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A B S T R A C T   

Predicting machined surface roughness is critical for estimating a part’s performance characteristics such as 
susceptibility to fatigue and corrosion. Prior studies have indicated that power consumed at the tool-chip 
interface may represent an indicator for the surface integrity of the machining process. However, no quantita
tive association has been reported between the machining power and surface roughness due to a lack of data to 
develop predictive models. This paper presents a data synthesis method to address this gap. Specifically, a 
conditional generative adversarial network (CGAN) is developed to synthesize power signals associated with 
varying process parameter combinations. The quality of the synthesized signals is evaluated against experi
mentally measured power signals by examining the consistency in: 1) the spatial pattern of the signals induced by 
the cutting process as shown in the frequency domain, and 2) the temporal pattern as shown in the clustering of 
the synthesized and measured signals corresponding to the same parameter combination. The synthesized signals 
are then used to augment the measured signals and develop a convolutional neural network (CNN) for predicting 
the machined surface roughness. Experiments performed using H13 tool steel have shown that data augmen
tation by CGAN has effectively reduced the error of the surface roughness prediction from 58 %, when no 
synthetic data is used for CNN training, to 9.1 % when 250 synthetic samples are used. The results demonstrate 
the effectiveness of CGAN as a data augmentation method and CNN for mapping machining power to surface 
roughness.   

1. Introduction 

Surface roughness is one of the most important quality factors to be 
quantified in machining because it determines part functionality in 
terms of fatigue resistance, corrosion susceptibility, and fluidic drag 
[1–3]. Traditional roughness quantification relies on post-process in
spection after the workpiece is fabricated by means of contact and 
contactless profilometry, which often constitutes a bottleneck in 
manufacturing in terms of time and cost [4,5]. To eliminate this 
bottleneck, in-process approaches that associate surface roughness with 
process parameters have been investigated. 

In recent years, statistically significant influences of process pa
rameters such as speed, feed, and depth-of-cut (DOC) on surface 
roughness have been studied [6–8]. However, many of the theoretical 
approaches do not reflect experimentally observed behavior. For 

instance, a roughness prediction equation is developed in [9] that relates 
roughness to feed and tool nose radius, which does not include other 
machining parameters, material properties, or stochastic process dis
turbances. This contradicts experimental results in [10] which show that 
surface roughness depends on the specific cutting energy, which is a 
function of all process parameters as well as the workpiece condition. 

To comprehensively consider process parameters as well as in- 
process data, machine learning (ML) models have been established to 
predict surface roughness as a function of parameters and sensor data 
[11,12]. A limitation in parameter-based roughness quantification has 
been that it does not consider the in-process variations caused by process 
dynamics such as workpiece material imperfections and changing tool 
conditions that are commonly seen in real-world manufacturing envi
ronments. To overcome this limitation, the incorporation of process 
signatures into surface roughness prediction models has attracted 
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significant interest [13]. 
Acquired during the machining process, process signatures refer to 

the measured signals that quantify energy conversion as the workpiece 
responds to applied loads [14,15]. As the energy-driven part modifica
tions imparted by a machine reflect the compound effect of process 
parameters and process dynamics, e.g., tool condition and material 
imperfections that are not accounted for by parameter-based models, 
process signatures can be used as complementary input to data-driven 
predictive models [10,16]. 

Various process signatures, such as sound, force, and temperature, 
have been investigated. Griffin et al. [17] investigated acoustic emis
sions as input to a classification tree to predict surface roughness in 
micromachining. Wu and Lei [18] used features from vibration signals 
as input to a neural network to predict the roughness of conventionally 
machined parts. Similarly, Kong et al. [19] used vibration signal features 
as input to a Bayesian linear regression model for roughness prediction. 
Wang et al. [20] developed a joint convolutional and recurrent deep 
learning model to fuse spindle power signals with machined surface 
images for simultaneous tool wear inference and surface roughness 
prediction. Tian et al. [21] combined and built upon these approaches to 
develop a surface prediction model with acoustic, vibrational, force, and 
power signal features as input to a neural network. A common limitation 
in the process signatures investigated in these studies is that they only 
considered a portion of the energy transferred into the workpiece, e.g., 
vibrational and acoustic dissipations, thus represent an incomplete 
characterization of the total energy input to the workpiece and its effects 
on the surface formation. Others, like Moliner-Heredia et al. [22], Wang 
et al. [23], and Corne et al. [24], have leveraged process signatures to 
predict tool condition but not the corresponding surface roughness. To 
establish a direct link between the energy as a process signature and 
surface roughness and fill an existing research gap, this study presents a 
data-driven surface roughness predictive model based on energy input 
only. 

Given that specific power measurement instruments are needed to 
specifically quantify the amount of energy used for material removal 
during machining, as well as the time-consuming nature of experimental 
data acquisition, only a limited amount of power/energy data is typi
cally available. To address this limitation, a data synthesis approach has 
been investigated based on the generative adversarial network (GAN) 
architecture. GANs rely on a data generator and a discriminator as a pair 
of competing neural networks for the training process to arrive at an 
equilibrium point for high-fidelity data synthesis. However, standard 
GANs operate on random input with no consideration of application- 
relevant data such as process parameters in machining operations. For 
this reason, standard GANs do not learn the effects of these variables on 
the expected output and the synthesized data is difficult to control and 
interpret. To overcome this challenge, a conditional generative adver
sarial network (CGAN) has been developed to synthesize power signals 
based on a limited number of measured power data. In the presented 
study, the CGAN is regularized by the pertinent machining process pa
rameters to capture the physical effects of varying parameters on the 
power signal patterns and ensure the output of is physically sound and 
meaningful. 

The validity of the synthesized power signals is then verified from 
both the physical and the statistical aspects. The former involves 
quantifying the consistency in the spatial pattern induced by the specific 
cutting parameters as reflected in the frequency domain of the power 
signals. The latter reveals the statistical distances among the synthesized 
intra- and inter-class samples (e.g., samples corresponding to the same 
or different parameter combinations, respectively), to confirm the 
capability of CGAN in generating data that exhibit clustering of intra- 
class samples and separation among inter-class ones. 

Finally, in consideration of previous work relating power signal 
frequencies with tool condition and surface roughness [25], the syn
thesized signals are decomposed into time-frequency images via wavelet 
transform and used to train a convolutional neural network (CNN) to 

predict the roughness of the machined surfaces. A CNN is chosen as the 
prediction model given its strong image processing capabilities [26] and 
previous successes analyzing time-frequency data in manufacturing 
[27]. An overview of the proposed methodology is shown in Fig. 1. 

The contributions of this study are summarized as follows: 

1. Established a data-driven mapping from the machining energy pro
cess signature to surface roughness using CNN, requiring only in- 
process data as input, and eliminating the need for post-process 
quantification.  

2. Developed a CGAN-based method for high-fidelity synthesis of 
power signals, which are validated through consistency in signal 
patterns from both the physical and statistical aspects, thereby 
alleviating the limitations in data collection for surface predictive 
modeling.  

3. Achieved good surface roughness prediction accuracy by CNN as 
demonstrated by comparing the synthesized data with experimen
tally acquired ground truth. 

The remainder of the paper is organized as follows: Section 2 pro
vides background on surface roughness and CGANs. Section 3 describes 
the experiment to evaluate the developed data synthesis and prediction 
methods. In Section 4, power signal synthesis and surface roughness 
results are presented and discussed. Conclusions and future research 
directions are summarized in Section 5. 

2. Background and methodology 

During machining, material is removed from the workpiece through 
shear deformation as shown in Fig. 2(a) [28]. Energy is delivered to the 
workpiece via the motion of the cutting tool that removes a small “chip” 
of the material. The gross power demand of machining can be modeled 
as: 

Pcut = MRR(PP)⋅SFC(PP, TC) + ξ(t, TC, MP) (1)  

where MRR is the material removal rate (mm3/s) as a function of related 
process parameters (PP), SFC is the specific cutting force (N/mm2) as a 
function of PP and tool condition (TC), and ξ represents power fluctu
ations caused by regenerative vibration, etc., which is dependent on 
time (t), TC, and material properties (MP) [25]. For milling operations, 
MRR and SFC are defined as: 

MRR = apaev (2)  

SFC = kap

[
fz

(
1 − cosϕs)

ϕs

]β+1

(3)  

where ap is the axial depth of cut (mm), ae is the radial depth of cut 
(mm), v is the cutting feed (mm/s), fz is the feed per tooth (mm/tooth), 
ϕs is the swept angle of removed material (rad), and k and β are 
experimentally-derived constants dependent on the tool geometry [29]. 

Three plots are shown at the bottom of Fig. 2 to illustrate variations 
in the machining power signal as cutting parameters change: feed in (b), 
speed in (c), and DOC in (d). In each plot, the solid lines represent 
measured power signals while the dotted lines represent the theoretical 
power signals. As seen in these plots, changes in the cutting parameters 
shift the power curves (both measured and theoretical) up and down, 
indicating the parameters have a pronounced effect on the power de
mand of machining. Deviations of the measured power from the theo
retical level can be attributed to process variations, i.e., material 
imperfections, which induce variations through grain boundaries and 
inhomogeneities that, in turn, cause the cutting forces and correspond
ing power signal to change. As these imperfections are located randomly 
throughout the material being machined, their manifestation in the 
power signals (as deviations from theoretical levels) also exhibit 
randomness. 
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During the material removal process, variations in the material as 
described above as well as dulling along the cutting edge cause plowing 
or “ripping” instead of shearing at the microscopic level [30]. This 
tensile mode of material removal induces a rough surface profile behind 
the cutting tool as shown in Fig. 3. This surface formation is inherent to 
all mechanical material removal processes, including milling, turning, 
and grinding, and indicates the importance of roughness prediction 
across a breadth of metal removal processes. 

The surface roughness quantity of interest in this study is the mean 
deviation from the profile centerline, Ra: 

Ra =
1

l1 − l0

∫ l1

l0
|h(l) − h|dl (4)  

where l0 and l1 are the starting and stopping point of the stylus used to 
trace the surface, respectively, h is the traced surface profile, and h is the 
profile’s mean value [31]. Because surface roughness is determined by 

Fig. 1. Surface roughness prediction based on augmented power signals and machine learning.  

Fig. 2. Chip removal and surface roughness formation during cutting (a); examples of cutting power demand fluctuations over breadth of cutting parameters (b–d); 
DOC: radial depth-of-cut. 

Fig. 3. Machined surface and roughness measurement using stylus (contact 
profilometry). 
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the energy transfer at the tool-chip interface, which is in turn deter
mined by the machining power, it is hypothesized that machining power 
can be mapped to surface roughness by way of a data-driven model using 
ML methods to allow for in-process roughness inference instead of 
time-consuming post-process inspection. However, to develop a proper 
ML model, an adequate power signal dataset covering a broad range of 
cutting parameters under various operational conditions is needed, 
which is time-consuming to collect experimentally [32]. To alleviate this 
limitation and support energy-based data-driven predictive modeling, 
the development of CGAN for high-fidelity power data synthesis con
stitutes the focus of this study. 

2.1. Fundamentals of GAN 

The objective of generative modeling is to approximate the statistical 
distribution of real-world data (e.g., power signals) using a surrogate 
model. This distribution can then be sampled to generate new obser
vations, thereby alleviating data availability constraints. GANs have 
attracted significant attention for this purpose due to their ability to 
leverage ML to closely learn relevant data distribution and produce 
realistic synthetic output [33]. 

The basic structure of a GAN is shown in Fig. 4. Generator G receives 
random vector z and outputs synthetic data ̃y. Meanwhile, discriminator 
D randomly receives ̃y or ground truth data y and distinguishes the input 
as either synthetic or real, encoded as 0 and 1, respectively. During the 
training process, the discriminator’s goal is to minimize the classifica
tion error whereas the generator’s goal is to maximize the classification 
error by outputting realistic images that mislead the discriminator, i.e., 
G attempts to learn a surrogate to the unknown ground truth data dis
tribution Ωy. As a result, G and D are adversaries to one another and GAN 
training is a minimax game represented by the optimization problem as 
expressed in (5): 

Specifically, the first term of the sum in (5) measures how well the 
discriminator performs on the ground truth samples. In this scenario, the 
output from the discriminator contributes to the loss function only when 
it classifies a real sample as synthetic, or D(y) = 0. This is achieved 
through the logarithm of the discriminator’s output such that log(D(y) )

= −c (contribution of -c to the loss function), where c is a constant by 
convention. Similarly, the second term measures how well the generator 
output can mislead the discriminator. In this case, the output from the 
discriminator contributes to the loss function only when it classifies a 
synthetic image as real, or log(1 − D(G(z) ) = − c. 

By minimizing the second term through training the generator, the 
network weights are adjusted in the direction of reducing log(1 −

D(G(z) ), thus making the generator produce synthetic samples that are 
less likely to be detected by the discriminator. In contrast, by maxi
mizing both the first and the second terms through training the 
discriminator, the network weights are adjusted in the direction of 
increased log(D(y) ) and log(1 − D(G(z) ), making both closer to 0 (cor

responding to a perfect discriminator performance). Such adversarial 
training is envisioned to arrive at a Nash or proximal equilibrium where 
the discriminator can no longer distinguish the synthetic data from the 
real ones, and the generator can synthesize high-fidelity data but can no 
longer improve either, due to the lack of further guidance from the 
discriminator [33,34]. In practice, optimization (5) is carried out in an 
average sense, by using expectations rather than individual samples. 

G′

, D′

= minGmaxDEy[log D(y)] + Ez[log(1 − D(G(z)))]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

ℓG

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
ℓD

(5)  

where G′ and D′ are optimized G and D, and the denoted loss quantities 
(l ∗) are the objective functions when training the generator and 
discriminator models. 

In recent years, GANs have emerged as effective tools for data syn
thesis in manufacturing and related fields [35]. For example, Hertlein 
et al. [36] developed a 2-D CNN GAN for topology optimization in ad
ditive manufacturing to improve manufacturability, which was shown 
to be significantly faster than traditional topology optimization 
methods. Likewise, Schleich et al. [37] formulated a 2-D CNN GAN for 
tolerance analysis that predicted shape-agnostic part deviations and 
enabled expected error stack-up to be calculated before production took 
place. Cooper et al. [38] used a 2-D CNN GAN to synthesize milling 
audio signals as spectrograms and develop a tool condition classification 
model using a mix of experimental and synthetic data. Barua et al. [39] 
proposed a joint FC and 2-D architecture for multi-view object synthesis 
that was shown to be extensible over a breadth of datasets and learning 
problems. Qu et al. [40] and Liu et al. [41] developed GANs to syn
thesize speed, temperature, and vibration data for wind turbines using 
simultaneous, cross-sensor 1-D convolution operations such that a 
sensor fusion fault detection system could be developed. By generating 
outputs based on limited training data, GANs have shown to reduce the 
need for extensive experimentation, conserve resources, and improve 
the robustness of predictive models by expanding the data availability 
for developing such models. 

2.2. CGAN for synthesis of cutting power profile 

Numerous variants to the standard GAN structure have been pro
posed over recent years for a breadth of learning tasks. Of these, CGANs 
are of significant interest to this study [42]. A prevalent issue with the 
standard GAN structure is that the generator output cannot be condi
tioned on the physical application-specific classes or labels. Since 
varying process parameters have a direct impact on the formation of 
surface roughness as shown in Fig. 2, the synthesized power signals are 
required to contain parameter-specific patterns to retain the 
roughness-related information embedded in different process parameter 
combinations (e.g., classes) to ensure the validity of predictive 
modeling. 

To solve this problem and enable class-dependent data synthesis, 
CGAN is investigated in which the generator and discriminator outputs 
are conditioned on additional class information u. Consequently, Eq. (5) 
is modified as 

G
′

, D
′

= minGmaxDEy[log D(y|u) ] + Ez[log(1 − D(G(z|u)|u) ) ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

ℓG

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞ ℓD

(6)  

where conditioning is achieved by passing u as an input to both the 
generator and the discriminator in addition to z or y, as shown in Fig. 4 
This enables the generator to learn a unique output distribution corre
sponding to each u while also allowing the discriminator to conduct 
class-specific classification. In other words, G learns surrogates of Ω1(u1)

,Ω2(u2),…,ΩN(uN), where Ωn(un) is the ground truth data distribution of 
the nth class and N is the number of classes used to train the CGAN. D 
then learns to determine whether the synthesized sample Fig. 4. Fundamental structure of GAN and CGAN.  
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G(z|un) belongs to Ωn(un). 
Training of a CGAN structure follows the same procedure as that of a 

conventional GAN. Once trained, the generator can be queried with (z,

u) pairs to synthesize power signals corresponding to the class input u 
and augment the dataset. For this study, u is a vector representing 
process speed, feed, and radial depth-of-cut, since these physical attri
butes have been shown to effectively characterize the power signal [43]. 

3. Experimental evaluation 

To validate the proposed surface roughness prediction method using 
CGAN data augmentation, milling experiments have been performed at 
various speeds, feeds, and depths-of-cut to collect a set of spindle power 
signals. 

3.1. Milling data collection and representation 

A total of 21 prismatic specimens of AISI H13 tool steel (50 ± 1 HRC) 
were dry milled on a CNC machining center using a 20 mm, two flute 
end mill with tungsten carbide inserts. Six cuts were made using each set 
of the cutting parameters listed in Table 1, yielding 126 experimental 
data. Spindle power was recorded during each cut at 341 kHz using a 
Fluke Norma power analyzer. Following milling, the average Ra value in 
the stepover direction is determined for each combination of cutting 
parameters using contact profilometry. 

Previous studies [25] have shown that low-frequency components of 
machining power signals dissipate as tool wear increases. Since tool 
wear and surface roughness are closely linked, it is expected that the 
frequency spectrum of the power signals contains surface 
roughness-related information. Thus, to ensure the CGAN generates 
realistic power data in both the time and frequency domains of the 
signal, continuous wavelet transform is first used to represent the power 
signals as time-frequency images, or scalograms [44]. The Ricker 
wavelet was selected as the base wavelet, based on the criterion of best 
energy-to-entropy ratio as described in [45]. 

Representative wavelet scalograms for specimens #1–9 are shown in  
Fig. 5 with the corresponding power signals. In each scalogram, the 
peaks and valleys present along the time axis correspond to sudden 
changes in the power demand caused by vibration, material imperfec
tion, and tool deterioration. These events manifest themselves in the 
time-frequency domain as slender spikes reaching into the upper fre
quency bands but quickly disappearing as the transient event ends. It is 

noted that the occurrence of these transient events forms different dis
tributions under different parameter combinations. For example, the 
occurrence exhibits a more regular pattern for specimens #1 and #8, 
while appearing more sparsely in specimens #2, 5, 6, and 7. The distinct 
patterns in distributions indicate the underlying influence of process 
parameters when coupled with process variations, and they can be 
verified physically against the ground truth by comparing the measured 
and synthetic signals in the frequency domain, as well as statistically, by 
assessing the statistical similarity between the real and synthetic data 
using embedding techniques. 

3.2. Quantification of generated image quality 

To quantify consistency of the synthesized image signals with pro
cess physics and statistical faithfulness to the ground truth data, two 
metrics are considered: 1) the frequency spectra of the generated signals 
as compared to the ground truth, and 2) inter- and intra-class similarity 
as quantified by the method of uniform manifold approximation and 
projection (UMAP). 

It is known from previous work that process parameter settings 
uniquely determine the frequency content of the machining power sig
nals [25]. For instance, the dominant frequency in the power signal 
monotonically increases as cutting speed increases. The same relation
ship holds for the feed/tooth. Each set of parameters (u) should there
fore have a unique frequency spectrum associated with it. This 
observation serves as a basis of comparison for experimental and syn
thetic power signals, namely the frequency spectra of the real and syn
thesized data should be similar under the same process parameters. This 
similarity can be quantified as: 

ξfreq = ρ
(
F (P), F

(
P̃

) )
(7)  

where ξfreq is the spectral similarity metric, ρ is the Pearson correlation 

[46] of the Fourier spectra F (P) and F
(

P̃
)

, P is a ground truth power 

signal, ̃P is a synthetic signal found via inverse wavelet transform [44] of 
the generated scalogram, and both signals share the same u. 

If the generator has correctly established the unique mapping be
tween the frequency distribution of the power signal and the physical 
information embedded in the process parameters, correlation between 
the real and synthetic frequency spectra will approach 1. This metric, 
however, speaks only to each datum and does not assess if unique Ωn(un)

were learned for each combination of process parameters. For this 
purpose, UMAP is investigated. 

The fundamental concept of UMAP is to visualize the distribution of 
high-dimensional data, e.g., scalogram images (or time-frequency 
decomposition of the power signals) in this study, by learning a low- 
dimensional surrogate distribution which maintains the distance be
tween the data points proportional to their high-dimensional counter
parts. As a result, statistically similar data clusters together whereas 
dissimilar data separate. Details of UMAP are provided in [47]. 

To verify the result of power signal synthesis, the synthetic scalo
grams conditioned on the same process parameter combination should 
cluster together while maintaining separability from those conditioned 
on different parameter combinations. Since different CGAN architec
tures will yield different spectral correlations and UMAP embeddings, 
several CGAN architectures are investigated. 

3.3. CGAN architecture search 

To examine the generator behavior across different CGAN architec
tures, experiments have been performed to train fully connected (FC), 1- 
D CNN, and 2-D CNN CGANs. A hyperparameter search is performed for 
each model independently over the ranges listed in Table 2 to determine 
the optimal network structure and training process. These same ranges 
are used to optimize the CNN using backpropagation once the generator 

Table 1 
Milling parameters and measured surface roughness.  

Spec. Speed 
(mm/min) 

Feed/tooth (mm/tooth) Radial DOC (mm) Ra (nm) 

1 200 0.1 0.3 241 
2 200 0.1 0.5 520 
3 200 0.1 0.5 384 
4 200 0.05 0.5 360 
5 200 0.1 0.4 646 
6 100 0.1 0.5 440 
7 200 0.1 0.5 480 
8 300 0.1 0.5 650 
9 200 0.05 0.5 372 
10 200 0.1 0.4 329 
11 100 0.1 0.5 399 
12 300 0.1 0.5 396 
13 200 0.1 0.3 426 
14 200 0.05 0.5 374 
15 200 0.2 0.5 488 
16 100 0.1 0.5 356 
17 200 0.1 0.3 265 
18 200 0.1 0.4 399 
19 200 0.2 0.3 584 
20 300 0.1 0.5 657 
21 200 0.2 0.5 1059  
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and discriminator are trained, also using backpropagation [48]. The 
generator and the discriminator are constrained to the same architecture 
category during the search. 

3.4. Surface roughness prediction 

To predict surface roughness, each CGAN is trained to its equilibrium 
and its generator is used to generate k images for each specimen, 70 % of 
which are used to train a CNN for surface roughness prediction, and the 
remaining 30 % are held out to validate the model after training. (The 
effects of varying k from 0 to 500 images/specimen are shown for the 
CNN and discussed in Section 4.) A CNN is chosen as the surface 
roughness prediction model due to its ability to extract features from the 
scalograms using sequential convolutions and fuse the features from 
low-level to high-level to yield a surface roughness estimate R̂a [49]. 

Surface roughness prediction error is quantified as the mean absolute 
percentage error (MAPE), which is iteratively minimized for a training 
dataset using gradient descent and assessed after training on a validation 
dataset that is held out of the training data [50]. 

4. Results and discussion 

4.1. CGAN-synthesized power signal 

Exemplary data synthesis results associated with each CGAN are 

Fig. 5. Experimentally measured power signals and scalograms.  

Table 2 
ML model hyperparameters and search ranges; SGD: stochastic gradient descent, 
PReLU: parametric rectified linear unit.  

Hyperparameter Range 

Optimizer {Adam, RMSprop, SGD} 
Initial learning rate {1 × 10−6, 1 × 10−5, …, 1 × 10−2} 
Activation function {Leaky ReLU, PReLU} 
Batch size {20, 22, …, 26} 
Dropout probability {0 %, 20 %, …, 80 %} 
z length {200, 400, …, 1000} 
Number of layers {2, 3, …, 6} 
Kernel size (CNN) {3, 5, …, 11} 
Kernels/layer (CNN) {25, 26, …, 29} 
Layer size (FC) {210, 211, …, 214}  

C. Cooper et al.                                                                                                                                                                                                                                  



Journal of Manufacturing Systems xxx (xxxx) xxx

7

shown in Fig. 6. While the synthesized scalograms from both the FC- 
CGAN and the 1-D CNN CGAN exhibit a slender spike pattern similar 
to the ground truth images, they are much more defined for the FC 
model than the 1-D CNN with substantially less noise contamination. 
Notably, while the FC model retains qualitative similarity, e.g., spike 
shape and color, the spikes are shown to translate left and right along the 
time axis as compared to the ground truth, indicating that the GAN is 
synthesizing transient events in the power signal as seen in Fig. 5, but at 
variable times. Meanwhile, the 2-D CNN failed to converge for any 
hyperparameter combination as described by the search ranges 
(Table 2). Oscillatory behavior in the 2-D CNN generator and discrimi
nator loss functions was observed for learning rates between 0.000001 
and 0.001. As a result, no meaningful patterns were recognized from the 
generated scalograms. 

The performance of the CGANs is quantitatively evaluated first using 
frequency spectra correlation between the synthesized power signal 
(obtained using inverse wavelet transform of scalogram from each 
CGAN model) and the ground truth, measured signal for each specimen, 
as depicted in Fig. 7. For the FC CGAN, the average frequency spectra 
correlation is greater than 0.9 across all specimens, indicating that the 
frequencies present in the synthetic signals closely resemble that of the 
ground truth. The results from 1-D CNN CGAN yield correlations in the 
range of 0.6–0.8. This is consistent with the results shown in Fig. 5 that 
the scalogram appearing in the synthetic 1-D CNN images still captures 
the frequency patterns associated with different process parameter 
combinations but is obscured by noise. Since the 2-D CNN images do not 
converge to any frequency pattern, their spectral correlation coefficients 
are near zero as expected. 

The ineffectiveness of the 2-D CNN can be considered as caused by 
the poor performance of the convolutional generators due in part to the 
sparse connections within the network. Whereas the FC generator con
siders every pixel when passing the input through the network layers, 
the convolutional models only consider local regions of 3–11 pixels at 
once. Thus, the FC network can guide training for the entire image 
structure at once whereas the CNNs analyze only local patches. Addi
tionally, the number of learnable parameters is higher for the FC model 
than the 1-D and 2-D CNNs (178 M vs. 1.1 M and 2.8 M, respectively), 
indicating stronger learning potential. Further investigation of the 
learning capability of different CGANs is considered for future studies. 

In addition to the established consistency between the synthesized 
data and the ground truth in terms of frequency patterns, the capability 
of the developed CGAN in learning parameter-specific distributions 
Ωn(un), n = 1, 2, …21 is also evaluated using the UMAP embedding.  

Fig. 6. Synthesized scalograms from different CGAN architectures.  

Fig. 7. Frequency spectra correlation with ground truth for different CGAN 
architectures. 

Fig. 8. UMAP embeddings of FC CGAN images (100/specimen) showing clus
tering of intra-class samples and separation of inter-class ones; UMAP axes are 
dimensionless. 
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Fig. 8 shows the distribution of 2100 synthesized images corresponding 
to 21 different process combinations in the UMAP embedding space. 
Each sample is color-coded according to the class u at the generator’s 
input. It is seen that intra-class clustering and inter-class separation have 
been achieved, confirming a well-trained generator network that is able 
to generate images unique to each process parameter combination. The 
structure of the best-performing FC CGAN is shown in Table 3. The 
optimizer during training is Adam with a learning rate of 0.01. The 
activation function is Leaky ReLU. 

4.2. Surface roughness prediction results 

The optimized CNN structure for surface roughness prediction is 
tabulated in Table 4, trained with Adam optimizer (learning rate 0.01) 
and Leaky ReLU activation function. The prediction error (in MAPE) is 
shown in Fig. 9 as a function of the size of the synthetic data. During this 
experiment, the training dataset size was the only variable while the 
CNN architecture and hyperparameters were held constant. With all 
other variables fixed, a larger dataset size produced a lower prediction 
error because more diverse synthetic training data enabled the CNN to 
fully optimize the network weights and learn the unique patterns from 
the scalograms. It is seen that the surface roughness prediction error is 
reduced from 58 %, when only the ground truth data but no synthetic 
data was used to train the CNN, to 9.1 % when 250 or more synthetic 
samples are included for CNN training. 

In addition to the synthetic data size, the effect of the ground truth 
data size is also evaluated on power signal synthesis and surface 
roughness prediction. Specifically, the CGAN is retrained using pro
gressively smaller ground truth datasets, ranging from 6 images/spec
imen to 2 images/specimen, once again holding constant the CGAN 
architecture and hyperparameters. The resulting MAPE of the roughness 
prediction are shown in Fig. 10. It is seen that increasing the number of 
ground truth samples per specimen significantly improves CGAN image 
sharpness as well as the accuracy of the surface roughness prediction. 
For instance, images synthesized using 3 ground truth samples for CGAN 
training are significantly blurrier and more amorphous than the scenario 
with 6 ground truth training samples per specimen, which produces 
sharper images with more detail in the higher frequency bands. Addi
tionally, MAPE is reduced by 56 % when the ground truth dataset is 
increased from 3 samples/specimen to 6 samples/specimen, indicating 
that the impact of ground truth dataset size is significant in determining 
CGAN and CNN behavior in the developed surface roughness prediction 
method. 

The surface roughness prediction method developed in this work is 
compared to representative work by other researchers on surface 
roughness prediction, and the result is summarized in Table 5. With the 
exception of [21], this study’s technique exhibits a lower prediction 
error than other comparable studies. However, the CGAN + CNN 
approach relies on only a single process signature as input rather than 
the four upon which [21] relies, making the former approach more 
feasible than the latter in a production setting. Additionally, the BGWO 
model requires extraction of 73 statistical features from the four input 
signatures, which is computationally more complex than the CGAN +
CNN approach as presented in this study. Nonetheless, low prediction 
error of [21] indicates the effect of multi-sensor fusion, which will be 

considered as one of the authors’ research topics in the future. 

5. Conclusion 

In an effort to establish a direct mapping between power signals and 
surface roughness in end milling that enables in-process roughness 
quantification and eliminates the bottleneck of post-process inspection, 
a data-driven approach based on CGAN and CNN has been developed. 
The CGAN enables synthesis of high-fidelity power signals under vary
ing process parameter combinations to circumvent the limitation of 
power signal data availability and augment the training dataset. The 
CNN then takes the augmented dataset and learns the surface roughness 
by way of the power signals’ time-frequency characteristics as extracted 
via wavelet transform. An experiment has been carried out on milling 
H13 tool steel to evaluate the developed methods. 

Examining both the physical and statistical patterns of the synthe
sized power data using frequency spectra and UMAP, respectively, it is 
confirmed that CGAN is to learn unique data distributions specific to 
each process parameter combination. The CNN trained on the 
augmented dataset has achieved a 9.1 % mean error in predicting sur
face roughness, confirming the power process signature as a viable 
candidate for in-process surface characterization in machining. It is 
further observed that the prediction error is asymptotic as a function of 
the synthetic dataset size, with a larger ground truth dataset resulting in 
smaller prediction error. 

Industrial application of our method is envisioned to follow a two- 
step process: 1) model recalibration for the process and machine of in
terest, and 2) provisioning of real-world, in-situ production data to 
refine our developed model. Regarding point 1, the CGAN and CNN from 
our method should be recalibrated to the application-specific power 
signals and process parameters to avoid extrapolating beyond the range 
of the training data, which may yield spurious results. The model 
recalibration process to avoid these issues would involve collecting a 
small number of power signals and surface roughness measurements, 

Table 3 
Optimal network structure of FC CGAN.   

Generator Discriminator 

Input z: 1000, u: 200 Scalogram: 16,384, u: 200 
Layer #1 2048 (211) 2048 (211) 
Layer #2 4096 (212) 1024 (210) 
Layer #3 8192 (213) 512 (29) 
Output 16,384 (1282) 1 
Dropout % 60 % 40 % 
Batch Size 64  

Table 4 
Optimal network structure of 2D CNN.  

Input Size 128 × 128 

Kernel #1 11 × 11×64 
Kernel #2 7 × 7×128 
Kernel #3 5 × 5×256 
Kernel #4 and #5 3 × 3×512 
FC #1 4608 
FC #2 1024 
FC #3 64 
Output 1 
Batch Size 64  

Fig. 9. Roughness prediction error vs. synthetic data size; insets depict 
measured vs. CNN-predicted Ra where dashed line is ideal. 
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such as the 126 observed in our study, and retraining the CGAN and CNN 
using the procedure described in Section 3.3. Regarding point 2, the 
post-calibration CNN from point 1 will be used for surface roughness 
prediction during production by providing it with time-frequency im
ages of in-situ power signals acquired by the end user. This imple
mentation scheme represents a low barrier to entry for industrial use of 
the developed techniques as presented in this study. 

Future research will explore the potential of generative models in 
synthesizing additional process signatures. Additionally, tool wear will 
be included in the CGAN input to more comprehensively account for 
process variations in surface characterization. The effects of changing 
tool material and geometry on the scalogram synthesis and surface 
roughness prediction will also be studied in order to make the developed 
model more generalizable across tool types. Finally, physical factors of 
the machining process such as strong plastic deformation and chatter 
will be detected in the power signals and accounted for by future surface 
roughness prediction models to further reduce the prediction error. 

Acknowledgments 

This work is supported by the National Science Foundation under 
grant CMMI-2040288/2040358. Clayton Cooper acknowledges support 
from the National Science Foundation Graduate Research Fellowship 
under Grant No. 1937968. Robert Gao and Jianjing Zhang acknowledge 
support from the NSF Engineering Research Center for Hybrid Autono
mous Manufacturing: Moving from Evolution to Revolution (ERC- 
HAMMER) under award EEC-2133630. 

References 

[1] Toloei A, Stoilov V, Northwood D. The relationship between surface roughness and 
corrosion. In: Volume 2B: Advanced Manufacturing, San Diego, California, USA: 
American Society of Mechanical Engineers; Nov. 2013, p. V02BT02A054. 
〈https://doi.org/10.1115/IMECE2013-65498〉. 

[2] Gu X, Cegla F. The effect of internal pipe wall roughness on the accuracy of clamp- 
on ultrasonic flowmeters. IEEE Trans Instrum Meas 2019;68(1):65–72. https://doi. 
org/10.1109/TIM.2018.2834118. 

[3] Zhao B, Song J, Xie L, Hu Z, Chen J. Surface roughness effect on fatigue strength of 
aluminum alloy using revised stress field intensity approach. Sci Rep 2021;11(1): 
19279. https://doi.org/10.1038/s41598-021-98858-0. 

[4] Quick Guide to Surface Roughness Measurement Mitutoyo; Dec. 2016. 
[5] Ghodrati S, Kandi SG, Mohseni M. Nondestructive, fast, and cost-effective image 

processing method for roughness measurement of randomly rough metallic 
surfaces. J Opt Soc Am A 2018;35(6):998. https://doi.org/10.1364/ 
JOSAA.35.000998. 

[6] Chen C-H, Jeng S-Y, Lin C-J. Prediction and analysis of the surface roughness in 
CNC end milling using neural networks. Appl Sci 2021;12(1):393. https://doi.org/ 
10.3390/app12010393. 

[7] Yeganefar A, Niknam SA, Asadi R. The use of support vector machine, neural 
network, and regression analysis to predict and optimize surface roughness and 
cutting forces in milling. Int J Adv Manuf Technol 2019;105(1–4):951–65. https:// 
doi.org/10.1007/s00170-019-04227-7. 

[8] Sekulic M, Pejic V, Brezocnik M, Gostimirovic M, Hadzistevic M. Prediction of 
surface roughness in the ball-end milling process using response surface 
methodology, genetic algorithms, and grey wolf optimizer algorithm. Adv Prod 
Eng Manag 2018;13(1):18–30. https://doi.org/10.14743/apem2018.1.270. 

[9] Groover MP. Fundamentals of Modern Manufacturing: Materials, Processes, and 
Systems. 4th ed. Hoboken, NJ: J. Wiley & Sons; 2010. 

[10] Sealy MP, Liu ZY, Guo YB, Liu ZQ. Energy based process signature for surface 
integrity in hard milling. J Mater Process Technol 2016;238:284–9. https://doi. 
org/10.1016/j.jmatprotec.2016.07.038. 

[11] Nasir V, Sassani F. A review on deep learning in machining and tool monitoring: 
methods, opportunities, and challenges. Int J Adv Manuf Technol 2021;115(9–10): 
2683–709. https://doi.org/10.1007/s00170-021-07325-7. 

[12] Pimenov DY, Bustillo A, Wojciechowski S, Sharma VS, Gupta MK, Kuntoğlu M. 
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