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ABSTRACT: Potassium-ion batteries (PIBs) are promising energy storage
devices owing to the abundance and low cost of potassium. However, the
development of PIBs is still in its infancy owing to the poor kinetic
diffusivity, limited capacity, and severe side reactions. It is imperative to
explore new materials to address the issues of capacity, stability, and cycle life
in PIBs. Here, we present a hybrid slurry/flow battery utilizing redox-active
organic materials for K+ storage, wherein the indigo slurry serves as the
anolyte and K4Fe(CN)6 solution serves as the catholyte. This battery
presented a cycle life of 1000 cycles with a capacity of 18.4 Ah/L and capacity
retention of ∼83%. Voltammetry measurements and density functional
theory calculations indicated that the redox activity of indigo involves a one-
step, double-electron process, instead of a two-step, single-electron process.
This work provides new insights into the application of organic compounds
as association materials for PIBs.

With the ever-growing energy consumption, the
search for renewable and nonpolluting energy has
become a significant strategic plan worldwide. The

transition from fossil fuels to renewable energy, such as solar
and wind, is expected to reduce the dependence on traditional
fossil fuels.1,2 However, most renewable energy sources share a
key technical barrier, which is the mismatch between energy
production and demand for energy consumption. Fortunately,
the developed energy storage devices play an important role in
peak load shifting of electricity utilization in smart grids.3−6

Energy storage devices can be classified into two categories:
solid-state batteries and liquid-flow batteries. As a representa-
tive of solid-state batteries, lithium-ion batteries (LIBs) have
been widely used in portable electronics and electric vehicles
owing to their high energy density and superior cycling
stability.7−9 To achieve higher energy density and longer cycle
life of solid-state batteries, post-lithium-ion batteries, such as
sodium-ion batteries,10,11 magnesium-ion batteries,12,13 and
potassium-ion batteries (PIBs),14,15 have been proposed and
researched. Compared with magnesium and lithium, potassium
is more abundant in the earth’s crust (2−3%).16−18 In
addition, the Stokes radius of solvated potassium molecules
is smaller than that of sodium or lithium for a given
solvent,19,20 which leads to higher mobility of K+ than Li+

and Na+ ions, allowing for high-rate performance. Redox flow
batteries (RFBs) are representative liquid-flow batteries that
store energy in liquid redox electrolytes.21−32 As one of the

most successful representatives of RFBs, all-vanadium RFBs
have reached a scale of up to MW/MWh.33,34 Owing to the
low cell operation voltage and limited active material
concentration, the energy density of RFBs (25 Wh/L) is
lower than that of commercial LIBs (800 Wh/L).35,36

However, the unique configuration of RFBs, where the
redox-active materials are stored in external reservoirs, enables
upscaling of power and energy independently. Both the energy
and power density of RFBs are dependent on the solubility of
the electroactive materials.37,38 With the development of
organic-based RFBs, wherein organic molecules serve as
redox species, this solubility issue becomes increasingly severe.
Although molecular engineering is effective in increasing the
solubility of organic redox materials, complicated and tedious
chemical modification processes are inevitable.
As an electrochemically active organic compound, indigo

(Figure 1) has been used in different electrochemical energy
storage systems. Sodium sulfonated indigo has been success-
fully used in lithium organic batteries and sodium organic
batteries.39−42 Zhu et al. increased the solubility of indigo
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carmine to 0.76 M under harsh, strongly acidic conditions by
replacing the metal ions with protons in RFBs.43 Despite a few
successful cases, indigo and its derivatives still suffer from
extremely low solubility in most common solvents (acetoni-
trile, carbonate, N,N-dimethylformamide, and water) for flow
battery applications.44 Although the high insolubility largely
limits its application in solution-based batteries, this property
enables the use of indigo as a slurry electrode in aqueous
electrolytes. Redox slurry batteries, in which the liquid
electrolytes used in RFBs are replaced with stable, nonsettling
suspended active materials, are promising for addressing the
solubility issue of electroactive materials in electrolytes.45−47

Owing to the abundance of insoluble organic electroactive
materials, slurry batteries are advantageous in reducing cost
and overcoming solubility limitations.48,49 Moreover, the
application of slurry electrolytes mitigates the crossover
issue,45,46,50,51 resulting in a wider selection of battery
separators, thus reducing the cost of the entire energy storage
system.46,52−54 Based on these advantages, slurry batteries
typically present high Coulombic efficiency and excellent
cycling stability, where these features are conducive to the
development of large-scale high-energy-density energy storage
systems.
In this work, we present an aqueous potassium-ion slurry

battery using indigo as the electron carrier and K+ association
material. Paired with aqueous K4Fe(CN)6 catholyte, the as-
fabricated battery shows a high capacity of 18.4 Ah/L and
maintains a high-capacity retention of 82.8% after 1000 cycles,
corresponding to 99.98% per cycle. The combination of
voltammetry, cycling performance analysis, and density
functional theory (DFT) calculations demonstrates the
viability of the slurring strategy and the use of indigo as a
potassium association material.
The solubility of indigo was tested in pure water in an

attempt to prepare a 1 mM solution. The extremely low
solubility (<1 mM) of indigo is attributed to the strong
intermolecular and intramolecular hydrogen bonds observed in
indigo crystals.55 The solubility of the reduced indigo was
studied by bulk electrolysis of immobilized indigo on a carbon
paper electrode, followed by cyclic voltammetry (CV) analysis
of the postelectrolysis solution (Figure S1). No obvious color
change was found during the whole electrolysis process (Figure
S1A), suggesting no substantial leaching of indigo from the
electrode, given the dark color the indigo. The postelectrolysis
electrolyte was also subjected to CV using a glassy carbon
electrode, and no redox features were observed, indicating that
indigo at different charge states is not soluble in the electrolyte
(Figure S1B). The electrochemical characteristics of insoluble
indigo were first studied by CV. Indigo displayed a reversible

redox potential of −0.64 V vs Ag/AgCl, with a current peak-
height ratio (ip,ox/ip,red) of 1.04 in 0.5 M KCl in H2O/
TEGDME (95:5) electrolyte using indigo-deposited carbon
paper as the working electrode (Figure 2A). To study the

stability of indigo, electrochemically reduced indigo was
generated and stored at room temperature, and intermittent
CV measurements were conducted. Highly consistent,
reversible voltammograms were observed during storage for
142 h (Figure S2), indicating the electrochemical persistence
of indigo in the reduced state. When paired with a well-studied
catholyte, K4Fe(CN)6, with a redox potential of 0.25 V vs Ag/
AgCl in 0.5 M KCl in H2O/TEGDME (Figure 2A), the
indigo-based half-slurry/half-flow battery presented a theoreti-
cal potential of 1.1 V (Figure S3). The half-battery reaction is
also shown in Figure 2B, where K4Fe(CN)6 is single-electron
active and indigo is double-electron active. In this battery, the
indigo slurry and K4Fe(CN)6 solution served as the negative
and positive potassium-storing materials, respectively.
To further investigate the interaction of K+ with indigo, the

probability distribution of the molecular electrostatic potential
of indigo in different charge states (indigo, indigo−, and
indigo2−) was calculated using Gaussian software,56 which
showed that the electron density was uniformly distributed
throughout the structure of neutral indigo due to π-
conjugation and molecular symmetry (Figure 3A). For charged
indigo molecules (indigo− and indigo2−), the oxygen atoms
presented a more negative electrostatic potential than the other
atoms, suggesting that the electrophilic CO group of indigo
tends to coordinate with the K+ cation. To verify the reaction
path of indigo during the charging/discharging process, the
free energy of indigo in different charge states was calculated
by DFT (Figure 3B and C). The one-electron reduction of
indigo increased the free energy by 36.79 kcal/mol, which is
three times higher than that of the two-electron reduction

Figure 1. Indigo and derivatives in electrochemical energy storage
systems.

Figure 2. (A) Cyclic voltammograms of 5.0 mM K4Fe(CN)6 on a
glassy carbon electrode and a dried indigo suspension on carbon
paper at the scan rate 50 mV/s in 0.1 M KCl in H2O/TEGDME
(95:5). (B) Redox half-reactions of indigo and K4Fe(CN)6.
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process, indicating that the one-electron reduction of indigo is
less energetically favorable than the two-electron reaction. In
addition, after adsorption of K+, the free energy of 2K-indigo
was 12.98 kcal/mol lower than that of neutral indigo, further
confirming the predominance of the two-electron reaction
pathway. This finding provides evidence that the redox
reaction of indigo is a one-step, two-electron process rather
than a two-step, one-electron process.

The insulating nature of organic compounds typically poses
conductivity challenges for battery applications yet can be
mitigated by mixing these compounds with conductive carbon
materials, such as Ketjen black (KB). This strategy has been
successfully adopted in slurry and solid organic-based energy
storage systems.52,57−59 Because of the poor electronical
conductivity of indigo powder, KB is introduced into the
indigo slurry to enhance the conductivity of the slurry (see

Figure 3. (A) Molecular electrostatic potentials of indigo, indigo−, and indigo2−. The electron-rich and electron-deficit regimes of the
molecules are represented by red and blue, respectively. (B) Change in free energy. (C) Reaction path of indigo during single-electron and
double-electron reactions.

Figure 4. (A) Electrochemical impedance spectroscopy with various KB ratios (20, 40, and 80 g/L). (B) Long-term cycling properties of a
1.0 M indigo/K4Fe(CN)6 battery with different Ketjen black (KB) loadings. (C) Coulometric titration: voltage as a function of degree of K+

association in indigo. (D) Diffusion coefficient of K+ on the surface of an indigo slurry vs degree of K+ association.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://doi.org/10.1021/acsenergylett.2c00165
ACS Energy Lett. 2022, 7, 1178−1186

1180

https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c00165?fig=fig4&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c00165?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Experimental Section in the Supporting Information for details
and Figure S4). Indigo (1.0 M) and different proportions of
KB (20, 40, or 80 g/L) were mixed with 2.0 mL 1.0 M KCl in a
H2O/tetraethylene glycol dimethyl ether (TEGDME, 95:5 by
volume) stock solution to prepare a homogeneous slurry. The
use of TEGDME improves the dispersion of indigo in an
aqueous medium to afford a uniformly distributed indigo
slurry. The slurries with various KB concentrations (20, 40,
and 80 g/L) were screened using electrochemical impedance
spectroscopy (EIS), as shown in Figure 4A. An insignificant
difference in the internal resistance (RΩ) was observed
(maximum 0.7 Ω cm2). However, the interface resistance of
the 20 g/L sample was higher than that of the other two
samples. Subsequently, batteries with different KB ratios were
prepared (schematics of the battery model are shown in
Figures S5 and S6) and the long-term cycling was evaluated. As
shown in Figure 4B, the indigo utilization of the 20 g/L-KB
battery (1.4 Ah/L) was low among all those batteries (1.0 M
battery with the theoretical capacity of 53.6 Ah/L), presumably
due to the insufficient amount of conductive material. In
contrast, the 40 g/L- and 80 g/L-KB batteries demonstrated
superior energy utilization, capacity retention, and Coulombic
efficiency, suggesting that a KB slurry loading of 40 g/L and 80
g/L facilitated the construction of effective electron conducting
networks within the slurry system. Compared with the 80 g/L-
KB battery, the battery with 40 g/L of KB performed slightly
better in terms of the cycle performance test: 0.3% higher
average Coulombic efficiency (97.3% vs 97.6%) and 11.8%
higher 150-cycle capacity retention (84.0% vs 95.8%). In
addition, the use of fewer additive components increases the

energy density of the system; thus, a KB loading of 40 g/L was
employed for subsequent studies.
For PIBs, the diffusion of K+ on the electrode surface has a

significant effect on the battery performance, including the
cyclability and rate performance.60 In this indigo slurry system,
the K+ diffusion kinetics were investigated using EIS.61−64 By
fitting the real impedance (Z′) and the square root of the
angular frequency in the low-frequency region, the Warburg
coefficient was obtained (Equation S1 and Figure S7).65,66 In
parallel, Coulometric titration was used to determine the slope
of the open-circuit voltage vs K+ concentration (x) relation at
each x value (Figure 4C), which affords the K+ diffusion values
using Equation S2 (Figure 4D).67 At the initial stage of K+

intercalation, the entire slurry system showed high diffusion
coefficients (∼10−7 cm2/s). As K+ association progressed, the
diffusion rate gradually decreased (∼10−11 cm2/s) owing to
fewer vacant sites for potassium association. Considering the
high diffusion and excess of K4Fe(CN)6, the diffusion of
K4Fe(CN)6 is considered to remain high (∼7 × 10−6),68

suggesting that the diffusion of indigo anolyte is the limiting
step in the entire diffusion process; thus, the overall diffusion
coefficient of the battery reflects the diffusion coefficient of the
indigo slurry. These values (from 10−7 to 10−11 cm2/s) are
comparable to those of the graphitic nanocarbon potassium
storage material, calculated using the same method, suggesting
that indigo has great potential as a K+ storage material.
Compared with traditional carbon materials, indigo as an
organic compound has remarkable advantages in terms of
molecular malleability.69

In general, cyclability is one of the most important
parameters for evaluating the lifetime and stability of a battery.

Figure 5. Long-term cycling properties of the 1.0 M indigo/K4Fe(CN)6 battery. (A) Discharge capacity and Coulombic efficiency over 1000
cycles. (B) Charge/discharge profiles at different cycle numbers. (C) Electrochemical impedance spectra before and after cycling. (D) CV
scans of indigo before cycling and after cycling. The indigo/KB suspension electrolytes were dried at 60 °C for 12 h, after which the 5.0 mg
dried indigo/KB electrolytes were soaked in 5.0 mL of DMSO for 2.0 h to get a clear supernatant liquid. Tetrabutylammonium
hexafluorophosphate (0.1 M) was used as the supporting salt.
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The potassium storage performance of indigo was evaluated
using a half-flow/half-slurry cell (Figures S5 and S6). In this
study, to eliminate the potential effect of potassium
ferricyanide degradation on battery performance,68,70 excess
K4Fe(CN)6/K3Fe(CN)6 was used as the catholyte to take full
advantage of the indigo slurry (1.0 M indigo in 1.0 M KCl in
H2O/TEGDME stock solution). Before long-term cycling, KB
was equilibrated and activated via a 20-cycle galvanostatic
potentiostatic test (Figure S8). Prolonged galvanostatic cycling
was performed to probe the cycling lifetime of the battery and
the stability of indigo. The long-term cycling performance and
selected galvanostatic discharge−charge profiles of the 1.0 M
(175 g/L) indigo/K4Fe(CN)6 battery are shown in Figure 5A
and B, respectively, which present discharge/charge plateaus of
approximately 1.1 V. The battery exhibited a high capacity of
18.4 Ah/L and a high-capacity retention of 82.8% over 1000
cycles, with an average capacity retention of 99.98% per cycle
(Figure 5A). Compared with the reported slurry batteries, the
proposed indigo/K4Fe(CN)6 full battery presents a medium to
high capacity density, and the long-term stability is higher than
most of the reported systems (Table S1).
Fourier-transform infrared (FT-IR) and UV−visible spectro-

scopic measurements were performed to explore the state of
potassium insertion in the fully charged indigo anolyte.
Precycling, after-charging, and postcycling indigo solutions in
dimethyl sulfoxide (DMSO) were prepared for the FT-IR tests.
An intense peak at 1709 cm−1, ascribed to the carbonyl group,
was observed before cycling71 but disappeared in the fully
charged state, which supports the conclusion that the
association of K+ during the charging reaction broke the C
O carboxyl bond to afford oxygen anions for association with
K+. The carbonyl peak at 1709 cm−1 was restored after

discharging, proving that the reaction of K+ at the carboxyl
position is reversible during the charging and discharging
process (Figure S9). The UV−visible absorption curves of
precycling indigo exhibited an absorption peak at 619 nm
(Figure S10).72 After charging, a new band originated from K+-
associated indigo at 449 nm was observed.73−75 In addition, X-
ray diffraction (XRD) on the indigo/KB slurry was also
performed to confirm the indigo structural transformation
during charging/discharging (Figures S11 and S12). The XRD
pattern of the fully charged indigo slurry displayed a new
crystal phase, as evidenced by the new signal pattern at 16°,
26°, and 28°. The identical XRD patterns before and after
cycling also confirmed the indigo structural restoration during
charging/discharging (Figure S12).
To gain insight into the possible side reactions and

mechanism of capacity decay in the battery, a series of
measurements was carried out on the postcycling battery and
indigo slurry. As shown in Figure 5C, the bulk impedance
(intercept at the x-axis in the high-frequency region in the EIS
plot) increased from 5.1 Ω cm2 to 5.6 Ω cm2, due to blocking
of the nanopores of the proton-exchange membrane by the
conductive agent or indigo. However, the charge transfer
impedance (the middle-frequency arc region) remained almost
the same, indicating the superior electrochemical performance
of indigo in aqueous electrolytes. The pre- and postcycling
slurries were subjected to scanning electron microscope
(SEM) and energy dispersive X-ray spectroscopy (EDS)
measurements to gain information on the microstructure and
element distribution in the slurry indigo anolyte (Figure S13).
The SEM results suggest that indigo molecules are uniformly
dispersed (Figure S13A), as the characteristic elements of
indigo in this system, N and O, are evenly distributed without

Figure 6. Polarization and rate ability of a 1.0 M indigo/K4Fe(CN)6 battery. (A) Coulombic efficiency, energy efficiency, voltage efficiency,
and discharge capacity in the current range 5.0−25 mA. (B) Charge/discharge profiles at the current 5.0−25 mA. (C) High-frequency area
specific resistance (ASR), polarization ASR, and open-circuit voltage of the battery vs state of charge (SOC). (D) Polarization of the battery
at 50, 75, and 100% SOC.
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aggregation (Figure S13E and G), and no concentrated
distribution of C elements decoupled from N and O elements
is observed (Figure S13C). This result also suggests the
absence of KB aggregates. The microstructure of the slurry was
maintained throughout the cycling process (Figure S13B, D, F,
and H). In addition, the postcycling indigo was extracted with
DMSO and subjected to CV measurements in tetrabutylam-
monium hexafluorophosphate (TBAPF6)/DMSO electrolyte.
The obtained current intensity in the CV scan was slightly
reduced compared to that of the precycling slurry (Figure 5D),
which is consistent with the capacity decay from the long-term
cycling study. The 1H NMR spectra of the electrolyte before
and after cycling are shown in Figure S14. No additional peaks
were found for the postcycling electrolyte, suggesting the
stability of the indigo slurry. Low-concentration batteries (0.5
M) were also assembled and tested under the same conditions,
and excellent long-cycle stability and high and stable
Coulombic efficiency similar to that of the 1.0 M battery
were also observed (Figure S15). A low-concentration indigo
slurry battery (0.1 M) was assembled, where 73.8 mg of
indigo/KB slurry (2.3 wt % of indigo) was used, corresponding
to a two-electron theoretical capacity of 0.347 mAh. A low
concentration is required for this study to ensure high-capacity
utilization. During charging/discharging, this battery presented
a charging capacity of 0.344 mAh and a discharging capacity of
0.304 mAh at a current density of 0.5 mA/cm2, which suggests
two-electron activity of indigo. In addition, only one charging/
discharging plateau was observed, supporting a one-step, two-
electron reaction mechanism (Figure S16).
The rate performance at different charge/discharge current

densities largely reflects the electrochemical stability of the
battery at high current densities. Traditionally, the undesired
kinetic diffusivity of K+ in an organic solution severely limits
the development of high-energy-density PIBs. In this study, the
indigo battery was galvanostatically charged/discharged at
current densities ranging from 5.0 to 25 mA (corresponding to
∼3.5 to 17.2 mA/cm2) with an increment of 5.0 mA (Figure
6A). At each current density, the battery was cycled three
times. At a relatively low current density of 5.0 mA, the battery
delivered a discharge capacity of 19.8 Ah/L, corresponding to
51% of the theoretical capacity. Even at a high current density
of 25 mA, the battery still presented a discharge capacity of 9.8.
The charge/discharge profiles indicated that the overpotential
of the battery increased with the current density (Figure 6B).
Nevertheless, the battery exhibited high Coulombic efficiency
(CE), energy efficiency (EE), and voltage efficiency (VE)
(Figure 6C). At a current density of 5.0 mA, the CE, EE, and
VE were 91.2, 79.6, and 72.6%, respectively. Even at 25 mA,
the efficiencies were still 98.7, 53.7, and 52.9%, respectively.
The open-circuit voltage (OCV) is an important battery

indicator that reflects both the initial properties of the active
materials and the state of charge (SOC). In this indigo slurry
battery, the OCV increased from 0.98 V at 12% SOC to 1.13 V
at 100% SOC (Figure 6C), demonstrating a complete and
stable charging platform for the battery at around 1.1 V. The
high-frequency area specific resistance (ASR) (Figures 6C and
S17), which originates from the separator,76,77 accounted for
about 74% of the polarization ASR. In addition, the
polarization curves of the power density and current density
(Figure 6D) exhibited a peak current power density of
approximately 40 mW/cm2.
The cost of indigo at the gram-scale is $1280/kg according

to Sigma Corporation, whereas the price of ton-scale

commercially available indigo is reduced to $3.5/kg. To gain
a more intuitive understanding, we compared the cost of
indigo with those of 2,6-dihydroxy anthraquinone (DHAQ)
and methyl viologen (MV), which are among the most
promising and extensively studied anolytes.78−82 DHAQ has a
small-batch cost of $28800/kg according to Sigma Corporation
and an estimated cost of $4.74/kg on the large-scale.78 MV has
a lab-scale cost of $52000/kg according to Sigma Corporation
and a large-scale cost of $1/kg.83 When we broaden the cost
considerations for the entire negative electrolyte (including the
supporting salt and solution), unmodified anthraquinones
require additional structural functionalization for property
optimization and require highly basic solution (pH > 12) to
achieve ideal performance.23,79,84 In contrast, pristine indigo
can be directly used in a slurry system and is readily paired
with a cost-effective catholyte, such as K4Fe(CN)6. Moreover,
the supporting salt and solvents utilized in this slurry system
are readily available at low cost (KCl $0.2/kg, TEGDME/H2O
$8/L). Thus, this indigo slurry battery is competitive with that
employing the dominant anolyte organic material. Considering
the cost of the entire battery (the pump, battery components
and construction, piping, membrane, active material, and
tank), we reduced the cost to $306.5/kWh, according to the
model in a previous work85 (see the Supporting Information
for more details).
In summary, an aqueous slurry battery employing a

noncorrosive, cost-effective indigo anolyte was developed.
Indigo readily achieved homogeneous dispersion and exhibited
superior K+ diffusion capabilities. From the free-energy change
of indigo during the charging/discharging process, the reaction
was determined to be a one-step, double-electron process,
rather than a two-step, single-electron process. The content of
the conductive agent (KB in this case) had remarkable effects
on the performance of the indigo/K4Fe(CN)6 battery.
Ultimately, the designed indigo/K4Fe(CN)6 battery delivered
excellent cycling performance over 1000 cycles with an average
Coulombic efficiency of above 97.7% and capacity retention of
99.98% per cycle. This slurry strategy broadens the application
of insoluble redox materials and overcomes the solubility limit
of the energy density of the battery system. In addition, indigo
has been proven to be an effective K+-storing organic material
with great applicability in PIBs. While advantageous, the half-
slurry/half-solution battery still suffers from high viscosity,
exposing high challenges to allow for capacity scalability.
Engineering of redox flow battery setups is urgently needed to
further advance the development of slurry-based flow batteries.
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