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Abstract—In many diverse fields, distributed IoT devices
perform collaborative inference by communicating with an
edge router. Often sensory data contains sensitive attributes
that should not be revealed to the router. To address this,
we develop, to the best of our knowledge, the first privacy-
aware machine learning framework for distributed functional
compression over AWGN channels. The key feature of our
approach to privacy is that we focus only on sensitive attributes
of data rather than paying a high cost to protect everything.
Employing a mutual information based privacy constraint, we
first propose a novel approximate upper bound to protect
sensitive attributes in the compressed representations of the
sensory data. Next, in conjunction with the upper bound, we
propose an adversarial lower bound to enhance the protection
further. Thirdly, we propose novel decompositions to these
bounds such distributed edge devices can ensure overall privacy
by independently privatizing their components. This allows
us to propose an enhanced privacy-aware algorithm that
protects sensitive information during training and inference.
Our experiments show that the privacy-utility trade-off from
our proposed methods is significantly better than existing
mechanisms.

I. INTRODUCTION

Internet of Things (IoT) is set to revolutionize cyber-

physical systems. A majority of the projected 75 billion IoT

devices will be connected over wireless networks and collect

close to two exabytes of data per day [1]. In many diverse

areas like autonomous driving, chemical/nuclear power plant

monitoring, environment monitoring, and augmented reality,

distributed IoT devices collectively compute specific target

functions without simple known forms like failure prediction,

obstacle detection, etc. One way to implement such systems

is to leverage Machine Learning. Traditionally cloud-based

solutions send edge device data to the router for processing.

However, such systems are fraught with privacy risks, and

the transmission of uncompressed data can burden existing

communication systems. Further, sometimes the training data

is itself collected by the sensors and their privacy must also be

protected. In this paper, we seek to address these problems in

the wireless communication setting by processing sensory data

to send compressed representations across AWGN channels.

The key feature of our approach to privacy is that we focus

only on sensitive attributes of data rather than paying a high

cost to protect everything.
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Fig. 1: Graphical Model indicating the relationship between

the target variable (V ), the noisy received signal (Ŷ ), the

source variable (X), and the private attribute (U ).

We defer the formal definition of the problem to the

next section; however, succinctly, it can be represented using

the Generalized Information Bottleneck (GIB) framework in

Fig. 1. Here, X is the observed random variable, V is the

target function value that we are interested in communicating

to the receiver, U is the sensitive attribute we are interested

in hiding, and Ŷ is the noisy representation received by the

receiver. The goal is to learn Ŷ that is most informative about

V , contains as little information as possible about U , and

is a compressed representation of X , i.e., I(X; Ŷ )  R.

Here I(·, ·) represents the mutual information between the

two random variables and R is the rate constraint. We call

this framework the GIB framework because it is a generalized

form of the Information Bottleneck framework [2] and also

subsumes the privacy-funnel problem [3]. Note, (U ,V ) $

XN $ Ŷ N forms a Markov Chain. In this paper, by

leveraging training samples, we propose a mechanism to learn

the encoding and decoding functions at the sensor(s) and

receiver, respectively, in a data-driven manner.

Related Works: Information Bottleneck framework [2] has

been suggested for privacy, but it does not incorporate explicit

privacy constraints and fails when the sensitive attribute

is correlated with the target variable [4]–[7]. Alternatively,

the Privacy-Funnel framework does not incorporate rate

constraints [3], [8]–[12]. This problem formulation is also

prevalent in machine learning areas like fairness [13], [14]

and input obfuscation [15]–[17]. The GIB framework has

seen very little work. Razeghi et al. proposed theoretical

conditions to achieve perfect privacy [18]. Moyer et al.
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proposed a GIB based solution for fairness in Machine

Learning [19]. However, apart from [7], none of the works

look at the distributed/split learning scenario where each

sensor node is exposed to a subset of the input data’s

dimensions. In the split learning setting works rely on sending

processed representations to the router (no explicit privacy/rate

constraints) [20]–[22].

Contributions of this paper are:

1) We propose a novel approximate upper bound on the

mutual information between the noisy representation and

the private attribute.

2) We also propose using an adversarial lower bound,

which gives complementary benefits in conjunction with

the above.

3) We decompose both the upper and the adversarial

bounds proposed so that its components can

be computed independently at the nodes without

information from other nodes.

4) We combine this with the Partially Synchronous

Block Coordinate Descent (PSBCD) training algorithm

proposed in [7] to obtain an algorithm capable of

maintaining privacy during training and inference.

II. PROBLEM FORMULATION
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Fig. 2: Distributed Functional Compression with Adversary.

Figure 2 shows the distributed setup under consideration.

Multiple sensor nodes observe different possibly correlated

random variables Xn, where n 2 {1, . . . , N} indexes the

sensor nodes. We also denote XN := [X1, . . . ,XN ]
T

. The

edge router is interested in approximating a specific function

of these random variables, i.e., v := F (x1, . . . ,xN ). To

facilitate this, each ensor node-n encodes its observations

using some encoding function g
(n)
e (·) and transmits the

encoding Yn 2 R
Kn across orthogonal AWGN channels, i.e.,

Ŷn = Yn + Zn, where Zn s N
�

0,�2
zn
IKn

�

and �2
zn

is

the noise power. The edge router concatenates the received

noisy encodings (denoted as Ŷ N ) and attempts to recover

the value of V as V̂ := gd(Ŷ
N ). Additionally, the encoding

should be such that it should remove any information about

some common sensitive attribute U , which an inferential

adversary [23] at the edge router is interested in infering.

We can accomplish this by minimizing I(U ; Ŷ N ). Finally,

each encoder has to obey the rate constraint I(Xn; Ŷn)  Rn

(In the wireless communication case, this is equivalent to a

power constraint encoder/transmitter). Finally, we can write

the optimization problem as

min
g
(1)
e ,...,g

(N)
e ,gd

EXN ,V [DV (v, v̂)] +

N
X

n=1

�nI(Xn; Ŷn)

+ �I
⇣

U ; Ŷ N
⌘

. (1)

Here, � is a factor to determine the trade-off between privacy

and the ability to reconstruct v (utility) and �n are Lagrange

multipliers.

However, the above formulation only looks at privacy

during inference. In many situations the training sensory

data itself is collected by the sensors in a distributed

manner and the sensitive attributes of the training data has

to be protected too. Let us define our training dataset as

{(x1, . . . ,xN ,u,v)(b)}Bb=1 where, b indexes the samples, and

B is the size of the dataset. During training, the sensors

have access to {(xn,u,v)
(b)}Bb=1 and the edge router has

access to {(v)(b)}Bb=1. During inference, the sensor nodes only

observe xn. In this setup, since the edge router has access

to the target function values corresponding to the training

data, to ensure privacy during training time, we have to

minimize the mutual information I(U ; (Ŷ ,V )). For privacy

during inference we have to ensure that I(U ; Ŷ ) is small.

Since I(U ; (Ŷ ,V )) � I(U ; Ŷ ), minimizing the former also

ensures privacy during inference. Thus, we can write the new

optimization objective as

min
g
(1)
e ,...,g

(N)
e ,gd

EXN ,V [DV (v, v̂)] +

N
X

n=1

�nI(Xn; Ŷn)

+ �I
⇣

U ;
⇣

Ŷ N ,V
⌘⌘

. (2)

Note 1: An inferential adversary is one who attempts to

predict the value of the sensitive attribute (U) using the

noisy encoded representation (Ŷ N ) [23]. It is known that any

measure of privacy loss in the inferential adversary setup is

upper bounded by a factor of mutual information between the

sensitive attribute and the noisy compressed representation,

thus making it a general measure of privacy [3].

Note 2: The GIB objective is written as

min�I(V ; Ŷ N ) +

N
X

n=1

�nI(Xn; Ŷn) + �I
⇣

U ;
⇣

V , Ŷ N
⌘⌘

.

(3)

We can show that �I(V ; Ŷ N ) 

�E
V ,Ŷ N

h

log q
V |Ŷ N (v|ŷN )

i

� H(V ). By modeling

q
V |Ŷ N (v|ŷN ) := 1

Z1
exp

�

�DV

�

v, gd(ŷ
N )

��

, where Z1 is

a normalization constant, we can show that (2) is an upper

bound on (3).

III. METHODOLOGY

We parametrize all g
(n)
e (·) and gd(·) as neural networks with

parameters Φn and Θ resepctively. Since, we do not know

the distributions p(x, ŷN ) and p(u,v, ŷN ) in closed form

(the distribution depends on the neural network parameters
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making finding the closed form expressionx difficult), we

cannot compute the mutual information terms I(Xn; Ŷn) and

I(U ; (V , Ŷ N )). Thus we resort to variational approximations.

We upper bound I(Xn; Ŷn) as

I(Xn; Ŷn)  �H(Zn)� E
Ŷ n

⇥

log q
Ŷn

(ŷn)
⇤

. (4)

Here, q
Ŷn

(ŷn) is the variational approximation of p(ŷn). Note

that H(Ŷn|X) = H(Ŷn|Yn) = H(Zn). This inturn follows

because Yn is a deterministic function of Xn.

We now focus on upper bounding the last term in (2). We

can use the chain rule of mutual information to write

I(U ; (V , Ŷ N )) = I(U ; Ŷ N ) + I(U ;V |Ŷ N ). (5)

Let us focus on the second term in the RHS of (5). We can

write 0  I
⇣

U ;V |Ŷ N
⌘

 C1 � I(V ; Ŷ N ), where C1 :=

I((U ,XN );V ) is a constant, and the upper bound follows

from both chain rule and I((U , Ŷ N );V )  I((U ,XN );V )
which follows from Data Processing Inequality [24] for our

problem setup. Remember, in our setup, we are trying to

minimize an upper bound of �I(V ;Y N ) in (2), i.e., come up

with a Ŷ N that can be used to reliably reconstruct the value

of the function V := F (X1, . . . ,XN ). So as I(V ;Y N )

increases, I
⇣

U ;V |Ŷ N
⌘

is sandwiched between 0 and an

upper bound that is reducing. In fact, for a perfect system

where we can perfectly predict the value of V using Ŷ N ,

I
⇣

U ;V |Ŷ N
⌘

= 0. Thus this term is small as long as the

system can predict the functional value with reasonably good

accuracy using ŶN . Hence, we ignore this term. To bound the

first term in the RHS of (5), we can express it as

I
⇣

U ; Ŷ N
⌘

 I
⇣

XN ; Ŷ N
⌘

� I
⇣

V ; Ŷ N |U
⌘

. (6)

This is because U ?? Ŷ N | XN and �I(Ŷ N ;XN |U) 

�I(Ŷ N ;V |U) in our problem setup (The independence holds

because (U ,V ) $ XN $ Ŷ N forms a Markov Chain, and

the inequality follows from the Data Processing Inequality).

We can bound the first term in RHS of (6) similar to (4). We

can bound the second term in RHS of (6) as

�I
⇣

V ; Ŷ N |U
⌘

 �C2�
1

N

N
X

n=1

E
U ,V ,Ŷn

h

log q
V |U ,Ŷn

(v|u, ŷn)
i

,

(7)

where C2 := H(V |U) is a constant and

q
V |U ,Ŷn

(v|u, ŷn) is the variational approximation of

the distribution p(v|u, ŷn). The inequality follows because

H(V |Ŷ N ,U)  1
N

PN

n=1 H(V |Ŷn,U) and cross entropy

upper bounds entropy. We construct q
V |U ,Ŷn

(v|u, ŷn) as
1
Z2

exp (DV(v, hn(u, ŷn;Ψn))), where hn(·;Ψn) is a Neural

Network with parameters Ψn.

Thus, combining all these approximations we can write the

objective for training as

min
Φ1,...,ΦN ,Θ,Ψ1,...,ΨN

E
V ,Ŷ [DV (v, gd(ŷ;Θ))]

� (�n + �)

N
X

n=1

E
Ŷn

⇥

log q
Ŷn

(ŷn)
⇤

+ �

N
X

n=1

E
Xn,U ,Ŷn

[DV (v, h(u, ŷn;Ψn))] . (8)

The attractive nature of this decomposition is that the privacy

term is represented as a sum. Thus, the required components

can be computed independently at the respective nodes, i.e.,

the term DV (v, hn(u, ŷn;Ψn)) only depends on the encoded

values from the encoder at sensor node-n.

Let us analyze the upper bound on the privacy constraint

we variationally approximated, I(U ; Ŷ N )  I(XN ; Ŷ N ) �
C2 +H(V |U , Ŷ N ). The first term imposes a rate constraint

on the information between XN and Ŷ N , and the last term

tries to minimize H(V |U , Ŷ N ). To minimize the last term,

Ŷ N is encouraged to have information about V that is not

present in U . Thus, we call the training objective in (8) as

Encouragement Objective (Distributed) or ECO(D).

However, when the rate constraints R1, . . . , Rn are high,

Ŷ N can carry both information about U and information

orthogonal to U . In such a situation, we need a term that

actively enforces the removal of information about U in Ŷ N .

This is done using an adversarial lower bound. We can write

an adversarial lower bound for I(U ; (Ŷ ,V )) as

I
⇣

U ;
⇣

V , Ŷ N
⌘⌘

� H(U) +
1

N

N
X

n=1

E
U ,V ,Ŷn

h

log q(U |V ,Ŷn)
(u|v, ŷn)

i

, (9)

where, q(U |V ,Ŷn)
(u|v, ŷn) is the variational

approximation of the distribution p(u|v, ŷn). Further,

q(U |V ,Ŷn)
:= 1

Z3
exp (�DU (u, en(ŷn; ⇣n))), where

en(ŷn; ⇣n) is an adversarial neural network attempting

to predict the value of u using ŷn,v and ⇣n is its parameters.

This allows us to setup a min-max optimization of the form

min
Φ1,...,ΦN ,Θ,Ψ1,...,ΨN

max
⇣1,...,⇣N

E
V ,Ŷ

⇥

DV (v, gd(ŷ
N ;Θ))

⇤

� (�+ �)
N
X

n=1

E
Ŷn

⇥

log q
Ŷn

(ŷn)
⇤

+ �

N
X

n=1

E
Xn,U ,Ŷn

[DV (v, h(u, ŷn;Ψn))]

� �

N
X

n=1

E
U ,Ŷn

[DU (u, e(ŷn; ⇣n))] . (10)

We call this the Enforcement-Encouragement Objective

(Distributed) or EEO(D). Like ECO(D), the adversarial

components are decomposed into a sum whose individual

components are computed at the sensor nodes.

Partially Synchronous Block Coordinate Descent

Algorithm: Once the upper and the adversarial bound

are decomposed into a sum of components that can be

independently computed at the sensor nodes, we can use

the PSBCD algorithm proposed in [7]. The algorithm was

proposed as a communication-efficient distributed learning

mechanism for distributed functional compression where the

2022 IEEE Information Theory Workshop (ITW)

382Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 26,2023 at 16:33:40 UTC from IEEE Xplore.  Restrictions apply. 



sensory training data is never revealed to the edge router.

All communication to the edge router during training is in

terms of Ŷ , i.e., the noisy compressed representation for the

samples in the training set. This is attractive from a privacy

standpoint. This implies if we remove information about the

sensitive attributes from the compressed representation yn at

the individual sensors before transmission during training, we

should be able to protect the training data.

Privacy Guarantees: Given the Mutual Information between

U and Ŷ , Proposition 1 in [25] provides an upper bound

on the maximum accuracy achievable by any adversary.

However, in reality, this bound is pretty loose. Instead, we

can numerically solve for the largest probability of accuracy

(of an inferential adversary) that satisfies Fano’s inequality.

This provides a tighter upper bound on the maximum accuracy

achievable by any adversary [24]. Similarly we can compute

train-time privacy guarantees using I(U ; (V , Ŷ N )).

IV. EXPERIMENTAL EVALUATIONS

A. Experimental Settings

We use the adult income dataset [26], popular in the

fairness machine learning community. The objective is to

predict whether a person has an annual income greater than

fifty thousand dollars based on various attributes [26]. In our

experiments, we chose marital status as the sensitive attribute.

The input attributes are divided into N subsets such that

their union is equal to the set of all attributes. Each set is

made available to one of the sensor nodes. For example, for

N = 2, the first six attributes are observed by node-1 and

the next seven by node-2. Following the suggestions of [27],

all neural networks have two hidden layers with 100 neurons

each. Privacy is evaluated by a post-hoc adversary trained

after the system’s complete training. The post-hoc adversary

has [100, 100, 75, 50, 25] neurons per layer in that order. The

accuracy of predicting the income level is target accuracy,

and the accuracy of the post-hoc adversary in predicting the

sensitive marital status is the adversarial accuracy. The goal

is to have high target accuracy and low adversarial accuracy.

We use the Adam Optimizer with an initial learning rate

of 10−3, decaying by 0.5 upon validation loss saturation

[28]. The training-validation-test split is 70-10-20. All values

reported here correspond to ten repetitions over the test set. We

used the NPEET toolbox for estimating mutual information to

compute the privacy guarantees [29].

B. Experimental Results

Figure 3 shows the privacy-utility trade-offs based on a

simulated adversary for N = 2, 4, and 6 nodes. Any privacy-

utility trade-off curve closer to the top left is better because

this ensures a higher target accuracy (accuracy of predicting

the variable of interest, the income level) for the same post-

hoc adversarial accuracy (accuracy of predicting the sensitive

marital attribute value). All algorithms use the PSBCD

algorithm. We compare with the existing work of [7], which

protects privacy by sending the compressed representations.

We find that both our privacy-aware training objective. The
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Fig. 3: Privacy-Utility (PU) trade-off over a simulated

adversary during inference.

EEO(D) (Distributed Encouragement Enforcement Objective

from (10)) and ECO(D) (Distributed Encouragement Objective

from (8)) outperform [7] and amongst them, EEO(D) is the

best. Even though we do not include the plots, the same

ordering is maintained for privacy guarantees.

Having established that this system maintains privacy during

inference, we now study privacy during training in Fig. 4. The

compressed representation is transmitted to the edge router

multiple times, during training for every training sample.

These transmissions correspond to different training iterations.

The post-hoc adversary accumulates all the corresponding

noisy received signals for all training samples and leverages

all of them along with V to predict the value of U . Thus,

the performance of the post-hoc adversary captures the total

privacy leakage during training. We find that the ordering of

the methods is identical to the inference time ordering, with

PSBCD+EEO(D) performing the best. However, note that the

actual adversarial accuracy is higher than during inference

time, indicating more leakage during training. This is to be
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Fig. 4: PU trade-off over a simulated adversary during training.

expected because the system has access to the function value

V during inference.

Next, we look at the effect of � on EEO(D). Here, � refers

to the weight given to the train-time adversary during training

in (10). Figure 5a shows that as � increases, the encoder learns

an encoding better at fooling the post-hoc adversary. However,

as seen in Fig. 5b, this is at the cost of a higher channel

capacity requirement. Note that transmission power increases

exponentially w.r.t. capacity.

Finally, in Fig. 6, we simulated the special case of N = 1
as it allows us to compare with the work of [19]. Here

PSBCD is not applicable, and hence we only look at privacy

during inference. The privacy constraint here is I(U ; Ŷ ).
Thus, our adversarial bound has to be modified, i.e., the

network e(·) only has ŷ as input. We find that our proposed

methods significantly outperform both VIB and the work of

[19]. The performance improvement over [19] is because the

encouragement term encourages Ŷ to learn all information

about X not present in U , whereas our setup prioritizes

information relevant to V .

V. CONCLUSION

In this paper, we develop, to the best of our knowledge, the

first privacy-aware machine learning framework for distributed
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functional compression for N = 4.
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Fig. 6: Privacy-Utility trade-off of Variational Information

Bottleneck (VIB) [6], ECO, EEO, and Moyer et al. [19] using

a simulated adversary for N = 1.

functional compression over AWGN channels. The key feature

of our approach to privacy is to focus only on sensitive

attributes of data rather rather than paying a high cost to

protect everything. To achieve this, we propose a novel

approximate upper bound for the mutual information between

the received representation and the sensitive attributes.

Next, we suggest the use of an adversarial lower bound

and combining it with the approximate upper bound for

complementary privacy benefits. We also proposed novel

decompositions to these bounds that allow distributed edge

devices to ensure overall privacy by independently privatizing

their components. This makes it amenable to be combined

with distributed training algorithms that can protect sensitive

attributes in the training data. Our experiments showed that

our methods significantly outperformed existing methods.
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