
Efficient Distributed Inference of Deep Neural Networks via Restructuring and
Pruning

Afshin Abdi, Saeed Rashidi, Faramarz Fekri, Tushar Krishna

School of Electrical and Computer Engineering, Georgia Institute of Technology
{abdi, saeed.rashidi}@gatech.edu, {fekri,tushar}@ece.gatech.edu

Abstract

In this paper, we consider the parallel implementation of
an already-trained deep model on multiple processing nodes
(a.k.a. workers). Specifically, we investigate as to how a deep
model should be divided into several parallel sub-models, each
of which is executed efficiently by a worker. Since latency due
to synchronization and data transfer among workers negatively
impacts the performance of the parallel implementation, it is
desirable to have minimum interdependency among parallel
sub-models. To achieve this goal, we propose to rearrange the
neurons in the neural network, partition them (without chang-
ing the general topology of the neural network), and modify
the weights such that the interdependency among sub-models
is minimized under the computations and communications
constraints of the workers while minimizing its impact on the
performance of the model. We propose RePurpose, a layer-
wise model restructuring and pruning technique that guaran-
tees the performance of the overall parallelized model. To
efficiently apply RePurpose, we propose an approach based on
ℓ0 optimization and the Munkres assignment algorithm. We
show that, compared to the existing methods, RePurpose sig-
nificantly improves the efficiency of the distributed inference
via parallel implementation, both in terms of communication
and computational complexity.

Introduction
In recent years, the size and complexity of deep neural
networks (DNNs) have increased significantly in terms of
model’s structure and number of parameters. Consequently,
real-time implementation and inference in many machine
learning (ML) problems has become challenging. Although
the execution time of deep neural networks can be improved
significantly by the application of parallel computing algo-
rithms and using multiple processing units (such as GPU’s
or clusters of computing nodes), it generally requires syn-
chronization and significant data exchange among processing
units. This is mainly due to the fact that in parallel com-
putations, each processing unit performs a portion of the
computations, its inputs generally depend on the other units’
outputs, and the computation results should be aggregated to
yield the desired output. These co-dependencies can lead to
significant delays in computations when the deep model is
distributed across multiple processing nodes.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As an example, consider a sensor network where the in-
ference is done on the data observed by the entire network,
i.e., each node in the network only observes part of the data.
However, transferring all data to a central powerful node to
aggregate and perform the ML task is undesirable due to the
sheer amount of data to be transferred over a band-limited
channel, or privacy concerns. Further, such a computationally
powerful node may not even exist in the network. Hence, it
is favorable to develop a distributed equivalence of a deep
model for distributed deployment over the sensors such that
the sensor network, as a whole, becomes a computing/infer-
ence engine of the original deep model.

The majority of works on distributed/parallel execution of
deep neural networks are concerned with algorithmic aspects
of the parallel implementation (e.g., [41, 9, 11]). However,
in the aforementioned applications, straightforward parallel
computing algorithms are not suitable and cannot be arbi-
trarily scaled up for deep models with complex connectivity
structures. Hence, here, we focus on the structure of deep
models and how we can modify it for efficient parallel dis-
tributed implementation.

Although it is possible to design deep models according
to the capability and constraints of the processing system,
following such an approach requires training a new model for
every target hardware or distributed system which is infeasi-
ble or demanding in many ML problems. Further, imposing
a possibly unnecessary structure in advance during training
a deep model would likely be limiting in terms of model
performance and accuracy. Moreover, it can be an undesir-
able approach for parallel implementation since a model
specifically designed for optimum implementation on a tar-
get platform or architecture may be far from optimum on
other platforms (e.g., intelligent edge devices, GPUs with
different compute capabilities, or CPU vs GPU vs sensor
network). Hence, optimizing and fixing the structure for one
particular distributed setting in advance would limit the opti-
mal deployment on other platforms. As a result, we assume
that a deep model has already been trained with minimum or
no hardware-specific constraints. Our goal is readjusting the
model via restructuring the layers and manipulating the pa-
rameters of the neural network without changing its general
topology for more efficient parallel implementation.

For example, consider the simple neural network in
Fig. 1(a). Simply partitioning the model into two sub-models

1

2

3

4

5

6

1

2

4

3

7

5

6

8

6

4

5

1

2

3

W
o

r
k

e
r
 1

W
o

r
k

e
r
 2

1

2

3

4

5

6

1

2

7

5

4

6

3

8

1

2

6

4

5

3

(a) Original model (b) Restructured model

Figure 1: Restructuring a neural network to reduce communi-
cation between processing units

(shown by a dashed line in Fig. 1(a)) imposes lots of com-
munication between the two partitions. However, by rear-
ranging the neurons properly, the co-dependency (and hence
required communications) between the two sub-models (the
red edges in Fig. 1(b)) is reduced substantially. It is worth
mentioning that there are approximately O(PN) different
partitioning to distribute computations of a neural network’s
layer with N neurons over P workers. Hence, enumerating
all such possibilities and choosing a good one is infeasible
specially for large networks. In this paper, we propose a sys-
tematic approach to perform such partitioning and parameter
adjustment to ensure efficient implementation of the modified
model while keeping its accuracy close to the original model.

Notations- Bold lowercase letters represent vectors and
the i-th element of the vector x is denoted as xi. Matrices are
denoted by bold capital letters such as X , with the (i, j)-th el-
ement represented by Xi,j or [X]i,j . A⊙B is the Hadamard
(element-wise) product of A and B. ∥X∥F is the Frobenius
norm of X , ∥x∥2 and ∥x∥0 are the ℓ2 and ℓ0 norms of x,
respectively. 1 is a vector or matrix of all ones, whose size
would be clear from the context.

Related Works

In this section, we review some of the seemingly related
works and how our work differs from the existing methods.

Distributed Training- In distributed training, generally
the data is split across multiple workers. There is a plethora of
work on distributed deep learning with the goal of reducing
communications across workers or speeding up the training
(e.g, [12, 11, 8, 4, 13, 34, 28, 1]). However, a major differ-
ence with our problem is that the input to the ML model in
our setting is distributed across workers, while in distributed
training methods, the ML model can be fully executed on
each individual worker. Moreover, the distributed training
techniques are mostly focused on compressing or commu-
nicating the parameters of the models efficiently, while our
primary goal is communicating the necessary information
(e.g., activation signals) to speed up the inference. Similarly,
our problem is different from layer-wise model partitioning
for distributed training such as [20, 15] where the single-
input to output latency is not a major concern and the whole
input to the model is available at a single node.

Accelerating Inference on the Edge- DNN inference can
impose a relatively high computation load on edge devices.
On the other hand, offloading the entire inference task to
the cloud may require transmitting large amount of data.
To overcome these issues, recently, it has been proposed to

partially run DNN at the edge and offload the remaining
computation to the cloud [19, 25, 39, 36, 6]. This is generally
achieved by cutting the DNN at a layer and dividing it into
two parts, where the first part runs at the edge, and the second
part is offloaded to the cloud. The output signals of the first
part is then transmitted to the cloud for further processing.
For example, DNN-Surgery [19] and similar works consider
each layer of DNN as a whole, neither tries to break the layer
into sub-layers nor restructures the model. Moreover, it is
assumed that the whole data is available by the edge node.

Model Compression and Pruning- In recent years, there
has been an increasing interest in compressing, quantizing,
pruning, or modifying the structure of deep models to reduce
their computational or storage costs, while keeping the accu-
racy of the modified model acceptable. The majority of these
approaches can be classified into three categories:

• Knowledge Distillation to train a shallow or smaller model
(referred to as student network) that mimics the behav-
ior of an already trained complex model (a.k.a. teacher
network) or an ensemble of teacher networks [18, 31, 38].

• Using Structured Parameters to reduce the size or pro-
cessing time of deep model. Examples include circulant
matrices [7] or adaptive Fastfood transform [37] for fully
connected layers, and separable filters [30] or low-rank
tensor decomposition [33] for convolutional layers.

• Pruning Parameters has been used extensively to re-
duce the complexity of the model as well as over-
parametrization. ℓ1 or ℓ0 regularization [24], and group-
sparsity [40, 35] have been successfully used to promote
sparsity of the parameters during training. Model pruning
algorithms such as Optimal Brain Damage [10], Optimal
Brain Surgeon [16], hard-thresholding [14], and similar
works [5, 23], remove the insignificant edges or neurons
by considering the magnitude of the weights or their ap-
proximate Hessian matrix as a measure of importance. Fur-
ther, layer-wise pruning techniques such as Net-Trim [2, 3]
have been shown to be an effective tool to prune deep mod-
els while guaranteeing the accuracy of the pruned model.

Problem Statement and our Approach

Consider the problem of parallel distributed implementation
of a trained deep neural network over P workers, where the
deep model is divided into P sub-models, each of which
is executed by a worker. As managing the synchronization
and data transfer among workers degrades the efficiency of
the parallel implementation, it is crucial to reduce the com-
munication among workers. The communication is needed
between the workers when the input of a neuron in a sub-
model is from a neuron belonging to a different sub-model
which resides in another worker. These co-dependencies can
lead to significant delays in computation.

For the sake of simplicity in presentations and analy-
sis, we mainly focus on feed-forward deep models, specif-
ically fully-connected layers.1 Consider an arbitrary neu-

ral network with L layers and parameters {θ(l)}Ll=1, where

1For details and the extensions of our approach to other architec-
tures, please refer to the supplementary document.

0

1

1

0

x1

x2

y1

y2 y1 = W T

11x1 + b1 +W T

12x2

y2 = W T

22x2 + b2 +W T

21x1

Figure 2: Parallel execution of a layer over two workers.
The intra-worker computations are denoted by yellow and
green, while required communication between the workers
are shown by red. The binary mask matrix (right image) can
be used to determine the edges between the two workers.

θ(l) = {W (l), b(l)} are the weight and bias of the l-th layer.

Let x(l) be the input signal to the l-th layer. Then, the output
of the layer (input to the next layer) would be given by

y(l) = (W (l))Tx(l) + b(l), x(l+1) = σ(y(l)), (1)

where σ(·) is the activation function.
To analyze the bottlenecks, consider an arbitrary layer

with input x, and parameters W and b (Fig. 2). Hence, y =
W Tx+b would be the input signal to the neurons of the layer.
Suppose that xk and yk are subsets of the signals that are
processed by the k-th worker. Without loss of generality, we
assume that the neurons are ordered such that the k-th block
of consecutive neurons belongs to the k-th sub-model, i.e.,
x = [x1;x2; . . . ;xP]. By partitioning W and b accordingly,
we observe that

yk = (W T

k,kxk + bk) + (
∑

l ̸=k

W T

k,lxl). (2)

Note that the first term can be computed at the k-th worker in-
dependent of the others, whereas computing the second term
requires synchronization and communication from the other
workers. Hence, to reduce the dependency among workers
and the communication cost, we consider minimizing the
number of non-zero elements in Wk,l, for l ̸= k. Note that
the bias b does not contribute to the communication between
workers and can be safely ignored in computing the cost.

By defining an appropriate binary mask M (Fig. 2 (right)),
the connections between sub-models is determined by the
non-zero elements of M ⊙W . In general, if ιk and ok are
the number of input and output neurons assigned to the k-th
worker, then M is an anti-diagonal block matrix, given by

M = 1− diag
(
1ι

1
×o

1
, . . . ,1ι

P
×o

P

)
.

Remark 1. Note that ∥M ⊙ W ∥0 is the total number of
dependencies between sub-models, and can be used as an
approximation to the total latency due to the communication
and synchronization among workers. Similarly, by defining
an appropriate binary mask Mij , the edges from worker
j to i are given by the non-zero entries of Vij := Mij ⊙
W . Depending on the communication protocol, the number
of non-zero edges, number of non-zero rows, or number of

𝑾𝒙1𝒙2
𝒙𝑃

𝒚 ෢𝑾𝒙1𝒙2
𝒙𝑃

ෝ𝒚1ෝ𝒚2
ෝ𝒚𝑃

Figure 3: Rearranging neurons of a layer and adjusting pa-
rameters such that k-th worker process the k-th block, ŷk.

non-zero columns of Vij can be interpreted as a measure of
latency due to the communication from worker j to i. For the
sake of simplicity, in this work, we consider ∥M ⊙W ∥0 as
the total communication latency. However, the extensions of
our proposed approach to other cases is straightforward.

To reduce the communication, one may attempt to naively
partition the original neural network and prune the cross-
edges among sub-models. However, as we observed in our
experiments, there are many important connections between
neurons from different sub-models, and naively removing
these connections can severely affect the performance of the
neural network. Hence, it is important to have neurons with
important connections in the same sub-model. On the other
hand, the problem of neuron assignment to the workers is
combinatorial and discrete with complexity O(PN) for a
layer with N neurons and P workers. Hence, enumerating
all possibilities, or using ordinary optimization techniques as
well as genetic algorithms or simulated annealing would fail
due to the complex nature of interactions among neurons in a
deep NN. As a result, processing the entire neural network
as a whole and partitioning all layers/neurons simultaneously
is computationally infeasible and to the best of our knowl-
edge, no algorithm exists to (approximately) solve the neuron
assignment problem. Based on the above observations and
following the success of numerous layer-wise neural network
analysis algorithms, we devise RePurpose, a layer-wise neu-
ral network restructuring and pruning technique for efficient
parallel implementation. The gist of the idea is as follows;

The neurons of the input layer are assigned to the sub-
models based on each worker’s computational power and/or
structure of the input data. For example, in a sensor network,
it is dictated by each sensor’s observed data. We restructure
and adjust the neural network sequentially. For the l-th layer,
the assignments of the neurons in layer l − 1 are assumed to
be fixed and known from the previous steps. The neurons in
layer l are rearranged and assigned to each sub-model, and
the parameters of the layer are pruned and fine-tuned, such
that (i) the performance of the modified neural network is
close to the original one, and (ii) the communication between
the sub-models (measured by the number of edges connecting
neurons from different sub-models) is minimized.

RePurpose: Restructuring and Pruning Deep

Models

Consider the l-th layer of neural network and assume that the
neurons in the previous layers have already been partitioned

Algorithm 1: RePurpose algorithm for a single layer

Input: W , {nk}Pk=1, η1, η2
Output: Permutation matrix Π

1: Compute the cost matrix C, where [C]j,i is calculated
via (4) and (5).

2: Construct C̃ by repeating the k-th row of C, nk times.
3: (I, J) = MUNKRES(C̃).
4: Define permutation matrix as ΠI,J = 1.

and rearranged, i.e., the input of the layer is partitioned as
[x1; . . . ;xP], where xk is computed at the k-th worker. Let
y and W be the signals and parameters of the l-th layer in
the original model. RePurpose rearranges the neurons such
that the k-th block of neurons are being assigned to the k-th
worker (Fig. 3). Note that the rearrangement of the neurons
can be captured via a permutation matrix Π. Hence, if we
use the same weights, the effect of neuron-rearrangement

can be formulated as ŷ = Πy and Ŵ = WΠ
T, and the

number of cross-edges between workers would be ∥M ⊙
Ŵ ∥0. To further reduce the communication between workers,
RePurpose not only rearranges the neurons, but it also prunes

and adjusts Ŵ . The optimization problem is formulated as

min
Ŵ ,Π

∥M ⊙ Ŵ ∥0 s. t. ∥Ŵ −WΠ
T∥2F ≤ ϵ, (3)

where ϵ controls the closeness of the parameters. In the fol-
lowing, we propose a fast and efficient method to solve (3).

Recall that if neuron i is assigned to worker j, the signal at
that neuron can be rewritten as ŷi = bi+ŵT

i x = bi+ŵT

ijxj+∑
k ̸=j ŵ

T

ikxk, where ŵi is the i-th column of Ŵ , and ŵik

is the k-th block of ŵi corresponding to xk. Hence, the
communication cost from other workers to worker j would be
∥ŵi,\j∥0 :=

∑
k ̸=j ∥ŵik∥0. By incorporating an additional

optional cost to encourage the total sparsity of the parameters,
∥ŵi∥0, the cost of assigning neuron i to worker j would be

cji = min
ŵi

∥wi − ŵi∥22 + η1∥ŵi∥0 + η2∥ŵi,\j∥0, (4)

where η1 and η2 control the trade-off between the error, spar-
sity, and cross-communication.

Lemma 1. The solution of (4) is given by element-wise hard-
thresholding of wi, i.e.,

[ŵi]n =

{
0 | [wi]n | ≤

√
η

[wi]n o.w.
(5)

where η = η1 or η1 + η2, depending on whether neuron ºnº
of the previous layer was assigned to the j-th worker or not.

Restructuring and neuron assignment can be interpreted as
selecting elements from the cost matrix C, whose (j, i)-th
element is given by (4), such that (1) from row k, nk elements
are selected, i.e., nk neurons are assigned to worker k, (2)
from each column, only one element is selected, i.e., each
neuron can be assigned to only one worker, and (3) the sum of
selected elements is minimized, i.e., the total cost of neuron
assignment and parameter adjustment is minimum.

Algorithm 1 summarizes the proposed solution, where
MUNKRES(·) uses the Munkres assignment algorithm [21,
26] to find the (row-column) index pairs that minimizes the
total sum cost

∑
n[C̃]

In,Jn
.

Theorem 2. Algorithm 1 finds the optimum solution of

∥Ŵ −WΠ
T∥2F + η1∥Ŵ ∥0 + η2∥M ⊙ Ŵ ∥0, (6)

with computational complexity O(N3), where N is the num-
ber of layer’s neurons (columns of W).

Note that by setting η1 = 0, (6) would be the Lagrangian
of (3) and choosing appropriate value for η2 can lead to

the desired error bound ∥Ŵ −WΠ
T∥2F ≤ ϵ. Finally, it is

worth mentioning that the bias term does not contribute to

the communication cost and is given by b̂ = Πb.

Remark 2. In model pruning and compression, it is com-
mon to fine-tune the parameters of the modified model to
improve the accuracy or performance of the model. The same
principle can be applied to the model obtained by the RePur-
pose algorithm, where the fine-tuning does not affect zeroed
coefficients and hence the communication among workers.

Experiments

To evaluate the performance of the RePurpose framework,
we consider different DNN architectures and compare the ac-
curacy, communication, and wall-clock times of the proposed
framework to the following approaches; (1) naive implemen-
tation where the input data (or locally computed features)
are communicated to all nodes in the network, so they all
have the entire input data and process the entire deep model
locally. This approach results in higher computational com-
plexity, and possibly more communication overhead in some
scenarios. (2) baseline: direct parallel implementation of the
deep model over distributed system without any modification
to the parameters or structures. Hence, there is an exces-
sive amount of communication among workers. (3) sparse
implementation which directly sparsifies the parameters to
reduce cross-edges between the workers without rearranging
the neurons. (4) model distillation where the input data (or
features computed by the workers) are transmitted to a single
worker/server for further processing. For fair comparisons,
the distilled model is designed to have approximately the
same computational complexity as the model obtained from
RePurpose and is trained using [18]. Note that both baseline
and naive methods have the same final model accuracy as
they don’t change the the original model.

First, We evaluate and compare the accuracy-
communication trade-off in different sensor networks. Next,
we investigate how the reduction in cross-communication
and model simplification by RePurpose can affect the total
wall-clock time in Edge networks and Data Center platforms.

Sensor Network

Setup 1. As an illustrative example, figure 4(a) shows a net-
work of 2 sensors, sensor i observes coordinate xi of a target
object and the task is to determine whether the object is in
the blue or green region. A simple fully connected neural
network with 2 hidden layers of size 64 (Fig. 4(b)) is trained

𝑥1𝑥2 𝑐1𝑐2𝑥2
𝑥1

(a) Classification Regions (b) Original trained model (c) η2 = 0.01 (d) η2 = 0.1

W1 W2 W3 Ŵ1 Ŵ2 Ŵ3 Ŵ1 Ŵ2 Ŵ3

Figure 4: Setup 1. Distributed inference over a sensor network to classify location of an object. The zero coefficients in the
weight matrices are represented by empty (white) spaces, inner-worker connection by green pixels and cross-worker edges by
red pixels in the images. Note that for the illustration purposes, the coefficient matrix of the first layer is transposed.

C
o

n
v

o
lu

tio
n

 a
n

d
 m

a
x
-

p
o

o
lin

g

C
o

n
v

o
lu

tio
n

 a
n

d
 m

a
x
-

p
o

o
lin

g

F
la

tte
n

in
g

F
C

1
 (5

1
2

)

F
C

2
 (5

1
2

)

F
C

3
 (2

5
6

)

O
u

tp
u

t

𝒙1𝒙2
𝒙𝑃

𝑦 = 4

Figure 5: Structure of CNN for Setup 2

R
e

s.

B
lo

ck

F
C

1
 (5

1
2

)

F
C

2
 (5

1
2

)

F
C

3
 (2

5
6

)

O
u

tp
u

t

𝒙1𝒙2
𝒙𝑃

𝑦 = 𝟎/𝟏R
e

s.

B
lo

ck

R
e

s.

B
lo

ck

R
e

s.

B
lo

ck

R
e

s.

B
lo

ck

R
e

s.

B
lo

ck

𝒇1𝒇2
𝒇𝑃

Figure 6: Structure of DNN for Setup 3

at a central node to perform the task with accuracy 94.5%. In
the naive approach, the sensors exchange their observations
(xi’s) and run the inference (NN) independently. Hence, the
NN is executed twice throughout the network at the cost of
higher computational complexity. Alternatively, we can apply
RePurpose to efficiently distribute the inference over the sen-
sors. We applied RePurpose with η1 = 0, η2 ∈ {0.01, 0.1}
(figures 4(c)-(d)). As a result, the cross-communication is
reduced significantly to 1.7%, 1.5% and 1.6% for η2 = 0.01,
and 0.7%, 0.1% and 0.3% for η2 = 0.1 for layers 1, 2, and
3, respectively. Moreover, with only 6 communicated values,
the computational complexity at each sensor is reduced by
almost a factor of 4 compared to the naive implementation.
However, the accuracy of the RePurposed model is reduced
to 93.5%. By fine-tuning the parameters, the accuracy of the
RePurposed model is enhanced to 94.4%.

Setup 2. Next, we consider a network of P sensors
where each sensor observes an image of a digit xi (from
MNIST dataset) and the goal is finding the rounded average
[(
∑

i xi)/P]. We adapted a Lenet-5 like structure [22] for the
neural network which is trained in a central server (Fig. 5),
and repeated the experiments several times. Note that one
might attempt to classify the digits at each individual sensor
and then share the values with other sensors to compute the
average. However, in addition to the increased computational
complexity at each individual sensor, it is worth mention-

ing that if the accuracy of digit recognition is ρ, close to 1,
then the final accuracy in this naive approach will be reduced

to approximately 1+8ρP

9 . For example, for a network with
6 sensors and ρ = 0.98, the final accuracy would be less
than 90%. We applied RePurpose on the trained model for
distributed inference over the sensor network with different
communication (cross-worker edges) constraints. The results
are shown in Fig. 7 for P = 6 sensors.

Setup 3. Next, we consider P cameras that observe dif-
ferent parts of a scene and detect whether a specific object
exists or not. For this purpose, we used a Resnet-like neural
network [17] over CIFAR10 to extract features of the input
image locally at each node. Then, these features are commu-
nicated and processed to detect the presence of a ºdogº in
any of the images (Fig. 6). The simulation results are shown
in Fig. 8 for a network with P = 2 sensors.

Figures 7a and 8a compare the performance of RePurpose
with the baseline, naive sparsification, and model distillation.
Clearly, RePurpose significantly outperforms sparsification.
Although its accuracy is dropped for large η2, with 1 or 10
epochs of post-training for MNIST and CIFAR10, respec-
tively, (ºFT RePurposeº compared to ºFT Sparsifyº in the
figures) it achieves almost the same accuracy as the original
model, while direct sparsification fails to provide good accu-
racy. On the other hand, model distillation fails to provide
good accuracy, especially when the computational complex-
ity of the model has to be small. Moreover, interestingly,
RePurpose sparsifies the cross-edges between workers signif-
icantly for the hidden layers (Figures 7b and 8b), and in some
situations, there is no need to transfer any data among work-
ers for some of the hidden layers. The restructured model
can achieve the same performance as the original model by
using less than 0.0003 of the cross-edges (i.e., between 10
to 30 connections out of more than 100000 edges between
workers). Finally, figures 7c and 8c compare the accuracy vs
the cross-communication between workers. Clearly, direct
sparsification performs well only when there are enough num-
ber of cross-edges between the workers, while the accuracy
of the model obtained by RePurpose does not change for vast
sparsity ranges. Finally, it is worth mentioning that in the
naive approach to inference over the sensor network, each
node has to transmit its observations to other nodes, hence
the communication between any two pair of nodes would be
784 or 1024 values for Setups 2 and 3, respectively. How-
ever, RePurpose can achieve the same accuracy with less than

Table 1: Target Accelerator Evaluation Platforms

Compute Memory Bandwidth

Datacenter 125 TOPS 32GB 150 GB/s (NVLink)

Edge 0.5 TOPS 1GB 100 MB/s (Ethernet)

200 total communicated values across the entire network. On
the other hand, the baseline (direct parallelization), although
achieves the same accuracy as the original model, has to
transfer more than 100,000 values among workers.

System Evaluations

Methodology- We evaluate RePurpose on two distributed
accelerator platforms, described in Table 1, simulated us-
ing ASTRA-sim [29]. ASTRA-sim is an open-source dis-
tributed Deep Learning platform simulator that models cycle-
level communication behavior in details for any partitioning
strategy across multiple interconnected accelerator nodes.
ASTRA-sim takes the compute cycles for each layer of the
model as an external input, and manages communication
scheduling similar to communication libraries like NVIDIA
NCCL [27]. We obtained compute cycles for two scenarios:
(i) the Datacenter configuration from a NVIDIA V100 GPU
implementation, and (ii) the Edge configuration (e.g., sensor
network) from a separate DNN accelerator simulator [32].

We tried to stress the aforementioned platforms under var-
ious sized problems to show the efficiency of RePurpose
and compared it with the centralized scenario where all data
is gathered at a single node (server) for processing. In all
models, we assumed a stack of 5 layers with same number
of neurons. For the datacenter system, N varies from 1K to
1M , while for edge system the variation is from 1K to 32K.
We also assumed strict ordering between communication and
computation, meaning that each node begins computation of
each layer only when it has all inputs available.

We picked 4 different flavors of RePurpose with 50%, 75%,
90% and 99% sparsity factor named as RP-50, RP-75, RP-90,
and RP-99, respectively. In addition, we changed the number
of worker nodes from 2 to 32 for both system configurations.

Remark 3. Please note that in our evaluations, we decided to
separate the hardware and model accuracy simulations, since
the trade-offs are generally determined by the application,
hardware, communication bandwidth, and the amount of
penalty in model accuracy one might be willing to pay to
speed-up the inference. However, by combining our findings
in this section and the results from accuracy-communication
trade-off analysis (e.g., Figures 7 and 8), one can find out the
total latency of DNN inference under different scenarios and
accuracies. For example, without loss of accuracy, setup 2
and 3 can achieve 5.7 and 2.8 times speed-up over the edge
network using RePurpose.

Results- Fig. 9 shows the simulation results of the commu-
nication and computation breakdown for the baseline system
and RePurpose for N = 8k. As seen from Fig. 9a, in a
datacenter system, on average and across different number
of nodes, RP-50, RP-75, RP-90 and RP-99 achieve 1.7×,

2.76×, 4.77× and 10.47× speed-up in computations, respec-
tively. The average improvement for communication ratio
is 1.2×, 1.45×, 1.74× and 1.75×, respectively. The reason
for lower improvements of communication time is that due
to NVLink’s high bandwidth. For N = 8K, network com-
munication time is mostly network latency limited. Hence,
reduction in input size does not correspond to linear reduction
in communication time.

Fig. 9b shows the similar results but for edge system. Here,
due to much lower network bandwidth, the effect of commu-
nication is more considerable. On average applying RP-50,
RP-75, RP-90 and RP-99 improve computation times by
1.7×, 2.77×, 4.78× and 11.01×, respectively. This value for
communication is 1.2×, 1.38×, 1.82× and 3.04× respec-
tively. As the number of nodes grow, the communication gap
between the baseline and RePurpose decreases. This is mostly
because of the congestion in the network (e.g. switch) which
signifies the importance of reducing the cross-communication
among workers to speed-up the inference time.

Fig. 10 shows how communication, computation and to-
tal times change as the the number of neurons grows. For
each network size, computation and communication times
are averaged across different sparsity factors and node counts.
For Datacenter (Fig10a), computation is the dominant fac-
tor. This is expected since the computation grows as O(N2)
while communication increases as O(N). In general, the to-
tal time ratio increase from 1.01× at N = 1K to 2.06× at
N = 1M . Communication is a more significant and consid-
erable factor in the edge systems (Fig. 10b) due to: (i) low
network bandwidth, and (ii) lower workloads on edge sys-
tems. The total time improvement for edge system is 1.55×
for N = 1K and it increases to 3.8× for N = 32K.

Conclusion

In this paper, we considered the problem of efficient dis-
tributed inference of an already trained deep model over a
cluster of processing units or a sensor network. Required
communication and synchronization among workers can ad-
versely affect the computation time. Moreover, in the wire-
less sensor networks, it may significantly increase the delay
and power consumption due to the transmission of large
amount of data. Traditional approaches fail to consider the
constraints imposed in such distributed inference systems. To
overcome the shortcomings of the existing methods, we de-
vised RePurpose, a framework to restructure the deep model
by rearranging the neurons, optimum assignment of neurons
to the workers, and pruning the parameters, simultaneously,
such that the dependency among workers is reduced. Via
extensive model and hardware simulations, we showed that
RePurpose can significantly reduce the cross-communication
between workers and improve the computation time signif-
icantly, while the performance loss of the modified model
is remained negligible. Moreover, the proposed technique
can reduce the computational complexity of the distributed
model significantly, resulting in reduced inference time.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
30

40

50

60

70

80

90

100

original model

Sparsify

FT Sparsify

Distilled model

RePurpose

FT RePurpose

(a) Accuracy

-4 -3 -2 -1 0 1
0

10

20

30

40

50

FC1

FC2

FC3

(b) % of total communications

0.05 0.1 0.15 0.2 0.25 0.3
60

70

80

90

100

Sparsify
RePurpose

(c) Accuracy vs communication

Figure 7: RePurpose vs Sparsification and Distillation, a network with 6 nodes in Setup 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

30

40

50

60

70

80

90

100

original model

Sparsify

FT Sparsify

Distilled model

RePurpose

FT RePurpose

(a) Accuracy

-4 -3 -2 -1 0 1
0

20

40

60

80

FC1

FC2

FC3

(b) % of total communications

0.1 0.2 0.3 0.4 0.5

40

60

80

100

Sparsify
RePurpose

(c) Accuracy vs communication

Figure 8: RePurpose vs Sparsification and Distillation, a network with 2 nodes in Setup 3

0

10

20

30

40

50

60

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

2	nodes 4	nodes 8	nodes 16	nodes 32	nodes

ti
m
e
	(
u
s
)

total	comp total	comm

(a) Datacenter Platform

0

5000

10000

15000

20000

25000
c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

c
e
n
t
r
a
li
z
e
d

b
a
s
e

R
P
-5
0

R
P
-7
5

R
P
-9
0

R
P
-9
9

2	nodes 4	nodes 8	nodes 16	nodes 32	nodes

ti
m
e
	(
u
s
)

total	comp total	comm

(b) Edge Platform

Figure 9: Communication and computation breakdown across different systems and N = 8K

1

10

100

1000

10000

100000

1000000

1K 8K 64K 256K 1M

ti
m
e
	(
u
s
)

baseline	comm baseline	comp

baseline	total RP	comp

RP	comm RP	total

(a) Datacenter Platform results

100

1000

10000

100000

1000000

1K 8K 16K 24K 32K

ti
m
e
	(
u
s
)

baseline	comp baseline	comm

baseline	total RP	comp

RP	comm RP	total

(b) Edge Platform results

Figure 10: The effect of communication vs. computation times as the model size N grows

Acknowledgments
The research work in this paper was supported by National
Science Foundation under award ID MLWiNS-2003002 and
a Gift from Intel Co.

References
[1] Abdi, A.; and Fekri, F. 2020. Quantized Compressive

Sampling of Stochastic Gradients for Efficient Com-
munication in Distributed Deep Learning. In AAAI
conference on Artificial Intelligence.

[2] Aghasi, A.; Abdi, A.; Nguyen, N.; and Romberg, J.
2017. Net-trim: Convex pruning of deep neural net-
works with performance guarantee. In Advances in
Neural Information Processing Systems, 3177±3186.

[3] Aghasi, A.; Abdi, A.; and Romberg, J. 2020. Fast con-
vex pruning of deep neural networks. SIAM Journal on
Mathematics of Data Science, 2(1): 158±188.

[4] Alistarh, D.; Li, J.; Tomioka, R.; and Vojnovic, M. 2016.
QSGD: Randomized Quantization for Communication-
Optimal Stochastic Gradient Descent. arXiv preprint
arXiv:1610.02132.

[5] Castellano, G.; Fanelli, A. M.; and Pelillo, M. 1997.
An iterative pruning algorithm for feedforward neural
networks. IEEE Transactions on Neural Networks, 8(3):
519±531.

[6] Chen, X.; Zhang, J.; Lin, B.; Chen, Z.; Wolter, K.; and
Min, G. 2021. Energy-efficient offloading for DNN-
based smart IoT systems in cloud-edge environments.
IEEE Transactions on Parallel and Distributed Systems,
33(3): 683±697.

[7] Cheng, Y.; Felix, X. Y.; Feris, R. S.; Kumar, S.;
Choudhary, A.; and Chang, S.-F. 2015. Fast neural
networks with circulant projections. arXiv preprint
arXiv:1502.03436.

[8] Chilimbi, T.; Suzue, Y.; Apacible, J.; and Kalyanara-
man, K. 2014. Project Adam: Building an Efficient
and Scalable Deep Learning Training System. In Pro-
ceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, 571±
582. ISBN 9781931971164.

[9] Chung, I.-H. H.; Sainath, T. N.; Ramabhadran, B.;
Picheny, M.; Gunnels, J.; Austel, V.; Chauhari, U.; and
Kingsbury, B. 2014. Parallel Deep Neural Network
Training for Big Data on Blue Gene/Q. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
volume 28 of SC ’14, 745±753. Piscataway, NJ, USA:
IEEE Press. ISBN 978-1-4799-5500-8.

[10] Cun, Y. L.; Denker, J. S.; Sola, S. A.; Laboratories,
T. B.; and Solla, S. A. 1990. Optimal Brain Damage. In
Advances in Neural Information Processing Systems 2,
598±605. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. ISBN 1-55860-100-7.

[11] De Grazia, M. D. F.; Stoianov, I.; and Zorzi, M. 2012.
Parallelization of deep networks. Proceedings of 2012
European Symposium on Artificial NN, Computational
Intelligence and Machine Learning, 621±626.

[12] Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.;
Mao, M.; Senior, A.; Tucker, P.; Yang, K.; Le, Q. V.; and
Others. 2012. Large scale distributed deep networks.
In Advances in neural information processing systems,
1223±1231.

[13] Dryden, N.; Jacobs, S. A.; Moon, T.; and Van Essen, B.
2016. Communication Quantization for Data-parallel
Training of Deep Neural Networks. In Proceedings
of the Workshop on Machine Learning in High Per-
formance Computing Environments, MLHPC ’16, 1±8.
Piscataway, NJ, USA: IEEE Press. ISBN 978-1-5090-
3882-4.

[14] Han, S.; Pool, J.; Tran, J.; and Dally, W. J. 2015. Learn-
ing both Weights and Connections for Efficient Neural
Networks. CoRR, abs/1506.02626: 1±9.

[15] Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri,
V.; Devanur, N. R.; Ganger, G. R.; and Gibbons, P. B.
2018. PipeDream: Fast and Efficient Pipeline Parallel
DNN Training. CoRR, abs/1806.03377.

[16] Hassibi, B.; Stork, D. G.; Road, S. H.; and Park, M.
1993. Second Order Derivatives for Network Prun-
ing: Optimal Brain Surgeon. In Advances in Neural
Information Processing Systems 5, [NIPS Conference],
164±171. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. ISBN 1-55860-274-7.

[17] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 770±778.

[18] Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling
the Knowledge in a Neural Network. ArXiv e-prints,
1±9.

[19] Hu, C.; Bao, W.; Wang, D.; and Liu, F. 2019. Dynamic
Adaptive DNN Surgery for Inference Acceleration on
the Edge. In IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications. IEEE.

[20] Huang, Y.; Cheng, Y.; Chen, D.; Lee, H.; Ngiam, J.; Le,
Q. V.; and Chen, Z. 2018. GPipe: Efficient Training
of Giant Neural Networks using Pipeline Parallelism.
arXiv preprint, arXiv:1811.06965, 2014.

[21] Kuhn, H. W. 1955. The Hungarian method for the as-
signment problem. Naval Research Logistics Quarterly,
2(1-2): 83±97.

[22] LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11): 2278±2324.

[23] Leung, C.-S. S.; Wong, K.-W. W.; Sum, P.-F. F.; and
Chan, L.-W. W. 2001. A pruning method for the recur-
sive least squared algorithm. Neural Networks, 14(2):
147±174.

[24] Louizos, C.; Welling, M.; and Kingma, D. P. 2018.
Learning Sparse Neural Networks through ℓ0 Regu-
larization. In ICLR, 1±13.

[25] Mohammed, T.; Joe-Wong, C.; Babbar, R.; and
Di Francesco, M. 2020. Distributed inference accel-
eration with adaptive DNN partitioning and offloading.

In IEEE INFOCOM 2020-IEEE Conference on Com-
puter Communications, 854±863. IEEE.

[26] Munkres, J. 1957. Algorithms for the Assignment and
Transportation Problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1): 32±38.

[27] NVIDIA. 2018. NVIDIA Collective Communications
Library (NCCL).

[28] Ouyang, S.; Dong, D.; Xu, Y.; and Xiao, L. 2020.
Communication Optimization Strategies for Dis-
tributed Deep Learning: A Survey. arXiv preprint
arXiv:2003.03009.

[29] Rashidi, S.; Sridharan, S.; Srinivasan, S.; and Krishna,
T. 2020. ASTRA-SIM: Enabling SW/HW Co-Design
Exploration for Distributed DL Training Platforms. In
IEEE International Symposium on Performance Analy-
sis of Systems and Software, ISPASS.

[30] Rigamonti, R.; Sironi, A.; Lepetit, V.; and Fua, P. 2013.
Learning Separable Filters. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE.

[31] Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.;
Gatta, C.; and Bengio, Y. 2015. Fitnets: Hints for thin
deep nets. In ICLR.

[32] Samajdar, A.; Joseph, J. M.; Zhu, Y.; Whatmough, P.;
Mattina, M.; and Krishna, T. 2020. A Systematic
Methodology for Characterizing Scalability of DNN
Accelerators using SCALE-Sim. In IEEE International
Symposium on Performance Analysis of Systems and
Software.

[33] Tai, C.; Xiao, T.; Zhang, Y.; Wang, X.; et al. 2016. Con-
volutional neural networks with low-rank regularization.
In ICLR.

[34] Wang, L.; Wu, W.; Bosilca, G.; Vuduc, R.; and Xu,
Z. 2017. Efficient Communications in Training Large
Scale Neural Networks. In Proceedings of the on The-
matic Workshops of ACM Multimedia, 110±116.

[35] Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks.
In Advances in Neural Information Processing Systems,
Nips, 2074±2082. ISBN 1878-3686 (Electronic).

[36] Xu, Z.; Zhao, L.; Liang, W.; Rana, O. F.; Zhou, P.; Xia,
Q.; Xu, W.; and Wu, G. 2020. Energy-aware inference
offloading for DNN-driven applications in mobile edge
clouds. IEEE Transactions on Parallel and Distributed
Systems, 32(4): 799±814.

[37] Yang, Z.; Moczulski, M.; Denil, M.; Freitas, N. D.;
Smola, A.; Song, L.; Wang, Z.; de Freitas, N.; Smola,
A.; Song, L.; and Wang, Z. 2015. Deep Fried Convnets.
In The IEEE International Conference on Computer
Vision (ICCV), 1476±1483. ISBN 9781467383912.

[38] Zagoruyko, S.; and Komodakis, N. 2017. Paying more
attention to attention: Improving the performance of
convolutional neural networks via attention transfer. In
ICLR.

[39] Zhang, S.; Li, Y.; Liu, X.; Guo, S.; Wang, W.; Wang,
J.; Ding, B.; and Wu, D. 2020. Towards real-time co-
operative deep inference over the cloud and edge end

devices. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(2): 1±24.

[40] Zhou, H.; Alvarez, J. M.; and Porikli, F. 2016. Less is
more: Towards compact cnns. In European Conference
on Computer Vision, 662±677. Springer.

[41] Zinkevich, M. A.; Smola, A. J.; Weimer, M.; Li, L.;
and Smola, A. J. 2010. Parallelized Stochastic Gradient
Descent. In Lafferty, J. D.; Williams, C. K. I.; Shawe-
Taylor, J.; Zemel, R. S.; and Culotta, A., eds., Advances
in Neural Information Processing Systems 23, 2595±
2603. Curran Associates, Inc.

