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ABSTRACT

Predicting machined surface roughness is critical for estimating a part’s performance characteristics such as
susceptibility to fatigue and corrosion. Prior studies have indicated that power consumed at the tool-chip
interface may represent an indicator for the surface integrity of the machining process. However, no quantita-
tive association has been reported between the machining power and surface roughness due to a lack of data to
develop predictive models. This paper presents a data synthesis method to address this gap. Specifically, a
conditional generative adversarial network (CGAN) is developed to synthesize power signals associated with
varying process parameter combinations. The quality of the synthesized signals is evaluated against experi-
mentally measured power signals by examining the consistency in: 1) the spatial pattern of the signals induced by
the cutting process as shown in the frequency domain, and 2) the temporal pattern as shown in the clustering of
the synthesized and measured signals corresponding to the same parameter combination. The synthesized signals
are then used to augment the measured signals and develop a convolutional neural network (CNN) for predicting
the machined surface roughness. Experiments performed using H13 tool steel have shown that data augmen-
tation by CGAN has effectively reduced the error of the surface roughness prediction from 58 %, when no
synthetic data is used for CNN training, to 9.1 % when 250 synthetic samples are used. The results demonstrate
the effectiveness of CGAN as a data augmentation method and CNN for mapping machining power to surface

roughness.

1. Introduction

Surface roughness is one of the most important quality factors to be
quantified in machining because it determines part functionality in
terms of fatigue resistance, corrosion susceptibility, and fluidic drag
[1-3]. Traditional roughness quantification relies on post-process in-
spection after the workpiece is fabricated by means of contact and
contactless profilometry, which often constitutes a bottleneck in
manufacturing in terms of time and cost [4,5]. To eliminate this
bottleneck, in-process approaches that associate surface roughness with
process parameters have been investigated.

In recent years, statistically significant influences of process pa-
rameters such as speed, feed, and depth-of-cut (DOC) on surface
roughness have been studied [6-8]. However, many of the theoretical
approaches do not reflect experimentally observed behavior. For

instance, a roughness prediction equation is developed in [9] that relates
roughness to feed and tool nose radius, which does not include other
machining parameters, material properties, or stochastic process dis-
turbances. This contradicts experimental results in [10] which show that
surface roughness depends on the specific cutting energy, which is a
function of all process parameters as well as the workpiece condition.
To comprehensively consider process parameters as well as in-
process data, machine learning (ML) models have been established to
predict surface roughness as a function of parameters and sensor data
[11,12]. A limitation in parameter-based roughness quantification has
been that it does not consider the in-process variations caused by process
dynamics such as workpiece material imperfections and changing tool
conditions that are commonly seen in real-world manufacturing envi-
ronments. To overcome this limitation, the incorporation of process
signatures into surface roughness prediction models has attracted
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significant interest [13].

Acquired during the machining process, process signatures refer to
the measured signals that quantify energy conversion as the workpiece
responds to applied loads [14,15]. As the energy-driven part modifica-
tions imparted by a machine reflect the compound effect of process
parameters and process dynamics, e.g., tool condition and material
imperfections that are not accounted for by parameter-based models,
process signatures can be used as complementary input to data-driven
predictive models [10,16].

Various process signatures, such as sound, force, and temperature,
have been investigated. Griffin et al. [17] investigated acoustic emis-
sions as input to a classification tree to predict surface roughness in
micromachining. Wu and Lei [18] used features from vibration signals
as input to a neural network to predict the roughness of conventionally
machined parts. Similarly, Kong et al. [19] used vibration signal features
as input to a Bayesian linear regression model for roughness prediction.
Wang et al. [20] developed a joint convolutional and recurrent deep
learning model to fuse spindle power signals with machined surface
images for simultaneous tool wear inference and surface roughness
prediction. Tian et al. [21] combined and built upon these approaches to
develop a surface prediction model with acoustic, vibrational, force, and
power signal features as input to a neural network. A common limitation
in the process signatures investigated in these studies is that they only
considered a portion of the energy transferred into the workpiece, e.g.,
vibrational and acoustic dissipations, thus represent an incomplete
characterization of the total energy input to the workpiece and its effects
on the surface formation. Others, like Moliner-Heredia et al. [22], Wang
et al. [23], and Corne et al. [24], have leveraged process signatures to
predict tool condition but not the corresponding surface roughness. To
establish a direct link between the energy as a process signature and
surface roughness and fill an existing research gap, this study presents a
data-driven surface roughness predictive model based on energy input
only.

Given that specific power measurement instruments are needed to
specifically quantify the amount of energy used for material removal
during machining, as well as the time-consuming nature of experimental
data acquisition, only a limited amount of power/energy data is typi-
cally available. To address this limitation, a data synthesis approach has
been investigated based on the generative adversarial network (GAN)
architecture. GANs rely on a data generator and a discriminator as a pair
of competing neural networks for the training process to arrive at an
equilibrium point for high-fidelity data synthesis. However, standard
GANSs operate on random input with no consideration of application-
relevant data such as process parameters in machining operations. For
this reason, standard GANs do not learn the effects of these variables on
the expected output and the synthesized data is difficult to control and
interpret. To overcome this challenge, a conditional generative adver-
sarial network (CGAN) has been developed to synthesize power signals
based on a limited number of measured power data. In the presented
study, the CGAN is regularized by the pertinent machining process pa-
rameters to capture the physical effects of varying parameters on the
power signal patterns and ensure the output of is physically sound and
meaningful.

The validity of the synthesized power signals is then verified from
both the physical and the statistical aspects. The former involves
quantifying the consistency in the spatial pattern induced by the specific
cutting parameters as reflected in the frequency domain of the power
signals. The latter reveals the statistical distances among the synthesized
intra- and inter-class samples (e.g., samples corresponding to the same
or different parameter combinations, respectively), to confirm the
capability of CGAN in generating data that exhibit clustering of intra-
class samples and separation among inter-class ones.

Finally, in consideration of previous work relating power signal
frequencies with tool condition and surface roughness [25], the syn-
thesized signals are decomposed into time-frequency images via wavelet
transform and used to train a convolutional neural network (CNN) to
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predict the roughness of the machined surfaces. A CNN is chosen as the

prediction model given its strong image processing capabilities [26] and

previous successes analyzing time-frequency data in manufacturing

[27]. An overview of the proposed methodology is shown in Fig. 1.
The contributions of this study are summarized as follows:

1. Established a data-driven mapping from the machining energy pro-
cess signature to surface roughness using CNN, requiring only in-
process data as input, and eliminating the need for post-process
quantification.

2. Developed a CGAN-based method for high-fidelity synthesis of
power signals, which are validated through consistency in signal
patterns from both the physical and statistical aspects, thereby
alleviating the limitations in data collection for surface predictive
modeling.

3. Achieved good surface roughness prediction accuracy by CNN as
demonstrated by comparing the synthesized data with experimen-
tally acquired ground truth.

The remainder of the paper is organized as follows: Section 2 pro-
vides background on surface roughness and CGANSs. Section 3 describes
the experiment to evaluate the developed data synthesis and prediction
methods. In Section 4, power signal synthesis and surface roughness
results are presented and discussed. Conclusions and future research
directions are summarized in Section 5.

2. Background and methodology

During machining, material is removed from the workpiece through
shear deformation as shown in Fig. 2(a) [28]. Energy is delivered to the
workpiece via the motion of the cutting tool that removes a small “chip”
of the material. The gross power demand of machining can be modeled
as:

P.i. = MRR(PP)-Sgc(PP,TC) + &(t, TC, MP) (@)

where MRR is the material removal rate (mm?>/s) as a function of related
process parameters (PP), Sg¢ is the specific cutting force (N/mm?) as a
function of PP and tool condition (TC), and & represents power fluctu-
ations caused by regenerative vibration, etc., which is dependent on
time (t), TC, and material properties (MP) [25]. For milling operations,
MRR and Sgc are defined as:

MRR = a,a,v (2

3

S[-‘C = ka,,
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¢Y

where a, is the axial depth of cut (mm), a, is the radial depth of cut
(mm), v is the cutting feed (mm/s), f; is the feed per tooth (mm/tooth),
¢, is the swept angle of removed material (rad), and k and g are
experimentally-derived constants dependent on the tool geometry [29].

Three plots are shown at the bottom of Fig. 2 to illustrate variations
in the machining power signal as cutting parameters change: feed in (b),
speed in (c), and DOC in (d). In each plot, the solid lines represent
measured power signals while the dotted lines represent the theoretical
power signals. As seen in these plots, changes in the cutting parameters
shift the power curves (both measured and theoretical) up and down,
indicating the parameters have a pronounced effect on the power de-
mand of machining. Deviations of the measured power from the theo-
retical level can be attributed to process variations, i.e., material
imperfections, which induce variations through grain boundaries and
inhomogeneities that, in turn, cause the cutting forces and correspond-
ing power signal to change. As these imperfections are located randomly
throughout the material being machined, their manifestation in the
power signals (as deviations from theoretical levels) also exhibit
randomness.
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Fig. 1. Surface roughness prediction based on augmented power signals and machine learning.
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Fig. 2. Chip removal and surface roughness formation during cutting (a); examples of cutting power demand fluctuations over breadth of cutting parameters (b-d);

DOC: radial depth-of-cut.

During the material removal process, variations in the material as
described above as well as dulling along the cutting edge cause plowing
or “ripping” instead of shearing at the microscopic level [30]. This
tensile mode of material removal induces a rough surface profile behind
the cutting tool as shown in Fig. 3. This surface formation is inherent to
all mechanical material removal processes, including milling, turning,
and grinding, and indicates the importance of roughness prediction
across a breadth of metal removal processes.

The surface roughness quantity of interest in this study is the mean
deviation from the profile centerline, Ra:

1 h _
= h(l) —h|di
l_lOII() \

0

Ra 4
where [p and [; are the starting and stopping point of the stylus used to

trace the surface, respectively, h is the traced surface profile, and h is the
profile’s mean value [31]. Because surface roughness is determined by

Roughness
measurement

P 7 Machined
Machinin =
9‘ surface image
Fig. 3. Machined surface and roughness measurement using stylus (contact
profilometry).
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the energy transfer at the tool-chip interface, which is in turn deter-
mined by the machining power, it is hypothesized that machining power
can be mapped to surface roughness by way of a data-driven model using
ML methods to allow for in-process roughness inference instead of
time-consuming post-process inspection. However, to develop a proper
ML model, an adequate power signal dataset covering a broad range of
cutting parameters under various operational conditions is needed,
which is time-consuming to collect experimentally [32]. To alleviate this
limitation and support energy-based data-driven predictive modeling,
the development of CGAN for high-fidelity power data synthesis con-
stitutes the focus of this study.

2.1. Fundamentals of GAN

The objective of generative modeling is to approximate the statistical
distribution of real-world data (e.g., power signals) using a surrogate
model. This distribution can then be sampled to generate new obser-
vations, thereby alleviating data availability constraints. GANs have
attracted significant attention for this purpose due to their ability to
leverage ML to closely learn relevant data distribution and produce
realistic synthetic output [33].

The basic structure of a GAN is shown in Fig. 4. Generator G receives
random vector z and outputs synthetic datay. Meanwhile, discriminator
D randomly receivesy or ground truth data y and distinguishes the input
as either synthetic or real, encoded as 0 and 1, respectively. During the
training process, the discriminator’s goal is to minimize the classifica-
tion error whereas the generator’s goal is to maximize the classification
error by outputting realistic images that mislead the discriminator, i.e.,
G attempts to learn a surrogate to the unknown ground truth data dis-
tribution Q,. As aresult, G and D are adversaries to one another and GAN
training is a minimax game represented by the optimization problem as
expressed in (5):

Specifically, the first term of the sum in (5) measures how well the
discriminator performs on the ground truth samples. In this scenario, the
output from the discriminator contributes to the loss function only when
it classifies a real sample as synthetic, or D(y) = 0. This is achieved
through the logarithm of the discriminator’s output such that log(D(y) )
= —c (contribution of -c to the loss function), where c is a constant by
convention. Similarly, the second term measures how well the generator
output can mislead the discriminator. In this case, the output from the
discriminator contributes to the loss function only when it classifies a
synthetic image as real, or log(1 — D(G(z)) = —c.

By minimizing the second term through training the generator, the
network weights are adjusted in the direction of reducing log(1l —
D(G(z) ), thus making the generator produce synthetic samples that are
less likely to be detected by the discriminator. In contrast, by maxi-
mizing both the first and the second terms through training the
discriminator, the network weights are adjusted in the direction of
increased log(D(y) ) and log(1 — D(G(z) ), making both closer to 0 (cor-

H : CGAN
Conditioned Causal | | Classvector(u) | | Conditioned
generation relationship Causal factors of y discrimination
_ Gzl y=fw D(yluw), D (¥|w)
i 5
GAN

7 N
Measured data Data representation (y)
“Ground truth” data gathered Data transform, e.g., time

experimentally series — scalogram

Update G
i Generator (G) -Veg Discriminator (D)
i Learn mapping from z to - Distinguish real data y from
output like y Synthesis synthetic output 7
y=6(2)
t
[ Random vector (z) J Lndaiel
-V,

Fig. 4. Fundamental structure of GAN and CGAN.
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responding to a perfect discriminator performance). Such adversarial
training is envisioned to arrive at a Nash or proximal equilibrium where
the discriminator can no longer distinguish the synthetic data from the
real ones, and the generator can synthesize high-fidelity data but can no
longer improve either, due to the lack of further guidance from the
discriminator [33,34]. In practice, optimization (5) is carried out in an
average sense, by using expectations rather than individual samples.

‘D
G,D = mingmaxpk,[log D(y)] + E[log(1 — D(G(z)))] 5)

‘G

where G’ and D’ are optimized G and D, and the denoted loss quantities
(#,) are the objective functions when training the generator and
discriminator models.

In recent years, GANs have emerged as effective tools for data syn-
thesis in manufacturing and related fields [35]. For example, Hertlein
et al. [36] developed a 2-D CNN GAN for topology optimization in ad-
ditive manufacturing to improve manufacturability, which was shown
to be significantly faster than traditional topology optimization
methods. Likewise, Schleich et al. [37] formulated a 2-D CNN GAN for
tolerance analysis that predicted shape-agnostic part deviations and
enabled expected error stack-up to be calculated before production took
place. Cooper et al. [38] used a 2-D CNN GAN to synthesize milling
audio signals as spectrograms and develop a tool condition classification
model using a mix of experimental and synthetic data. Barua et al. [39]
proposed a joint FC and 2-D architecture for multi-view object synthesis
that was shown to be extensible over a breadth of datasets and learning
problems. Qu et al. [40] and Liu et al. [41] developed GANSs to syn-
thesize speed, temperature, and vibration data for wind turbines using
simultaneous, cross-sensor 1-D convolution operations such that a
sensor fusion fault detection system could be developed. By generating
outputs based on limited training data, GANs have shown to reduce the
need for extensive experimentation, conserve resources, and improve
the robustness of predictive models by expanding the data availability
for developing such models.

2.2. CGAN for synthesis of cutting power profile

Numerous variants to the standard GAN structure have been pro-
posed over recent years for a breadth of learning tasks. Of these, CGANs
are of significant interest to this study [42]. A prevalent issue with the
standard GAN structure is that the generator output cannot be condi-
tioned on the physical application-specific classes or labels. Since
varying process parameters have a direct impact on the formation of
surface roughness as shown in Fig. 2, the synthesized power signals are
required to contain parameter-specific patterns to retain the
roughness-related information embedded in different process parameter
combinations (e.g., classes) to ensure the validity of predictive
modeling.

To solve this problem and enable class-dependent data synthesis,
CGAN is investigated in which the generator and discriminator outputs
are conditioned on additional class information u. Consequently, Eq. (5)
is modified as

‘p
G,D = mingmaxpEy[log D(y|u)] + E;[log(1 — D(G(z|u)|u) )] (6)

49

where conditioning is achieved by passing u as an input to both the
generator and the discriminator in addition to z or y, as shown in Fig. 4
This enables the generator to learn a unique output distribution corre-
sponding to each u while also allowing the discriminator to conduct
class-specific classification. In other words, G learns surrogates of € (u1)
Q2 (u3),...,Qn(uy), where Qp (u,) is the ground truth data distribution of
the n™ class and N is the number of classes used to train the CGAN. D
then learns to determine whether the synthesized sample
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G(z|lun) belongs to Q(un).

Training of a CGAN structure follows the same procedure as that of a
conventional GAN. Once trained, the generator can be queried with (z,
u) pairs to synthesize power signals corresponding to the class input u
and augment the dataset. For this study, u is a vector representing
process speed, feed, and radial depth-of-cut, since these physical attri-
butes have been shown to effectively characterize the power signal [43].

3. Experimental evaluation

To validate the proposed surface roughness prediction method using
CGAN data augmentation, milling experiments have been performed at
various speeds, feeds, and depths-of-cut to collect a set of spindle power
signals.

3.1. Milling data collection and representation

A total of 21 prismatic specimens of AISI H13 tool steel (50 £+ 1 HRC)
were dry milled on a CNC machining center using a 20 mm, two flute
end mill with tungsten carbide inserts. Six cuts were made using each set
of the cutting parameters listed in Table 1, yielding 126 experimental
data. Spindle power was recorded during each cut at 341 kHz using a
Fluke Norma power analyzer. Following milling, the average Ra value in
the stepover direction is determined for each combination of cutting
parameters using contact profilometry.

Previous studies [25] have shown that low-frequency components of
machining power signals dissipate as tool wear increases. Since tool
wear and surface roughness are closely linked, it is expected that the
frequency spectrum of the power signals contains surface
roughness-related information. Thus, to ensure the CGAN generates
realistic power data in both the time and frequency domains of the
signal, continuous wavelet transform is first used to represent the power
signals as time-frequency images, or scalograms [44]. The Ricker
wavelet was selected as the base wavelet, based on the criterion of best
energy-to-entropy ratio as described in [45].

Representative wavelet scalograms for specimens #1-9 are shown in
Fig. 5 with the corresponding power signals. In each scalogram, the
peaks and valleys present along the time axis correspond to sudden
changes in the power demand caused by vibration, material imperfec-
tion, and tool deterioration. These events manifest themselves in the
time-frequency domain as slender spikes reaching into the upper fre-
quency bands but quickly disappearing as the transient event ends. It is

Table 1
Milling parameters and measured surface roughness.

Spec.  Speed Feed/tooth (mm/tooth) ~ Radial DOC (mm)  Rg (nm)
(mm/min)

1 200 0.1 0.3 241
2 200 0.1 0.5 520
3 200 0.1 0.5 384
4 200 0.05 0.5 360
5 200 0.1 0.4 646
6 100 0.1 0.5 440
7 200 0.1 0.5 480
8 300 0.1 0.5 650
9 200 0.05 0.5 372
10 200 0.1 0.4 329
11 100 0.1 0.5 399
12 300 0.1 0.5 396
13 200 0.1 0.3 426
14 200 0.05 0.5 374
15 200 0.2 0.5 488
16 100 0.1 0.5 356
17 200 0.1 0.3 265
18 200 0.1 0.4 399
19 200 0.2 0.3 584
20 300 0.1 0.5 657
21 200 0.2 0.5 1059
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noted that the occurrence of these transient events forms different dis-
tributions under different parameter combinations. For example, the
occurrence exhibits a more regular pattern for specimens #1 and #8,
while appearing more sparsely in specimens #2, 5, 6, and 7. The distinct
patterns in distributions indicate the underlying influence of process
parameters when coupled with process variations, and they can be
verified physically against the ground truth by comparing the measured
and synthetic signals in the frequency domain, as well as statistically, by
assessing the statistical similarity between the real and synthetic data
using embedding techniques.

3.2. Quantification of generated image quality

To quantify consistency of the synthesized image signals with pro-
cess physics and statistical faithfulness to the ground truth data, two
metrics are considered: 1) the frequency spectra of the generated signals
as compared to the ground truth, and 2) inter- and intra-class similarity
as quantified by the method of uniform manifold approximation and
projection (UMAP).

It is known from previous work that process parameter settings
uniquely determine the frequency content of the machining power sig-
nals [25]. For instance, the dominant frequency in the power signal
monotonically increases as cutting speed increases. The same relation-
ship holds for the feed/tooth. Each set of parameters (x) should there-
fore have a unique frequency spectrum associated with it. This
observation serves as a basis of comparison for experimental and syn-
thetic power signals, namely the frequency spectra of the real and syn-
thesized data should be similar under the same process parameters. This
similarity can be quantified as:

&g =p(7 (P, 7 (P)) @

where &, is the spectral similarity metric, p is the Pearson correlation
[46] of the Fourier spectra .7 (P) and .7 (f’), P is a ground truth power

signal, P is a synthetic signal found via inverse wavelet transform [44] of
the generated scalogram, and both signals share the same u.

If the generator has correctly established the unique mapping be-
tween the frequency distribution of the power signal and the physical
information embedded in the process parameters, correlation between
the real and synthetic frequency spectra will approach 1. This metric,
however, speaks only to each datum and does not assess if unique Q; ()
were learned for each combination of process parameters. For this
purpose, UMAP is investigated.

The fundamental concept of UMAP is to visualize the distribution of
high-dimensional data, e.g., scalogram images (or time-frequency
decomposition of the power signals) in this study, by learning a low-
dimensional surrogate distribution which maintains the distance be-
tween the data points proportional to their high-dimensional counter-
parts. As a result, statistically similar data clusters together whereas
dissimilar data separate. Details of UMAP are provided in [47].

To verify the result of power signal synthesis, the synthetic scalo-
grams conditioned on the same process parameter combination should
cluster together while maintaining separability from those conditioned
on different parameter combinations. Since different CGAN architec-
tures will yield different spectral correlations and UMAP embeddings,
several CGAN architectures are investigated.

3.3. CGAN architecture search

To examine the generator behavior across different CGAN architec-
tures, experiments have been performed to train fully connected (FC), 1-
D CNN, and 2-D CNN CGANSs. A hyperparameter search is performed for
each model independently over the ranges listed in Table 2 to determine
the optimal network structure and training process. These same ranges
are used to optimize the CNN using backpropagation once the generator
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Fig. 5. Experimentally measured power signals and scalograms.

Table 2
ML model hyperparameters and search ranges; SGD: stochastic gradient descent,
PReLU: parametric rectified linear unit.

Hyperparameter Range

{Adam, RMSprop, SGD}
{1x10%1x1075..,1x107%}
{Leaky ReLU, PReLU}

Optimizer
Initial learning rate
Activation function

Batch size {20,22 .., 2%
Dropout probability {0 %, 20 %, ..., 80 %}
z length {200, 400, ..., 1000}
Number of layers {2,3,...,6}

Kernel size (CNN) {3,5,...,,11}
Kernels/layer (CNN) {25,2° ..., 2%

Layer size (FC) {210,211 ol%

and discriminator are trained, also using backpropagation [48]. The
generator and the discriminator are constrained to the same architecture
category during the search.

3.4. Surface roughness prediction

To predict surface roughness, each CGAN is trained to its equilibrium
and its generator is used to generate k images for each specimen, 70 % of
which are used to train a CNN for surface roughness prediction, and the
remaining 30 % are held out to validate the model after training. (The
effects of varying k from 0 to 500 images/specimen are shown for the
CNN and discussed in Section 4.) A CNN is chosen as the surface
roughness prediction model due to its ability to extract features from the
scalograms using sequential convolutions and fuse the features from

low-level to high-level to yield a surface roughness estimate Ra [49].

Surface roughness prediction error is quantified as the mean absolute
percentage error (MAPE), which is iteratively minimized for a training
dataset using gradient descent and assessed after training on a validation
dataset that is held out of the training data [50].

4. Results and discussion
4.1. CGAN-synthesized power signal

Exemplary data synthesis results associated with each CGAN are



C. Cooper et al.

shown in Fig. 6. While the synthesized scalograms from both the FC-
CGAN and the 1-D CNN CGAN exhibit a slender spike pattern similar
to the ground truth images, they are much more defined for the FC
model than the 1-D CNN with substantially less noise contamination.
Notably, while the FC model retains qualitative similarity, e.g., spike
shape and color, the spikes are shown to translate left and right along the
time axis as compared to the ground truth, indicating that the GAN is
synthesizing transient events in the power signal as seen in Fig. 5, but at
variable times. Meanwhile, the 2-D CNN failed to converge for any
hyperparameter combination as described by the search ranges
(Table 2). Oscillatory behavior in the 2-D CNN generator and discrimi-
nator loss functions was observed for learning rates between 0.000001
and 0.001. As a result, no meaningful patterns were recognized from the
generated scalograms.

The performance of the CGANSs is quantitatively evaluated first using
frequency spectra correlation between the synthesized power signal
(obtained using inverse wavelet transform of scalogram from each
CGAN model) and the ground truth, measured signal for each specimen,
as depicted in Fig. 7. For the FC CGAN, the average frequency spectra
correlation is greater than 0.9 across all specimens, indicating that the
frequencies present in the synthetic signals closely resemble that of the
ground truth. The results from 1-D CNN CGAN yield correlations in the
range of 0.6-0.8. This is consistent with the results shown in Fig. 5 that
the scalogram appearing in the synthetic 1-D CNN images still captures
the frequency patterns associated with different process parameter
combinations but is obscured by noise. Since the 2-D CNN images do not
converge to any frequency pattern, their spectral correlation coefficients
are near zero as expected.

The ineffectiveness of the 2-D CNN can be considered as caused by
the poor performance of the convolutional generators due in part to the
sparse connections within the network. Whereas the FC generator con-
siders every pixel when passing the input through the network layers,
the convolutional models only consider local regions of 3-11 pixels at
once. Thus, the FC network can guide training for the entire image
structure at once whereas the CNNs analyze only local patches. Addi-
tionally, the number of learnable parameters is higher for the FC model
than the 1-D and 2-D CNNs (178 M vs. 1.1 M and 2.8 M, respectively),
indicating stronger learning potential. Further investigation of the
learning capability of different CGANS is considered for future studies.

Specimen1  Specimen 2

FC Ground
CGAN CGAN Truth

1-D CNN

2-DCNN
CGAN

Specimen 3
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Fig. 7. Frequency spectra correlation with ground truth for different CGAN
architectures.

In addition to the established consistency between the synthesized
data and the ground truth in terms of frequency patterns, the capability
of the developed CGAN in learning parameter-specific distributions
Qn(un),n=1,2,...21 is also evaluated using the UMAP embedding.
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Fig. 8. UMAP embeddings of FC CGAN images (100/specimen) showing clus-
tering of intra-class samples and separation of inter-class ones; UMAP axes are
dimensionless.

Specimen 4

Specimen 5

Fig. 6. Synthesized scalograms from different CGAN architectures.
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Fig. 8 shows the distribution of 2100 synthesized images corresponding
to 21 different process combinations in the UMAP embedding space.
Each sample is color-coded according to the class u at the generator’s
input. It is seen that intra-class clustering and inter-class separation have
been achieved, confirming a well-trained generator network that is able
to generate images unique to each process parameter combination. The
structure of the best-performing FC CGAN is shown in Table 3. The
optimizer during training is Adam with a learning rate of 0.01. The
activation function is Leaky ReLU.

4.2. Surface roughness prediction results

The optimized CNN structure for surface roughness prediction is
tabulated in Table 4, trained with Adam optimizer (learning rate 0.01)
and Leaky ReLU activation function. The prediction error (in MAPE) is
shown in Fig. 9 as a function of the size of the synthetic data. During this
experiment, the training dataset size was the only variable while the
CNN architecture and hyperparameters were held constant. With all
other variables fixed, a larger dataset size produced a lower prediction
error because more diverse synthetic training data enabled the CNN to
fully optimize the network weights and learn the unique patterns from
the scalograms. It is seen that the surface roughness prediction error is
reduced from 58 %, when only the ground truth data but no synthetic
data was used to train the CNN, to 9.1 % when 250 or more synthetic
samples are included for CNN training.

In addition to the synthetic data size, the effect of the ground truth
data size is also evaluated on power signal synthesis and surface
roughness prediction. Specifically, the CGAN is retrained using pro-
gressively smaller ground truth datasets, ranging from 6 images/spec-
imen to 2 images/specimen, once again holding constant the CGAN
architecture and hyperparameters. The resulting MAPE of the roughness
prediction are shown in Fig. 10. It is seen that increasing the number of
ground truth samples per specimen significantly improves CGAN image
sharpness as well as the accuracy of the surface roughness prediction.
For instance, images synthesized using 3 ground truth samples for CGAN
training are significantly blurrier and more amorphous than the scenario
with 6 ground truth training samples per specimen, which produces
sharper images with more detail in the higher frequency bands. Addi-
tionally, MAPE is reduced by 56 % when the ground truth dataset is
increased from 3 samples/specimen to 6 samples/specimen, indicating
that the impact of ground truth dataset size is significant in determining
CGAN and CNN behavior in the developed surface roughness prediction
method.

The surface roughness prediction method developed in this work is
compared to representative work by other researchers on surface
roughness prediction, and the result is summarized in Table 5. With the
exception of [21], this study’s technique exhibits a lower prediction
error than other comparable studies. However, the CGAN + CNN
approach relies on only a single process signature as input rather than
the four upon which [21] relies, making the former approach more
feasible than the latter in a production setting. Additionally, the BGWO
model requires extraction of 73 statistical features from the four input
signatures, which is computationally more complex than the CGAN +
CNN approach as presented in this study. Nonetheless, low prediction
error of [21] indicates the effect of multi-sensor fusion, which will be

Table 3
Optimal network structure of FC CGAN.
Generator Discriminator
Input z: 1000, u: 200 Scalogram: 16,384, u: 200
Layer #1 2048 (2! 2048 (2'1)
Layer #2 4096 (2'%) 1024 (219
Layer #3 8192 (21%) 512 (2%
Output 16,384 (128%) 1
Dropout % 60 % 40 %

Batch Size 64
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Table 4
Optimal network structure of 2D CNN.
Input Size 128 x 128
Kernel #1 11 x 11x64
Kernel #2 7 x 7x128
Kernel #3 5 x 5x256
Kernel #4 and #5 3 x 3x512
FC #1 4608
FC #2 1024
FC #3 64
Output 1
Batch Size 64
60%
800 —=) | Final MAPE
E = MAPE =9.1% ,,'
< 50% A £
= & °00 .z”o' 800 N 7
c z ) = MAPE =9.1% .,,’
o ©
S 40% =400 io' 250 < 6004 %
L i A7 images/spec. < o0
2 200 47® g %o
a 30% 200 400 600 800 § 2008 % 500
0 ° Observed Ra (nm) £ o images/spec.
o wol®
E 200 400 600 800
[e)) 20% Observed Ra (nm)
3
o<
10% ..
T T T T T T
0 100 200 300 400 500

# Synthetic Images/Specimen

Fig. 9. Roughness prediction error vs. synthetic data size; insets depict
measured vs. CNN-predicted Ra where dashed line is ideal.

considered as one of the authors’ research topics in the future.
5. Conclusion

In an effort to establish a direct mapping between power signals and
surface roughness in end milling that enables in-process roughness
quantification and eliminates the bottleneck of post-process inspection,
a data-driven approach based on CGAN and CNN has been developed.
The CGAN enables synthesis of high-fidelity power signals under vary-
ing process parameter combinations to circumvent the limitation of
power signal data availability and augment the training dataset. The
CNN then takes the augmented dataset and learns the surface roughness
by way of the power signals’ time-frequency characteristics as extracted
via wavelet transform. An experiment has been carried out on milling
H13 tool steel to evaluate the developed methods.

Examining both the physical and statistical patterns of the synthe-
sized power data using frequency spectra and UMAP, respectively, it is
confirmed that CGAN is to learn unique data distributions specific to
each process parameter combination. The CNN trained on the
augmented dataset has achieved a 9.1 % mean error in predicting sur-
face roughness, confirming the power process signature as a viable
candidate for in-process surface characterization in machining. It is
further observed that the prediction error is asymptotic as a function of
the synthetic dataset size, with a larger ground truth dataset resulting in
smaller prediction error.

Industrial application of our method is envisioned to follow a two-
step process: 1) model recalibration for the process and machine of in-
terest, and 2) provisioning of real-world, in-situ production data to
refine our developed model. Regarding point 1, the CGAN and CNN from
our method should be recalibrated to the application-specific power
signals and process parameters to avoid extrapolating beyond the range
of the training data, which may yield spurious results. The model
recalibration process to avoid these issues would involve collecting a
small number of power signals and surface roughness measurements,
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Table 5

Comparison of presented study to literature; BP ANN: backpropagation artificial
neural network, BLR: Bayesian linear regression, RNN: recurrent neural
network, BGWO: binary grey wolf optimization.

Ref. Process Signature Input R, Prediction R, Prediction
Model Error

Ours  Power profile CGAN + CNN 9%

[18] Spindle, fixture vibrations BP ANN 18 %

[19] Spindle, fixture, workpiece BLR 10 %
vibrations

[20] Surface image, tool image, power CNN + RNN 12%
profile

[21] Acoustic, spindle vibration, fixture BGWO 1%

forces, power profile

such as the 126 observed in our study, and retraining the CGAN and CNN
using the procedure described in Section 3.3. Regarding point 2, the
post-calibration CNN from point 1 will be used for surface roughness
prediction during production by providing it with time-frequency im-
ages of in-situ power signals acquired by the end user. This imple-
mentation scheme represents a low barrier to entry for industrial use of
the developed techniques as presented in this study.

Future research will explore the potential of generative models in
synthesizing additional process signatures. Additionally, tool wear will
be included in the CGAN input to more comprehensively account for
process variations in surface characterization. The effects of changing
tool material and geometry on the scalogram synthesis and surface
roughness prediction will also be studied in order to make the developed
model more generalizable across tool types. Finally, physical factors of
the machining process such as strong plastic deformation and chatter
will be detected in the power signals and accounted for by future surface
roughness prediction models to further reduce the prediction error.
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