its partial and noisy
observations made at time n. Define the reference measure of X,, (resp. Y,,) on its state
space X (resp. Y) as ¢ (resp. ¢). Suppose that there is an unknown auxiliary Markov
chain ©,, for parameter learning, which has its own Polish state space © and reference
measure A. For n > 1, with respect to 1 we define the emission density (or measurement
density) of X, as fx,|x,_, (Tn|Zn—1;0,), with respect to ¢ we define the transition density
of Yy, as fy,|x, (Yn|Tn ;0n), and with respect to A we define the transition density of ©,, as
f0110n_1(On|0n—1;0) where o is a nonnegative constant. That is, with our extended Markov
chain model (X,,,Y,, ;0,), its transition probability is given by

P(A| (xn—h yn—l) ) en)
_ j/:uA<xn,yn>fXﬁan1<xn¢xn1 0 Fy, (Unln 50000 () ().

The state of (X, Yy, ©y) at each time n is a random field (X", Y,”, ©F),cy indexed by
a finite undirected graph G = (V, E), where V stands for the set of vertices and E stands
for the set of edges. The graph describes the location relationship of data and the spatial
degrees of freedom of the model. Based on the network structure, the state spaces X, Y,
and @ can be written as the product forms

=[x v=][Y, and 0=]]0"

veV veV veV

Define the reference measure of X on its state space X* as 1)". Define the reference measure
of Y,V on its state space YV as ¢”. Define the reference measure of ©} on its state space
BV as \V. Similarly, based on the network structure, we have the following product-formed

v=1Jv"  o=1le¢" A=]IN

veV veV veV

expressions:

With respect to ¢” we define the transition density of X as fxuvx,_,, with respect to
¢" we define the transition density of Y,/ as fyv|xv, and with respect to A" we define the
transition density of ©; as fevje,_,- Similarly, based on the network structure, we have
the following product-formed expressions:

an\Xn,l(l‘npjnfl ;en) = H fX;’L|Xn,1(l‘Z|33n*1 ;9;1)7

veV
fYn|Xn(yn\iUn 1 0n) = H fY,ﬂX;{ (Ynlxy 505), (1)
veV
o101 0nlOn—1;0) = [ forion_. (05101 ;0).
veV
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2.2 Partition of the graph

We consider a partition K that partitions V' into nonoverlapping blocks, i.e.,

V=|J K, KnK =0foK+#K KK ck.
KeK

Based on the partition, we can write
E = E") ke = (E)vev, 2V = (8%)ew for YW C V,

where = can be X,,, Y,, or ©,, as well as the associated state space X, Y, or ®©. For any set
W CV, we use (X x )" and X" x ®" interchangeably and define

= I ¢¥(day) and AV(d6))) := ] A"(d6). (2)
veW veW

We define the distance d as the length of the shortest path in the graph G connecting
two vertices, based on which we define for each vertex v € V' the r-neighborhood N (v) as

N(v):={v €V :d(v,0") <r}.
For integers 0 < m < n, denote
Hmin 1= {Emv Em-l—l: Tt ,En},

where = can be X, Y, or ©. Suppose that, for n > 1, the conditional distribution of X"

given Xg.,—1 depends on X (1) only and then we have

fX}i|Xn71( 1’L|‘,En 13 TL) fXU‘Xn 1( 17’)L|En*1 ’011’1)’

N(v) ()

whenever z, ) = T, where x,T € X and z # T. That is, if x,_1 and T,_1 coincide
on the neighbouring Vertlces of v, then their associated transition densities are the same.
Similarly suppose that, for n > 1, the conditional distribution of ©7, given ©q.,,—1 depends

on © (1) only and then we have
fov10n1(0010n—1;0) = fovio,_, (0n]0n—1;0),

whenever 97]:[ (11}) = 07]:[_(1{) where 6,60 € © and 6 # 6. An illustration of the dependence with
r =1 is provided in Figure 1.
For any sets W, W' C V, define

AW, W' := d 3
(W, W') := min min (v, ), (3)

based on which we can define the collection of blocks that interact with any block K € K
in one step of the dynamics as

N(K):={K' € K:d(K,K') <r}. (4)
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Figure 1: Tlustration of 1-neighborhood dependence.

Given a set W C V, denote the r-inner boundary of W as the subset of vertices in W that
can interact with vertices outside W,

OW :={veW:N(v)Z W}, (5)
and denote the interior of W as
int(W) := W\ow. (6)

We now denote some quantities which will be used frequently throughout the paper: the
maximal size of one single block in the partition K

IK|oo := I[?g’}écard(K), (7)

where card(K') denotes the cardinality of K; the maximal number of vertices that interact
with one single vertex in its r-neighborhood in one step of the dynamics

A= max card{v' € V : d(v,0v") < r}; (8)
veE
the maximal number of blocks that interact with one single block in one step of the dynamics

! !
= : < .
Ak I}(lg};écard{K eK:d(K,K") <r} 9)
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2.3 Metrics

We assume that the process (X, Y; ©) is realized on its canonical probability space; denote
P and E as the probability measure and expectation on that space, respectively. We use the
functional analytic notation p(g) for the integral of a measurable function g with respect to
the measure p (provided this integral exists),

p(g) = / gdp = / g9(x)dp(z) = / g9(z)p(dz).

Between two random measures p and p’ on space 5, we define the distance

o =o'l := o [Elo(g) — #'(9)2]"2, (10)

where S denotes the class of measurable functions g : S — R, and define the local distance,

fork CV,
llo=#ll = suwp  [Elolg) - p(9)2]""*.
geswigl<1

(11)

Here, S* denotes the class of measurable functions g : S — R such that g(z) = ¢(7)
whenever % = T¥. That is, S* is the class of measurable functions such that when z and
T coincide on the set K then their associated function values are the same. Similarly, we
define the total variation distance between two probability measures p and p’ on S

lp—=#'ll == sup |p(g) = p'(9)], (12)
geS:lgl<1

and define the local total variation distance, for K C V|

lp—Fllk == sup |p(g) —p'(9)l- (13)
geSK:|g|<1

3. Main results

In this section, we describe our IBPF algorithm for parameter learning over general graphical
POMP models in Section 3.1, conduct its preliminary algorithmic analyses in Section 3.2,
establish its theoretical guarantees on algorithm performances and convergences in Section
3.3, and then investigate maximum likelihood estimates (MLEs) in Section 3.4.

3.1 Algorithm

We propose the IBPF algorithm in Algorithm 1. For notational convenience, we set
1:N:={1,2,...,N} for N € N

throughout the paper. In Algorithm 1, @5;" (resp. Xi ") is the j-th particle in the Monte
Carlo representation of the m-th iteration of a filtering recursion at time n, where this
filtering recursion is coupled with a prediction recursion represented by @i’;" (resp. Xi ).
The IBPF algorithm allows users to infer initial values of latent states by incorporating
initial values into the parameter set. That is, let 0 = (Oini¢, daynamic) Where Ogynamic stands
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for the parameters affecting fx,|x,_, and fy, x, for some or all n € 1 : N. In this case,
the initial density fx,(zo;#) is a Dirac mass function at ¢ = init. This case is common for
scientific modeling and also is the situation addressed by our theory. Numerical experiments
on learning initial values can be seen in Section 4.3.

Algorithm 1 (The IBPF algorithm)

Initial value function fx, ()

Simulator for fx, |x,_,(Zn | ¥n-1;0), n € LN
Evaluator for fy, x, (yn | Tn;0), n € LN

Data, y1.n

Number of iterations, M

Number of particles, J

Partition, IC

Initial parameter swarm, {8?, jelJ}
Perturbation density, fg,0,_,(0|VY;0), n € LN
Perturbation sequence, o1.ps

Output: Final parameter swarm, {@év", j € 1:J} and log-likelihood lAb

1. Forminl:M

2. Set 95’;” = @;-n*l for j € 1:J

3. Set X" = fx,(0y)") for j € 1.J

4. Forninl:N

5. Draw @i’j ~ fonl0n_1(0n | @n 1) som) for j € 1:J

6. DI‘&WXTI;’j Nan\anl(mﬂXf?j?@nJ ) for j € 1:J

7. For K e K

8. Compute wKJ = [Loex froxe (vn | ng’m ;@Z’P’m) for j € 1:J

9. Draw si7" with Prob(sf{’m =1i) = wi;m/ Zj 1 wlfjm

10. End For

11. Set X, " = (Xn; ™) ek where X, = X' R for j € 1.

]

12. Set @S;n = (@fﬁ’jF’m)KE;C where @KFm = GK 12",1 for j € 1:J
s J

13. End For

Fm . .
14.  Set ©F = (©,;") for j € 1.J
15. End For

P N J K,.M
16. Set [, = Enzl ZKGIC log(% Z] 1 Wn,j )

3.2 Preliminary analysis

Inspecting the IBPF pseudocode (Algorithm 1), we can see that the same set of observations
Y1,...,Y, is used in each of the M iterations. Let us first focus on one of the M iterations,
say m = 1, and ignore the m superscript/subscript.
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Given the observations Y7,...,Y,, we aim to approximate the joint nonlinear filter, for
n>1,

Wn(A) = Wn(Az X Ag) = P[Xn S Ax,@n c A9 ‘ Yl, . ,Yn].

The filter 7, for n > 1 that we also call the true filter to differentiate with the IBPF
approximated filter, can be expressed in a recursive way

Tn = Fpmtn_1, 0 = 5(377 9) = 0209, (14)
where J, stands for the point mass at x, with
F,=C,P, (15)

evolving as follows:

prediction ) correction C
Tn—1 7 Tpln—1 = FPnTn—1 » Tn = LnTpn—1

where P,, is defined as the prediction operator

(Pnp)(9) :/g(xn,ﬂn)anan(xn | X1 ;en)an\@nfl(en | On—1;0)

(16)
X (dxp)N(dOn) p(dan—1,d0n—1),
and C,, is defined as the correction operator
f g(xm en)fYn Xn (Yn | {7 en)p(d$n7 dan)
(Cup)lg) = ' (17)

ffYn\Xn(Yn | @ ; 0n) p(dey,, dOy,) ’

for any probability measure p on X x ©.
To facilitate analysis, we define an intermediate filter 7,, which can be expressed in a
recursive way

%n - Fn%n—la %0 = 6x59; (18)
with
F.=C,BP, (19)
evolving as follows:
~ prediction ~ blocking ~
Tp—1 — Tpln—1 = Pnﬂ'n—l — 7 Tp, = CnBﬂ'n|n—1’
correction

where, for any measure p on X x ©, B is defined as the blocking operator

Bp = ® BXp, (20)
Kek

with Bli p being the marginal of p on (X x )X, Before we can explicitly show the effect of
BX on F,p for any n > 1 and any measure p on X x ©, we need to first define the block

10
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versions of the prediction operator P, given in (16) and correction operator C, given in
(17), as follows: define PX as the prediction operator specific to block K

(PEp) () = [ o6l 0) TT S (o | om0 ogio, (05 | 0mr )
veK (21)

X lbv(dw;;))‘v(dGZ)pl(d:Un—ly dan—l);

for any measure p; on (X x B)“K’eN (K>K/; define CX as the correction operator specific to
block K

J 9@, 05) Toer Frpixg (V| @35 00)p2(dayy, dOF)

(Cap2)(9) = : (22)
" JTloex froixg (Y0 | 2t 3 05)p2(days , dON)
for any measure py on (X x ®)%. Then we can write
BKEnp = CnKPnK ® pKla (23)
K'eN(K)
for any measure p on X x ©.
The IBPF approximated filter denoted as 7, can be expressed in a recursive way
Fn = Fnfin1, 7o = 8,00, (24)
with R
F, = C,BS'P, (25)

evolving as follows:

~ prediction Ip ~ blocking ~
Tn—1 — Tpjn—1 = S'PnTn-1 — Tp = CnBﬂ-n|n71>
sampling correction

where S7 is defined as the sampling operator

S/p=

<=

J
> 0, (26)
j=1

for any probability measure p and {z;};—;,... s} being i.i.d. samples distributed according
to p. We note that S/P,, corresponds to lines 5 — 6 in Algorithm 1, and C,B corresponds
to lines 7 — 12 in Algorithm 1.

3.3 Beating the curse of dimensionality

The following assumption is enforced in obtaining our main theoretical result (Theorem 1):

Assumption 1 Foranyv €V, xp 1,2, € X, yp €Y, 01,0, € ©, and n > 1, we impose
the following conditions:

(1) Suppose there exists €z > 0 such that

€x < fxux,_ 1 (@plTn-1:0,) < e

11
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(2) Suppose there exists €, > 0 such that

ey < fypixy(ynlay 10n) < et

(3) Suppose there exist eg(c) > 0 and o > 0 such that
€6(0) < foyjo,_,(0n | On-1;0) <[eg(0)] .

In Assumption 1, (1) and (2) are the same as the conditions enforced in Theorem 2.1 of
Rebeschini and Van Handel (2015) which are localized versions of standard assumptions that
are routinely employed in the analysis of PFs, and (3) is the same condition on the transition
density of ©. Similar to the global mixing assumption implying that the underlying Markov
chain is strongly ergodic, a local transition density being bounded above and below as a
local counterpart of the global mixing assumption, could be viewed as a local ergodicity
assumption on the model.

Recall that || defined in (7) is the maximal size of one single block in the partition iC,
A defined in (8) is the maximal number of vertices that interact with one single vertex in its
r-neighborhood, and Ax defined in (9) is the maximal number of blocks that interact with
a single block (including itself). In the following theorem, we bound the error generated by
our IBPF algorithmic filter 7,, defined in (24), to the unalgorithmic true filter 7, defined
in (14), uniformly both in time n and in the model dimension card(V):

Theorem 1 With €., €y(0), and €, satisfying Assumption 1, when

1 1 = 27
€x€9(0)>< —MICAQ> ) (27)

for everyn >0, K € K and K C K, we have

o =l <5250 761 = a2 000
— €

40
140 g ()] 4HKToe g 40KToe 20Kl (B 4D) A;c] ,

where card(-) stands for cardinality and

1 1
B = o log <16AICA2(1 _ G%A[GQ(U)PA)> : (28)

We first interpret the upper bound in Theorem 1 in terms of the graph dimension and the
time dimension. For the standard PF algorithm where all observations are used to update
the filtering distribution, the algorithmic error is exponential in the dimension of the model
under the global metric || - || defined in (10). For the IBPF algorithm, only observations in
a block, say K, are used to update the filtering distribution in that block. From Theorem
1, we can see that under the local metric || - ||, defined in (11), the algorithmic error is
merely exponential in the dimension of a set card(K) instead of the dimension of the graph
card(V'). That is, our IBPF algorithm has a rigorous performance guarantee in terms of

12
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the graph dimension, thus beating the COD. Next, since the upper bound in Theorem 1 is
uniform on all the time steps n, our IBPF algorithm has a rigorous performance guarantee
in terms of the time dimension. The second term of the bound quantifies the error due to
the variance of the Monte Carlo sampling of the IBPF algorithm. As in the standard PF
analysis, Monte Carlo sampling provides the % factor under the local metric in this local
update setting. Given that each block interacts with at most Ax neighbors in the previous
time step, the A factor in the second term is expected.

Theorem 1 involves generalizing the important result of Rebeschini and Van Handel
(2015) (Theorem 2.1 therein) to a time-inhomogeneous setting. Many practical applica-
tions require time-inhomogeneity; for example, stochastic epidemic models may have a
time-varying population size, or other covariate, leading to time-inhomogeneity (see, e.g.
Breté et al. (2009)). In this paper, the transition densities of X,, Y,, and ©,, are all
time-inhomogeneous which means they are different in each time step n. Furthermore, we
consider these time-inhomogeneous transition densities in a general form where only stan-
dard conditions are required. When our transition densities are the same for each time
step n (i.e. being time-homogeneous), our results covers the situation of Rebeschini and
Van Handel (2015) as a special case.

The rigorous proof of Theorem 1 is postponed to Appendix F. Our proof broadly follows
the approach of Rebeschini and Van Handel (2015) while differing in some details that
enable us to obtain stronger and more explicit bounds. We acknowledge that the proof from
Rebeschini and Van Handel (2015) can be adapted to the time-inhomogeneous case, but we
take the opportunity to make other adjustments while adding this extension. Specifically, we
follow Rebeschini and Van Handel (2015) by controlling the filtering error ||7, — 7|/, using
the algorithmic bias and the algorithmic variance with the help of the triangle inequality,
thus resulting in the two terms in the upper bound. An intermediate filter without sampling
and resampling, 7, defined in (18), was used to separate the bias ||7, — m,||, and the
variance ||, — 7| . To control the bias generated by blocking, the decay of correlations
(DOCs) property was established. The DOCs property arises in statistical physics, in
regards to investigations of high-dimensional networks (see, e.g., Liu et al. (2018); Liu and
Ning (2019a,b, 2021)). In the current context, it means that the effect on the distribution
on block K of a perturbation made in another block K’ decays rapidly in the distance
d(K, K') defined in (3).

Utilizing the Dobrushin comparison theorem (Theorem 2), we extended the mechanism
to the parameter space by showing that the DOCs property of the underlying model is
inherited by the IBPF algorithmic filter 7,, which is the joint conditional distribution
of state X,, and ©,, given the observations Y7,...,Y,. We showed that the influence of
blocking on the marginal distribution at a vertex v € K should decay exponentially in the
distance from v to the boundary of the block K. This idea is revealed in the e~ #4(K.0K)
factor in the first term of the bound. To control the variance, a major issue is that 7,
cannot be interpreted as a regular marginal or conditional distribution, given that it is
only defined recursively in (18). Rebeschini and Van Handel (2015) solved this issue by
constructing a “computation tree”, which is in analogy with a similar notion that arises in
the analysis of the well-known belief propagation algorithms (Tatikonda and Jordan, 2002).
It is to introduce independent duplicates of the blocks in the previous time step and have
each block interact with its own set of duplicates, which hence unravels the dependence
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graph to a tree without blockwise interactions. Then one can interpret 7, as the marginal
distribution on this tree.

Rebeschini and Van Handel (2015) focused on establishing scalability. Hence their error
bound (Theorem 2.1 therein) targets to reveal that property while being ambiguous in some
other regards, in the form as follows:

7 — 7l <acard(x)[eP1a0OK) o oBelKlee /7] (29)

with K being a subset of the block K in partition I, where «, B1, and (2 are positive
finite constants. Although they did not provide a precise form of the error bound in their
main result, they provided a precise error bound for variance in Theorem 4.23 (page 2864
therein), as follows:

64 ¢,
VJl—eB €

where f = —log6AxA2(1 — €22) > 0. Although (30) shares similarites with the second
term of our bound in Theorem 1, with a close look we can see that (30) has an additional
factor e?. 8 becomes large when e is close to 1, which is how this mathematical framework
describes the situation where spatiotemporal mixing is fast. We expect the resulting bound
on the error of the block filter to be tighter in this case, and our bound has that property
whereas the bound of Rebeschini and Van Handel (2015) does not. Furthermore, we can see

that the exponent of €, L(> 1) differs. Whereas ¢, ¢, and ¢y are required to be close to 1, €y
—4|K|cc Ak t —2|K|oo (Ax+1)
y 0 ¢y

17n — Full <card(x) Foloo g IR0 A, (30)

can be close to 0. Thus, an improvement from e can substantially
tighten the bound, especially when the maximal block size (|K|x) is not small.
Throughout the proofs in Rebeschini and Van Handel (2015) and ours, a positive con-
stant 3 containing those quantities is used. We provide a precise definition of 8 in (28) for
the first time, which is used consistently in all the proofs. Our precise constant 3 is able to
rigorously reveal the influences of those crucial quantities on the error bound which have
been open problems: when 7 (the range of interacting neighborhoods) increases, the error
bound increases; when A (the maximal number of vertices that interact with one single
vertex in its r-neighborhood) increases, the error bound increases; when Ay (the maximal
number of blocks that interact with a single block) increases, the error bound increases;
when || (the maximal size of one single block in the partition) increases, the error bound
increases. Furthermore, we provided a precise sufficient condition for the first time, and
used it throughout all the proofs. That is, the product of the assumed lower bound of X’s
local transition density (e;) and the assumed lower bound of ©’s local transition density
1

(eg(0)) is larger than (1 - m) =,

Although we followed the strategy in Rebeschini and Van Handel (2015) in general,
to adapt to the time-inhomogeneous setting some proof strategies need to be adjusted
correspondingly. For example, their Proposition 4.4 (Page 2839) achieves local filter stability
by bounding the term

||Fn te Fs+1N - Fn Tt Fs+1V||Ku

where they used the Dobrushin comparison theorem on the distributions

p=PlXy,....Xn€ |V1,....Y,] and p=P’[Xo, -, Xn€-|Yi,....Y,]
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Our local filter stability is established in Proposition 6 by bounding the term
IFr - FoptFsTomt — Fr- - FoprFafoot |l
where we used the Dobrushin comparison theorem on the distributions
p=PFF1[X X1 Xy €,04,05i1,...,00 €| Yorr,...,Yal,
p=Prm X, Xoiq, 0, Xn €,04,0511, - ,0, €| Yi1,..., Yyl

Note that, with time-inhomogeneous, to quantify the effect of Fsy1 on y, it is appropriate
to use distributions on latent states starting from s instead of 0.

3.4 MLEs

The IBPF algorithm generalizes the data cloning method (Lele et al., 2007, 2010), which
is based on the observation that iterating a Bayes map converges to a point mass at the
maximum likelihood estimate. Combining such iterations with perturbations of model pa-
rameters improves the numerical stability of data cloning and provides a foundation for
stable algorithms (Ionides et al., 2015). To be specific, the same set of data Y7,..., Yy is
used in any one of the M iterations of the IBPF algorithm, given the result of the m-th
iteration for m € 1:(M —1) is simply the initial value of the (m + 1)-th iteration, we can see
that all M iterations together can be represented as a filtering problem on M replications
of the data as follows:

{{Yl,...,YN},{Yl,...,YN},...,{Yl,...,YN}}.

-~

As in the previous subsections, our strategy is to analyze the original theoretical quantity
and then explore its algorithmic approximation.
The joint density of the classical POMP model can be written as

N
IxonYion (Zo:Ns Y1:N 5 0) = fxo (20 56) H Ixn1Xno1 (TalTn-1;0) fy, 1 x,, YnlTn ; 0).
n=1
We write fy,,, (y1:5 ;0) for the marginal density of Y7.5. Then the likelihood function is
defined to be ¢(0) = fy,.x (y1:§ ;6), where the data is a sequence of observations y;.n. A
MLE is a value 6 that maximizes £(f). We define an extended likelihood function on ©~N+!
by

N

U(00.n) :/. . / dzxg . ..de{fXO(xo :6)

IxnlXnor (Tn | -1 300) fyi x, (Un | T ;Hn)}'
1

n—

Each m iteration of data cloning corresponds to an operator T,, which is a composition of
a parameter perturbation with a Bayes map that multiplies the likelihood and renormalizes
(page 2 of Ionides et al. (2015)), i.e.,

_ JUBo.n) fooy (B0 |93 0)g(9) 49 dBo.n—
[ £(00.8) fo.y (o:N|0 ; 0)g(9) i dbo.x

ng(eN) ’ (31)
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with g and T,¢ approximating the initial and final density of the parameter swarm, where

N
foun(Bo:n [950) = fo, (B0 |9;0) [ foion_,(0n]bn-1;0)
n=1

and 9 is the mean of the distribution of ©q. Iteration of the Bayes map alone has a central
limit theorem that forms the theoretical basis for the data cloning methodology (Lele et al.,
2007, 2010).

IBPF is the approximation to M which is the M-th iterate of T,. Following Ionides
et al. (2015), we first show that lim,,_,., T0"g = go exists for every fixed o > 0, and as the
noise intensity becomes small lim,_,q g, approaches a point mass at the MLE if it exists.
Then we show that when the number of particals J and the number of iterations M become
large, the IBPF algorithm numerically approximates g,. Proofs are provided in Appendix

G.

4. Application and performance analysis

In this section, we illustrate how IBPF can be used and compare its performances with
those of IF2 and IEnKF, using the spatiotemporal model covered in Section 4.1, over the
dataset covered in Section 4.2. We gradually increase the parameter learning difficulties in
4 cases, with consistent fairness in all experiments, in Section 4.3. We implement IF2 and
IEnKF through the spatPomp package (Asfaw et al., 2021).

4.1 Generalized spatiotemporal modeling for measles

Measles is a highly contagious infectious disease caused by the measles virus; it spreads
easily from one person to the next through coughs and sneezes of infected people. In this
section, we consider a generalized spatiotemporal model for disease transmission dynamics
of measles within and between multiple cities.

A compartment modeling framework for spatiotemporal population dynamics divides
the population at each spatial location into compartments. Specifically, measles transmis-
sion at each location is modeled according to the SEIR model with 6 compartments: (S)
represents susceptible individuals who have not been infected yet but may experience infec-
tion later, (E) represents individuals exposed and carrying a latent infection, (I) represents
infectious individuals that have been infected and are infectious to others, (R) represents
recovered individuals that are no longer infectious and are immune, (B) represents the
birth of individuals, and (D) represents the death of individuals. Park and Ionides (2020)
generalized the compartment model presented by He et al. (2010) to the spatiotemporal
modeling setting, which is analyzed in other literature such as Ionides et al. (2021). We fur-
ther generalize that spatiotemporal compartment model by allowing the dynamics in each
spatial location to have their own specific parameters, including different disease transmis-
sion speeds across locations. By demonstrating a methodology that scales to vertex-specific
parameters, we open up new possibilities for spatiotemporal inference, though we focus here
on testing statistical tools and so we do not engage directly in the scientific debates.

Different to the discrete-time based modelling and algorithm having time index n € N in
the previous sections, here the spatiotemporal model under consideration is a continuous-
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time Markov chain model with time index ¢ € [0, 00). Time discretization is a common and
natural practice to link these two kinds of time notations. Specifically, for the continuous-
time latent process X (t) = (S(t), E(t),I(t), R(t)), the corresponding discrete-time latent
process is given by X,, = X (t,,) with ¢p., being observation time. The number of individuals
in compartments S, E, I, and R of city v at time ¢ are denoted by integer-valued random
variables S%(t), E”(t), I°(t), and R”(t) respectively. Denote N;(t) as the counting process
enumerating cumulative transitions from compartment ¢ to compartment j where i,j €
{B,S,E,I,R,D} and i # j, in city v up to time ¢t. We model the 40 largest cities in the
UK, ordered in decreasing size with v = 1 corresponding to London. Our model is described
by the following system of stochastic differential equations, for v € {1,...,40},

dS°(t) = dNgg(t) — dANZ(t) — dNEp(t),
dE'(t) = dNig(t) — dNB() — dNp(0), (32)
dr'(t) = dNg(t) - dN{p(t) — dNP().

The total population

PU(t) = S°(t)+ E(t) + I°(t) + R"(¢) (33)
is calculated by smoothing census data and is treated as known. Hence, by (32), the number
of recovered individuals R"(t) in city v is defined implicitly.

The birth process Nj¢(t) is a time-inhomogeneous Poisson process with rate pf¢(t)
given by interpolated census data. The transition processes Np;(t), Nip(t), N$p(t), Npp(t),
and N7, (t) are modeled as conditional Poisson processes with per-capita rates pgr, prr,
wsp, HED, and prp respectively. The transition process Ngp(t) is modeled as a negative
binomial death process according to Breté et al. (2009) and Bret6 and Ionides (2011) with
over-dispersion parameter ¢, and rate given by

E[N§g(t +dt) — N$p(t)] (34)
o | (PO b ("N e\
-ewso | () t 2 (Pv’m) (o) 2ot

Throughout this section, we consistently use an overline to indicate average across time
and use a tilde to indicate average across time across cities. Here, 8¥(t) models seasonality

driven by high contact rates between children at school, described by
v { (1 + 5a(1 — @]’5_1) ESMIR during school term,
BU(t) = =\ . : (35)

(1 — Ga) Roprr during vacation,

where p is the proportion of the year taken up by the school terms, Rg is the annual
average basic reproductive ratio, and 5(1 measures the reduction of transmission during
school holidays. In (34), @” is a mixing exponent modeling inhomogeneous contact rates
within the city v, and 7 models immigration of infected individuals which is appropriate
when analyzing a subset of cities that cannot be treated as a closed system. In (34), the
number of travelers from city v to v’ is denoted by 8,,,, constructed as fixed through time
and symmetric between any two arbitrary cities, using the gravity model of Xia et al. (2004),

_ . 4 PP
w =G =,
P2 d(v,v')
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where G is a coupling parameter, d(v,v") denotes the distance between city v and city v/,
P' is the average population for city v across time, p is the average population across time
across cities, and d is the average distance between a randomly chosen pair of cities.

To complete the model specification, the measurement process for modeling the partial
observability is defined as follows: for tg., being observation time and

Zy, = Nig(tn) = Nig(tn-1) (36)

being the number of removed infected individuals in the nth reporting interval, suppose that
they are quarantined once they are identified, so that reported counts comprise a fraction
o of these removal events; the case report y. is modeled as a realization of a conditionally
Gaussian random variable Y, via

P[er’:y | Zf;:z]

b ~. 37
N+ 057280~ De + TFD) Ny — 050220 - 9+ ).

where N(-;u,0?) is the cumulative distribution function of Normal(u, 0?) and ¥ models
overdispersion relative to the binomial distribution.

4.2 Spatiotemporal illustration

Figure 2 shows a simulation (Plot A) from our model covered in Section 4.1 and the real
measles data (Plot B). We note that the spatiotemporal model considered in Park and
Tonides (2020) and Ionides et al. (2021) is a special case of ours, by taking location-specific
parameters @’ = 1 (in equation (34)), Ry = 30 (in equation (35)) and 7%, = 0.15 year!/?
the same for all locations, and take all the initializations fs» = 0.032, 6z = 0.00005,
01y = 0.00004, and Opy = 1—0g0 —0py — 010 the same for all locations. In our simulation, for
each location v, we draw the corresponding variables according to uniform distributions of
the [0.99, 1.0355]-scaled range of those in Ionides et al. (2021). That is, our @” ~ Unif][0.99 x
1,1.0355 x 1] for each v. We take the other parameters as fixed values as those of Ionides
et al. (2021): psp = ppp = prp = 0.02 year™', ppr = purr = 52, p = 0.759, g = 0.5,
¥ = 0.15, 8, = 0.5, 7 = 0, G = 400. From Figure 2, we can see that the simulation
shares the biennial pattern with most cities locked in phase most of the time. In both
plots, each row is associated with a city, each column is associated with a date, and each
pixel in a row represents Log(reported counts +1) of the epidemics. We note that although
the simulated data and real data in Figure 2 are for 40 cities, in the next subsection we
gradually increase the number of cities in modeling and stop when the number of cities
involved in the spatiotemporal data analysis is sufficient to clearly reveal the performances
of algorithms in terms of COD. For example, in Figure 3, city number being 2 indicates
that we infer 4 parameters for each of these 2 cities only (8 parameters in total), and city
number being 20 indicates that we infer 4 parameters for each of these 20 cities only (80
parameters in total). We would stop the test if the performances of algorithms (measured
by log-likelihood) are sufficiently clear using spatiotemporal data of 14 cities (Case 2 in
Figure 3) instead of testing up to 40 cities.
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Figure 2: Log(reported counts +1) for (A) the measles simulation from our spatiotemperal model and (B)
the corresponding UK measles data.

4.3 Performance analysis

We gradually increase the parameter learning difficulties in 4 cases: in the first case, the goal
is to learn initial value parameters for measles transmission dynamics for each location: gz,
Opg, 01y, and Ogy; in the second case, in addition to these 4 initial values the goal is to also
learn the nonlinear parameter Rﬁ for each location; in the third case, in addition to these 4
initial value parameters the goal is to also learn the highly nonlinear parameter a for each
location; in the fourth case, the goal is to learn all the location-specific parameters, namely,
Osy, Omy, 01y, Oy, @, 0%, and RE. Table 1 provides an illustration of the parameters to
infer for each location v in four cases. Fairness is obtained over all experiments on all these
three algorithms, as follows:

e Each algorithm uses the same number of iterations M = 100 (see Algorithm 1 for

notations) and the same number of particles J = 80000.

e We conduct 10 replicates of all the parameter learning performance comparisons, in
the way that in each replicate all algorithms start with the same initial search values
drawn uniformly as follows:

@’ ~ Unif[0,2], %g ~ Unif[0,1], Ry ~ Unif[25, 35],
Osv,0py. 01y, 0rs ~ Unif[0, 1].

Here, we consider latent states of each city as portions of the population of that specific
city such that S?(0) = 60syP?(0), E¥(0) = 0z P¥(0), I°(0) = 012 P?(0), R'(0) =
Ory PY(0), and

933 +9E6’ + 9[5 +9R8 = 1.
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Parameters | Case 1 | Case 2 | Case 3 | Case 4
Osy Yes Yes Yes Yes
0 B Yes Yes Yes Yes
0 g Yes Yes Yes Yes
Ory Yes Yes Yes Yes
ES Yes Yes
a’ Yes Yes
) Yes

Table 1: Parameters to infer for each location v in four cases.

e Mathematically, there is only one likelihood function for the model and data in ques-
tion, and different algorithms are making various approximations to estimate this
quantity. The algorithms each compute the likelihood corresponding to an approxi-
mation to the exact filter distribution, and therefore they have a negative bias. The
highest estimated likelihood among the available filters may therefore be anticipated
to have the lowest bias. We note that this reasoning assumed that the model is cor-
rectly specified—substantial model misspecification could result in an approximate
filter estimating a substantially higher likelihood than the exact filter. Thus, each
algorithm has its own metric of log-likelihood: IEnKF uses the metric of EnKF on
log-likelihood estimation, denoted as [, whose algorithmic definition is provided in
Algorithm 3 in Appendix A; IF2 uses the metric of PF on log-likelihood estimation,
denoted as [, whose algorithmic definition is provided in Algorithm 2 in Appendix
A; IBPF uses the metric of BPF on log-likelihood estimation, denoted as lAb whose
algorithmic definition is provided in Algorithm 1 in Section 3.1. We evaluate the best
parameters learned using each algorithm with the metrics of the other two algorithms,
in all the experiments. For example, we evaluate the best parameters learned using
the IEnKF algorithm through its /, metric, with the other two metrics (l and lb)

e One additional setup needed with IBPF is to set up the block sizes. In all the com-
parisons with IF2 and IEnKF, we simply allow each block in our IBPF algorithm
to have exactly 2 cities in all the experiments. That is, the first block is city 1 and
city 2, the second block is city 3 and city 4, and so on. Hence, the number of blocks
card(K) = Number of cities/2.

Figure 3 reports the log-likelihood estimates per city per time step of various dimensions
for cases 1 and 2. The corresponding original parameter learning results are reported in
Tables 2 and 3 in Appendix H. In Figure 3, the original results are divided by the number
of cities and then by time steps which is 15 x 26 for biweekly data in years 1950 — 1965.
We can see in case 1 that when we only learn the initial values (0sy, Opy, 01y, and gy ), the
best parameter learning results from 10 replicates of experiments of all three algorithms are
as good as the true parameter using the EnKF metric and the BPF metric, while the best
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Figure 3: Log-likelihood estimates per city per time step of various dimensions for cases
1 and 2. Original parameter learning results are reported in Tables 2 and 3 in
Appendix H. Here, we divide the original results by the number of cities and then
by 15 x 26 (biweekly data in years 1950 — 1965).

parameter learning results outperform the true parameters using the PF metric consistently.
We can see that for nonlinear and non-Gaussian problems but not highly nonlinear (both
case 1 and case 2), the IEnKF algorithm performs very well; IF2 scales well at least up to
20 cities for simpler initial values learning problem in case 1, while its performances start
to drop from 4 cities with all metrics in case 2 which confirms the phenomenon that PF
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Figure 4: Log-likelihood estimates per city per time step of various dimensions for cases

3 and 4. Original parameter learning results are reported in Tables 4 and 5 in
Appendix H. Here, we divide the original results by the number of cities and then
by 15 x 26 (biweekly data in years 1950 — 1965).

may not scale well with dimensions (Bengtsson et al., 2008; Snyder et al., 2008); our IBPF
is as good as the true parameter consistently with the EnKF metric and the BPF metric,
and much better than the true parameter with the PF metric consistently, in both case 1
and case 2.
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Figure 4 reports the log-likelihood estimates per city per time step of various dimen-
sions for cases 3 and 4, with the same transformation done as that of Figure 3 upon the
corresponding original parameter learning results that are reported in Tables 4 and 5 in
Appendix H. Recall that the goal of case 3 is to learn the initial values (953, Ory, Oy, 0 Rg)
and the highly non-linear parameter @". In equation (34), we can see that through @”, the
dynamic of one city has direct interactions with other cities. Case 4 is the hardest of all
these 4 cases. Its goal is to learn all the location-specific parameters (953, Opy, 01y, ORe, @,
0%y, and ES). From Figure 4, we can see that, even for 2 cities using all these 3 metrics,
IEnKF performs very badly in case 3 and fails completely in case 4. The reason is that
IEnKF is based on EnKF, and hence it implicitly assumes a linear Gaussian state space
model. Specifically, when new observations become available, the ensemble is updated by
a linear “shift” based on the assumption of a linear Gaussian state space model. However,
cases 3 and 4 focus on highly nonlinear and non-Gaussian problems. This phenomenon that
EnKF may not perform well for highly nonlinear and non-Gaussian problems, was observed
earlier, such as in Ades and Van Leeuwen (2015); Lei et al. (2010); Miller et al. (1999). In
general, the EnKF-based parameter learning approaches are applicable to problems with a
relatively small number of parameters but more work is needed for cases where the param-
eter and state are both high dimensional (Katzfuss et al., 2016). From Figure 4, we can see
that the performance of IF2 drops in both cases using all three metrics. The performance
of our IBPF in both cases, is as good as that of the true parameter consistently with the
EnKF metric and the BPF metric, and much better than that of the true parameter with
the PF metric consistently.

Now we explore more properties of IBPF through experiments in case 4. Table 6 reports
IBPF’s parameters learned for 10 cities. This is the set of parameter values that produce
the maximum log-likelihood —18555 in the I, metric in Table 5. We can see that all learned
parameter values conform to common sense. Table 7 reports IBPF’s parameter learning
results in terms of log-likelihood for all 10 replicates conducted, where each replicate starts
with an initial search value drawn uniformly. The resulting log-likelihood values are ranked
from highest to lowest; for example, the value of replicate 1 for 10 cities in Table 7 is the log-
likelihood —18555 in I, metric in Table 5. When we calculate the per city per time step values
as that in Figures 3 and 4, all values are almost the same across replicates. For example,
the highest value of replicate 1 gives —18555/(26 x 15)/10 = —5.947 and the lowest value of
replicate 1 gives —18583/(26 x 15)/10 = —5.956. Thus the parameter learning results are
robust. Figure 5 reports IBPF’s parameter learning results in terms of log-likelihood for
iterations {20, 40, 60, 80, 100, 120, 160, 180} with different block sizes {1, 2, 3,4} for 12 cities.
We also conducted analysis with block size 6, i.e., there are two blocks and each has 6 cities.
The log-likelihood values for block size 6 are {—75793, —96487, —88973, —84087, —76356}
for {20, 40,60, 80,100} iterations, respectively. These values are not included in Figure 5,
since they are much smaller than the values with block sizes {1,2,3,4}. From Figure 5, we
can see that the performance of IBPF increases as block sizes decrease. In common sense,
an increase in the block size for a fixed J will make the variance term worse and the bias
term better in the error bound. A closer observation of the bias term, one can see that
e Pd.0K) measures the distance to the boundary of the block, while in Figure 5 we have
that fixed and vary |K|s which is the maximal size of one single block in the partition.
That is, in Figure 5, block size being 1 means that ||, = 1. Hence, Figure 5 confirms
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our technical finding of |K|s. From Figure 5, we can also see that IBPF achieves likelihood
maximization as iterations increase which is consistent with the analysis in Section 3.4. For
any block size, the block particle filter computes the log-likelihood corresponding to a one-
step probabilistic forecast, with the forecast corresponding to the empirical distribution
of the particles. Log-likelihood is a proper scoring rule for such forecasts (Gneiting and
Raftery, 2007), meaning that the likelihood of a forecast cannot, on average, exceed that of
the ideal but inaccessible Bayesian filter. This provides a justification for comparing filters
by their corresponding log-likelihoods and preferring the highest.

g % i .2
I o __-<>---<>'"'<> o 3
s 3 "Q___,@_‘.Q--"@ a4
25 (oo
5|0 ‘l(I)O ‘15I0

Iterations

Figure 5: Performance analysis of IBPF for iterations {20, 40, 60, 80, 100, 120, 160, 180} with different block
sizes {1,2,3,4} for 12 cities of case 4.

At last, we discuss the computational cost. The computational cost of IF2 and IEnKF
are O(MJN|V|) (Asfaw et al., 2021) and IBPF as well, where M is the number of iterations,
J is the number of particles, N is the number of time steps, and |V| is the number of vertices.
Table 8 provides the performance and runtime comparison of top five replicates in terms of
log-likelihood for two cities in case 4. Each replicate is conducted with one node and 4GB
CPU on the Great Lakes Slurm cluster of the University of Michigan, Ann Arbor. We can
see that the time consumed is comparable: IEnKF is in the range of 15 — 16 hours, IF2 is
in the range of 17 — 18 hours, and IBPF is in the range of 18 — 19 hours. Furthermore, we
can see that IEnKF is still able to run but provides very bad results, and for this reason we
call it “Failed”.

5. Discussion and extensions
In this paper, we have proposed the IBPF algorithm for high-dimensional parameter learn-

ing over partially observed, nonlinear, stochastic spatiotemporal processes, established its
theoretical performance guarantees, and compared it with mainstream algorithms.
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5.1 Discussion

In this paper, we have only compared the EnKF-based parameter learning approach using
IF. There are two main approaches to parameter estimation within the EnKF framework
without using IF. The first is called state augmentation (Anderson, 2001) which works well
in many examples but implicitly assumes that the states and parameters jointly follow a
linear Gaussian POMP model. Hence, when some parameters violate this assumption, the
method fails completely (Stroud and Bengtsson, 2007). The second approach is based on
approximating likelihood functions constructed using the output from EnKF, which esti-
mates parameters either by maximum likelihood or Bayesian methods. Examples of these
approaches include sequential maximum likelihood (Mitchell and Houtekamer, 2000), offline
maximum likelihood (Stroud et al., 2010), and sequential Bayesian methods (Stroud and
Bengtsson, 2007; Frei and Kiinsch, 2012). In general, these methods have been successful
in examples with a relatively small number of parameters, and more work is needed for
cases where the parameter and state are both high dimensional (Katzfuss et al., 2016).
We note that our IBPF is designed to learn a large number of parameters for models with
high-dimensional parameters and states.

In recent years, approaches developed on learning high-dimensional parameters applying
the Bayesian method (specifically, Markov chain Monte Carlo (MCMC)) with multidimen-
sional time series data, including (Qiu et al., 2018, 2020; Jammalamadaka et al., 2019).
We note that these literatures are limited to only working for linear models while IBPF
is designed to work on general nonlinear models. Particle MCMC (PMCMC) methods,
introduced by Andrieu et al. (2010), make use of PF to construct efficient proposals for
the MCMC sampler, working for non-linear models. Particle Gibbs (PG) as a particularly
widely used PMCMC algorithm, modifies the PF step in the PMCMC algorithm to sample
the latent variables conditioned on an existing particle trajectory, resulting in what is called
a conditional SMC (CSMC) step. A drawback of PG is that it can be particularly adversely
affected by path degeneracy in the CSMC step, in the way that conditioning on an existing
trajectory means that whenever resampling of the trajectories results in a common ancestor
who must correspond to this trajectory (Rainforth et al., 2016). Efforts on combating the
path degeneracy effect, include but are not limited to, (Whiteley et al., 2010; Lindsten and
Schon, 2013; Lindsten et al., 2014; Chopin and Singh, 2015; Lindsten et al., 2015). We note
that IBPF does not have the path degeneracy problem.

5.2 Extensions

Algorithm 1 describes the IBPF algorithm in which the initial values of the latent states are
deterministically determined by model parameters, hence the theoretical treatment needs to
consider only Dirac measures as initial distributions are needed. Rebeschini and Van Handel
(2015) also considered a nonrandom initial condition which is a choice of convenience. For
comments on extending the results to general initial conditions, we refer interested readers
to Remark 2.3 (page 2823) of Rebeschini and Van Handel (2015). A corresponding extension
of Algorithm 1 permits fx, to be a probability density function.

At first glance, it may seem that BPF needs an approximation of spatial independence
to justify the factorized distribution. The reality is more delicate. There is a possibility
for considerable dependence to arise during the proposal stage of the filter, for which the
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particles follow the full joint transition density. The block resampling then imposes a
conditional independence approximation given the data, but conditional independence can
be a much weaker assumption than unconditional independence. Recently, Min et al. (2022)
investigated the choice of blocks for a block particle filter, formulating the partitioning
problem as a clustering problem and proposed a data-driven partitioning method based
on constrained spectral clustering to automatically provide an appropriate partition. For
our measles model, we have found it surprisingly successful to have each city in its own
block, and we have not found an advantage from larger block sizes. To reason about how
this might be consistent with the previous section, consider two cities (say, London and
Birmingham). Suppose they are tightly coupled dynamically, such that there will be an
outbreak in London if and only if there is one in Birmingham. Now suppose that, once an
outbreak occurs, the dynamics in each city become dominated by local noise, and further
that each city has a reasonably effective case reporting system. Plausibly, the discrepancy
between the actual and reported counts in London and Birmingham may be well modeled
as close to independent, conditional on the reported counts. That is enough to suggest that
a block particle filter having Birmingham and London in different blocks may be successful
despite the close relationship between their epidemic outcomes.

A demonstration on real data is beyond the scope of the current manuscript, since it
requires further investigation of model misspecification and its consequences. We refer in-
terested readers to lonides et al. (2022) for corresponding real data analysis. The IBPF
algorithm has been contributed to the the spatPomp package (Asfaw et al., 2021) as the
function ibpf. A tutorial (Ning and Ionides, 2023) introduces ibpf and validates its cor-
rectness on a simple Gaussian example which is tractable using the Kalman filter.

A. The IF2 algorithm and the IEnKF algorithm

In Algorithm 2, we provide the IF2 pseudocode in Ionides et al. (2015). In Algorithm 3, we
provide the IEnKF pseudocode in Asfaw et al. (2021).

B. Existing results

The following Dobrushin comparison theorem can be seen in Theorem 3.1 in Rebeschini
and Van Handel (2015) and Theorem 8.20 in Georgii (2011).

Theorem 2 (Dobrushin comparison theorem) Let I be a finite set. Let S = [[;c; S
where S' is a Polish space for each i € I. Define the coordinate projections X' : x — ' for
x €S and i € I. For probability measures p and p on S, define

pu(A) = p(X' € AXTNI = 2"\,
pE(A) = p(XT e AIXTNI = g\
7(A) = (X e AIXIME = g\

Cij = sup 1oL — Pl and b; = sup ol — PLlI.
X

z,z€8:x! \ir =g\ i}
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Algorithm 2 (The IF2 algorithm)

Input:

Simulator for fx,(zo;6)

Simulator for fx, |x,_,(Tn | Tp-1;0), n € LN
Evaluator for fy, |x, (Yn | 7;0), n € LN

Data, y1.n

Number of iterations, M

Number of particles, J

Initial parameter swarm, {(99-, j e lJ}
Perturbation density, fo, e, _,(0|7;0), n € N
Perturbation sequence, o1.ps

Output: Final parameter swarm {@é\/l , j € 1:J} and log-likelihood Z;,
Formin1: M

Draw @OF;jm ~ ho(6 | @;-n_l ;om) for j e 1:J

Draw X(f’]m ~ fXO(a:O;@(I;’Jm) for j € 1:J

Fornin1: N
Draw O, ~ fo, 0,1 (0n | O47 . 50m) for j € 1:J
Draw XTI:’]m ~ XX (Tn | Xf’_"ij ;@i’;n) for j € 1:J

P, P, ,
Compute w;; = fy,|x, (yn | X, ;" 6,,75") for j € 1:J
Draw s1.; with Prob(s; =) = erz/ D1 Whty
Set Xi’]m = Xpu! for j € 1.7
Set @i’;n = @i’?} for j € 1:J
End For
F, .
Set O = (©,7") for j € 1.J
End For
7 N J
Set Iy =3 1 log(% Zj:l w%)

If the Dobrushin condition
max Cij < 1,
i€l 4
jel
holds, then for every J C I,
lp =7l <> Dijby,

i€ jel
where D := 3, -, C" < o0.
Theorem 3 (Lemma 4.1 of Rebeschini and Van Handel (2015)) Let probability mea-

sures v,V F,F" and € > 0 be such that v(A) > eF(A) and V'(A) > eF'(A) for every measur-
able set A. Then

lv =/ <2(1—€) +€||F = F|.
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Algorithm 3 (The IEnKF algorithm)

Input:

Simulator for fx,(zo;6)

Simulator for fx, |x,_,(Tn | Tp-1;0), n € LN

Evaluators for e, (z,0) and vy ,(x,0), n € 1:N

Data, y1.n

Number of iterations, M

Number of particles, J

Initial parameter, 69

Random walk intensities, og.n,1:p, Where Dy is the dimension of 6
Cooling fraction in 50 interations, a

Output: Monte Carlo maximum likelihood estimate 8, and log-likelihood lAe
Initialize parameters 9%’3 =¢°
Forminl: M
Initialize parameters (9 Jm ~N(©y
where (3n)g, a1 = nda ]]'dg a4, for j € 1 J
Initialize filter particles Xo,}' ~ fx,(xo; @ ) for j € 1:J

Fm— 1 q2m/50
N,j o)

Fornin 1: N
Draw @i’;n NN(@SﬁJ,am"/SOE ) forj €l:J
Draw Xi’]m ~ X0 (Tn | XF”f] ;@ 7) for j € 1.J
Pm
Process and ensemble parameter Zf ’Jm = 6715% for j € 1:J
n?j

Centered process and parameter ensemble Zf = ZTI: 0 1 gzl ZEm for j € 1:J
Forecast ensemble V"™ = eu(Xu’P’m @P’m) for j € 1:J

n,j
Centered forecast ensemble Y, = Yn”; — = Z g=1Yng for j € 1:J
Forecast measurement variance R}'; = ( Lyt =1 V(X)) Fm @Pm)> )

u,

Forecast sample covariance S = -1+ S i (YT )(Ym) + R™
Prediction and forecast sample covarince X7, = 77 ijl(gi jm)(f/;{’;)T
Kalman gain K™ = %7, (¥9) !
Artificial measurement noise €'; ~ N'(0, R) for j € 1:J
Errors r)’; }A/T;”] —y, for j € 1:J

XFm
Filter update Z,f;n = ( @F] ) ZPm + K (rp; +ey) for j € 1.
7]
End For
End For
J F,M
Set QM = %Zj:l(GN,j )
Set I, = 25:1 log(p(yn ; % Zj 1 yM Y¥')) where ¢ is the normal density

n,p’
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Theorem 4 (Lemma 4.2 of Rebeschini and Van Handel (2015)) Let p and p’ be prob-
ability measures and let A be a bounded and strictly positive measurable function. Define

[ 1a(@)A(z)p(x) n , _ [ 1a(z)A(z)p ()
Y Y B R PP

Then

sup, A(z) 55D, A(2)
loa = pall < 25l =4Il andllon = Ahf| < 27 A HI —/I.

Theorem 5 (Lemma 4.3 of Rebeschini and Van Handel (2015)) Let I be a finite set
and let m be a pseudometric on I. Let C = (Cjj); jer be a matriz with nonnegative entries.
Suppose that
max €m(i’j)0ij <c<l1.
icl 4
jel
Then the matriz D =3 -, C" satisfies

max em(i’j)Dij < .
i€l 4 1—-c¢c
jerl
Theorem 6 (Lemma 4.16 of Rebeschini and Van Handel (2015)) Let

be product probability measures on
S=8'x...x§"

and let A : 5 — R be a bounded and strictly positive measurable function. Let up and v be
probability measures

_ JLa@A@)pde) vy — [1a(z (dm)

J A@)uldz) fA
Suppose that there exists a constant € > 0 such that the following holds: for every i =
1,---,d, there is a measurable function A’ : S — R such that

eNi(z) < A < e TAi(z),
for all x € S such that A'(z) = A (&) whenever i1\ = F{Ld\{i} - Thep

d

) . .

lea —vall < 5 >l =
i=1

Theorem 7 (Corollary 4.21 of Rebeschini and Van Handel (2015)) For any subset
of blocks L C IC, we have

&) B - Q) B Sy

Kel Kel

4 card(L)
e

for every probability measure p.
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C. Preparation

For any probability measure pus—1 on X x © at time s — 1 for any integer s > 1, any vertex
v € V, any block K’ € K, and any set AY = AY x Aj where A} C X" and A} C O, we
define the following quantities with x indicating (z, 6):

. uis_l(Ai x Ap) (38)

= Pret | XU € A%, 07 € Ay | XN = gV @l Muh g el

o iy (A7 X AF) (39)
— P [x e azep, e 4y | XU =0 01 - g\,

Xs=1x4,0, =04

S Lav (@1, 00 1) Tloen() Fxepxo, (28 [ 5-1:07)
X f@gﬂesfl( § 10515005, (dog_y,db )
waEN(v) fX;’|XS,1(x:j | 25-1;0%) ’
X fowio, (0% | Os—150)uy,  (day_y,do_y)
AY x AY) (40)

v
® ’LLYs—les(

= Pl | XY € A%, 07, € Ay | X\ =g\ oM — g\

Xs=1x4,0, =0

J Lo (@1, 0, I)HwEN(v Ixoix,_ (@8 [ Ts—1;07)
X fosio, (09| Os—1;0)uy,  (dxl_), df_;)
JTuen) fxexo (@8 | Ts1;607) ’
X fosjo,_, (02 | Os-1;0)py, (A8, d0,_;)
o 1 L (AY X Ap) (41)

— P [xey e a0y € Ay | XV = ol o1 g,
XK = a2l ok =gk

JLav (@Y1, 05_1) Tuenwinir Fxeix, o (@8 | 25-1565)
X fowo,_, (04 | Os—1;0)uy,  (day_y,dO7 )
f HweN(u)mK/ fX;”IXs_1(x:J ’ Ts—1 ;st) ’
X fogo.y (05| Os—150)puy, (drg_y, dby ;)

v, K’ v v
MXS 1:Xs (A‘/'E X AG) (42)

= Pre [ XY e Av 0v_ e Ay | X\ =2\ eV _ g
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K _ K’ K' _ pK’
Xs _‘rs 795 _05

Jhav(@1,0,1) [oenwni fxepx, o (@8 | Ts—1;05)
X fosio, . (09 | Os—1;0)u,  (dx_),df_;)
JToen@inr Fxex, o (28 | Ts-1:65) .
X fovio, (04 | Os1; o)y, (dT2_y,dO,_;)

Based on the above quantities, with v' € V' we define

1
Hs—1 . — v — v
b C’U’U/ T 2 fueli Slép , VA fof H'u’Xs—th ’uX5717Xs||’ (43)
9§€® 15715571@(:13_\# }:fs—\l{v 3
A
~ 1 i K’
o C!'*71 .= ~ sup sup sup [T I (44)
VU KIcK nsex VA ) V(o) Xs—1;Xs Xs—1:Xs 1
9§E® x5,1,55716X:x571v :55,11)

— v ! v UI
051,05 1c00) (Vg \ v}

and with 8 being a finite positive constant we further define

o Corr(us—1, ) = max Z eﬁd(”’”,)Cﬁjfl. (45)
v’ eV

® 6—(\)};(#8717 /B) = szlea‘} Z eﬂd(v,v’)éﬁfzflfl' (46)
v'eV

Then, for Fy defined in (14) and F, defined in (18), any probability measure vs_1 on
X x © at time s — 1 for any integer s > 1, and any set A C X x ©, we have

o (Fsvs—1)(A) (47)
S La(zs, 05) [oer fxeix,_, (@8 | 25-1560%) fowjo,_, (05 | O5-1;0)
X fywxe (Y | 28 109)vs—1(dxs—1,d0s—1)(dxs)A(dOs)
T Teev fxepx, (@ [ z1;07) fowio, (05 ] 0s-150) ’
X fyoxe (Y | 28508 vs—1(dws—1, dfs—1)3 (das) A(dOs)
o (Fsvs_1)(A) (48)
f La(ws,0s) HKG/C [waeK fX‘;J|Xs—1(x;U | x5-1507)
X foro, 1 (05 | 05—1;0) fyoixe (Ve | 28505 vs—1(dws—1,d051)]
- « () \(d0y)
ke [ Toer fxoixo, (@8 | 2s1;6%)
X foro, 1 (05| 05—1;0) fyoxe (Y | 28505 vs—1(dzs—1,d05 1))
X (dzs)\(dbs)

According to the definition of xj | given in (38), for any K € K and v € K, we have
o (Fsvs—1)},(AY) (49)
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J Lav (28, 09) [ev fxw|xs (@ [ 2s-1307) fovje, (05 | Os-1;0)
X fYSv|Xv( ’ x¥ 50V ) vs_1(drs—1,d0s—1)Y" (dxs) AV (dbs)
S Toev fxepxo, (@8 | 25-1;07) fowio,_, (05 | 0s-1;0) 7
X fyeixe (Y [ 28508 vs—1(dws—1,d0s—1)Y" (dzs) A" (dbs)
o (Favs1)l, (AY) (50)

f ]lA“ xsves) HweK fng|X5 1( ;J ‘ Ts—1 ;9;})f9‘;’|®5,1 (9‘: | 0s—1 ;U)
X fyv|xe (Y9 | 28500 )vs—1(dzs—1,dOs—1)p" (das) A" (dOs)

s§717s8

S Tleex fxw|X5 (@Y [ 25-1507) fovjo, (02 ] 0s-1;0)
X fYSU|X1/( ’ Ty ,Hg)us_l(d:cs_l,dGS_l)zp”(dxs))\”(dﬁs)

By (49) and (50), according to the definition of uy | | (A7 x Ap) given in (39), for any
K € K and v € K, we have

° (Fsys—l);g,st(Av) (51)
J Lao (2, 09) Tev Fxeix, (28 | 25-150%) foso,_, (05 | 05-1;0)
X fypixe (VST 28509) Tuen ) fxe1x, (@ | 265 0540)
X f@" CH (0 s+1 | 0s50)0Y (dzy) A (dO3)vs—1(dzs—1,d0s-1)
S Toev Fxepxo, (@8 | w5-1;07) fowio,_, (05 | 0s-1;0) ’
X fyoixe (Y1 28509) Tuen ) Fxe1x (@50 [ 255051)
X f@g+1|@s( s+1 | Os; U)¢U(dxg)Av(dgg)stl(dxsfhdas—l)

@ (Fovs1)Y, e (A7) (52)
J Lav (2, 07) [Loex Fxex,- (@8 | s ?)f6g|®s_1(95w | 0s-1;0)
X fyoxe (Y | 235 65) HuEN J£Xs+1\XS (Toy1 | 3 0541)
X f@g+l‘@s( s+1 | 95aU)wv(dxg)Av(deg)Vs—l(d$s—17d‘gs—l)
JTloex fxepxo s (28 [ 25-1:02) fovio, , (02 ] 0515 0) '
X fypixe (YT 28509) Tuen ) fxeix, (@ | 265 0540)
X fou, 10, (U5y1 | Os50) 0 (dag) A (d0F)vs—1(das—1, dbs—1)

By (49) and (50), according to the definition of 4 . ~given in (40), for any K € K and
v € K, we have

o (Fave1)% i (4 (53)

[ 1ae (@, 09) [oey froxo (@ | 2e-1305) fosje,_, (05 | Os-1:0)

XfYS”|X§’(YsU | T} 795)HUGN fXS+1\XS( o+1 | Ts30541)
X f@ﬂ;+1‘95( . | 03;a)w”(dxs))\”(dﬁs)us,l(dazs,l,d9571)
S Taev fxeix, @ | 25-1305) fowjo, o (5 | Os-150)
X fyvxe (Y| 205 65) [uenw) fxe x, (@i [ T3 0500)

X fou, jo, (0511 | 9s;U)W(dv’ﬂs))\”(dyz)%—l(dmsq,d9571)

° (FSVS—l)%svst(Av) (54)

)
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J a0 (@2, 00) Tk Fxox, (@ | 261:0,) fowie, (0 | 0s—1:0)
XfY!’lX“( | T} ,ﬁg) HuEN sz+1|Xs( s+1 | Zs 5 s+1)
X fou, 0. (0511 | 05 ;0)0(dZY)N(dO,)vs—1(das—1,dOs—1)
S Toex fxeix, (@ | 2s-1;07) fowio. 1 (05 | 0s—1;0) '
X fywixe (Y2 | 295 65) [uene) fxeix. (@5 [ Ts5050)
x for, 0. (0311 | 0s; a)wvm)wd?i)usq(dxH, dbs1)

By (49) and (50), according to the definition of /‘I’;?fll,x‘s given in (41), for any K, K’ € K
and v € K, we have

° (FSVS—l)Xs Xs+1(AU) (55)
f]lA” xs>95)Hwev fxw|XS 1( ¢l zso1; :J)f@‘g’lesfl(esw | 0s—1;0)
X fyoixe (Y31 28569) Tuenwynie Fxe1x, (@5 [ 2s:6050)
X fou, jo, (0511 | O0s;0) (dag) A (dbF)vs—1(ds—1,dbs—1)
waeV fX;J|XS_1( zy ’ Ts—1 ;st)few\es 1( s ‘ 0s—1 ;U) 7
X fyoixe (Y1 285 09) Tuenwynir Fxe1x, (@ [ 2s5050)

x f@gH JO0541 [ 0s50)00 (dag) A (dOY)vs—1 (das—1, dfs—1)
o (Fove1)25) L (AY) (56)
J Law %793)1_[%1( Ixepx, (@ [ 25-150%) fowio, (05 | Os—1;0)
><va|Xv( | zy507) HuGN( NK’ fX§+1|XS(9U?+1 | ms?egﬂ)
x f@g+1 SO | 0550000 (daf) A (dbY)vs—1(dws—1, dOs—1)

JTuex fXW|XS V(@8 | s-130Y) fovio,_, (05 | Os—150)
X fypixe (Y31 285 09) Tuenwynir Fxe1x, (@5 [ @s5050)
x f@gH\G)S( i1 | 0550000 (dag) A (dOF)vs—1 (dws—1, dbs—1)

By (49) and (50), according to the definition of “%:i,xs given in (42), for any K, K' € K
and v € K, we have

o (Fovs1)u  (AY) (57)

XssXs+1
J 140 (@,09) [oey Fxeixo, (@ | 251505) fosio,, (0 | 05-150)
X fyoxe (Y| T35 0,) [luen(nk: Fxe 1. (@51 [ Ts30544)
x f@g+1\®5( i1 | 05;a)¢”(d§§)/\”(d§:)us_1(dxs_l,dﬁs_l)
S Toev Fxox, (@ | 25-1:07) fowie, , (05 | 0s—1;0)
X fyoxe (Y9 1245 S)HUEN( nrr xe1x (@ | Te s 054
X for, 0,05 | 0 0)p? (dZ0) N (dB, s 1 (dzs—1, dBs_1)

o (Fove)2 L (AY) (58)

i
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J L4 (@09 Toer fxeix, o (@ | 25-130;) fowjo, o (0 | 05-150)
< frpixy (V178 505) [uenwynr fxeix (@ [ s 050)
X fou, 10,01 | Os;0)0? (AN (dO, )vs—1 (ds—1,dOs—1)
S Toex fxepx, (@ | 252150 fowjo, , (02 | Os—150) '
x Frpixy (V8 1 2500) Tuenqonmer Fxeix, (@ | T3 08)
X fou_ 10,01 | 055 0)0 (dZ)N (A0 )vs—1 (dws—1, dfs 1)

D. Proofs for bounding bias

Lemma 2 Under condition (27), for 5 defined in (28), the following holds:
(i) (1= Rleq(@)*)e7 A% < g
(i) (1~ exleq(0)]?)ePTTHA < (1 — e3P [eg(0)]?2)e* " A
Proof By the definition of 3, we have

1 2r

That is,

2r _ 1
16AKA2(1 — 2A[eg(0)]?2)

Since 7, A, A > 1 and 0 < €;,€9(0) < 1, we have

e

(1 — 22 [eg(0)]*2)e? A2 < (1= &z [eg(0)*2) A2

T 16AAZ(1 — 28 [eg(0)]22) =

B
16

(1= ezlea(0)?)e” VA < (1 = efeg(0)P)e* A < (1= 3 [eg(0)]*2)e* A%,

Lemma 3 Under Assumption 1 in Section 3.3, for any n > 0, we have

1
Corr(my, 8) < 3’
where 65&( -, B) is defined in (46) and S is given in (28).

Proof Since 7y = mp = §,09 which is non-random, by the definition of 6?)5( -, 3) given in
(46), we have Corr(mp, 3) = 0. In the following, we prove by the method of induction and
assume that for n > 1

Corr(7n_1, 8) <

oo | =
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Let K, K' e K,ve K,v € V and v # v'. Let x,,T, € X such that xx\{vl} — g\
Let 6,0, € © such that oy = gx\{v}. Define I = ({n — 1} x V) U (n,v) and S =
(X x 0) x (X¥ x V). Define

S 1a(@n—1,0n-1,20,00) [ fxeix, (@5 | Tn-1;05)
Xf@m@n_1(9n | Op—1;0 )HuEN( NK’ fX“+1|Xn( n+1 | 7, a9n+1)
X fou 10, (Ons1 | Ons0) fyoixs (V) [ 275 07)
x U (dx )N (O )Tp—1(dxp—1,d0n—1)

waEK fX,‘;’|Xn_1(xn ‘ Ln—1; an)
X feg)0,-1 (05 | On-1;0) HueN( NK’ an+1|Xn(x’:LL+1 | Zn ;65 11)
Xfou, 10, (Ons1 | Ons o) fyoixy (V) [ 275 07)
X Y0 (dx2 )N (dOY )T p—1(dxpn—1,db0p—1)
and
f ]114(1.71—17971—17T$L7§Z) HWGK fX“’\Xn l(ﬂﬁ) ’ Tp—1 79:;)
Xf@%|9n_1(6;i | On—1;0) HuEN( nK’ fX“+1|Xn( n+1 | Zn ;9Z+1)
% fou 1o, (0ni1 | On50) fyoxs (Y2 | T3 30,,)
p(A) = X w (dxn))\ (dgn)ﬂ-nfl(dxnfladenfl) )

f HweK fX,ﬂXn,l(Tﬁ) | Tn—1;0)
Xf@%len—1(§: | On—1;0) HueN(v)ﬂK’ fX,’:HIXn (@hi1 | Tn 300 40)
X fou, 10, (0ny1 | On50) fyopxs (V0| T3 :0,,)
X v (dflﬁ))‘v(d@;)%n—l(dwn—la dbr—1)

Then according to the definitions of (Fsl/s,l);’fgés“in (56) and (Fyvs_1)2™ 58) for

n (
XorXs 1!
s > 1, we have
~ oK' B
||( nTn— 1)1;(7{7(Xn+1 - (Fnﬂ-n l)Xan-HH = ||:0 - p”(n,v)

In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound
| = Pll(n,v), Wwe need to bound Cj; and b; with i = (k,t) and j = (k',t'). Set

% %

p= p(x’ﬂflvenflvxzve%) and p p(l’n 1,0n—1,7}, 9 )
whose definitions are given in Theorem 2 in Appendix B. Note that
—i i
p % 'O(fnflﬁnfl,fi’n@b'
We display our discussions as follows:
e When £k =n — 1, we have

JLa(@), 1,05 1) [uenwnr fxgixn o (@5 | 2n-1;65)
X fowlo,_, (05 | On—1;0)7),_(dz},_y,d0);, ;)
waeN (ONK fX;*;\Xn_l( “ | 2n-1;0;) '
X f@m@n,l(eﬁ | 013 0)7),_(dz},_y,d0;,_4)

p'(A) =
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We can see that p! = %;ii 1xn» by the definition of %if 1 given in (41). Therefore,
if ¥ = n — 1, by the definition of C’t; ! given in (44), we know that Cj; < C;? '
Note that

JLa(@y, 1,05 1) Huenwna o) Fxeix,: (@5 | 2n-1:65)
X fowion_, (04| On1;0)Th_ (dal,_,,dbf )
J eenmna oy Fxex,, (@5 | 2n-1:05)
X fowio, (0% | On—1;0)7)_(dxl, |, db} ;)

and then we have Cj; < 1 — e[ey(0)]> if ¥ = n and v € N(¢) by Theorem 3 in
Appendix B, and C;; = 0 otherwise. Recalling that at the beginning of this proof we

setve K, v eV,v#v, x,,T, € X such that J:V\{v} EK\{U,}, and 6,0, € © such
that HX\{U - 97‘;\{” }, then we have p = p' if v/ ¢ N(t) N K. Furthermore, note that

p'(A) = ;leo(0)])?

Y

JLa(@h, 1,05 1) [uenmna oy Fxe1%n 1 (@5 | Tn-1505)
X fow@, (0% | On—1;0)m}_(dal,_,db} )
JToenwn oy fxeix, (@ | 2n-1:607)
X fou@n—1 (05 | On-150)7,_ (day,_y,db;,_y)

p'(A) = ;leo(0)])?

)

and
f ]lA(fom—b‘gfz—l) HweN(t)ﬂK fX;;\Xn,I(T% | Tt 59(;)
ﬁz(A) — X f9%|®n—1(9:,) ‘ 07’1—1 ;U)%z—l(dwg—17d0’fl—l)

J Muenwnx fxw|Xn (@ [ wn1;0,)
X f®W|®n 1( n | On-1;0 )Nfl 1(d$271’d9271)
S 1al@d, 05 ) Tloenmnie oy Fxs1x0 (T | 2n1;07)
X f9%|@n71(§i | 01 ) (d$n 1ad9fz—1)
I Muenmn oy fxe1x0 @ [ 2n-130,) '
X f@)%I@n—l@Z | On—1;0)7)_y(dz},_y,db}, )

Hence, we have b; = 0 if v ¢ N(¢t) N K, and by Theorem 3 in Appendix B we have
bi = 2(1 — €2[ep(0)]?) otherwise.

> e2[eg(0)]”

e When k£ = n, we have

JLa(ah, 00) fxoix,_ (@ | 2n1;05) fovjen_, On | On-1;0)
X HuEN K’ fX“+1|Xn( n+1 | Tn ; n+1)f9”+1\9 (6 1 | 0n50)
X fywixg (V9 | @35 00)00 (day )A (dby)
J fxuixo_ (@h | 2n1;00) fovio,_, (O | On—1;0)
x HueN JNK’ fX“HIXn( n+1 | Zn ; n+1)f6“+1\en( n+1 | On;0)
X fypixp (Y| 5 07)00 (dap ) A0 (d0)

pl(A) =
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J La(ah, 05 HueN( NK’ fX”+1|Xn( a1 | Tn s bhq)

X f@“+1\9 (O n+1 "gnvg)va\X”(Y | x5 n)wv(dl‘”))\“(dm)
fHueN (v)NK’ fxu +1\Xn( a1 | Tns0p 1)

% for 1o (B | O 0) iy (Vi | 3 03)00 (dog) Ao (d6)

262[ 2

Then we have Cj; < 1 — e2[eg(0)]* if ¥ = n — 1 and ' € N(v) by Theorem 3 in
Appendix B, and Cj; = 0 otherwise. Note that b; = 0 if v' ¢ Uyen(w)nr N (w).
Furthermore,

f]lA Ty anU|Xn 1( n‘xn 15 n)f@“|®n 1( n|0n 1,0 )
: X fyoixe (V¥ | 285 09)00 (dag) A0 (dOY)
P(A) = 8eg ()2 e T T
S xoixa: @ | 2n-1505) fovjo,_, (05 | On-1;0)
X fY’UlX’U(Y |$n7 n)?[)”(dl‘”))\”(d@”)

and

J1a(zy,0, fX”|Xn (@D | 2n— 1;7}1)f9”|@n 1(7”9” o)
X [ Tuen@ni fxz +1\Xn( vt | Zn s n+1)f@“+1|@n( | Oso)
p'(A) = _ - X fypixg (V0| T 50,00 (dzs) X0 (d6,)
[ Fxoix, 2 @ | @n-130,) fevio,_, (O | On-1;0)
XHuGN YNK! quH\X"( n+1 | T, ; nH)f@“Hl@n( v ‘ en’ o)
< fyoixe (VY | T 10,00 (dTs)AY (dF,,)
[1a®8,0,) fxoix, (@ | 2n-1:0,) forjen 1 (O | On1;0)
> 2B [eg(o)]*A XmWwW%MWWWW“,
[ xoixn @5 | @ne130,) forjen 1 (O | Ono1;0)
X fygixg (V2| T3 0,90 (dz) A (dB,)

By Theorem 3 in Appendix B, we have b; = 2(1—€22[e9(0)]*2) if v/ € Uyen (o) N (W)

Define the matrix (Cj;(v)) jer whose entries are given below:

Cln—1,t)(n—1, (V) :527_1,
Cln-14)(n0) (V) =Clnw)n-1,0) = (1 — €2[e9(0)]*) Lyen ()
C(n,v)(n,v) (U) =0.

In sum, we have that

Z emk_k,'eﬂd(t’t,)c(k;,t)(k’,t’)S Z emk_k,l@ﬁd(t’t,)C(kz,t)(k’,t’)(’U)
(k' el (k' #)eT
< Corr(7n-1, 8) + (1 — [eg(0)2) X+ A
1 1

<3716
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<=, (59)

N

where the third inequality is by the assumption of the induction method and Lemma 2 in
Appendix D.

Next, applying Theorem 2 (Dobrushin comparison theorem) in Appendix B, we obtain
that

o= Bl <201 = Eleo (P pey Y Dinarinorin(®)
Y EN(v')
+2(1 = 2 [e0(0)*M) Lvreu, o oyrer V@) Dl (n) (V)

where D(v) = > - o[C(v)]°. Therefore,

L E = K’ r = v,K’
o Sup - sup sup Frmtn—1)y, — (FaTtn—1
K€K @nt1€X VA gV ') (o1 At (Fnn— )xman”

Tn,TnE€XTy
n+1€© _ o ’
O Bn ooy, V' gV M’}

< (1= @) ery Y Dnwn-1)(®)

tEN (V')

+(1—e? [69(0)]2A)ﬂ{v’EUweN(U)nK/N(w)}D(n,v)(n,U) (v).

By the definition of 5’55,‘ ' in equation (44), we have
Con <1 =elep(@)P) ey Y, Dmwym-14)(0)
#EN()

+(1—ef [69(U)]QA)]l{v’euweN(v)mK/N(w)}D(n,v)(n,v) (v).

Note that
Z eﬁd(v,vl)éfn (1 - 6 Z pd(v:v') Z D (nw)(n—1,t") ( )
v eV v'eK t'eN (v

(1= A eg(0)]2Y) 3 P D ) ) (V)

UIEUwEN(v)ﬁK/N( w)

(1 — 6 Z Z ,Bd(v v D(n,’u)(nfl,t’) (U)

v'eEK t'eN (v

+ (1 - ex [69 (G)]QA) Z eﬁd(vﬂ),)D(n,v)(n,v) (U)

vleuueN(u)mK/N( )

(1—6 Z Z ,Bd(vt )D(nv)(n 1t’)( )

v'eK t'eN (v
+ (1 - easA [69 (U)]2A) Z eﬂd(UW) eﬂd(w’v/)D(n,v)(n,v) (U)

V€U oy N (@)

<(1—é€X[e Z Z BT D 1,¢1(v)

v'eK t'eN (v
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+ (1 — 692CA [69 (U)]QA)ezﬁrAQD(mv)(nm) (’U)

S(l - 6:% [69(0)]2)A66T Z eﬁd(UWI)D(n,v)(n—l,v’) (U)
v'eVv
+ (1= €2[eg(0)]**)e*" A’ Dy ), (V)
S(l - EgA [EG(U)PA)‘?QBTAQ Z eﬂﬂk_k I+ )}D(n,v)(kz’,v’)(v)'
(k' el

By the definition of égﬂ( -, 8) in equation (46), we have

60\;1"(%71, f) = max efdlvw )C””
vev v'eV
<max(l — 2% eg(o)]*2)e? A% Y S DG, o) (0)

(k' el
<2(1 — 22 [eg(0)]?2)e2Pr A2
1
<77
-8
where the second inequality holds by (59) and Theorem 5 in Appendix B, and the last
inequality holds by Lemma 2 in Appendix D. |

Lemma 4 Under Assumption 1 in Section 3.3, when condition (27) holds, for any n > 0,
we have

1
Corr(m,, 8) < 3’

where Corr( -, f3) is defined in (45) and 8 is given in (28).

Proof For yy = defined in (39) and ,uf(’ff;,XS defined in (41), we have

1,Xs

f]lA Lps n HwEN(U KfXTL‘L’+1|Xn( w+1 | mn;9%+1)

X f®w+l|®n( n+1 | en I O-)ﬂ-Xn Xn+1 (dﬂ’jv d@v)

Tnxnin (A) =
Xt waEN(’U NK an+1|Xn( n+1 ‘ T s 9n+1)

x f@w+1|@ ( n+1 ‘ en’o-)/]any)(nJrl (dxv d@v)

Let z,,, T, € X be such that xx\{vl} = E}{\{”/}, and 6, 0,, € O be such that 9;{\{”/} = @x\{vl}.
Ifv' & Upen@w)N(w), for g, defined in (40) and '“%f:,xs defined in (42), by Theorem
4 in Appendix B, we have

= ~ —2A 2A ~v, K
| Tr;u(naxn-Fl - ﬂ—%n:X'rH»l H S 26x [66(0)] || Xnan-&-l - %n’X?%Fl H
Note that
~ A A~v, K
ﬂ-;)(naXn+l (A) 26% [60(0)]2 Tr;}(;an+1 (A)’
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= A A~v,K
Tr%anTrFl (A) Zei [60(0-)]2 W;ruxn"rl (A)’

and then by Theorem 3 in Appendix B we have that if v € U,cn N (w)

175 s = Tl < 201 = €22 [e0(0)]*2) + 22 ea ()2 T 0 — Tl

One can establish the inequality

Corr(my, 8)

SO =GP ep(o)* M max D7 MO 426,28 (0)) 24 Conr(7n, )

V' EUpen () N (W)

<(1— 22 [ep(0)]22)e? A2 + 26,22 [eg ()] A Corr(7n, B).

Under condition (27) that
1 35
€x€p(o) > (1 - 16AICA2> ,
since A, Ax > 1, we have
1 1
GxQA[EH(U)] 8 < 1_m < 1-1/16

Hence, by Lemmas 2 and 3 in Appendix D, we have

Corr (7, B) <(1 — €22[eg(0)]?2)e2?” A2 + 26,22 ()] 22 Corr (7, B)

<ip + s Mlea(o)]
1 2 1

<16 T8I 1/16
1

<§.

Proposition 5 Under Assumption 1 in Section 3.3, when condition (27) holds, for every
n>1, K€K and K C K, we have that

IFnfin_1 — Fnin_1llx < 4 P(1 — 22[eg(0)]?2)e P459K) card (k),
where (3 is given in (28).
Proof Define I = {n—1,n} x V and S = (X x 0)%. Fix K € K and define
f ]]-A(:L‘nfly enflv Tn, en) HwGV ny‘ﬂXn—l (‘Tz ’ Tn—1; 9;‘;)
Xfemen_l(eﬁ | On—1 SU)fYnW\X:; (Y [ x5 67)
X Y(dzp )N (dOp)Tp—1(dxn—1,d0n_1)
Jeev fxeix, o (@5 | 2n-1:6%) 7

X fow|@n_1 (05 | On—1;0) fye xe (Y | 255 05)
X 1ﬁ(dl‘n))\(d0n)%n71(d$n71, d@nfl)

p(A) =
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and

JLa(@n1,0n—1,20,00) [ [oex Ixgix, o (@) | @n-1:07)
X foyi@n 1 (05 | On—150) [ Ly froxe (V3 | 275 67)
. X Yﬂ(d%n))\(den)%n_l(dl‘n_l, den—l)
f HUEK fX%|Xn71(I17fL ’ Ln—1 7972) '
X fou0, 1 (05 | On—1;0) ey froxe (Ve | x5 5 0%)
X P (dxn)N(dOn)Tn—1(dxn—1,db0p—1)

Then for any K C K and K C V, we have

p(A)

IFnmn—1 — Faftn—1llx = [lp — ﬁH{n}XK'
In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound
|p = Pl fnyxx> We need to bound Cj; and b; with i = (k,v) and j = (k',v'). Set

i ~

1 o~
P = Plag 1 bnrsenfn) D P = Dl 00 2 00)

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:

e When £ =n — 1, we have

J 1A(~"«"Z—179%—1)HW€N(U) Ixopx, (@ | ono1:07)
X fou0, 1 (05 | On—1;0)7)_y (day_y,dO)_y)
f HwEN(v) fX#‘{\Xn71(xL7‘1J ’ Tn—1 ’9%) ‘
X fowlo, 1 (05 | On—1;0)T _(da},_y,dO) )

p'(A) =

We can see that p* =7 | | according to the definition of pj | ~defined in (39).

Therefore, if &' = n — 1, by the definition of C**" in equation (43), we know that
Cij < quffl. If k' = n, since
JLal@y_ 1,05 _1) HweN(v)\{v’} fX,ﬂXn_l(x% | Zn-1:67)
% fosstonr (02 | On 15 0)T2_ (do_,, d62_)
JToenpgory fxsix, (@5 | @n-1:607)
X fowion 1 (04 | On_1;0)T4_ (dat_,doY_,)

we have C;; < 1 — €e2[eg(0)]? if v/ € N(v) by Theorem 3 in Appendix B, and C;; =0
otherwise. Hence, by the definition of Corr(pus—_1, ) in (45), we have

p'(A) > exleo(0)])?

9

D PRI oy < Corr(Faot, B) + (1 — exfeg(0)]?)e DAL (60)
(k' w")erl

Next we take care of b;. When k =n — 1, we have
JLa@y 105 0) Hwenwing Fxex, o (@5 | 2n-1:05)
X f@:|®n_1(6?{ | On—1;0)7,_(day,_y,dO), )
JTaening fxeix, (@5 | @n-1:65)
X fowi@,_1 (0% | bn1;0)m) i (dz} _4,dO} ;)

P(A) =
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Note that, if N(v) C K, we have p' = ¢ which yields b; = 0 if v € int(K). Further

note that

onJ La(zy,_q, 0, )T 4 (dwy,_y,db) )
f%zq(df’f%—lad%—l) 7

on S Lalay_1,0, )7 (dz;,_q,d0}_;)
I%Z—l(dxir}z—lvdez—l) ’

which by Theorem 3 in Appendix B yields that b; = 2(1 — €22 [ep(0)]??) if v ¢ int(K).

p'(A) 2 22eo(0)]

P(A) > 22 [ep(0)]

e When k£ = n, we have

f]lA Ty, 0 fX”\Xn J@n | e 'Z)f@ﬂ@n (05 [ On—1;0)
X fypixe (Y | @35 00)00 (day )N (d6R)
S xoixn, @) | Tn1; }{)fewen (05 | On—150)
X va|Xv( | b5 0p)v (day )NV (d0y)
oS Lal@y. 00) fyoixa (V) | 23 00)9" (dzyy )NV (d67)
I Fypixy (V2 L 08)0 (da, ) A0 (d63)

p'(A) =

> ¢;eo(0)]

Hence,

> NG 0 < (1= Elea(o))eP A, (61)
(k' w")el

Note that, if v € K we have p' = ;' which yields b; = 0, otherwise given that
[ La(2,0Y) fyv|Xv(Yv | 25 08V (dxl )N (dOR)
ffYTHX“ | Ty n)dfu(dxv))\v(dgv)
9 Qf ]lA n7 n)fY“|X“(YU | xnvev)wv(d‘r ))\v(d@v)
2€$[69(G)]
ffY”|X“ YU | xn? n)wv(dﬂgv))\v(dev)

we have b; = 2(1 — €2[eg(c)]?) by Theorem 3 in Appendix B .

pl(A) =

Summing up (60) for k =n — 1 and (61) for k£ = n, we have that

(ilgn?}é[ Z emk—k"eﬁd(vy')C(]g,v)(klml) < Corr(7n-1,8) + (1 — e2[eg(0)]?)e’ DA,
; (k' eI

Furthermore, by Lemma 4 in Appendix D we have that

Corr (7, ) <

W=

and by Lemma 2 in Appendix D we have that

(1~ (o))" DA <
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Hence,

k—k'| Bd(v,’
(lrgnv&)ue(I Z BIk=Hl gBd( )C(k,v)(k/,v/) < 1/2.
’ (k' w"el

Next, applying Theorem 2 (Dobrushin comparison theorem) in Appendix B and Theorem
5 in Appendix B, we obtain that

”Fn%n—l - Fn%n—lHK = ||P - ﬁ”{n}XK

= 2(1 - 63: [69(0)]2) Z Z D(n,v)(n—l,v’) + Z D(n,v)(n,v’)

VvEK | v/eV\int(K) VEV\K
< 4e (1 — 22 ep(0)]?2) e PUOK) card (k).

Proposition 6 Under Assumption 1 in Section 3.3, when condition (27) holds, we have
that for every KC K, K € K and s € {1,...,n — 1},

HFn e Fs—i—l Fs%s—l - Fn ot Fs+1Fs%s—1||K

-~ ’

48 / /
>0 —B(n—s) —Bd(v,v") ~ v ~ v
3236 rrllg)/ce sup H(FSWS_I)XS,XS+1 — (sts_l)xs,xsﬂu,
€K v Ts,Tg41EX
v 05,0541€0

where 3 is given in (28).
Proof Define I = {s,...,n} x V and S = (X x 0)"**1. Define
p= PP (X, X1, Xn €,0,, 0010, € | Yarr. .,

p=PFT1X, X, X, €-,0,,0,41, - ,0n €| Yerr,..., Y]
Then we have
||Fn T Fs—HFs%s—l —Fn-- Fs—&—lFs%s—lHK = Hp - ﬁ”{n}xw

In order to use Theorem 2 (Dobrushin comparison theorem) in Appendix B to bound
1P = Pll{nyxx, we need to bound Cj; and b; with i = (k,v) and j = (K',v"). Set

i i ~i_ ~i

P :p(l‘s,...,xn,es,...,en) and p= (@5 yeesTn 05 500,0n)

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:
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e When k = s, we have
f]]-A Zg, s HwEN fXS+1|Xs( s+1 |JES, s+1)
X f@w '1119s ( s+1 ‘ 05 ,0')771) (dl‘v d@”)
IHUJEN(U) fX5+1|X ( s+1 ’l’s, s+1)
X fou, 10, (0541 | 053 0)TY, (dxt, dbY)

>z eo(0)*2 7Y, (A)

according to the definition of py |~ given in (39). Therefore, when k' = s, by the
definition of Cf;‘, in equation (43), we know that Cj; < Cf;,. When k' = s+ 1, we
have Cj; < 1 — e22[eg(0)]?2 if o' € N(v) by Theorem 3 in Appendix B, and Cj; = 0
otherwise. Hence, by the definition of Corr(us—1, ) in (45),
> PERIBACNC ) < Corr (s, B) + (1 — €22 [eg(0)]22)e VAL (62)
(k' w)el

e When k€ {s+1,...,n— 1}, we have

S La(ap, 00) fxvix,_, (@} | 2r-1507) forion_, (OF | Ok—150)
X [wenw) Ixe, 1% @i L ze 00 fer, 10, (05 | Ok 0)
X Fyopes (V| 283 02060 (da) A (d6)
S Expix @R T ee1:00) fopion, (0F | Ok-150) '
X [uen) Txg1x (z | xk;9%+1)fegﬂ|@k(9i’+1 | Ok 0)
X fypixp (Vg [y 00) 90 (dap) A (d6y)

Note that z§ depends on ¥ | if v/ € N(v), and

p'(A) =

JLa(@}, ) Haenw) Ixe, 1x @ [ or:0510)
xfeg, 0k 08y [ Ok 0) fropx (Y | 25 6F)
x ¥ (dz?) A (d6Y)
T Taeno Fg,, o @ Toni 0, -
Xfog, 10k Oy | Ok 0) frpixp (V7 |y 07)
x v (dxy ) AV (dby)

p'(A) = ;leo(0)])?

Further note that zj depends on xz;rl if v € N(v), «} depends on x};/ if v/ €
UwGN(v)N(w)v and

f La(@y, 0) fxv i, , () | K1 6%)

Xf@%@k_1(9z | Or—1 ;O')fyku‘Xz (ka | v ez)
X P°(da}) A (d6y)

S Ixpix (@] |21 67)
X favion_, (OF | Ok—1;0) fyoixo (Y | 25 0F)
x v (dxy) AV (dby)
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By Theorem 3 in Appendix B we have C;; < 1—¢€2[eg(0)]?, if ¥’ = k—1 and v' € N(v);
Oy <1—Beg(0))?2,if K =k + 1 and v € N(v); Cij <1 — e22[eg(0)]?2, if K =k
and v’ € Uyen(w) N (w); Cij = 0, otherwise. Therefore

Z emkik/‘Cﬁd(v’vl)c(k,v)(k’,v’) < (1 B eiA [60(0_)]2A)(62BTA2 + 265(7’+1)A)
(k' whel

< 3(1 — E8[eg(0)]22)e?PT A2, (63)

e When k = n, note that z, only depends on fvzl_l where v' € N(v), and

f ﬂA(m%’ 972)fX%|Xn71 («T;)L ‘ Tn—1; 9%)f9%|@n71(93 ‘ 0n-1 ;0’)
X fyixn (Y2 | @5 02)00 (day) A0 (d6y)
T T @ 2o 0 fegio, (B | 0n150)
X fypixe (0| 2 05)90 (day) A0 (d63)
o J LAl 00) Frp ey (Vi |y s 0) 0" (dayy )MV (d67)
T Frppxs (V8 | 08)¢e (dag ) A (dOg)

By Theorem 3 in Appendix B we have C;; < 1—€2[ep(0)]? if ¥’ =n—1and v' € N(v);
C;j = 0, otherwise. Therefore

pl(A) =

>e3eo(0)]

S I < (1= Eleg())PTIA. (64)
(k' w")el

Summing up (62) for k = s, (63) for k € {s+1,...,n — 1}, and (64) for k = n, by
Lemma 2 in Appendix D, we have

k—k'| Bd(vo'
mas, 3 I
S kol

< Corr (s, ) + 3(1 — €32 [eg(0)]*2)e*" A2,
Furthermore, by Lemma 4 in Appendix D we have that

Corr(7s, B) < %,

and by Lemma 2 in Appendix D we have that

1
(1- fiA[GG(U)]QA)e%’TAQ < 16
Hence,
/ / 1 3 25
Blk—k'| Bd(v, —
max Y S C <3+ 5=
’ (k' el
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By Theorem 5 in Appendix B we have

/ / 48
Blk—k'| ,Bd(v,v") =
(i%xé Z e ") Do) 1y < 53" (65)
(k' w")el
Note that, p' = ' when i = (k,v) with k > s. For k = s, we have p' = (FsTs—1)3, xoss and

pl= (Fs%s_l);fcijsﬂ. By Theorem 3 in Appendix B, we have

HFn e FS+1FS%S—1 - Fn e Fs—l—lFs%s—l”K

=[lp = pllgnyxx

S Z Z D(n7v)(57v/) Sup H(Fs%s_l);)(sv)(s+1 B (Fs%s_1)1>)(57xs+l ”
VEK v/EV Is;’zssilfé

=D e Y AT D s
VEK v'eV

—Bd(v.v' E = ! T '
x e P sup [(FeFs1)Y i — (Fsfort)huwann |l
ws,:cs+1€X
93,85+1€®

A8 / [t Fa1)l
A=) N " max e AA0Y) gup I(FsTs—1) Y xorn — (FsTs1)y I

- s Xs+1
23 et VeV 2s,zg 1 EX XsH)Xs+
05.0541€0
where we used (65) in the last inequality. [ |

Proposition 7 Under Assumption 1 in Section 3.3, when condition (27) holds, we have
that for every s > 1, K' € K, and v’ € K’,

~ / -~ - / 96 _ _ / ’
sup_ (FsTrs—1)y, xon = (FsTom)ys oI < 59 (1= Pleg(0)]?2)eHOKD,
Ts,Tg41E€EX
0s,0541€0

where (3 is given in (28).

given in (51) and (Favs_1)V

Proof According to the expressions of (Fsvs_1)Y Yenteit

. . XsrXs+1
given in (52), we have

/

(Fs%sfl);s Xs+1(A)
J1a(zy,0Y HwEV fxw\xs,l(fﬂw | 25-1;07) fowio,_, (05 | Os-150)
Xfysv’|Xg (Y ’ Ty §9§)/) HuGN(v/) fXg+1|Xs (g | 2s3051)
X fGZHI@s( vl s o)V (da? )NV (dOY V51 (dws—1,dOs1)
S ey fxex, 1( ¢l as1;09) fovie, (05 | 0s-1;0)
Xfysv’\xg (YY ‘ Ty §9s,) H’LLEN(’U’) fX;LH\Xs (5575-1-1 | $s§‘9g-|r1)
< fou 10,041 | 0s50)0 (day )N (dOY ) o1 (das—1, dOs—1)
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and

/

(Fs%s—l)is XS+1(A)
f]lA g 05 HwEK’ fX“’\Xs 1(332u | w51 ?)f@?|@s_1(9‘: | 0s—1;0)
Xfyv | X (YU | ‘Ts 795 )HueN fX“ 1|Xs($g+1 | zs36511)
x fou 10,051 | 0s50)0" (dxfé AV (dOY )51 (dws—1,dOs—1)
S oerr fxopx, (@ ‘5 | 25-1;0%) fowio,_, (05 | Os—1;0) '
Xfyv |xv (YU | x§ ,(9;’ )HueN ") fXS+1|XS(xg+1 | @ §9§L+1)
X fou, 0. (041 | Os5 00 (dag )N (dOY )71 (das—1, dbs 1)

Define I = ({s —1} x V) U (s,2') and S = (X x ©) x (X¥ x ©¥), and the probability
measures on S as follows:

fﬂA(st—lv@s—le?g/?egl)Hwev wa|Xs (7 ‘5 | 5—1:60%)

Xf@“J\GS 1( Y1 0s-1; )fyv | X' (Y | Ty ,9;’)
X HuEN(v’) fX5+1 NCHER E s+1)f@§+1 05| 0s50)
p(A) = X YV (da? YAV (dOY V51 (dws—1,dOs—1)

JTloev fxepxo, (@8 | 2513 6%)

X fosjo, 1 (05 | Os—1; )va |xy (VY a6y

X HuEN(v’) sz+1 ( Tsiq | Ts; s+1)f®g+1 (934_1 ’ 05 ;U)
X v’ (d:rg ))\” (d@g Vs—1(dxs—1,dbs—1)

and
JVa(rso1. 051,27, 09) [oer Fxoix, o (@8 | 25m1:6%)
X fowio, 1 (05 | Os—1; )fyv |xv’ (YU |33s 793)
X HuEN fXS+1|X (@gy1 | s s+1)f95+1 0511 [ 0550)
H(A) = X PV (dx? )N (dOY ) Ts—1(dws—1,dOs—1) ‘
S aerr fxex, (@8 | 2s-1;07)
X fowio, 1 (05 | Os—1; )fyv |xv’ (YU |zt ;0
X HugN fXS+1|XS( or1 | Ts; s+1)f@’;+1|@s(03+1 | 0s;0)
X PV (dz )N (dOY ) Ts—1(dws—1,dbs—1)

Then we have

~ ’
H( 87TS 1)X37Xs+1 - (FST{.S—l);)(s,Xs+1” = (s,0')"

In order to use Theorem 2 (Dobrushin comparison theorem) inﬁAppendix B to bound
o = Pll(s,07)» We need to bound Cy; and b; with i = (k,v) and j = (k, ). Set

i i~
= and =
P p(xs_l,es_l,xg'ﬁ;") P (x5—1,05—1,2%,00")

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as

follows:
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e When k = s — 1, we have

Jla(xg_y, 05 I)HwEN( Fxeixo (@3 | 5-1;67)
< fosio, . (05 | Boy 107, (daT ;. doE )
waeN(g) fX;J|XS,1( S lws—1:67)
X fowio,_, (0% | Os—150)7y _ (dzg_y,d07 ;)

p'(A) =

and
JLa(xy_q, 07 1)HWGN(F)WK’fX‘;\XS (@9 | we_150)
X fowio, (04 | Os—1;0)72_  (dz?_,,do7_))
J Hwen@nr Fxeixo (@5 | 25-1;65) )
X fowio, (09 | Os—1;0)7Y  (dxl_,,db7 )

where 7, is defined according to the definition of uj | given in (38). Therefore,

p'(A) =

by the definition of py, |, given in (39), we have p' = @H,xs- Furthermore, by the
definition of C75" in equation (43), we know that Cj; < CT= ' if k=5 — 1. If k = s,
since

JLa(y_1,00_0) Huenmp oy fxeixo, (@8 | 25215 62)
X fovio,, (09 ] Os—1;0)7y,  (dxy_y,dO7 ;)
waeN(i)\{v/} fXgJ\Xs,l(fUZJ | 25-1;0%) 7
X fovio,_, (04 ] Os—1;0)7y  (de¥_i,dOY ;)
we have Cj; < 1 — €2[eg(0)]? if v = v/ € N(v) by Theorem 3 in Appendix B, and
Ci; = 0 otherwise. Hence, by the definition of Corr(us—1, /) in (45),
Z B, ,Bdi%)c(i

(k,v)el

p'(A) = ;leo(0)])?

(Em S Con(@a1, f) + (1 - Eleg(0)]?)PTTVA. (66)

To handle b;, note that if N(v) C K’ we have p’ = 5, and note that
> €

PA) 2 EPleo(0)P27Y, ,, B(A) 2 @Ml R, .

)
Therefore, we have that b; = 0 if v € int(K’), and by Theorem 3 in Appendix B we
have b; = 2(1 — €22[eg(0)]?2) otherwise.

e When k = s, we have
p'(A) = p'(A)
f]lA(xZ/,GZI)fXU o @ 25150 ) fowie, 5 0)
Xst“'lXé) (Y ‘ Ty ,HE)H%N fXgH\XS(IEZH | zs ;0% 1)
_ x fou_ 10, (0% | 055 0)9 (da )N (d6Y)
N ffX;"|XS_1($gl | 251 ;9§l)f@g/|@ ;o) :
X fyo | xo Y& [ 2300 Muen(w ) fxx (@ | 255 054)
X fou, 0. (0% 1 | 0s;0)¢ (dzy )MV ()
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Therefore, we have b; = 0, and Cy; < 1 — e2[eg(0)]? if k=s—1lande N(v') and
C;; = 0 otherwise. Hence,

3 BIE—F| (' T) (1

- < _ 2 2 ,B(T+1) .
Fanin < (1= Eleao))e? DA (67)

(k)el

Summing up (66) for k = s — 1 and (67) for k = s, we have

BlE-E| Bd@o) v _
(Fover :Zi e e Carn@o)
(k,v)el

< Corr(Fs—1, B) + (1 — 2[eg(0)]?) e’ TV A,

Furthermore, by Lemma 4 in Appendix D we have that

~ 1
Corr(7s—1,8) < 3’
and by Lemma 2 in Appendix D we have that
(1 - E[ep(o)P)e?r A < L.
16
Hence,
max Y SRR 19
(E,ﬂ)EI A (kvﬁ)(lﬁﬁ) 48

(k,D)el

By Theorem 2 (Dobrushin comparison theorem) in Appendix B and Theorem 5 in Appendix
B, we have

/

I(FsTs-1)% xasr — (FsTs—1)3, xo i I = o = Dll(s0r)
§2(1 - each [69(0)]2A) Z D(s,v’)(s—lj)
veV\ int(K’)
96

<ose (1 B g2 O,

which is uniform for all x4, 541 € X and all 65,6541 € ©. [ ]

E. Proofs for bounding variance

Proposition 8 Under Assumption 1 in Section 3.3, for integer s > 1, one has

1/2
~ o~ ~ o~ 2
E|F. 1Fms_1 — Fey1Fme_
I[I(ISI}C{ H s+1FsTs—1 s+1FsTs 1HK
16 —2|K o0 . —2IK] oo . —2|K]oo (Axc+1
< \/j[60(0)] IKloo —2IK] ¢, [Kloo (At A

where |Kls is the mazimal size of a block in K defined in (7).
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Proof For any K € K, by Theorem 4 in Appendix B, we have

|[Fos1Fsis—1 — Fss1Fsms1 1™
=||Co11BPss1Fss—1 — Cop1BPs1F o7y |
=||CE  BEP 1 FyTs1 — CK BE Py Fsi]|
<2¢, WKl |BEP,  Fsy — BEP 4 Foftsi])- (68)

For ¢ (dz¥) and A\¥(dOX) defined in (2), we have

PR (g ) AR (D)
IHUEK fXS+1|Xs( s+1 |$S7 s+1)f@“+1|@ ( }9)—1—1 |‘98;0-)
. HK’eN (K) Hv 'eK’ fY;f | X2 ( | a:s 70g ) [BK,Psﬁs—l] (dxsKlvdgfl)

J Hxenie) Hverr fyv o Y [ 28 508) [BEPms_1] (dzd, dOF")
and
<BKP5+1ﬁﬁs—1> (dafly, dOl,)
PR (dr )N (dO] )
S o fxoix, (@ [ 255 s+1)f®g+1|es( o1 | bs30)
< Mren) Hverr fro o (V8 T2 50¢) [BE'STP 1] (dal’, dOL)
J geni Hver: fyo o V& [ 28 508) BR'STP 7w ] (dal’, dOF")

where N(K) is defined in (4) as the collection of blocks that interact with the block K. By
equation (8.1) in Georgii (2011), we have

H BKPS-‘rlFS%\S—l - BKPS—}—lFs%s—l H
(BKPerlFs%sl) (dl'gi—h daﬁl)
K (dfcs+1))‘K(d95+1)

(BKPs—l-l/I:\s%s—l) (dwﬁh deg-l)

K
- Y (da  )AK (dOX ) P (da )N (aok,).

Therefore, by Minkowski’s integral inequality,
_ N ) 1/2
|:EH BKP5+1 Fsﬁsfl - BKPerlFs%sfl H :|

(BKPs—i—lEs%s—l) (dxﬁlv des{il)
< E
@Z’K(d‘rﬁﬁ)\[((deﬁl)
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271/2

K
T R AR (O U (dall )N (a0 )

E

emn VR (@ )N (@0)

o1 1/2

@Z)K(dxﬁl))‘l{(deﬁl)

By Assumption 1 in Section 3.3 and the fact that fX§+1\XS (0, | 25307, ) is a transition
density, we have that

e (XY) /fX”HX( Topr | T3 050" (dagyy) =1,

and then
) gt i) < glF.

Similarly, by Assumption 1 in Section 3.3 and the fact that fev e, (05,1 | 0550) is a
transition density, we have that

o(oIN(©) < [ o, 0,05k | 6.0\ (d82,) =
and then
(0" < [ea(o)] ™, AK(OF) < [egl0)] KT,

Furthermore, by Assumption 1 in Section 3.3, we have

H Ixe x (@5 | @ss s+1)f@”+1|® (0511 10s50) < ez Xl eg (o)) Il
veEK

and

Kloo A —|Kloc A
GL| )C< H H fY” \X” ’ Ly 79:)<6y| | x.
K'eN(K)v'eK’

Hence, by Theorem 4 in Appendix B and Assumption 1 in Section 3.3,
_ N ) 1/2
EH BKPS+1FS%871 - BKP8+1 Fsﬁsfl H :|

< 2eg(0)] e Mol 2B Q) BE'PE . — (X)) BN'SIPA,
K'eN(K) K'eN(K)
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Ak
VI

where the last inequality is by Theorem 7 in Appendix B. Plugging in equation (68), the
proof is complete. u

< 8leg(r)] 2o 2ol 2l

Lemma 9 Under Assumption 1 in Section 3.3, when condition (27) holds, one has that
for every K € K, K C K and s € {1,...,n},

[Fy -+ Fs0:0p — Fp -+ Fs0z0g]lx < %6‘5(”‘s+”card(l<),
where
N 1 1
5= 5 o8 (e ) (99)

Proof We first tackle the s = 1 case that
I - F1020p — Fr -+ - F10204]Ix

and then generalize to all s € {1,...,n}.
Recalling that N(K) is defined in (4) as the collection of blocks that interact with the
block K in one time step, we define a “block” tree T as

T:{[Ku“-Kn]:Ogugn, KZEN(KZH),ungn},

where K,, = K. That is, [K, - -- K,] is the block K, at time u that has interactions with
the block K at time n after n — u time steps; note that this type of representation describes
the block-wised interaction trace from time u up to time n. By the effect of block operator
BX on F,p for any n € N and any measure p on X x @, given in (23), we can write

BF, - Fididy —ClOPE @ |y
Kp_1€N(Kn)

KpnopKn-2
® Cn—2 Pn—2

Kn72EN(Kn71)
® |cver
K1€N(K2)
® atoae]-]|
KoeN (K1)

where PX is defined in (21) and CX is defined in (22).
The vertex set of the tree is defined as

[={[Ky- Knlv: [Ky- Ko €T, v € Ky}
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Clearly, the following equivalence holds:
(K- K] = {[Ky - Knlv:v € Ky}
Define the index set of leaves of the tree T" as
To=A{[Ko--- K] : K; € N(Kj+1),0<[l<n}.
Further define the children c(i) of ¢ € I as
c([Ky - Kplv) = {[Ky—1- KuJv' : Ky—1 € N(K,), v € N(v)},

define the location v(i) of i € I as

define the depth d(i) of i € I as
d([Ky -+ Kplv) = u,
and then define the set of non-leaf vertices of the tree as

I, ={iel:0<d(i) <n}.

S=]]*% x0o,

il

Define

for [t]v € I define
Yilv = yo o xlilv = v and @MY =@V,

and for any [K,, --- K,] € T and any measure p define

p[Ku"'Kn} — pKu

We define two probability measures on S as

Xfe;(iﬂ@d(i),l(@z 3 | Oa)— )fyz< X )( Yooy I %agy + Oaci))
< ) () WO () Ty, (s, )
p(A) = , 7
JMier, Ix3, 15002 (Fag) | l"d(z 13 05))
*Joi 10401 Paqy | Oa-150) fyy, )le( iy | ag Oi)
x () (da )))\v (do )HteT H(dxg, dp)
and
><J"@ji(i)\@d(i)_1(9Z aci) | 9ae)- )fy()|xd(l)( Yioy | oy s 0ac))
— —t
_ X W’ D (daly ;) )N D (dbyy, )HteT t(dzp, doy)
p(A) =

in€I+ fX:‘i(Z)|Xd(z)71( d(@) ’ xdl — 70 (z)) ’
Xf@jiw\ed(i),l(ei d(4) | Gy )fw X ( ji ’5”2“ ?951(1'))

d(z)

x 40 (dx )>Av<><d91 ) ier, (76, dfy)
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where d(x,0) is defined in (14). Therefore,
IFy -+ F1dadp — Fo - Fiozdglle = o = Pl i, -

In the following, we are going to use Theorem 2 (Dobrushin comparison theorem) in
Appendix B to bound |p — 7|k, k- We will bound Cj; and b; with i = [K,--- KyJv and
Jj=1[K,, - K}]v where K,, = K], = K and 0 < u,u’ <n. Set

P =Plugy and D=7,

whose definitions are given in Theorem 2 in Appendix B. We display our discussions as
follows:

e When v = 0, we have p' = 6965593 and p' = 553558. Hence
Cij =0 (70)

and b; < 2.

e When u € {1,...,n — 1}, we have

fﬂA Ty, 0y le|Xu 1( u|mu 15 u)f@l|®u 1( u‘eu 1;0)
X HZGI+:i€c(l) fXd(l)le(l),l( d() | Zag)-1 792(1))
Xf@ld(,)\@d(z)q(%(l) | Hd(l) )va|Xv(Y | 25 00)
X v (d?, ))\”(dﬁz)
S Fxiixe o (@ | 2um1300) foije, (04 | Ou—1:0)
x HZEI+'i€c(l) fxg(l)md(l)_l(%(z) | Za@)-1 ’951(1))
feld(l>|@d(l)71(%(1) | Hd(l)fl QU)fKHXg (YJ} ’ ﬁygfi)
x Y (dai, ) A" (dby,)

p'(A) =

We can see that p'(A) = p'(A) and then b; = 0. Next we take care of C;;. Note that
when j € ¢(i) we have

f]lA oy, Or Hl€I+ siece(l fX
Xf@fi(l)\@d(w—l( ay | Oaw-130) Frpg (V' | #362)

X v (d, ) A (d6},)
f Hlel+:i€c(l) fXé(l)\Xd(l)_l(l‘l d@l) | La()—1 ;01 (l))

4o Xaq (xl dl) | Tag)-1 3%(1))

p'(A) = ;leo(0)])?

)

Xf@il(m'@d(l)—l(%(l) | Oay—150) fyeixy (Y | 255 63)
x v (dai, ) A (d6?,)
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when i € ¢(j) we have

Jua(al, 00) fxiix, o (@ | 2u—1;00) foij0, o (0h | Ou1;0)
X H{lef+ decN\ {4} [xt (”\Xd(l) l(a:d ) | Ld(l)—1 aed(l))
Xf@ld(l)|®d(l)—1( ay | Oaw—150) frpieg (V| 25 602)
x ¢ (dxy, ) AV (d0;,)
fqui‘Xufl (ﬂfzu | Ty—1 ;‘%)fem@u,l (‘% ’ Ou—1 ;U)

< Mier ey Fxt 1 Xae -+ @aw) | Zaw-15040)

p'(4) = efe(0)])?

Y

Xf@g(DI@d(zH(ezli(l) | Oay—150) fyeixe (Yo | 235 04)
x v (dzi, )\ (dOy,)

and when j € Ul€I+:iEC(Z)c(l) we have

S Vaal, 00) fxiix, (@ | 2u—1;03) foi o, (04 | Ou—1;0)
* frpixy (N | 23 00)9 (da, ) A (d6,)
I Fxiixa (@l | 2u—1;03) foi o, (04 | Ou—1;0) '
X frgixg (V3 | 25 05)90 (da, ) A0 (d6,)
By Theorem 3 in Appendix B, we have C;; < 1 — e2[eg(0))? if j € (i) or i € c(j),
Ci <1 —e2leg(0)]*2 if j € Urer,siec@)c(l), and Cj; = 0 otherwise. Hence,

S A0y <a(1 — Eeg(o))ePA + (1 - ER[eg(@)P2A% (T1)

jel
When v = n, we have

S 1A, 05) fxix,, (@ | 2no1;05) foi e, (05 | On1;0)
X fY”|X” Yv ‘ Ty n)wv(dxZ ))‘U(dez)
T Fxixns (@ [ 20-150}) foijo, . (65, | 0n-1;0)
X fY“\X“ (YU ‘ Ty ; n)wv(dxz ))\v(dez)
We can see that p’(A) = p'(A) and then b; = 0. When j € c(i) we have
2f lA n) n)fY“|X“ (YU | $z79;}l)¢v(d$z ))‘v(deil,)
ffY”|X“ YU | xn? n)wv(d‘rz ))\v(dgz)

By Theorem 3 in Appendix B, we have Cj; < 1 — €2[eg(0)]? if j € c(i), and C;; = 0
otherwise. Hence,

p'(A) =

p'(A) > e2leg(o)]

3" PO-d0l 0y < (1 — E[eg(0)]2)e’ A (72)

jel
Summing up (70) for u =0, (71) for v € {1,...,n — 1}, and (72) for u = n, we have

max PG Crr < 2(1 — E[eg(0)2)eP A + (1 — 22[ep(0))*2) A2,
1€
jer
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Under Assumption 1 in Section 3.3, when condition (27) holds, since Ax > 1 and A > 1,

we have
1 1

16A% ~ 16AA2
therefore, for 3 defined in (69), we have that

>1—e®e(0)]*2 >0,

B=

>0,

2i <16A2(1 — 63; [69(0)]2A)>

and

max eBld(i) - dlCy; < 3(1—e A[eg(a)]ZA)eBAQ < 1%
1€
Jjerl

By Theorem 2 (Dobrushin comparison theorem) in Appendix B and Theorem 5 in Appendix
B, we obtain

”En e Eléxée - En e E1((555§||K = Hp - ﬁ”[Kn]K

<2x - ie_ﬁncard(K)
16
32 _;
= e Prcard(k),
13

which is a special case of HEn . -Esdxég - ﬁn .- -F35555||K for s = 1. Note that the above
bound holds uniformly in the sequence of Y, we can generalize to all s € {1,...,n},

~ ~ ~ ~ 32 _;
Fn e F55x59 - Fn e Fs(sf(s* K S 76—5("_5‘1’1)(331-(1 K).
0 13

Proposition 10 Under Assumption 1 in Section 3.3, when condition (27) holds, for any

two product measures
W= ® o and v = ® K
Kek KeK

one has that for every s € {1,...,n —2}, KC K, and K € K,

||F : s+2/~L F Fs—l-QVHK
32
- 13

1/2
d

—2|K |00 —2|Kloo ,—B(n—s—1) L n21/2
=€ [eo(0)] € card(k) max Ef||u — vl|x]7,

where (3 is given in (28).

Proof Define functions

QA(J:gO?egO):/ n7 n H fXd()|Xd() 1( d(z “/Edl) 170d())

i€l
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X fory10aty-1 (Pagiy | Oa—1
s de(i)‘de( dei) | Zagy 3 Pagy)
x " (dag )X ()
o 7
20 / H fXd( )1 Xa- At (i) | Za(5)-139a(:))
Z€I+
f@fi(-ﬂ@d(i)_l(%(i) | O4i)—150)
( cf(i) ’953(1') ;92(,;))

X
de( ) Xy

x O (day ) )N (dbiy) ),
and then we can write

(Fn-- Fip)(A4) = J oalzg", 65") ) [ier, 1 (dag, dog)
IQ anT HtGTo ,LLt(dxg,d%)

Further define the measure
J 1a( onoﬁTO )o(4°,60°) [yer, 1t (dzh, doh)

¢(4) =
J o’ 06") Tier, i (dh, d6)

9

and then we can write

L v.00°
(Fn---Fw)(A):/WC(dw§°7d9§°)-

Analogously define the measure
[ L@l 08) 0wk, 03) Ty, v (dah. d6)
J ol 06°) Tier, v (derh, df)

s(4) =

and then we can write
_ _ To oTo
(Fn---Fiv)(A) = / 7‘(‘“(% ’9T )§(d:cOT°,d9§°).
o(w 00’ 000)
Recall that the local total variation distance is given by

lo =0l == sap  |p(g) — 0 (9)l,
gESK:[g|<1

and by equation (8.1) in Georgii (2011) that
sup |p(4) — p'(4)] = sup[p(9) — ¢'(9)l/0sc(g)
g
where ¢ is a bounded function with oscillation

osc(g) = Sup l9(x) = 9(y)| = sup g(x) — inf g(z).
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Since osc(g) = 2 for |g| < 1, by (73) and (74), we have

2o [ 2o [ 2ha. (75)

Since is the filter obtained when the initial condition is a point mass on the leaves of
the computation tree, by Lemma 9 we have

Fl,u— F F11/

oA

2 sup sup
2,2/ €(Ax0)To A€(AxB)K

i.e.,

16 _3
osc [ 24 < —e Preard(x).
0 13

Also by the local total variation distance definition of this paper and by equation (8.1) in
Georgii (2011), we have

‘/QAdC /.QAdg

Plugging in equation (75), we have

Note that Q(;ETO QTO) depends on (zf, 6) for t € Tj) through the terms

< gose (£2) 16— ¢l < e Preard(l¢ = .

~ ~ ~ ~ 16 _3
FnFlﬂ_ Fn"'F1V Sﬁe_ﬂnca’rd(K)HC_gH' (76)

K

fxé(i)|xd(i)71($zz(i) | Zagi)-1 ;eé(i))f@fi(”‘@d(i)fl(de(i) | Od(i)-1:0)

when c(i) Nt # 0. Write t = [Koy--- K], and then c(i) Nt # 0 requires i € [K;--- K],
therefore
card{i € I : c(i) Nt # 0} < card(K1) < |K|w-

Define

o' (w5, 05°) :/ 11 fx;‘l(i>|xd(i>,1($2(i) | Za(iy—1 ;Gé(i))feg(i)\ed(i>,1(%@) | Oa(i)-1;0)
i€l :c(i)Nt=0
< fyioixi, Yae) [ 2a) Ol )0 (el )NV (dBy ),

and then we have
e'fl""[ee(a)]l’clm ( To 9T0) < Q( To HTO) <e \ICloo[ o(c )]_|K|°°Qt($0T°,96FO).
By Theorem 6 in Appendix B, we have

IC = oIl < 26, 2Kl [eg(o)] 2™ >~ |t — v
teTy
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Plugging into equation (76), we have

2 ~
| < 22 -Bncard (1) 21 ey (0)] "Wl 3 ut — ot

k — 13
teTo
Since the branching factor of Ty is at most Ax for each layer of n layers, we have

Fyo Fip— oo Fuv

_ _ _ = o712
E[HF -"Flu—Fn-"FlvHK]

< 32 2kl —2Klo .—fn Am K Ky211/2
< 13 [eg(0)] e 7" Agcard(K) g?g%E[HM v 17

_ 32 _ _

— 2 ()] 2N P card (k) max B[ — v2)'2
32

= e 2 ()] 2N P card () max B — v %],

where 3 is given in (28). Note that the above bound holds uniformly in the sequence of Y,
we can generalize to

- 1/2
||F ) s+2,U F 'Fs+2’/”i
32
< B2 Kl ey )] 2Kl 20D card () max Bl — ]3]
|
F. Proof for Theorem 1
Proof of Theorem 1 With ||| - ||, defined in (11), by the triangle inequality, we have
7n = mnll <7 = mnlll + 170 — Tl (77)

In the following, we are going to bound (|7, — m,|||, in Step 1, bound ||7,, — 7,|||, in Step
2, and sum them up in Step 3.

Step 1. Bounding ||, — my]|,-
Let us firstly use the local total variation distance || - || defined in (13) to bound |7, — 7y |-
By (14), we have that

7 = FnFp—1-- - Frp1FrFe—1-- - Fimo.
By (18), we have that
T = FnFpo1 - Frp1FeFio1 - Fifo.

Given that 7wy = mp, we can bound ||7,, — m,||x by means of error decomposition

H%n - TFnHK S Z ||Fn e Fs+1Es%371 - Fn e Fs+1Fs%sfl”K' (78)
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We note that (78) is in the sense of the error decomposition in Chapter 7 of (Del Moral,
2004) with the corresponding diagram on page 215 therein as a great illustration. We
display our discussions as follows:

e When s = n in (78), by Proposition 5 in Appendix D, we have

T~ o~ -8(1 QA 2A\ —Bd(k,0K)
ntn— ntn— K = .
[Fafn—1 — Famn1llc < 4e77(1 — € [eg(0)] 7 )e card(K) (79)

e When s € {1,...,n— 1} in (78), by Proposition 6 in Appendix D we have that

||Fn T Fs+1Fs%s—1 - Fn T Fs+1 Fs%s—l ||K (80)
48 / / -~ !
~Bln— —Bd(v, = #
_23 (n S) glg‘)/(e (UU ) ISEE:EEX H(Fsﬂ-s_l);sts-ﬁ-l - (FSWS_I);aXs-FlH'
vEK 05,0511€0

By Proposition 7 in Appendix D, we have that for every s > 1, K’ € K, and v/ € K,

~ v = v’ 96 _ v’ /
sup H(Fsﬂ-s_l)X&XLH—l - (Fsﬂ-s 1)X57Xs+1H — 29 5(1 - 6 [69(0—)]2A)6 pd(v'.OK )
Ts,Tg41EX
05,054 1€0
(81)
With the condition
1 1 =
ExEQ(O') > ( — 16A’CA2) s
by Assumption 1 in Section 3.3 and the fact that A, Ax > 1, we have
0 < 16AxA%(1 — 22 [eg(0))?2) < 1.
Then the definition of 3 given in (28) and the fact that r > 1 yield
1 ! TS0 82
=108 (imeme ape) *° %)

By (82) and the fact that
d(v,v") +d(v',0K") > d(v,0K"),

we have
efﬁd(v/ul)efﬁd(vlvaKl) S efﬁd(vvaK/)'

Hence, plugging (81) into (80), we have

HFn " F5+1Fs%s 1 —Fn Fo i Famo 1|k

96 ! At
(n—s) —Bd(v o) 7Y 1— 2A 2AN ,—Bd(v',0K")
= 23 Z veR Rex ¢ A ala@)* e

(n=s) Z max %e B(1 = P[eg(0)]?2 e PUvOKT)

_23 K’elc
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<7e PN " max e P (1 — 22 [eg(0)]?2 ) e PUOKT), (83)

T

By the definition of 0K’ given in (5) which is the subset of vertices in K’ that can
interact with vertices outside K’, we have 0K’ C K’ which together with the fact that
v € K and 0K C K yield

d(v,0K") > d(v,0K). (84)

Then (83) and (84) give
”Fn te Fs+1?s%s—1 - Fn te Fs-i-lFs%s—lHK
<7e Bn—s) Z B_ﬂ(l — eiA [69(0’)]2A)6_Bd(v’aK).

vEK

According to the definition of d(k, k') in (3), we know that for any v € K

min d(v,v") = d(v,0K) > d(k,0K) = min min d(v,v’).
v'€0K VEK v/ €K

Hence,
HFn e Fs+1ifs%sfl - Fn e Fs+1FsA7T4571||K
<7e Pn=st) (1 — 2B[¢y(0)]?2)e PRI card (k). (85)

Plugging (79) for the s = n case and (85) for the s € {1,...,n — 1} case, into the error
decomposition equation (78), we have

17 — 7l < 4e7P(1 — €22 [eg(0)]?2) e PUOK) card (k)

n—1
+ ) 7e ATt (1 — 28 ey (o)A )e PN card (k)
s=1
which can be simplified, using the sum of geometric series due to the fact that e ? < 1 from
(82), as follows:

-8
o = Tl < 1751 = A lea()PA)e P card (x)

— B
Since there is no random sampling in |7, — 7, ||k, we can replace it with [||7, — m,|||, in the
above inequality and then obtain

. Te= P
H|7rn - 7rn|HK < 1

T 22 eg(0)]?2 ) e PUIK) card (). (86)

Step 2. Bounding ||, — 7, ||,-
By (24), we have that

A~ o~

Tn = FnFn_1 - FrpFRFr_1 - Fimo.

Given that 7y = 7y, we can bound ||7, — 7y ||, by means of error decomposition

n
I~ Fall < 3 |
s=1

We display our discussions as follows:

IA:/n o 'FS+1FS§T\S—1 - Fn e Fs—l—l/':\s%s—l ’HK (87)
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When s = n in (87), by the definition of || - ||, in (11), we can see that for K C K,

Recalling that P,, is the prediction operator defined in (16), CX is the block correction
operator defined in (22), BX is the blocking operator defined in (20), and Sj is the
sampling operator defined in (26), by the expressions of F,, given in (19) and F,, given
in (25), we have

Fnmn-1 — Famn—1

A

Fomn—1 — Fomna1 H‘

-~

Fn%nfl - Fnﬁ-nfl‘HK :}HCnBPn%nfl - CnBSJPn%nfl‘HK

where the last inequality is obtained by the effect of BX on [ provided in (23) and
the definition of ||| - ||| 5 given in (11). Furthermore, by Theorem 4 in Appendix B, we
have

Noting that by Lemma 4.7 in Van Handel (2008) for p being any probability measure

1
llp=S"olll = —=

VI

=|||CEB P71 — CEBRS/P 71

)

Fn%n—l - /F\n%n—l H‘K §2€;20ard(K) H‘ Pn%n—l - SJPn%n—l m .

and then we have

—2card(K)
< 2¢ey

H ST

When s =n — 1 in (87), by the definition of || - || given in (13) and the definition of
I Il given in (11), for K C K we have

Fnmtn—1 — Fptn—1

(88)

1/2
-~ -~ -~ ~ o~ 9
H FnFsﬂ's—l - FnFsﬂ's—l < < I[?g]}é |:EHFS+1FS7TS—1 - Fs+1Fs7Ts—1HK
S1?][69(0)]2|/C|ooex2|’C|oo€y2’Coo(A;cH)AK, (89)
where the last inequality follows by Proposition 8 in Appendix E.
When s € {1,...,n — 2} in (87), by the definitions of || - ||x and || - ||, we have
H Fn to Es+2Fs+1Fs7?s—1 - IA:/n to F5+2Fs+lﬁs%5—l ’HK

- - L -~ - . ,11/2
<E |:||Fn tee F5+2(F5+1F57T5,1) - Fn te Fs+2(Fs+1Fs7Tsfl)||K} .

Then firstly by Proposition 10 in Appendix E we have

H

Fn e Fs+2FS+1 FS%S—]. — FTL e F5+2F5+1F5%\5—1

K
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2
< 22 N ey )] AP D (1)
B [[ForiFes - FenForals]
X max [H s+1FsTs—1 — Fsq1 871'5—1”K} ;

and then by Proposition 8 in Appendix E we have

Fn T Es+2Es+lEs§T\sfl - En o 'Es+2fl\:/s+1/|:\s%sfl
1
§40ﬁ[69(0)]_4“C|°°6;4|’C|°°ey_2|’C|°°(A’C+1)e_ﬁ("_s_l)A;Ccard(K). (90)

K

Plugging (88) for the s = n case, (89) for the s = n — 1 case, and (90) for the s €

{1,...,n — 2} case, into the error decomposition equation (87), we have
—2card(K)
. = 2€ 16 _ _ _
17 — Tl SyT + ﬁ[ee(g)] Q‘K‘ooewz‘lclooey 2|lC|oo(A1<+1)A,C

n—2

1
+ Z 40% [69(0)]*4"q°°e;4m°°e;2|’q°°(A’CH)e*ﬁ(”*sfl)Algcard(K).
s=1

Since card(K) < |K|s for any K € K, using the sum of geometric series due to the fact
that e™# < 1 from (82), the above expression can be simplified as follows:
~ A 1 1 _ _ -
o — Fall < 40— fep(o)]HKlm e e I~ D Acard(x). (91)

e P\

Step 3. Summing up.
Now plugging (86) and (91) into (77), we have

o=l <0 (1 = e o) P)e P eard 1)
+ 401_16_5;j[eew)]—zllmwefwlwey—zKoomfcﬂm,ccard(m
Sfliaid(K) Te B — 2B [ep(0)]22 ) Pd(x.IK)
1+ 20 (g ()1 Tee 5 4Kl 2K (Bt A
Since the above bound is uniform on all K, we complete the proof. |

G. Formal results for approximating an MLE

We develop the theory of likelihood maximization via IBPF using the framework of Ton-
ides et al. (2015). Let {7y, m = 1,2,...} be a Markov chain such that ©F, has den-
sity [ foo.n (Bo:n |9;50)g(0) d and (ZDS?N has conditional density fe,., (6o.n|Un;0) given
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(:)gfﬁl = Y¢.n for m > 2. Suppose that {(:)ng, m =1,2,...} is constructed on the canonical
probability space Q = {(8}.x,03.x,---)} with 7% = O7(0) for § = (L., 02, -..) € Q.
To consider a time-rescaled limit of {ég?N, m=1,2,...} as 0 — 0, let {W,(t),0 < t}
be a continuous-time, right-continuous, piecewise constant process defined at its points of
discontinuity by W, (ko?) = é?\,ﬂ when k is a nonnegative integer. Consider the following
assumptions, following Ionides et al. (2015):

(B1) {W,(t),0 <t < 1} converges weakly as 0 — 0 to a diffusion {W(t),0 < t < 1},
in the space of right-continuous functions with left limits equipped with the uniform

convergence topology. For any open set A C © with positive Lebesgue measure and
€ > 0, there is a 6(A, €) > 0 such that P[W(t) € Aforall e <t < 1|W(0)] > 6.

(B2) For some to(o) and o9 > 0, W,(t) has a positive density on ©, uniformly over the
distribution of W (0) for all ¢t > tg and o < oy.

(B3) () is continuous in a neighborhood {6 : £(6) > A} for some A\; < supy £(¥).

(B4) There is an € > 0 with e ' > fy. |x, (Yn|2n;0) > eforall 1 <n < N, z, € X and
g € 0.

(B5) There is a Cy such that fg,je,_,(0n|0n—1;0) =0 when |0, — 0,_1| > Cy0, for all o.

(B6) There is a Cy such that sup;<,<y [0n —0n—1] < C1 0 implies 10(6o.n) — £(ON)] < Cy 0,
for all o and all n.

For the theoretical operator 7", Ionides et al. (2015) proved that as m goes to infinity,
T converges to g., for every fixed o > 0. Since there is no algorithmic approximation with
this result, it also applies here.

Theorem 8 (Theorem 1, Ionides et al. (2015)) Let T, be the operator in (31) and
suppose (B2) and (B4) hold. There is a unique probability density g, such that for any
probability density g on ©,

i (172 — goll =0,

where ||g||1 is the L' normal of g.

Ionides et al. (2015) also showed that as the noise intensity o goes to zero, g, approaches
a point mass at the MLE if it exists, under (B1) - (B6). Since this is about a theoretical
operator, it can be applied here. But a slight modification on (B5) is needed, because in
Assumption 1 we assume that there exist €g(o) > 0 and o > 0 such that for any v € V,
051,60, € 0,and n > 1,

€0(0) < fovjon_.(0h | On-1;0) < eg(0)] 1,
which is a clear violation of (B5).
Theorem 9 Suppose (Bl) - (B4) and (B6) hold. Suppose the following (B5') holds:
(B5') There is a Cy such that fg, e, ,(0n|0n—1;0) = o(c) when |0, — 0,_1| > Cro, for all

g.

64



IBPF FOR HIGH-DIMENSIONAL PARAMETER LEARNING

Then, for Ay < supy £(9),
lim 90(9)1{4(9)<,\2}d0 =0.

o—0

Proof Note that under the limit that o goes to zero, (B5) and (B5’) are the same. Then
the proof can be finished simply by following that of Theorem 2 in Ionides et al. (2015). H

At last, we aim to show that when the number of particals J and the number of iterations
M become large, the IBPF algorithm numerically approximates g,. Our proof is similar to
that of the second part of Theorem 1 in (Ionides et al., 2015), where the difference is caused
by replacing equation [S26] therein which is a simplified form of Theorem 2 in (Crisan and
Doucet, 2002) with a simplified form of our Theorem 1.

Theorem 10 Suppose (B2) and (B4) hold. Let {@;-VI, j=1,...,J} be the output of IBPF,
with op, = 0 > 0. There are positive finite constants 5’0“ Cpg,, and Cg, such that under
conditions imposed in Theorem 1, for any function §: 0 — R, all M, everyn >0, K € K
and K C K,

ecﬁ2|’q°°

1 ~
timsupE| 53" 5(01) [ 3(6)34(6)d6| < Cullglccard(s) [e-%dmwu |

where ||§lloc = supg |5(0)|-

Proof Let the inital particle swarm {@?, 1 < j < J} consist of independent draws from the
density g. For T, in the fractional form defined in (31), we write T,,g(0) = Ssg(6)/||S-9]|1-
Then S, as the m-th iteration of S, can be written as

sy'9(6) = [ 52(0,6)g(0)d.
Under conditions (B2) and (B4), and under conditions imposed in Theorem 1, there exist
mgo > 1 and 0 < d,, < oo such that for any m > mg, any measurable set A C ©, and any
0 €0,
SmA(A) < / s™ (9, 0)dY < 5, IA(A). (92)
A

That is, S7' is mixing according to Definition 3.2 of (Le Gland and Oudjane, 2004).
Consider M can be written as M = gmg + r for some r € {0,1,...,mg — 1}. Define the
empirical measures

J J
1 1
M(O) =73 E 1 5@; and M(k) =7 § 1: 5@?Mo+r
J= =

where k =1,...,q. For any bounded measurable function ¢ : ® — R, we have
1 J
=3 5O — [1g)(9)
j=1
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= >~ {imet D)) — [N G) |+ e O)E) - (130T 0).

p= sup E|u®(g) —[Tmou*D](g)].
#3lloo=1

Then by the definition of ||-||, given in (11) and by Theorem 1, we have that for every
n>0 KekKandkCK,

(93)

p < Cocard(K) e CndioK) L 2 —

vaj

where C,, Cg,, and Cg, are some positive finite constants.
Let H(-,-) be the Hilbert metric on nonnegative measures
> A)/p' (A i
/ S;;?i':/ ((j;;?s(( A))//;j, (( A)) if p and p’ are comparable,
H(p,p') = 0 ifp=p =0,
+00 otherwise.

Here, the measures p and p’ are said to be comparable if they are both nonzero and there
exist constants 0 < a < b such that ap'(A4) < p(A4) < bp/(A) for all measurable subsets A.
Since S7' is mixing and (92) holds, applying Lemmas 3.4, 3.5, and 3.8 and equation (7) in
(Le Gland and Oudjane, 2004), we have

2[|g oo 0
< E|H (S50, $7o1T7g)|
— 10g3 ( g Iu’ g O'g)

v 1 _ 62 q_2
< Uil (1) 1 g
log3 \ 1+ d7, O

y -2
il (1-80\" 0
~ log3 \1+62, O

E|[T;°u")(3) - [T7°T;9)(9) 100 — 19Ty g

< [13]E|

Tyou® — T3 Ty

Similarly, we have

20l

B| (17017 V)(g) = (127012 (9)] < =55F,
mo

and fort=3,...,q

o i—3
_ A3l <1 —53710)1 p

mo(i—1),, (q—i+1)1( %\ _ [mot,,(a—i)7( Sy
E’[Tg " (@) — [ N@)] < g 1+62,) oL
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Now plugging in the upper bound of p in (93) yields
J

1 ~ v
E|= > 4(05") - [T9)(9)
j=1
[ Cpy IKlso | -2 ;1 o \J
e 2 4 1 1-6
< Oullflloocard(k) |e=Cordaor) €2 7 [ 2 2 4 < m>
allglloco _ VJ | 02, log3dt, = 1+02,
[ Cs |}C|oo_
~ ~ e
< Callflscard( | O 010 + 5|
which complete the proof by Theorem 8. -

H. Original results for 4 cases

In Tables 2-5, we provide the original parameter learning results in terms of log-likelihood
for cases 1-4 respectively.
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Cities | Parameters — IESKF — — If2 —
le lp Iy le lp ly
2 8 -4802 -4382 -4382 | -4733 -4385 -4383
4 16 -9142 -8408 -8278 | -9116 -8462 -8278
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16 64 -30699 | -389299 | -27756 | -30667 | -394666 | -27758
18 72 -33562 | -421416 | -30329 | -33545 | -422739 | -30330
20 80 -36656 | -458302 | -33279 | -36645 | -536362 | -33279
Cities | Parameters — IBAPF — — Ae —
le lp Iy le lp Iy
2 8 -4733 -4383 -4385 | -4812 | -4393 | -4393
4 16 -9114 -8368 -8283 | -9234 | -8825 | -8290
6 24 -13092 | -13095 | -11945 | -13267 | -39422 | -11962
8 32 -16842 | -63041 | -15306 | -16949 | -131278 | -15318
10 40 -20632 | -147454 | -18606 | -20699 | -225806 | -18953
12 48 -24226 | -206977 | -21836 | -24294 | -311348 | -21923
14 56 -27716 | -307622 | -25077 | -27789 | -438979 | -25248
16 64 -30682 | -351668 | -27767 | -30726 | -522343 | -27978
18 72 -33540 | -382098 | -30338 | -33590 | -596846 | -30423
20 80 -36623 | -435034 | -33293 | -36679 | -624310 | -33379

Table 2: Parameter learning results in terms of log-likelihood for case 1. Three log-
likelihood metrics: [, representing the EnKF metric, [, representing the PF metric,

and lAb representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter 6. The highest log-
likelihood values in each metric are highlighted.
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Three log-

Cities | Parameters — IEHAKF — — If2 —
le Ly Iy le lp ly
2 10 -4759 -4378 -4379 | -4803 | -4368 | -4372
4 20 -9127 -8408 -8280 | -9446 -8355 -8265
6 30 -13132 | -15388 | -11946 | -14351 | -23058 | -12069
8 40 -16871 | -59757 | -15303 | -20638 | -127207 | -16566
10 50 -20570 | -132791 | -18584 | -27783 | -184975 | -20324
12 60 -24226 | -209244 | -21841 | -33111 | -252187 | -24180
14 70 -27683 | -306092 | -25097 | -43236 | -332286 | -32121
Cities | Parameters — I]iPF — — f —
le Ly Iy le L, Iy
2 10 -4846 -4372 -4367 | -4812 -4393 -4393
4 20 -9297 -8313 -8254 | -9234 | -8825 -8290
6 30 -13348 | -12774 | -11921 | -13267 | -39422 | -11962
8 40 -17197 | -38177 | -15269 | -16949 | -131278 | -15318
10 50 -20864 | -94941 | -18552 | -20699 | -225806 | -18953
12 60 -24571 | -201864 | -21782 | -24294 | -311348 | -21923
14 70 -28082 | -315804 | -25034 | -27789 | -438979 | -25248
Table 3: Parameter learning results in terms of log-likelihood for case 2.

likelihood metrics: [, representing the EnKF metric, [, representing the PF metric,
and lAb representing the BPF metric, were applied to the best parameters learned
from TEnKF, IF2, and IBPF as well as the true parameter 6. The highest log-
likelihood values in each metric are highlighted.
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Cities | Parameters — IEIiKF — — I/ITQ —
le L, Iy le Ly Iy
2 10 -97124 | -68887 | -T0099 | -5133 | -4368 | -4396
4 20 -176541 | -128562 | -123847 | -9540 | -8314 | -8280
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10 50 -368104 | -305596 | -279035 | -47616 | -127703 | -42846
12 60 -435576 | -369515 | -337833 | -57865 | -197042 | -59511
Cities | Parameters — IBAPF — — AQ —
le lp Iy le Ly ly
2 10 -5054 -4384 -4368 | -4812 -4393 | -4393
4 20 -9633 -8348 -8251 | -9234 | -8825 -8290
6 30 -13738 | -12506 | -11918 | -13267 | -39422 | -11962
8 40 -17600 | -20904 | -15276 | -16949 | -131278 | -15318
10 50 -21295 | -58647 | -18570 | -20699 | -225806 | -18953
12 60 -24931 | -128163 | -21814 | -24294 | -311348 | -21923
Table 4: Parameter learning results in terms of log-likelihood for case 3.

and lAb representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter 6. The highest log-
likelihood values in each metric are highlighted.
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IEnKF IF2
Cities | Parameters — — — — — —
le L, Iy le lp I
2 14 Failed | Failed | Failed | -4904 | -4358 | -4361
4 28 Failed | Failed | Failed | -9979 | -8524 | -8416
6 42 Failed | Failed | Failed | -19795 | -56072 | -13550
8 56 Failed | Failed | Failed | -32960 | -111176 | -19071
10 70 Failed | Failed | Failed | -34320 | -193060 | -23217
IBPF 0
Cities | Parameters — — — — — —
le Ly Iy le Ly Iy
2 14 -4928 -4374 | -4358 | -4812 -4393 -4393
4 28 -9169 | -8267 | -8231 | -9234 | -8825 -8290
6 42 -13296 | -12340 | -11893 | -13267 | -39422 | -11962
8 56 -17065 | -17407 | -15248 | -16949 | -131278 | -15318
10 70 -20788 | -24892 | -18555 | -20699 | -225806 | -18953

Table 5: Parameter learning results in terms of log-likelihood for case 4. Three log-
likelihood metrics: Te representing the EnKF metric, i;, representing the PF metric,
and lAb representing the BPF metric, were applied to the best parameters learned
from IEnKF, IF2, and IBPF as well as the true parameter 8. The highest log-
likelihood values in each metric are highlighted.
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ing Monte Carlo methods to forecast error statistics. Journal of Geophysical Research:
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City | fg; Opy 01y Ory av T Ry

1] 015622 | 1e-04 | 3e-05 | 0.95509 | 0.91527 | 0.14969 | 21.2511
2 | 0.0634 | 3e-05 | 4e-05 | 0.98683 | 0.85549 | 0.13765 | 10.268
3 0.01233 | 7e-05 | 0.00016 | 0.99165 | 0.84884 | 0.16178 | 7.39276
4 10.03517 | 0.00026 | 4¢-05 | 0.9827 | 0.91475 | 0.15096 | 21.88148
5 0.02691 | 3e-05 | 8e-05 | 0.80367 | 0.89105 | 0.1423 | 13.50283
6 | 0.02422 | 2e-05 | le-04 | 0.98636 | 0.94772 | 0.15283 | 18.7391
7 | 0.05803 | 6e-05 | 1e-05 | 0.98599 | 0.86154 | 0.15373 | 10.20071
8 0.00911 | 2e-04 | Te-05 | 0.96099 | 0.85265 | 0.16587 | 8.94473
9 |0.04624 | 2-05 | 0.00015 | 0.97072 | 0.95923 | 0.17158 | 25.75231
10 | 0.00895 | 2e-05 | 0.00013 | 0.96844 | 0.81455 | 0.16696 | 7.08004

Table 6: Parameter learning results in terms of parameter values for 10 cities of case 4.
This set of parameter values gives log-likelihood —18555 in [, metric in Table 5.

Replicate | 2 cities | 4 cities | 6 cities | 8 cities | 10 cities
1 -4358 | -8231 | -11893 | -15248 | -18555
2 -4358 | -8231 | -11893 | -15248 | -18555
3 -4359 | -8233 | -11894 | -15249 | -18557
4 -4360 | -8233 | -11894 | -15250 | -18558
5 -4361 -8233 | -11896 | -15251 | -18559
6 -4362 -8235 | -11897 | -15252 | -18559
7 -4362 -8238 | -11900 | -15255 | -18559
8 -4364 | -8239 | -11901 | -15257 | -18569
9 -4364 | -8241 | -11904 | -15258 | -18570
10 -4366 | -8243 | -11906 | -15263 | -18583

Table 7: Parameter learning results in terms of log-likelihood for case 4. We conducted
10 replicates of all the parameter learning performance comparisons.
replicate, all algorithms start with the same initial search values drawn uniformly.
We listed results ranked from highest to lowest.
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IEnKF 1F2
Replicate — — — — — —
Time le lp Iy Time le lp Iy
1 15.78 | -97124 | -70730 | -70118 | 17.44 | -4970 | -4358 | -4373
2 15.82 | -97334 | -70763 | -70099 | 17.8 | -4925 | -4359 | -4387
3 15.79 | -97446 | -70752 | -71398 | 17.77 | -4944 | -4359 | -4388
4 15.81 | -97582 | -70729 | -70127 | 17.15 | -4934 | -4359 | -4361
5 15.75 | -97962 | -70099 | -70762 | 17.13 | -4904 | -4360 | -4385
IBPF
Replicate — — —
Time le Ly Iy
1 18.46 | -4929 | -4380 | -4358

2 18.45 | -5051 | -4381 | -4358
3 18.41 | -4948 | -4381 | -4359
4 18.39 | -5019 | -4399 | -4360
5 18.4 | -4976 | -4374 | -4361

Table 8: Performance and runtime comparison of top five replicates in terms of log-
likelihood for two cities in case 4. Time is measured in hours used to finish the
job. Three log-likelihood metrics: lAe representing the EnKF metric, lAp represent-
ing the PF metric, and lAb representing the BPF metric, were applied to the best
parameters learned from IEnKF, IF2, and IBPF as well as the true parameter 6.
The highest log-likelihood values in each metric are highlighted.
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