Mining and Predicting Users Clickstream Patterns from Noisy
Interleaving Clicks

A. Alamoudi*, F. Fekri*, M. Mohandes**, B. Liu**
*School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
{aalamoudi31, faramarz.fekri} @ gatech.edu
** Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
mohandes @kfupm.edu.sa, bo.liu.777 @ gmail.com

Abstract—With the recent advancement in technology and
a vast amount of information available, research in pattern
mining has started to attract more attention. Specifically,
various techniques have been developed for clickstream mining,
which is a specific type of sequential pattern mining, to discover
the underlying patterns from the Internet user clickstream.
Due to the complexity of clickstream patterns, many of the
existing works applied sequential pattern algorithms to generate
an exponential candidate space of patterns with respect to
patterns letters. Further, those patterns were generated in a
noiseless environment. To address this problem, we focus on
a nonoverlapping clickstream pattern mining task with noisy
interleaving clicks between the clickstream patterns letters.
Additionally, we are interested in labeling the extracted patterns
in the user browsing history. A modified suffix tree is proposed
to extract those patterns with the exact occurrence in the user
noisy database. Following this, we model the user browsing
behavior via a Hidden Markov Model (HMM) to capture
the dependencies between the extracted patterns and then
predict the future clickstream patterns. Experimental results
on both real-life and synthetic datasets show that our proposed
algorithms outperform the state-of-the-art benchmarks in
efficiency and prediction accuracy.

Index Terms—Clickstream, Mining Patterns, HMM, Predict-
ing Users Patterns

I. INTRODUCTION

Pattern mining is considered an important task for dis-
covering useful information or knowledge from data and it
is one of the well-known research areas in various fields
such as bioinformatics [1], online marketing [2], sightseeing
recommendation [3], and task analysis [4]. In many domains,
the sequential ordering of events cannot be ignored. For
instance, a user web clickstream is a sequential record of
events (clicks) when the user is browsing the web. Likewise, in
network security, the order of events to detect the intrusion is
needed. Given that, sequential pattern mining aims to generate
frequent patterns by taking into account chronological orders
of the events and the dependency between them.

Clickstream is a particular sequential data and it is a strict
stream of events in which only one event occurs at any given
time, although events can be repeated in the same sequence.
Particularly, each action that the user performs on the web
represents an event in the clickstream. Therefore, mining
and analyzing clickstream patterns may provide an insight
into the navigation paths and hence help improve the web
design. Also, it can be used to prefetch the predicted pages

to be visited next. As a result, it enhances the performance
of the web application. Moreover, clickstream patterns of
mobile users can be used for WiFi offloading where the traffic
load is shifted from expensive cellular networks to much
cheaper WiFi networks. Thus, it alleviates the burden on the
transmission of the data as well as mitigates network operation
costs and data costs on network operators and mobile users,
respectively.

Many of the previous contributions on Clickstream pat-
tern mining [5], [6] focus on extracting patterns based on
a predefined measure of frequency. However, mining those
patterns raises many challenges as not only the number of
the discovered patterns is huge but also their run time is
costly as they require multiple passes of the dataset. Moreover,
[7], [8] focus on finding the patterns that satisfy various
predefined constraints to reduce the time consumption of the
mining and generate a compact set of patterns. However,
those algorithms generate a very restrictive set of patterns
and may not be applicable for noisy sequences. Besides
mining the clickstream patterns, machine learning models
were applied to clickstream logs for predicting user behavior
over the internet. For instance, in [9], the prediction of user
intention was modeled using a supervised learning problem.
In addition, many works applied Hidden Markov models to
determine the frequency of the most visited webpages during
the session [10], [11]. However, all these models assume that
the clickstreams are generated from a noiseless environment.

Departing from previous works, we focus on how to mine
and predict the user clickstream patterns given that user
clicks might be interleaved with other irrelevant clicks. It is
not necessary for all dependent clicks in a pattern to occur
successively in the browsing history. In reality, the user may
interrupt his/her routine clickstream pattern to perform other
tasks which do not relate to the current pattern. For example,
consider a clickstream pattern of checking the news web
application. For this pattern, the user has to click on the news
type from the dashboard, select the particular section tab then
click on the interesting news. However, in some cases, after
clicking on the particular section tab, the user may check
the email in-box, compose a message or even leave the news
application and open the news application on a different tab.
Further, the user clicks might be interleaved, the user clicks
may be preceded by relevant clicks. These clicks include other
preceding clicks in the same pattern and clicks that set up

the environment before the current pattern occurs. Dependent
clicks always appear before the current click occurs while
clicks for setting up the environment may occur only once. For
instance, paying the rent bill from the bank account requires
the user to type the bank website on the browser address
bar, enter the user login credentials, select the account type,
pay the required amount, and logout. Here, all clicks from
login to logout are dependent on each other while typing the
bank website, and any other necessary clicks before them are
setting up the environment. In addition to the aforementioned
reasons, user clicks may have been followed by other relevant
clicks. For some web applications, the user may execute a
sequence of clicks that constitutes the clean-up phase of the
accomplished clickstream pattern. In the previous example of
paying the rent bill, the logout click needs to be followed by
some other clicks on the web application. Therefore, mining
incomplete clickstream patterns, i.e. missing a few clicks,
would not be useful for learning and predicting purpose. On
the other hand, mining clickstream patterns with few extra
clicks would be irrelevant and exert an additional overhead
cost.

The contributions of our paper are summarized as follows:

o We propose a modified suffix tree for mining frequent
clickstream patterns for web browsing users in a noisy
environment where some irrelevant clicks are inserted
into a pattern, and between different clickstream patterns
in the clickstream. This new approach can eliminate
those irrelevant clicks, extract the underlying patterns
efficiently while maintaining the anti-monotonicity prop-
erty, then identify them in the browsing history.

o Based on the extracted patterns, we model the user
behavior over the Internet via HMM to learn and predict
the future user navigational pattern.

o We evaluate the proposed algorithms through extensive
experiments using both synthetic and real-world datasets.

II. USER CLICKSTREAM PATTERNS MINING VIA
MODIFIED SUFFIX TREE

Considering multiple web domains, we are given data
from N Sessions collected from the user past activities.
Each session S consists of the order list of n; clicks, i.e
SO = {a'? ... 4V where ag-z) € {ai,as, -+ ,ar} and
L is the total number of possible clicks in the browsing
history. Further, let’s assume that there is a K higher order
level of clickstream patterns (hereafter referred as patterns)
A; € T where T' = {A;,---, Ak} that each pattern A;
consists of an ordered list of corresponding clicks. Thus, given
unlabeled sequences of clicks ajl) in each session S for
i ={1,2,---,N}, we propose to find the correct set of K
patterns I' = {A;,---, Ak} and group the clicks in each
S into sequences of some patterns from I'. This problem
is challenging since the click sequences may be interleaved
with other irrelevant actions. For example, two imaginary click
sequences {a1, as, @19, a4} and {ay, aj2, a4} may both belong
to the same pattern A = {aj,a4}. Further, the number of
patterns is unknown in advance. Hence, mining and labeling

the user patterns can be accomplished by resorting on a mod-
ified suffix tree based on shifted time window. Specifically, at
each time window, different candidate patterns are generated
by identifying the potential noisy clicks. Then, the extracted
patterns are labeled as one of the K patterns in the user
browsing history.

A. Modified Suffix Tree Structure

In this work, we use suffix tree as a model for generating
a dictionary of subsequences from the user activities over the
Internet. Suffix tree is a well-known model for many applica-
tions such as text searching and matching. It is also known for
generating a linear set of candidates. In our proposed model,
instead of using the standard suffix tree, we intend to use
a modified version to incorporate the interleaving clicks of
the user while browsing any domain over the Internet. Those
clicks can be categorized as interrupting the user pattern clicks
(hereafter referred to as noisy clicks) or setting /finishing up
the session clicks (hereafter referred to as non-pattern clicks).
As such we assume that there might exist some noisy clicks
within the user pattern clicks as well as non-pattern clicks
between the user patterns. In this framework, we consider two
scenarios. In the first one, we assume at most a single noisy
click per pattern. In the second scenario, multiple noisy clicks
per pattern may exist.

1) Generating Non-overlapping Candidate Patterns Dictio-
nary: In this setup, we generate candidate patterns to form a
dictionary within a specified time window. This time window
specifies the maximum length of the generated patterns. Par-
ticularly in the case of at most one noisy click per pattern,
we generate a set of candidate patterns using suffix tree by
considering the first click in the time window as the root of the
tree and each click in the time window is potentially a noisy
click, as depicted in Table I. Next, we shift the time window by
one click and we repeat the process until we cover the entire
browsing history of the user. For each generated candidate
pattern, we consider the position index of the first and last
click of the pattern in the user browsing session and the noisy
click. As such, we remove any newly generated candidate
patterns when their positions overlap with the existed ones in
the dictionary to guarantee that all the candidate patterns in
the dictionary are non-overlapping candidate patterns.

In a multiple noisy clicks scenario, again we generate
the candidate patterns within the specified time window by
resorting on the suffix tree. However, applying the same
approach for a single noisy click would not be beneficial
because the number of noisy clicks within the pattern is
unknown. However, using the fact that the clicks of the
user patterns occur in sequential order and many of the user
patterns may have no noisy clicks, we can generate non-
overlapping candidate patterns by considering their positions
in the user browsing session as shown in Table II.

2) Labeling The Frequent Patterns: We further label the
sequence of unlabeled clicks agz) in each session S(*) for
i=1{1,2,---,N} to one of the frequent generated patterns.
For the case of only single noise insertion, we calculate the

frequency of the generated candidate patterns from the created
dictionary as shown in Table I. Next, we sequentially assign
the most frequent candidate pattern within the time window
as a pattern for the user by maintaining the anti-monotonicity
property, as explained in the following. let P; = {a1, a5, a10}
and P, = {aj,as} are the two most frequent candidate
patterns within a particular time window and let f; and fo
indicate the frequencies of them, respectively. If f1 > fo we
select P; as a pattern otherwise we select P, as a pattern.
In this work, we label the click sequence within the specified
time window as either A; or A; in order to understand and
learn the user behavior. We use A; to indicate the pattern
is generated without inserting any noisy click from the user
web activities and use A; to indicate that the pattern is
generated with interleaving noisy clicks. Then, we label the
remaining set of clicks in the session as NP if the number
of the remaining clicks is less than the size of the time
window, where IV P indicates non-pattern clicks. Otherwise,
we shift the time window by the length of the pattern A;, and
since we assume that there might be some non-pattern clicks,
those clicks would have a low frequency in the user history.
Hence we keep shifting the time window until we observe
a spike in the frequency within the generated patterns in the
particular time window. Again, we label the click sequence
within the time window as A; or A; by maintaining the
anti-monotonicity property, and the clicks between the labeled
patterns will be considered as N P as shown in Table 1.

In a multiple noisy clicks scenario, we calculate the fre-
quency of the generated candidate patterns from the created
dictionary in Table II. Then the patterns that satisfy the
threshold v will be elected as patterns for the user. Following
this, we will trace the click positions of the patterns in the
user browsing history in order to label the clicks. If the
pattern symbols occurred sequentially without any noisy clicks
inse/riions, it will be labeled as A; otherwise it will be labeled
as A;. In addition, applying anti-monotonicity property will
be considered while labeling the clicks. Then, the rest of the
clicks that are not participating in the labeling process will be
labeled as N P.

III. MODELING THE USER WEB BROWSING BEHAVIOR

Next, our goal is to model the user web browsing behavior
from his/her clickstream using which we predict the next
pattern of clicks that will be generated by the user in the
future. Note that to develop a reliable prediction engine for the
user, we need to learn the statistical properties of the patterns
and whether or not the user patterns are interleaved with
other irrelevant clicks. This challenging unsupervised learning
problem can be accomplished by using models such as Hidden
Markov Models (HMM) [12]. Particularly, we need to learn
the joint distribution P(X™,Y™,Y™) of unobserved states
X" = {Xy,---,X,} (where each X; € {1,2,---,K}),
the latent true patterns Y™ = {Yi,---,Y,} (where each
Y; in our case is in I'), and the interleaved observed pat-
terns Y? = {ﬁ, ,1//;} (where each i’; € {E;,Aj} for
j € {1,2,---,K}). We assume that the state transition has

Markovian property and each observed pattern depends only
on the current state as shown in Fig. 1. Training of the
HMM can be performed by approximately estimating the
maximum likelihood (MLE) parameters using the Expectation
Maximization algorithm (EM).

Fig. 1: HMM structure for learning the user behavior

A. User Behavior Prediction Structure

Based on the theory of Hidden Markov Models, HMM is

widely used for learning and predicting the future state over
time series by exploiting the initial probabilities of all the
hidden states, the transition probability matrix between the
hidden states and the emission probability matrix between the
hidden state and the observed states. In our proposed model,
instead of using the standard HMM, we use a modified version
of HMM in order to adapt it to the interleaved patterns.
Thus, for a_sequence of length n, the joint distribution
P(X™, Y™ Y"™) can be parametrized as P(X", Y™, Y?|0) =
IP(XHW)AH?:Q P(X3| X5 M) TTim, P(Yi| X35 0)
H?zl P(Y;|Y:;), where w, M, ¢, p are the learning
parameters of the initial state distribution, the state transition
probability matrix, the states-latent patterns emission
probability matrix and the latent patterns-observed patterns
emission probability matrix, respectively. Formally, given an
observed sequence, we would like to compute the likelihood
that the observed sequence is generated by the model. Hence,
we can learn the model parameters by resorting on the
forward-backward approach where the observed sequence
can be divided into two sub-sequences, past sub-sequence
{Y1,---,Y;}, and future sub-sequence {Y;i1,---,Y,}. The
forward algorithm calculates the joint probabilities between
pattern label is being in a state ¢ at time t, X:(4), and the
emitted patterns until time ¢, {Y3,---,Y:}. Whereas, the
backward algorithm calculates the posterior probabilities of
the emitted patterns from time ¢ + 1 to n, {Yit1, -+, Yn},
given the pattern label is being in a state i at time ¢, X;(¢).
More formally, the forward-backward formulations are shown
in (1) and (2)

a(i) = P(Yy, -, Y, X; = i) (1)

TABLE I: Generating the candidate patterns and labeling the user browsing activities in single interleaving noisy click setup

User activities=[abcfabdc], time window= 4
Timestamp (t) | noisy click | Generated candidate pattern | Location | Frequency
f abc f,1,3 1
1 c abf c,1,3 1
b acf b,1,4 1
2 a bef a,2,4 1
5 b adc b,5,8 1
Labeled user activities=[A;npA;]

TABLE II: Generating the candidate patterns and labeling the user browsing activities in multiple interleaving noisy clicks setup

User activities=[abcfabdcabc], time window= 3
Timestamp (t) | Generated candidate pattern | Location | Frequency
1 abc 1,3 1
2 bef 24 1
9 abc 9,11 2
a = 1, Elected patterns=[abc] and Labeled user activities=[A;npA; A;]

[Yt

FalXe =) @ M) =P =AY, Y) ©)
P(X, = j|X; 1 =)P(V]Y; = 4;)) D af—l(m)
P(X, = il X, = m)1[Y; = A}
= Ail, = PV |Y: = A4:)Bi (1) i=j
where oy (i) and S:(i) denote the forward and backward 0 ik g

probabilities at time ¢, respectively, for t = {1,2,--- ,n} and
1€ {1,2,---, K}. Next, to learn the parameters of the model,
we resort on EM algorithm to iteratively find the maximum
likelihood estimation. Using the definitions of forward and

Then, using these variables we can calculate the HMM pa-
rameters using equations (7) through (10)

backward probabilities, we can calculate auxiliary variables 1 L L
Ye(4), (i, 7). me(i, Aj) and At (A;). These variables represent ™ =P(Xo =1) = T Z 70(7) 7
the posterior probabilities of the pattern label at state 7 , the (=1
Posterlor prqbabllltles be}ween ad]%l(%e'rlt pattern label at state M;; =P(Xop1 = 41X, = 1) (8)
i and state j, the posterior probabilities between the pattern L 0ol
label at state ¢ and the latent true pattern at state A;, and the _ 211 2 (0 9)
posterior probabilities of the latent true pattern at state A;, Z]K:l ZlL:l Sr €L)
respectively. More specifically, we have
NG (o(i, j) = P(Yy = Aj| Xy =) ©)
, o - a(5)Be () !
=P(X; =i\, - ,Y,) = ————— (3 L n .
Ye (1) (X¢ =N) Zjil 0 ()B) (3 _ Kzl:let:l nk(i,)
. . e > D je 21 e M)
(i, 5) = P(Xy = 4, Xog1 = j[Y2,- -+, Ya) “4) !
= ()P (Xip1 = j|Xe =) (A, u) = P(Y; = ulY; = ') (10)
(Yt+1|Yt+1 = A)1[Yip1 = A5]Be11(4), El L T A (ALY =]
Y /\Z(A) [Y’ A+ (A)NY =4;)
.) o> > — u € {A;, A
mid) = P(X, =i,Y, = A,|Vi. - Vo)) - i 4}
K
2m=1 at,_l (m) 0 otherwise,
P(Xt = Z|Xt_1 = m)]l[Yf = A7]
— Ip(ft:ﬂyt = A;)B(i) i=j where ¢ and L are the timesteps, and the number of itera-
tions, respectively. The model is built based on the training
0 £] dataset and validated using the testing dataset. Specifically,
vFE D,

we validated our model based on the accuracy performance

of predicting the probability distribution of the user pattern at
t+1 as

P(Yiea V1, V) «c P(Yr,+, Ye, Vi)
=YY P Ve)P (Vi [Xi1a)

Yit1 Xep1 X
P(Xy 1| X)) P (X |Y7, -, YY)

(1)

IV. EVALUATION

In this section, we conduct several experiments on the
real world and synthetic datasets to validate and demonstrate
the effectiveness of our mining and predictive models. We
compare our model with a set of benchmark references.
In mining the user patterns setup, We compare our model
with CM-WSPADE [13] which is used for mining weighted
sequential patterns as well as NOSEP [8] that is used for
mining non-overlapping sequential patterns with predefined
gaps. Pertaining the predictive setup, we evaluate the accuracy
of our model with the Long short-term memory (LSTM)
model in [14] and SlidingWindow-MC algorithm [15] as
benchmarks for top-n predicted patterns.

A. Generating Ground Truth Patterns from Synthetic and
Real-World Datasets

The web content today is highly dynamic and hence it is
challenging to mimic the user browsing behavior. However,
consistent user actions can be learned from the past and
applied to consistent content layouts. By the usability principle
of consistency [16], website layouts should follow the same
design templates, despite changes in the content, to ensure
high usability of the website. The consistency of a web-page
layout is maintained through an HTML Document Object
Model (DOM) [17] tree. The user may perform a sequence of
DOM actions, separated by non-DOM actions such as opening
the browser, opening a tab, typing a URL in the address bar,
clicking on a bookmark, etc. While DOM actions depend
on the result of a previous DOM action, they do not have
any dependency on non-DOM actions. Following this, we
extract the DOM tree of multiple web domains to generate
a set of patterns for a particular user where the clicks in
the patterns are obeying the path rules in the DOM tree. In
this study, we generated patterns with varying sizes per user.
Using the generated patterns, we created the browsing history
of the user by establishing the transition matrix between the
patterns, assuming that the transition between the patterns has
a Markovian property. Further, each pattern in the browsing
history is followed by arbitrary non-pattern clicks. Then, we
considered the case that some patterns are probabilistically
interleaved by noisy clicks. For this work, we first consider the
case of only a single inserted noisy click per pattern followed
by multiple inserted noisy clicks per pattern.

Next, we used a real-world dataset that is collected by
wireless provider from over 1000 cell tower locations for more
than 5000 mobile users. This dataset contains the web access
log of the mobile users for the period of one month. Each
access log in the dataset is accompanied by the encrypted

subscriber ID, session time, traffic volume, cell tower ID, and
website address. In this setup, we first assumed each web
access log is a click initiated by the user and extracted the
web access logs of the top ten users who have rich browsing
history. We divided the browsing history for each user into
multiple sessions based on the time elapsed between the web
access logs and we selected the time threshold for each user
seperatly. After that, we passed the generated sessions into
Prefixspan [18] to extract the underlying patterns based on
the provided relative support. According to that, any unlabeled
clicks in the user browsing history were assumed to be non-
pattern clicks. Again, we assumed that the transition between
the patterns has a Markovian property and each click depends
only on the current pattern. Lastly, we probabilistically in-
serted some patterns with noisy clicks for the case of single
insertion per pattern and multiple insertions per pattern.

B. Simulation Results for Mining User Pattern

We evaluated all the models on each user and we reported
the average results among all the users. In this framework, we
examined all the models on 5% and 10% noise rates. Based on
[19], we considered the pattern sizes between 3 and 10 clicks
for mining the user patterns. We utilized the precision, recall,
and F1 score as measures of performance. Also, we conducted
extensive experiments on a synthetic dataset and due to page
limitations, we highlighted the results of the real dataset. Table
III shows the performance of mining users patterns for our
proposed model and the benchmarks for varying noise rate
insertion in the setup of a single interleaving noisy click
and multiple interleaving noisy clicks. Our proposed model
based on suffix tree achieves the best performance among the
benchmark methods in terms of precision and F1 score on
both setups. We also noted that our model is robust against
the variation of noise rate. However, the performance of the
benchmark models is degraded when the rate of noise insertion
is increased particularly in the multiple noisy clicks setup.

C. Simulation Results for Predicting User Patterns

We first trained our proposed model on 70% of the training
data and evaluated on the test data for each user. Then, we
reported the average performance among all users. Since all
the extracted pattern are relevant, we utilized the hit rate as
a measure of performance accuracy for all models. Fig. 2
and Fig. 3 show the performance of our model in comparison
with the benchmarks for the hit rate accuracy on top n most
probable candidates. Further, we showed the superiority of
our model when we compare it with the SlidingWindow-
MC algorithm. Particularly, our proposed model achieved an
accuracy of 60% in comparison to 37% in the SlidingWindow-
MC model. Additionally, the results show that our proposed
model could achieve an accuracy of ~ 70% on the real
dataset for multiple noisy clicks setup. It also shows a slightly
better performance of our model than the LSTM model.
Although LSTM is widely used for learning and capturing the
dependency over time series, these simulation results suggest
that our proposed model was a better fit for the datasets.

TABLE III: Performance results for mining user patterns in single and multiple interleaving noisy click setups using real dataset

Noise interleaving setups
Noise rate Models (Single) (Multiple)
Precision | Recall | F1 score | Precision | Recall | FI score

Modified Suffix Tree 0.9 0.75 0.82 0.8 0.53 0.64

5% NOSEP 0.7 0.35 0.47 0.7 0.33 0.45
CM-WSPADE 0.7 0.32 0.44 0.7 0.28 0.4

Modified Suffix Tree 0.9 0.75 0.82 0.7 0.39 0.5

10% NOSEP 0.7 0.28 0.4 0.6 0.23 0.33
CM-WSPADE 0.7 0.23 0.35 0.6 0.22 0.33

1
M, n=1E0M, n>1 BlL, n=1 BlL, n>1 lH, n=1 llH, n>1

Top 1 Top 3 Top 5
Top # most probable patterns

e o o
> o @

Hit rate accuracy
o
)

o

Fig. 2: Performance comparison of various prediction models on synthetic dataset where
M, L, H, n=1 and n>1 denote SlidingWindow-MC, LSTM, Proposed HMM, single
interleaving noisy click setup and multiple interleaving noisy clicks setup, respectively.

1
NS, n=110S, n>1 ML, n=1 HL, n>1 BlH, n=1 llH, n>1

Top 1 Top 3 Top 5
Top # most probable patterns

Hit rate accuracy
e e o 9o
N » o ©o

o

Fig. 3: Performance comparison of various prediction models on real dataset where
M, L, H, n=1 and n>1 denote SlidingWindow-MC, LSTM, Proposed HMM, single
interleaving noisy click setup and multiple interleaving noisy clicks setup, respectively.

V. CONCLUSION

Understanding and utilizing the consistency of the user
browsing behavior through the webpage layout is the key
element for extracting the underlying patterns of the user that
tackles the dynamic changes of the content in the websites.
Also, predicting the user patterns accurately in advance is an-
other major solution for WiFi offloading and hence alleviates
the cost and traffic on the user and the network providers,
respectively. In this paper, we developed clickstream min-
ing for the user browsing activities with interleaving noisy
clicks. Those interleaving noisy clicks were randomly inserted
per pattern and considered in two different setups, a single
noisy click, and multiple noisy clicks. Our simulation results
suggested that we can efficiently and accurately extract the
underlying patterns of the user click activity when compared
to the state of art models. Moreover, it showed that our model
is more robust to the noisy interleaving clicks. Finally, the
employed pattern predictive model based on HMM showed
an impressive performance with an accuracy of 81% for
outputting the top 5 most probable user patterns.

REFERENCES

[1] X. Wu, X. Zhu, Y. He, and A. N. Arslan, “Pmbc: Pattern mining
from biological sequences with wildcard constraints,” Comput. Biol.

[4]

[5

=

[6

=

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

Med., vol. 43, no. 5, p. 481-492, jun 2013. [Online]. Available:
https://doi.org/10.1016/j.compbiomed.2013.02.006

Y. Thushara and V. Ramesh, “A study of web mining application
on e-commerce using google analytics tool,” International Journal Of
Computer Applications, vol. 149, no. 11, pp. 21-26, 2016.

L. Zhang, P. Luo, L. Tang, E. Chen, Q. Liu, M. Wang, and H. Xiong,
“Occupancy-based frequent pattern mining,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 10, no. 2, pp. 1-33,
2015.

Y. J. M. Pokou, P. Fournier-Viger, and C. Moghrabi, “Authorship
attribution using small sets of frequent part-of-speech skip-grams,” in
The Twenty-Ninth International Flairs Conference, 2016.

A. Rajimol and G. Raju, “Web access pattern mining—a survey,’
in International Conference on Data Engineering and Management.
Springer, 2010, pp. 24-31.

S. Vijayalakshmi, V. Mohan, and S. S. Raja, “Mining of users’ access
behaviour for frequent sequential pattern from web logs,” International
Journal of Database Management System (IJDM), vol. 2, 2010.

T. Van, A. Yoshitaka, and B. Le, “Mining web access patterns with
super-pattern constraint,” Applied Intelligence, vol. 48, no. 11, pp. 3902—
3914, 2018.

Y. Wu, Y. Tong, X. Zhu, and X. Wu, “Nosep: Nonoverlapping sequence
pattern mining with gap constraints,” IEEE transactions on cybernetics,
vol. 48, no. 10, pp. 2809-2822, 2017.

G. Suchacka, M. Skolimowska-Kulig, and A. Potempa, “Classification
of e-customer sessions based on support vector machine.” ECMS,
vol. 15, pp. 594-600, 2015.

M. A. Awad and I. Khalil, “Prediction of user’s web-browsing behavior:
Application of markov model,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1131-1142,
2012.

Y. Shi, Y. Wen, Z. Fan, and Y. Miao, “Predicting the next scenic spot
a user will browse on a tourism website based on markov prediction
model,” in 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence. 1EEE, 2013, pp. 195-200.

L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ieee assp magazine, vol. 3, no. 1, pp. 4-16, 1986.

H. M. Huynh, L. T. Nguyen, B. Vo, A. Nguyen, and V. S. Tseng,
“Efficient methods for mining weighted clickstream patterns,” Expert
Systems with Applications, vol. 142, p. 112993, 2020.

A. Alamoudi, M. Liu, A. Payani, F. Fekri, and D. Li, “Predicting mobile
users traffic and access-time behavior using recurrent neural networks,”
in 2021 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2021, pp. 1-6.

S. D. Bernhard, C. K. Leung, V. J. Reimer, and J. Westlake, “Click-
stream prediction using sequential stream mining techniques with
markov chains,” in Proceedings of the 20th International Database
Engineering & Applications Symposium, 2016, pp. 24-33.

J. Butler, W. Lidwell, and K. Holden, Universal principles of design.
Rockport publishers Gloucester, MA, USA, 2010, 112-113., 2003.

J. Stenback, P. Le Hégaret, and A. Le Hors, “Document object model
(dom) level 2 html specification,” W3C Recommendation, vol. 9, 2003.
J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu, “Mining sequential patterns by pattern-growth: The
prefixspan approach,” IEEE Transactions on knowledge and data en-
gineering, vol. 16, no. 11, pp. 1424-1440, 2004.

L. Test. (2021) 2021 digital experience benchmarks by
industry. [Online]. Available: https://contentsquare.com/blog/2021-
digital-experience-benchmarks-by-industry/

