
Mining and Predicting Users Clickstream Patterns from Noisy

Interleaving Clicks

A. Alamoudi∗, F. Fekri∗, M. Mohandes∗∗, B. Liu∗∗

∗School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

{aalamoudi31, faramarz.fekri}@gatech.edu
∗∗ Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

mohandes@kfupm.edu.sa, bo.liu.777@gmail.com

AbstractÐWith the recent advancement in technology and
a vast amount of information available, research in pattern
mining has started to attract more attention. Specifically,
various techniques have been developed for clickstream mining,
which is a specific type of sequential pattern mining, to discover
the underlying patterns from the Internet user clickstream.
Due to the complexity of clickstream patterns, many of the
existing works applied sequential pattern algorithms to generate
an exponential candidate space of patterns with respect to
patterns letters. Further, those patterns were generated in a
noiseless environment. To address this problem, we focus on
a nonoverlapping clickstream pattern mining task with noisy
interleaving clicks between the clickstream patterns letters.
Additionally, we are interested in labeling the extracted patterns
in the user browsing history. A modified suffix tree is proposed
to extract those patterns with the exact occurrence in the user
noisy database. Following this, we model the user browsing
behavior via a Hidden Markov Model (HMM) to capture
the dependencies between the extracted patterns and then
predict the future clickstream patterns. Experimental results
on both real-life and synthetic datasets show that our proposed
algorithms outperform the state-of-the-art benchmarks in
efficiency and prediction accuracy.

Index TermsÐClickstream, Mining Patterns, HMM, Predict-
ing Users Patterns

I. INTRODUCTION

Pattern mining is considered an important task for dis-

covering useful information or knowledge from data and it

is one of the well-known research areas in various fields

such as bioinformatics [1], online marketing [2], sightseeing

recommendation [3], and task analysis [4]. In many domains,

the sequential ordering of events cannot be ignored. For

instance, a user web clickstream is a sequential record of

events (clicks) when the user is browsing the web. Likewise, in

network security, the order of events to detect the intrusion is

needed. Given that, sequential pattern mining aims to generate

frequent patterns by taking into account chronological orders

of the events and the dependency between them.

Clickstream is a particular sequential data and it is a strict

stream of events in which only one event occurs at any given

time, although events can be repeated in the same sequence.

Particularly, each action that the user performs on the web

represents an event in the clickstream. Therefore, mining

and analyzing clickstream patterns may provide an insight

into the navigation paths and hence help improve the web

design. Also, it can be used to prefetch the predicted pages

to be visited next. As a result, it enhances the performance

of the web application. Moreover, clickstream patterns of

mobile users can be used for WiFi offloading where the traffic

load is shifted from expensive cellular networks to much

cheaper WiFi networks. Thus, it alleviates the burden on the

transmission of the data as well as mitigates network operation

costs and data costs on network operators and mobile users,

respectively.

Many of the previous contributions on Clickstream pat-

tern mining [5], [6] focus on extracting patterns based on

a predefined measure of frequency. However, mining those

patterns raises many challenges as not only the number of

the discovered patterns is huge but also their run time is

costly as they require multiple passes of the dataset. Moreover,

[7], [8] focus on finding the patterns that satisfy various

predefined constraints to reduce the time consumption of the

mining and generate a compact set of patterns. However,

those algorithms generate a very restrictive set of patterns

and may not be applicable for noisy sequences. Besides

mining the clickstream patterns, machine learning models

were applied to clickstream logs for predicting user behavior

over the internet. For instance, in [9], the prediction of user

intention was modeled using a supervised learning problem.

In addition, many works applied Hidden Markov models to

determine the frequency of the most visited webpages during

the session [10], [11]. However, all these models assume that

the clickstreams are generated from a noiseless environment.

Departing from previous works, we focus on how to mine

and predict the user clickstream patterns given that user

clicks might be interleaved with other irrelevant clicks. It is

not necessary for all dependent clicks in a pattern to occur

successively in the browsing history. In reality, the user may

interrupt his/her routine clickstream pattern to perform other

tasks which do not relate to the current pattern. For example,

consider a clickstream pattern of checking the news web

application. For this pattern, the user has to click on the news

type from the dashboard, select the particular section tab then

click on the interesting news. However, in some cases, after

clicking on the particular section tab, the user may check

the email in-box, compose a message or even leave the news

application and open the news application on a different tab.

Further, the user clicks might be interleaved, the user clicks

may be preceded by relevant clicks. These clicks include other

preceding clicks in the same pattern and clicks that set up

the environment before the current pattern occurs. Dependent

clicks always appear before the current click occurs while

clicks for setting up the environment may occur only once. For

instance, paying the rent bill from the bank account requires

the user to type the bank website on the browser address

bar, enter the user login credentials, select the account type,

pay the required amount, and logout. Here, all clicks from

login to logout are dependent on each other while typing the

bank website, and any other necessary clicks before them are

setting up the environment. In addition to the aforementioned

reasons, user clicks may have been followed by other relevant

clicks. For some web applications, the user may execute a

sequence of clicks that constitutes the clean-up phase of the

accomplished clickstream pattern. In the previous example of

paying the rent bill, the logout click needs to be followed by

some other clicks on the web application. Therefore, mining

incomplete clickstream patterns, i.e. missing a few clicks,

would not be useful for learning and predicting purpose. On

the other hand, mining clickstream patterns with few extra

clicks would be irrelevant and exert an additional overhead

cost.

The contributions of our paper are summarized as follows:

• We propose a modified suffix tree for mining frequent

clickstream patterns for web browsing users in a noisy

environment where some irrelevant clicks are inserted

into a pattern, and between different clickstream patterns

in the clickstream. This new approach can eliminate

those irrelevant clicks, extract the underlying patterns

efficiently while maintaining the anti-monotonicity prop-

erty, then identify them in the browsing history.

• Based on the extracted patterns, we model the user

behavior over the Internet via HMM to learn and predict

the future user navigational pattern.

• We evaluate the proposed algorithms through extensive

experiments using both synthetic and real-world datasets.

II. USER CLICKSTREAM PATTERNS MINING VIA

MODIFIED SUFFIX TREE

Considering multiple web domains, we are given data

from N Sessions collected from the user past activities.

Each session S(i) consists of the order list of ni clicks, i.e

S(i) = {a
(i)
1 , · · · , a

(i)
ni
} where a

(i)
j ∈ {a1, a2, · · · , aL} and

L is the total number of possible clicks in the browsing

history. Further, let’s assume that there is a K higher order

level of clickstream patterns (hereafter referred as patterns)

Ai ∈ Γ where Γ = {A1, · · · , AK} that each pattern Ai

consists of an ordered list of corresponding clicks. Thus, given

unlabeled sequences of clicks a
(i)
j in each session Si for

i = {1, 2, · · · , N}, we propose to find the correct set of K

patterns Γ = {A1, · · · , AK} and group the clicks in each

S(i) into sequences of some patterns from Γ. This problem

is challenging since the click sequences may be interleaved

with other irrelevant actions. For example, two imaginary click

sequences {a1, a5, a10, a4} and {a1, a12, a4} may both belong

to the same pattern A = {a1, a4}. Further, the number of

patterns is unknown in advance. Hence, mining and labeling

the user patterns can be accomplished by resorting on a mod-

ified suffix tree based on shifted time window. Specifically, at

each time window, different candidate patterns are generated

by identifying the potential noisy clicks. Then, the extracted

patterns are labeled as one of the K patterns in the user

browsing history.

A. Modified Suffix Tree Structure

In this work, we use suffix tree as a model for generating

a dictionary of subsequences from the user activities over the

Internet. Suffix tree is a well-known model for many applica-

tions such as text searching and matching. It is also known for

generating a linear set of candidates. In our proposed model,

instead of using the standard suffix tree, we intend to use

a modified version to incorporate the interleaving clicks of

the user while browsing any domain over the Internet. Those

clicks can be categorized as interrupting the user pattern clicks

(hereafter referred to as noisy clicks) or setting /finishing up

the session clicks (hereafter referred to as non-pattern clicks).

As such we assume that there might exist some noisy clicks

within the user pattern clicks as well as non-pattern clicks

between the user patterns. In this framework, we consider two

scenarios. In the first one, we assume at most a single noisy

click per pattern. In the second scenario, multiple noisy clicks

per pattern may exist.

1) Generating Non-overlapping Candidate Patterns Dictio-

nary: In this setup, we generate candidate patterns to form a

dictionary within a specified time window. This time window

specifies the maximum length of the generated patterns. Par-

ticularly in the case of at most one noisy click per pattern,

we generate a set of candidate patterns using suffix tree by

considering the first click in the time window as the root of the

tree and each click in the time window is potentially a noisy

click, as depicted in Table I. Next, we shift the time window by

one click and we repeat the process until we cover the entire

browsing history of the user. For each generated candidate

pattern, we consider the position index of the first and last

click of the pattern in the user browsing session and the noisy

click. As such, we remove any newly generated candidate

patterns when their positions overlap with the existed ones in

the dictionary to guarantee that all the candidate patterns in

the dictionary are non-overlapping candidate patterns.

In a multiple noisy clicks scenario, again we generate

the candidate patterns within the specified time window by

resorting on the suffix tree. However, applying the same

approach for a single noisy click would not be beneficial

because the number of noisy clicks within the pattern is

unknown. However, using the fact that the clicks of the

user patterns occur in sequential order and many of the user

patterns may have no noisy clicks, we can generate non-

overlapping candidate patterns by considering their positions

in the user browsing session as shown in Table II.

2) Labeling The Frequent Patterns: We further label the

sequence of unlabeled clicks a
(i)
j in each session S(i) for

i = {1, 2, · · · , N} to one of the frequent generated patterns.

For the case of only single noise insertion, we calculate the

frequency of the generated candidate patterns from the created

dictionary as shown in Table I. Next, we sequentially assign

the most frequent candidate pattern within the time window

as a pattern for the user by maintaining the anti-monotonicity

property, as explained in the following. let P1 = {a1, a5, a10}
and P2 = {a1, a5} are the two most frequent candidate

patterns within a particular time window and let f1 and f2
indicate the frequencies of them, respectively. If f1 ⩾ f2 we

select P1 as a pattern otherwise we select P2 as a pattern.

In this work, we label the click sequence within the specified

time window as either Ai or Âi in order to understand and

learn the user behavior. We use Ai to indicate the pattern

is generated without inserting any noisy click from the user

web activities and use Âi to indicate that the pattern is

generated with interleaving noisy clicks. Then, we label the

remaining set of clicks in the session as NP if the number

of the remaining clicks is less than the size of the time

window, where NP indicates non-pattern clicks. Otherwise,

we shift the time window by the length of the pattern Ai, and

since we assume that there might be some non-pattern clicks,

those clicks would have a low frequency in the user history.

Hence we keep shifting the time window until we observe

a spike in the frequency within the generated patterns in the

particular time window. Again, we label the click sequence

within the time window as Aj or Âj by maintaining the

anti-monotonicity property, and the clicks between the labeled

patterns will be considered as NP as shown in Table I.

In a multiple noisy clicks scenario, we calculate the fre-

quency of the generated candidate patterns from the created

dictionary in Table II. Then the patterns that satisfy the

threshold α will be elected as patterns for the user. Following

this, we will trace the click positions of the patterns in the

user browsing history in order to label the clicks. If the

pattern symbols occurred sequentially without any noisy clicks

insertions, it will be labeled as Ai otherwise it will be labeled

as Âi. In addition, applying anti-monotonicity property will

be considered while labeling the clicks. Then, the rest of the

clicks that are not participating in the labeling process will be

labeled as NP .

III. MODELING THE USER WEB BROWSING BEHAVIOR

Next, our goal is to model the user web browsing behavior

from his/her clickstream using which we predict the next

pattern of clicks that will be generated by the user in the

future. Note that to develop a reliable prediction engine for the

user, we need to learn the statistical properties of the patterns

and whether or not the user patterns are interleaved with

other irrelevant clicks. This challenging unsupervised learning

problem can be accomplished by using models such as Hidden

Markov Models (HMM) [12]. Particularly, we need to learn

the joint distribution P(Xn,Yn, Ŷn) of unobserved states

X
n = {X1, · · · , Xn} (where each Xj ∈ {1, 2, · · · ,K}),

the latent true patterns Y
n = {Y1, · · · , Yn} (where each

Yj in our case is in Γ), and the interleaved observed pat-

terns Ŷn = {Ŷ1, · · · , Ŷn} (where each Ŷj ∈ {Âj , Aj} for

j ∈ {1, 2, · · · ,K}). We assume that the state transition has

Markovian property and each observed pattern depends only

on the current state as shown in Fig. 1. Training of the

HMM can be performed by approximately estimating the

maximum likelihood (MLE) parameters using the Expectation

Maximization algorithm (EM).

Fig. 1: HMM structure for learning the user behavior

A. User Behavior Prediction Structure

Based on the theory of Hidden Markov Models, HMM is

widely used for learning and predicting the future state over

time series by exploiting the initial probabilities of all the

hidden states, the transition probability matrix between the

hidden states and the emission probability matrix between the

hidden state and the observed states. In our proposed model,

instead of using the standard HMM, we use a modified version

of HMM in order to adapt it to the interleaved patterns.

Thus, for a sequence of length n, the joint distribution

P(Xn,Yn, Ŷn) can be parametrized as P(Xn,Yn, Ŷn|θ) =
P(X1;π)

∏n

i=2 P(Xi|Xi−1;M)
∏n

i=1 P(Yi|Xi;ϕ)∏n

i=1 P(Ŷi|Yi;µ), where π, M , ϕ, µ are the learning

parameters of the initial state distribution, the state transition

probability matrix, the states-latent patterns emission

probability matrix and the latent patterns-observed patterns

emission probability matrix, respectively. Formally, given an

observed sequence, we would like to compute the likelihood

that the observed sequence is generated by the model. Hence,

we can learn the model parameters by resorting on the

forward-backward approach where the observed sequence

can be divided into two sub-sequences, past sub-sequence

{Ŷ1, · · · , Ŷt}, and future sub-sequence {Ŷt+1, · · · , Ŷn}. The

forward algorithm calculates the joint probabilities between

pattern label is being in a state i at time t, Xt(i), and the

emitted patterns until time t, {Ŷ1, · · · , Ŷt}. Whereas, the

backward algorithm calculates the posterior probabilities of

the emitted patterns from time t + 1 to n, {Ŷt+1, · · · , Ŷn},

given the pattern label is being in a state i at time t, Xt(i).
More formally, the forward-backward formulations are shown

in (1) and (2)

αt(i) = P(Ŷ1, · · · , Ŷt, Xt = i) (1)

=
K∑

j=1

αt−1(j)P(Xt = i|Xt−1 = j)P(Ŷt|Yt = Ai)

1[Yt = Ai].

TABLE I: Generating the candidate patterns and labeling the user browsing activities in single interleaving noisy click setup

User activities=[abcfabdc], time window= 4

Timestamp (t) noisy click Generated candidate pattern Location Frequency

f abc f,1,3 1
1 c abf c,1,3 1

b acf b,1,4 1

2 a bcf a,2,4 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
5 b adc b,5,8 1

Labeled user activities=[AinpÂi]

TABLE II: Generating the candidate patterns and labeling the user browsing activities in multiple interleaving noisy clicks setup

User activities=[abcfabdcabc], time window= 3

Timestamp (t) Generated candidate pattern Location Frequency

1 abc 1,3 1

2 bcf 2,4 1

.

.

.
.
.
.

.

.

.
.
.
.

9 abc 9,11 2

α = 1, Elected patterns=[abc] and Labeled user activities=[AinpÂiAi]

βt−1(i) = P(Ŷt, · · · , Ŷn|Xt = i) (2)

=
K∑

j=1

βt(j)P(Xt = j|Xt−1 = i)P(Ŷt|Yt = Ai)

1[Yt = Ai],

where αt(i) and βt(i) denote the forward and backward

probabilities at time t, respectively, for t = {1, 2, · · · , n} and

i ∈ {1, 2, · · · ,K}. Next, to learn the parameters of the model,

we resort on EM algorithm to iteratively find the maximum

likelihood estimation. Using the definitions of forward and

backward probabilities, we can calculate auxiliary variables

γt(i), ξt(i, j), ηt(i, Aj) and λt(Ai). These variables represent

the posterior probabilities of the pattern label at state i , the

posterior probabilities between adjacent pattern label at state

i and state j, the posterior probabilities between the pattern

label at state i and the latent true pattern at state Aj , and the

posterior probabilities of the latent true pattern at state Ai,

respectively. More specifically, we have

γt(i) = P(Xt = i|Ŷ1, · · · , Ŷn) =
αt(j)βt(j)∑K

j=1 αt(j)βt(j)
(3)

ξt(i, j) = P(Xt = i,Xt+1 = j|Ŷ1, · · · , Ŷn) (4)

= αt(i)P(Xt+1 = j|Xt = i)

P(Ŷt+1|Yt+1 = Aj)1[Yt+1 = Aj]βt+1(j),

ηt(i, j) = P(Xt = i, Yt = Aj |Ŷ1, · · · , Ŷn) (5)

=





∑K

m=1 αt−1(m)

P(Xt = i|Xt−1 = m)1[Yt = Ai]

P(Ŷt+1|Yt = Ai)βt(i) i = j

0 i ̸= j,

λt(Ai) = P(Yt = Ai, Ŷ1, · · · , Ŷn) (6)

=





∑K

m=1 αt−1(m)

P(Xt = i|Xt−1 = m)1[Yt = Ai]

P(Ŷt|Yt = Ai)βt(i) i = j

0 i ̸= j.

Then, using these variables we can calculate the HMM pa-

rameters using equations (7) through (10)

πi = P(X0 = i) =
1

L

L∑

l=1

γl
0(i) (7)

Mi,j = P(Xt+1 = j|Xt = i) (8)

=

∑L

l=1

∑n

t=1 ξ
l
t(i, j)∑K

j=1

∑L

l=1

∑n

t=1 ξ
l
t(i, j)

ϕ(i, j) = P(Yt = Aj |Xt = i) (9)

=

∑L

l=1

∑n

t=1 η
l
t(i, j)∑K

j=1

∑L

l=1

∑n

t=1 η
l
t(i, j)

µ(Ai, u) = P(Ŷt = u|Yt = Ai) (10)

=





∑
L

l=1

∑
n

t=1
λl

t
(Ai)1[Ŷ l

t
=u]

∑
L

l=1

∑
n

t=1
λl

t
(Ai)1[Ŷ l

t
=Ai]+λl

t
(Ai)1[Ŷ l

t
=Âi]

u ∈ {Ai, Âi}

0 otherwise,

where t and L are the timesteps, and the number of itera-

tions, respectively. The model is built based on the training

dataset and validated using the testing dataset. Specifically,

we validated our model based on the accuracy performance

of predicting the probability distribution of the user pattern at

t+ 1 as

P(Ŷt+1|Ŷ1, · · · , Ŷt) ∝ P(Ŷ1, · · · , Ŷt, Ŷt+1) (11)

=
∑

Yt+1

∑

Xt+1

∑

Xt

P(Ŷt+1|Yt+1)P(Yt+1|Xt+1)

P(Xt+1|Xt)P(Xt|Ŷ1, · · · , Ŷt)

IV. EVALUATION

In this section, we conduct several experiments on the

real world and synthetic datasets to validate and demonstrate

the effectiveness of our mining and predictive models. We

compare our model with a set of benchmark references.

In mining the user patterns setup, We compare our model

with CM-WSPADE [13] which is used for mining weighted

sequential patterns as well as NOSEP [8] that is used for

mining non-overlapping sequential patterns with predefined

gaps. Pertaining the predictive setup, we evaluate the accuracy

of our model with the Long short-term memory (LSTM)

model in [14] and SlidingWindow-MC algorithm [15] as

benchmarks for top-n predicted patterns.

A. Generating Ground Truth Patterns from Synthetic and

Real-World Datasets

The web content today is highly dynamic and hence it is

challenging to mimic the user browsing behavior. However,

consistent user actions can be learned from the past and

applied to consistent content layouts. By the usability principle

of consistency [16], website layouts should follow the same

design templates, despite changes in the content, to ensure

high usability of the website. The consistency of a web-page

layout is maintained through an HTML Document Object

Model (DOM) [17] tree. The user may perform a sequence of

DOM actions, separated by non-DOM actions such as opening

the browser, opening a tab, typing a URL in the address bar,

clicking on a bookmark, etc. While DOM actions depend

on the result of a previous DOM action, they do not have

any dependency on non-DOM actions. Following this, we

extract the DOM tree of multiple web domains to generate

a set of patterns for a particular user where the clicks in

the patterns are obeying the path rules in the DOM tree. In

this study, we generated patterns with varying sizes per user.

Using the generated patterns, we created the browsing history

of the user by establishing the transition matrix between the

patterns, assuming that the transition between the patterns has

a Markovian property. Further, each pattern in the browsing

history is followed by arbitrary non-pattern clicks. Then, we

considered the case that some patterns are probabilistically

interleaved by noisy clicks. For this work, we first consider the

case of only a single inserted noisy click per pattern followed

by multiple inserted noisy clicks per pattern.

Next, we used a real-world dataset that is collected by

wireless provider from over 1000 cell tower locations for more

than 5000 mobile users. This dataset contains the web access

log of the mobile users for the period of one month. Each

access log in the dataset is accompanied by the encrypted

subscriber ID, session time, traffic volume, cell tower ID, and

website address. In this setup, we first assumed each web

access log is a click initiated by the user and extracted the

web access logs of the top ten users who have rich browsing

history. We divided the browsing history for each user into

multiple sessions based on the time elapsed between the web

access logs and we selected the time threshold for each user

seperatly. After that, we passed the generated sessions into

Prefixspan [18] to extract the underlying patterns based on

the provided relative support. According to that, any unlabeled

clicks in the user browsing history were assumed to be non-

pattern clicks. Again, we assumed that the transition between

the patterns has a Markovian property and each click depends

only on the current pattern. Lastly, we probabilistically in-

serted some patterns with noisy clicks for the case of single

insertion per pattern and multiple insertions per pattern.

B. Simulation Results for Mining User Pattern

We evaluated all the models on each user and we reported

the average results among all the users. In this framework, we

examined all the models on 5% and 10% noise rates. Based on

[19], we considered the pattern sizes between 3 and 10 clicks

for mining the user patterns. We utilized the precision, recall,

and F1 score as measures of performance. Also, we conducted

extensive experiments on a synthetic dataset and due to page

limitations, we highlighted the results of the real dataset. Table

III shows the performance of mining users patterns for our

proposed model and the benchmarks for varying noise rate

insertion in the setup of a single interleaving noisy click

and multiple interleaving noisy clicks. Our proposed model

based on suffix tree achieves the best performance among the

benchmark methods in terms of precision and F1 score on

both setups. We also noted that our model is robust against

the variation of noise rate. However, the performance of the

benchmark models is degraded when the rate of noise insertion

is increased particularly in the multiple noisy clicks setup.

C. Simulation Results for Predicting User Patterns

We first trained our proposed model on 70% of the training

data and evaluated on the test data for each user. Then, we

reported the average performance among all users. Since all

the extracted pattern are relevant, we utilized the hit rate as

a measure of performance accuracy for all models. Fig. 2

and Fig. 3 show the performance of our model in comparison

with the benchmarks for the hit rate accuracy on top n most

probable candidates. Further, we showed the superiority of

our model when we compare it with the SlidingWindow-

MC algorithm. Particularly, our proposed model achieved an

accuracy of 60% in comparison to 37% in the SlidingWindow-

MC model. Additionally, the results show that our proposed

model could achieve an accuracy of ∼ 70% on the real

dataset for multiple noisy clicks setup. It also shows a slightly

better performance of our model than the LSTM model.

Although LSTM is widely used for learning and capturing the

dependency over time series, these simulation results suggest

that our proposed model was a better fit for the datasets.

TABLE III: Performance results for mining user patterns in single and multiple interleaving noisy click setups using real dataset

Noise rate Models
Noise interleaving setups

(Single) (Multiple)
Precision Recall F1 score Precision Recall F1 score

Modified Suffix Tree 0.9 0.75 0.82 0.8 0.53 0.64
5% NOSEP 0.7 0.35 0.47 0.7 0.33 0.45

CM-WSPADE 0.7 0.32 0.44 0.7 0.28 0.4

Modified Suffix Tree 0.9 0.75 0.82 0.7 0.39 0.5
10% NOSEP 0.7 0.28 0.4 0.6 0.23 0.33

CM-WSPADE 0.7 0.23 0.35 0.6 0.22 0.33

Fig. 2: Performance comparison of various prediction models on synthetic dataset where

M, L, H, n=1 and n>1 denote SlidingWindow-MC, LSTM, Proposed HMM, single

interleaving noisy click setup and multiple interleaving noisy clicks setup, respectively.

Fig. 3: Performance comparison of various prediction models on real dataset where

M, L, H, n=1 and n>1 denote SlidingWindow-MC, LSTM, Proposed HMM, single

interleaving noisy click setup and multiple interleaving noisy clicks setup, respectively.

V. CONCLUSION

Understanding and utilizing the consistency of the user

browsing behavior through the webpage layout is the key

element for extracting the underlying patterns of the user that

tackles the dynamic changes of the content in the websites.

Also, predicting the user patterns accurately in advance is an-

other major solution for WiFi offloading and hence alleviates

the cost and traffic on the user and the network providers,

respectively. In this paper, we developed clickstream min-

ing for the user browsing activities with interleaving noisy

clicks. Those interleaving noisy clicks were randomly inserted

per pattern and considered in two different setups, a single

noisy click, and multiple noisy clicks. Our simulation results

suggested that we can efficiently and accurately extract the

underlying patterns of the user click activity when compared

to the state of art models. Moreover, it showed that our model

is more robust to the noisy interleaving clicks. Finally, the

employed pattern predictive model based on HMM showed

an impressive performance with an accuracy of 81% for

outputting the top 5 most probable user patterns.

REFERENCES

[1] X. Wu, X. Zhu, Y. He, and A. N. Arslan, ªPmbc: Pattern mining
from biological sequences with wildcard constraints,º Comput. Biol.

Med., vol. 43, no. 5, p. 481±492, jun 2013. [Online]. Available:
https://doi.org/10.1016/j.compbiomed.2013.02.006

[2] Y. Thushara and V. Ramesh, ªA study of web mining application
on e-commerce using google analytics tool,º International Journal Of

Computer Applications, vol. 149, no. 11, pp. 21±26, 2016.
[3] L. Zhang, P. Luo, L. Tang, E. Chen, Q. Liu, M. Wang, and H. Xiong,

ªOccupancy-based frequent pattern mining,º ACM Transactions on

Knowledge Discovery from Data (TKDD), vol. 10, no. 2, pp. 1±33,
2015.

[4] Y. J. M. Pokou, P. Fournier-Viger, and C. Moghrabi, ªAuthorship
attribution using small sets of frequent part-of-speech skip-grams,º in
The Twenty-Ninth International Flairs Conference, 2016.

[5] A. Rajimol and G. Raju, ªWeb access pattern mining±a survey,º
in International Conference on Data Engineering and Management.
Springer, 2010, pp. 24±31.

[6] S. Vijayalakshmi, V. Mohan, and S. S. Raja, ªMining of users’ access
behaviour for frequent sequential pattern from web logs,º International

Journal of Database Management System (IJDM), vol. 2, 2010.
[7] T. Van, A. Yoshitaka, and B. Le, ªMining web access patterns with

super-pattern constraint,º Applied Intelligence, vol. 48, no. 11, pp. 3902±
3914, 2018.

[8] Y. Wu, Y. Tong, X. Zhu, and X. Wu, ªNosep: Nonoverlapping sequence
pattern mining with gap constraints,º IEEE transactions on cybernetics,
vol. 48, no. 10, pp. 2809±2822, 2017.

[9] G. Suchacka, M. Skolimowska-Kulig, and A. Potempa, ªClassification
of e-customer sessions based on support vector machine.º ECMS,
vol. 15, pp. 594±600, 2015.

[10] M. A. Awad and I. Khalil, ªPrediction of user’s web-browsing behavior:
Application of markov model,º IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1131±1142,
2012.

[11] Y. Shi, Y. Wen, Z. Fan, and Y. Miao, ªPredicting the next scenic spot
a user will browse on a tourism website based on markov prediction
model,º in 2013 IEEE 25th International Conference on Tools with

Artificial Intelligence. IEEE, 2013, pp. 195±200.
[12] L. Rabiner and B. Juang, ªAn introduction to hidden markov models,º

ieee assp magazine, vol. 3, no. 1, pp. 4±16, 1986.
[13] H. M. Huynh, L. T. Nguyen, B. Vo, A. Nguyen, and V. S. Tseng,

ªEfficient methods for mining weighted clickstream patterns,º Expert

Systems with Applications, vol. 142, p. 112993, 2020.
[14] A. Alamoudi, M. Liu, A. Payani, F. Fekri, and D. Li, ªPredicting mobile

users traffic and access-time behavior using recurrent neural networks,º
in 2021 IEEE Wireless Communications and Networking Conference

(WCNC). IEEE, 2021, pp. 1±6.
[15] S. D. Bernhard, C. K. Leung, V. J. Reimer, and J. Westlake, ªClick-

stream prediction using sequential stream mining techniques with
markov chains,º in Proceedings of the 20th International Database

Engineering & Applications Symposium, 2016, pp. 24±33.
[16] J. Butler, W. Lidwell, and K. Holden, Universal principles of design.

Rockport publishers Gloucester, MA, USA, 2010, 112±113., 2003.
[17] J. Stenback, P. Le HÂegaret, and A. Le Hors, ªDocument object model

(dom) level 2 html specification,º W3C Recommendation, vol. 9, 2003.
[18] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,

and M.-C. Hsu, ªMining sequential patterns by pattern-growth: The
prefixspan approach,º IEEE Transactions on knowledge and data en-

gineering, vol. 16, no. 11, pp. 1424±1440, 2004.
[19] L. Test. (2021) 2021 digital experience benchmarks by

industry. [Online]. Available: https://contentsquare.com/blog/2021-
digital-experience-benchmarks-by-industry/

