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Abstract—In many diverse fields, distributed IoT devices
perform collaborative inference by communicating with an
edge router. Often sensory data contains sensitive attributes
that should not be revealed to the router. To address this,
we develop, to the best of our knowledge, the first privacy-
aware machine learning framework for distributed functional
compression over AWGN channels. The key feature of our
approach to privacy is that we focus only on sensitive attributes
of data rather than paying a high cost to protect everything.
Employing a mutual information based privacy constraint, we
first propose a novel approximate upper bound to protect
sensitive attributes in the compressed representations of the
sensory data. Next, in conjunction with the upper bound, we
propose an adversarial lower bound to enhance the protection
further. Thirdly, we propose novel decompositions to these
bounds such distributed edge devices can ensure overall privacy
by independently privatizing their components. This allows
us to propose an enhanced privacy-aware algorithm that
protects sensitive information during training and inference.
Our experiments show that the privacy-utility trade-off from
our proposed methods is significantly better than existing
mechanisms.

I. INTRODUCTION

Internet of Things (IoT) is set to revolutionize cyber-
physical systems. A majority of the projected 75 billion IoT
devices will be connected over wireless networks and collect
close to two exabytes of data per day [1]. In many diverse
areas like autonomous driving, chemical/nuclear power plant
monitoring, environment monitoring, and augmented reality,
distributed IoT devices collectively compute specific target
functions without simple known forms like failure prediction,
obstacle detection, etc. One way to implement such systems
is to leverage Machine Learning. Traditionally cloud-based
solutions send edge device data to the router for processing.
However, such systems are fraught with privacy risks, and
the transmission of uncompressed data can burden existing
communication systems. Further, sometimes the training data
is itself collected by the sensors and their privacy must also be
protected. In this paper, we seek to address these problems in
the wireless communication setting by processing sensory data
to send compressed representations across AWGN channels.
The key feature of our approach to privacy is that we focus

only on sensitive attributes of data rather than paying a high
cost to protect everything.
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Fig. 1: Graphical Model indicating the relationship between
the target variable (V'), the noisy received signal (Y), the
source variable (X)), and the private attribute (U).

We defer the formal definition of the problem to the
next section; however, succinctly, it can be represented using
the Generalized Information Bottleneck (GIB) framework in
Fig. 1. Here, X is the observed random variable, V is the
target function value that we are interested in communicating
to the receiver, U is the sensitive attribute we are interested
in hiding, and Y is the noisy representation received by the
receiver. The goal is to learn Y that is most informative about
V', contains as little information as possible about U, and
is a compressed representation of X, ie., I(X;Y) < R.
Here I(-,-) represents the mutual information between the
two random variables and R is the rate constraint. We call
this framework the GIB framework because it is a generalized
form of the Information Bottleneck framework [2] and also
subsumes the privacy-funnel problem [3]. Note, (U,V)
XN ¢ YN forms a Markov Chain. In this paper, by
leveraging training samples, we propose a mechanism to learn
the encoding and decoding functions at the sensor(s) and
receiver, respectively, in a data-driven manner.

Related Works: Information Bottleneck framework [2] has
been suggested for privacy, but it does not incorporate explicit
privacy constraints and fails when the sensitive attribute
is correlated with the target variable [4]-[7]. Alternatively,
the Privacy-Funnel framework does not incorporate rate
constraints [3], [8]-[12]. This problem formulation is also
prevalent in machine learning areas like fairness [13], [14]
and input obfuscation [15]-[17]. The GIB framework has
seen very little work. Razeghi et al. proposed theoretical
conditions to achieve perfect privacy [18]. Moyer et al.
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proposed a GIB based solution for fairness in Machine
Learning [19]. However, apart from [7], none of the works
look at the distributed/split learning scenario where each
sensor node is exposed to a subset of the input data’s
dimensions. In the split learning setting works rely on sending
processed representations to the router (no explicit privacy/rate
constraints) [20]-[22].
Contributions of this paper are:

1) We propose a novel approximate upper bound on the
mutual information between the noisy representation and
the private attribute.

2) We also propose using an adversarial lower bound,
which gives complementary benefits in conjunction with
the above.

3) We decompose both the upper and the adversarial
bounds proposed so that its components can
be computed independently at the nodes without
information from other nodes.

4) We combine this with the Partially Synchronous
Block Coordinate Descent (PSBCD) training algorithm
proposed in [7] to obtain an algorithm capable of
maintaining privacy during training and inference.

II. PROBLEM FORMULATION

Edge Router |
Task decoder :
Y- 1

] Adversary during
training

i@ Adversary during

! inference

| Sensor Node-N

Fig. 2: Distributed Functional Compression with Adversary.

Figure 2 shows the distributed setup under consideration.
Multiple sensor nodes observe different possibly correlated
random variables X,,, where n € {1,..., N} indexes the
sensor nodes. We also denote XV := [X1,..., Xx]". The
edge router is interested in approximating a specific function
of these random variables, ie., v = F (x1,...,xn). To
facilitate this, each ensor node-n encodes its observations
using some encoding function gén)(-) and transmits the
encoding Y;, € R%~ across orthogonal AWGN channels, i.e.,
Y, =Y, + Z,, where Z, ~ N (0,02 I,) and 02 is
the noise power. The edge router concatenates the received
noisy encodings (denoted as Y?) and attempts to recover
the value of V as V := g4(Y'N). Additionally, the encoding
should be such that it should remove any information about
some common Ssensitive attribute U, which an inferential
adversary [23] at the edge router is interested in infering.
We can accomplish this by minimizing I(U; Y ™). Finally,
each encoder has to obey the rate constraint /(X,; Yn) <R,
(In the wireless communication case, this is equivalent to a

power constraint encoder/transmitter). Finally, we can write
the optimization problem as

N
Ex~v [Dv (0,9)] + > A (Xpn; Yy)

n=1

+8I (U;YN). (1)

min
1 N
9,0 ga

Here, 3 is a factor to determine the trade-off between privacy
and the ability to reconstruct v (utility) and A, are Lagrange
multipliers.

However, the above formulation only looks at privacy
during inference. In many situations the training sensory
data itself is collected by the sensors in a distributed
manner and the sensitive attributes of the training data has
to be protected too. Let us define our training dataset as
{(z1,..., 2N, u, )P} | where, b indexes the samples, and
B is the size of the dataset. During training, the sensors
have access to {(x,,u,v)®)}P | and the edge router has
access to {(v)(”}£_,. During inference, the sensor nodes only
observe x,. In this setup, since the edge router has access
to the target function values corresponding to the training
data, to ensure privacy during training time, we have to
minimize the mutual information I(U; (Y, V')). For privacy
during inference we have to ensure that [ (U;Y) is small.
Since I(U;(Y,V)) > I(U;Y), minimizing the former also
ensures privacy during inference. Thus, we can write the new
optimization objective as

N
Ex~,v [Dv (0,9)] + > AnI(Xn; Yy)

+ 517&;; (YN, V)) )

Note 1: An inferential adversary is one who attempts to
predict the value of the sensitive attribute (U) using the
noisy encoded representation (Y'N) [23]. It is known that any
measure of privacy loss in the inferential adversary setup is
upper bounded by a factor of mutual information between the
sensitive attribute and the noisy compressed representation,
thus making it a general measure of privacy [3].

Note 2: The GIB objective is written as

min
N
9, g™) g4

N
min —I(V;¥YN) + 3" NI(X: V) + BI (U; (V, YN)) .
n=1
R 3)
We can show that —I(V; YY) <

—Ey v~ [long|YN(U|Z?N)} — H(V). By modeling

qv|?N('U|QN) = Z%QXP (_DV (’U,gd(QN))), where 77 is
a normalization constant, we can show that (2) is an upper
bound on (3).

III. METHODOLOGY
We parametrize all gén) () and g4(-) as neural networks with
parameters ®,, and ® resepctively. Since, we do not know
the distributions p(z,§”") and p(u,v,§") in closed form

(the distribution depends on the neural network parameters
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making finding the closed form expressionx difficult), we
cannot compute the mutual information terms I(X,,; ffn) and
I(U; (V,YN)). Thus we resort to variational approximations.
We upper bound I(X,,; Y;,) as

[(Xn;Y,) < —H(Z,) —Eg., [logay (9n)] . &)
Here, gy (§y) is the variational approximation of p(@,). Note
that H(Y,|X) = H(Y,|Y,) = H(Z,). This inturn follows
because Y,, is a deterministic function of X,,.

We now focus on upper bounding the last term in (2). We

can use the chain rule of mutual information to write

IU;(V, YY) = 1(U; YY)+ I(U; VYY), (5)
Let us focus on the second term in the RHS of (5). We can
write 0 < I (U;V|YN) < ¢y — I(V;YV), where €} :=
I((U,X"N); V) is a constant, and the upper bound follows
from both chain rule and I((U,YN); V) < I((U,X"N); V)
which follows from Data Processing Inequality [24] for our
problem setup. Remember, in our setup, we are trying to
minimize an upper bound of —I(V;Y ) in (2), i.e., come up
with a YV that can be used to reliably reconstruct the value
of the function V := F(Xy,...,Xn). So as I(V;YY)
increases, [ (U ;V|}7N2 is sandwiched between 0 and an
upper bound that is reducing. In fact, for a perfect system
where we can perfectly predict the value of V' using YN,
1 (U; V|YN = 0. Thus this term is small as long as the
system can predict the functional value with reasonably good
accuracy using Y. Hence, we ignore this term. To bound the
first term in the RHS of (5), we can express it as

I (U;YN) <1 (XN;YN) .y (V;YN|U) )

This is because U 1L YV | XN and —I(YV; XN |U) <
—I(YN; V|U) in our problem setup (The independence holds
because (U, V) <+ XV < YV forms a Markov Chain, and
the inequality follows from the Data Processing Inequality).
We can bound the first term in RHS of (6) similar to (4). We
can bound the second term in RHS of (6) as

N

+8> Ex, vy, [Dv(©,h(u,§,;9,))]. (8)
n=1

The attractive nature of this decomposition is that the privacy

term is represented as a sum. Thus, the required components

can be computed independently at the respective nodes, i.e.,

the term Dy (v, hy, (u, §,; ¥,,)) only depends on the encoded

values from the encoder at sensor node-n.

Let us analyze the upper bound on the privacy constraint
we variationally approximated, [(U; Y N) < I(XN;YN) —
Cy+ H(V|U,YN). The first term imposes a rate constraint
on the information between X~ and Y , and the last term
tries to minimize H(V|U,Y ™). To minimize the last term,
YV is encouraged to have information about V that is not
present in U. Thus, we call the training objective in (8) as
Encouragement Objective (Distributed) or ECO(D).

However, when the rate constraints Ry,..., R, are high,
YN can carry both information about U and information
orthogonal to U. In such a situation, we need a term that
actively enforces the removal of information about U in YN,
This is done using an adversarial lower bound. We can write
an adversarial lower bound for I(U; (Y, V) as

(o (v.9)

N
1 .
+NZE v, [IOgQ(U\V7Yn)(U‘Uayn) E))
n=1
where, Qv v, v, (@lv. gn) is the variational
approximation of the distribution p(w|v,y,). Further,

duv,v,) Z% exp (—Du(u, en(Fn; Cn))),  where
en(Yn;€n) is an adversarial neural network attempting
to predict the value of w using 9, v and (, is its parameters.
This allows us to setup a min-max optimization of the form

max Ky [DV('U 9a(9™ 9))]

min
P21,..,2N,0,¥,..., TN (1, ,CN

—(A+8) ZE log g3 (4n)]
I (Vi¥MU) < -C-= S E log q (v]w, §n)| , N
( ) nZl va[ ViU Y, . +8Y Ex uy. [Dv(©,h(u, . ¥,))]
n=1

where  Cs = H(V|U) is a constant and
Iviu v, (v|lu,§n) is the variational approximation of
the distribution p(v|u, g, ). The inequality follows because
H(V|YN,U) < + Zi\;l H(V|Y,,U) and cross entropy
upper bounds entropy. We construct gy, ¢y, (v|u, §,) as
Z% exp (Dy (v, hy (w, §n; ¥,,))), where hy,(; ¥,,) is a Neural
Network with parameters W,,.

Thus, combining all these approximations we can write the
objective for training as

min Ey
P1,..,2N,0,P,... Ty

N
7Y Ey . [Dulw,e(@u;éa)]. (10)
n=1

We call this the Enforcement-Encouragement Objective
(Distributed) or EEO(D). Like ECO(D), the adversarial
components are decomposed into a sum whose individual
components are computed at the sensor nodes.

Partially Synchronous Block Coordinate Descent
Algorithm: Once the upper and the adversarial bound
are decomposed into a sum of components that can be
independently computed at the sensor nodes, we can use
the PSBCD algorithm proposed in [7]. The algorithm was
proposed as a communication-efficient distributed learning
mechanism for distributed functional compression where the
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sensory training data is never revealed to the edge router.
All communication to the edge router during training is in
terms of Y, i.., the noisy compressed representation for the
samples in the training set. This is attractive from a privacy
standpoint. This implies if we remove information about the
sensitive attributes from the compressed representation y,, at
the individual sensors before transmission during training, we
should be able to protect the training data.

Privacy Guarantees: Given the Mutual Information between
U and Y, Proposition 1 in [25] provides an upper bound
on the maximum accuracy achievable by any adversary.
However, in reality, this bound is pretty loose. Instead, we
can numerically solve for the largest probability of accuracy
(of an inferential adversary) that satisfies Fano’s inequality.
This provides a tighter upper bound on the maximum accuracy
achievable by any adversary [24]. Similarly we can compute
train-time privacy guarantees using I(U; (V,YN)).

IV. EXPERIMENTAL EVALUATIONS

A. Experimental Settings

We use the adult income dataset [26], popular in the
fairness machine learning community. The objective is to
predict whether a person has an annual income greater than
fifty thousand dollars based on various attributes [26]. In our
experiments, we chose marital status as the sensitive attribute.
The input attributes are divided into N subsets such that
their union is equal to the set of all attributes. Each set is
made available to one of the sensor nodes. For example, for
N = 2, the first six attributes are observed by node-1 and
the next seven by node-2. Following the suggestions of [27],
all neural networks have two hidden layers with 100 neurons
each. Privacy is evaluated by a post-hoc adversary trained
after the system’s complete training. The post-hoc adversary
has [100, 100, 75, 50, 25] neurons per layer in that order. The
accuracy of predicting the income level is target accuracy,
and the accuracy of the post-hoc adversary in predicting the
sensitive marital status is the adversarial accuracy. The goal
is to have high target accuracy and low adversarial accuracy.
We use the Adam Optimizer with an initial learning rate
of 1073, decaying by 0.5 upon validation loss saturation
[28]. The training-validation-test split is 70-10-20. All values
reported here correspond to ten repetitions over the test set. We
used the NPEET toolbox for estimating mutual information to
compute the privacy guarantees [29].

B. Experimental Results

Figure 3 shows the privacy-utility trade-offs based on a
simulated adversary for N = 2,4, and 6 nodes. Any privacy-
utility trade-off curve closer to the top left is better because
this ensures a higher target accuracy (accuracy of predicting
the variable of interest, the income level) for the same post-
hoc adversarial accuracy (accuracy of predicting the sensitive
marital attribute value). All algorithms use the PSBCD
algorithm. We compare with the existing work of [7], which
protects privacy by sending the compressed representations.
We find that both our privacy-aware training objective. The
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Fig. 3: Privacy-Utility (PU) trade-off over a simulated
adversary during inference.

EEO(D) (Distributed Encouragement Enforcement Objective
from (10)) and ECO(D) (Distributed Encouragement Objective
from (8)) outperform [7] and amongst them, EEO(D) is the
best. Even though we do not include the plots, the same
ordering is maintained for privacy guarantees.

Having established that this system maintains privacy during
inference, we now study privacy during training in Fig. 4. The
compressed representation is transmitted to the edge router
multiple times, during training for every training sample.
These transmissions correspond to different training iterations.
The post-hoc adversary accumulates all the corresponding
noisy received signals for all training samples and leverages
all of them along with V' to predict the value of U. Thus,
the performance of the post-hoc adversary captures the total
privacy leakage during training. We find that the ordering of
the methods is identical to the inference time ordering, with
PSBCD+EEO(D) performing the best. However, note that the
actual adversarial accuracy is higher than during inference
time, indicating more leakage during training. This is to be

Authorized licensed use limited to: Georgia Institute of Technology. Down%gﬂ on July 26,2023 at 16:33:40 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Information Theory Workshop (ITW)

Target accuracy %
@
o

—«—PSBCD+VIB(D)
~+-PSBCD+ECO(D)
% PSBCD+EEO(D)

50 55 60 65 70 75
Adversarial accuracy %

(a) Simulated adversary based privacy-utility
trade-off for N = 2 nodes.

86

*__-*
/

3
R

@
N

Target accuracy %
~ ©
© o

——PSBCD+VIB(D)
+- PSBCD+ECO(D)
% PSBCD+EEO(D)|

50 55 60 65 70 75
Adversarial accuracy %

(b) Simulated adversary based privacy-utility
trade-off for N = 4 nodes.

86

@
R

@
S

Target accuracy %
~ 2]
[+ o

——PSBCD-+VIB(D)
~+-PSBCD+ECO(D)
- PSBCD+EEO(D)

50 55 60 65 70 75 80
Adversarial accuracy %

(c) Simulated adversary based privacy-utility
trade-off for N = 6 nodes.

Fig. 4: PU trade-off over a simulated adversary during training.

expected because the system has access to the function value
V during inference.

Next, we look at the effect of v on EEO(D). Here, v refers
to the weight given to the train-time adversary during training
in (10). Figure 5a shows that as ~ increases, the encoder learns
an encoding better at fooling the post-hoc adversary. However,
as seen in Fig. 5b, this is at the cost of a higher channel
capacity requirement. Note that transmission power increases
exponentially w.r.t. capacity.

Finally, in Fig. 6, we simulated the special case of N =1
as it allows us to compare with the work of [19]. Here
PSBCD is not applicable, and hence we only look at privacy
during inference. The privacy constraint here is [ (U;f/).
Thus, our adversarial bound has to be modified, i.e., the
network e(-) only has ¢ as input. We find that our proposed
methods significantly outperform both VIB and the work of
[19]. The performance improvement over [19] is because the
encouragement term encourages Y to learn all information
about X not present in U, whereas our setup prioritizes
information relevant to V.

V. CONCLUSION

In this paper, we develop, to the best of our knowledge, the

first privacy-aware machine learning framework for distributed
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Fig. 5: Studying the effect of v on EEO(D) in distributed
functional compression for N = 4.
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Fig. 6: Privacy-Utility trade-off of Variational Information
Bottleneck (VIB) [6], ECO, EEO, and Moyer et al. [19] using
a simulated adversary for N = 1.

functional compression over AWGN channels. The key feature
of our approach to privacy is to focus only on sensitive
attributes of data rather rather than paying a high cost to
protect everything. To achieve this, we propose a novel
approximate upper bound for the mutual information between
the received representation and the sensitive attributes.
Next, we suggest the use of an adversarial lower bound
and combining it with the approximate upper bound for
complementary privacy benefits. We also proposed novel
decompositions to these bounds that allow distributed edge
devices to ensure overall privacy by independently privatizing
their components. This makes it amenable to be combined
with distributed training algorithms that can protect sensitive
attributes in the training data. Our experiments showed that
our methods significantly outperformed existing methods.
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