
An Improved Online Reduction from PAC Learning to

Mistake-Bounded Learning

Lucas Gretta

lucas_gretta@berkeley.edu

UT Austin

Eric Price

ecprice@cs.utexas.edu

UT Austin

Abstract

A basic result in learning theory is that mistake-bounded learnability implies PAC learnability. It was shown
in [Lit89] that, if a problem can be learned with M mistakes, it can be (ε, δ)-PAC-learned from O( 1

ε
(M+log 1

δ
))

samples. However, this reduction needs to store either O( 1
ε
log 1

δ
) samples or O(M) hypotheses. A different

reduction, in [KLPV87], only needs to store O(1) samples and hypotheses but was only shown to work with
O( 1

ε
(M · log M

δ
)) samples.

We give a refined analysis of the KLPV reduction, showing that it only uses O(M
ε
) samples with probability

1−M−O(1). This gives the optimal sample complexity with only O(1) space overhead, for δ > M−O(1).

1 Introduction

Two well-known learning models are mistake-bounded [Lit87] and Probably Approximately Correct (PAC) [Val84]
learning. The mistake-bound model describes online learning algorithms, which are given a series of examples
that the learner must classify as it receives. The learner is informed each time it makes an error, and must make a
finite number M of these mistakes for any sequence of examples. The PAC model instead describes batch learning,
where a learner is given a number of labeled examples drawn from some (typically unknown) distribution, and
needs to output a hypothesis with at most ε error on this distribution with probability 1− δ.

Classic results in learning theory show that a mistake-bounded learner can be converted into a PAC
learner. The first step is to convert the mistake-bounded learner to be strongly conservative: to only update
its internal state when making a mistake [Lit87]. Then Littlestone [Lit89], building off Haussler [Hau88],
showed how to convert a strongly conservative M -mistake-bounded learner into an (ε, δ) PAC learner that uses
S = O( 1ε (M +log 1

δ )) samples. The Littlestone approach [Lit89] has two stages: run the mistake-bounded learner
for O( 1εM) samples, recording the (at most M) hypotheses produced; then test each of these hypotheses on a

fresh set of O( 1ε log
M
δ ) samples and return the highest-performing hypothesis.

The Littlestone algorithm gets the optimal sample complexity O( 1ε (M + log 1
δ )), but has relatively high

space complexity. As originally described, it must remember all M hypotheses to measure their performance;
alternatively, one could pre-sample and store the second-stage samples in order to judge the first-stage hypotheses
on the fly and only track the best hypothesis, but this requires storing O( 1ε log

M
δ ) samples.

A different algorithm, given by [KLPV87; Ang88], uses much less space at the cost of sample complexity. This
“LongSurvivor” algorithm, presented in Algorithm 1, repeatedly samples examples from D and feeds these into
a strongly conservative mistake-bound algorithm A. If A’s current hypothesis makes no mistakes for O( 1ε log

M
δ )

samples, it is immediately returned. A simple union bound shows that this uses at most O( 1εM log M
δ ) samples.

This is a log factor more than the optimal sample complexity, but the reduction is space-efficient: samples are
not reused, so the reduction just needs to store the current hypothesis and one O(log( 1ε log

M
δ ))-bit counter.

Because of its simplicity, LongSurvivor has been the algorithm typically presented in graduate classes on
learning theory; see, for instance, [Pag10; Bal11; Blu14; Kan17].

Our Results. We show that the LongSurvivor algorithm actually requires only O
(

1
εM

log M

δ

log(M/ log 1
δ
)

)

samples. This means, for δ > 1/MO(1), that it has the optimal sample complexity in addition to its space
efficiency.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited373

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Algorithm 1 LongSurvivor Algorithm

A() returns the initial hypothesis, and A(h, x) returns a new hypothesis given that h makes a mistake on x. OD

is the oracle that samples examples according to D and labels according to h∗.

1: procedure LongSurvivor(A, δ)
2: h← A()
3: k ←

⌈

log(M

δ
)

ε

⌉

4: while True do

5: for i in 1, 2, . . . , k do

6: (x, h∗(x))← OD

7: if h(x) ̸= h∗(x) then
8: h = A(h, x)
9: break

10: if h has survived all k iterations then
11: return h

Algorithm Sample Complexity Hypotheses Stored Samples Stored

Littlestone [Lit89] 1
ε (M + log 1

δ ) M 1

(modified version) 1
ε (M + log 1

δ ) 1 1
ε log

1
δ

[SG95] 1
ε (M + log 1

δ ) M 1

[HK21] 1
ε (M + log 1

δ ) 1 1
ε (M + log 1

δ )

LongSurvivor [KLPV87] 1
εM log M

δ 1 1

Theorem 1.1 1
εM

log M

δ

log(M/ log 1
δ
)

1 1

Table 1: A summary of reductions from PAC learning to mistake-bounded learning. All values are up to constant
factors. The modified Littlestone algorithm stores second-stage samples and judges hypotheses on the fly, as
described on page 1.

Theorem 1.1. Given an M -mistake-bounded learning algorithm A and O
(

1
εM

log M

δ

log(M/ log 1
δ
)

)

labeled samples from

the distribution D, LongSurvivor produces an ε-accurate hypothesis h with probability 1− 2δ.

Note that we use the typically implicit convention that log x actually denotes max(1, log x) in big-O notation.
We complement our upper bound by showing that our analysis of LongSurvivor is tight up to constants:

Theorem 1.2. For any M, ε, δ there exists a classification problem P and an M -mistake-bounded learner for P

such that LongSurvivor needs Ω
(

1
εM

log M

δ

log(M/ log 1
δ
)

)

samples to act as an (ε, δ)-PAC learner.

Thus, LongSurvivor has optimal sample complexity for δ > M−Θ(1), suboptimal but a logM factor better
sample complexity than the previous bound [KLPV87] for M−Θ(1) > δ > e−M .999

, and really does match the
previous Θ(Mε log M

δ ) bound for δ < e−M .

1.1 Related Work A simplified MBL-to-PAC reduction was recently given in [BHMZ20; HK21]: run the
mistake-bounded algorithm on the samples cyclically until it stops making mistakes on the samples. This has the
optimal sample complexity and is simpler than Littlestone [Lit89], but has even higher space complexity (storing
all O( 1ε (M + log 1

δ )) samples).
An extension of the [Lit89] reduction was given in [SG95], where the hypotheses are tested and accepted or

rejected on the fly, in parallel to the production of new hypotheses. This attains the optimal sample complexity
with improved constants and performance in simulation. However, it still requires tracking up to M hypotheses
at once.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited374

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



The generalization of the MBL-to-PAC problem was presented and solved in [CCG04]. For MBL-to-PAC, the
algorithm given still requires tracking all M hypotheses.

Not only do all the above algorithms require more space than LongSurvivor, they also require more time.
For example, the second stage of Littlestone [Lit89] measures M hypotheses against O( 1ε log

M
δ ) fresh samples,

which requires O(Mε log M
δ ) evaluations. This matches the previous time bound for LongSurvivor, and so is

an O(log M
log 1

δ

) factor worse than our new bound. The other algorithms are no more than constant factors faster

than [Lit89].
LongSurvivor is sometimes used as a subprocedure of other algorithms, e.g. [HRZ07], which details an

algorithm to learn large margin halfspaces. LongSurvivor is used to verify the accuracy of generated coresets.

2 Notation

By Geometric(p), p > 0, we denote the random variable that takes value k ∈ Z
+ with probability p(1 − p)k−1.

We occasionally abuse notation by using Geometric(0) to refer to a random variable that is always greater than
any integer.

We use the natural logarithm throughout. The notation f ≲ g means that f ≤ Cg for some universal positive
constant C. We use the (usually implicit, but fairly standard in TCS) definition of big-O notation for multiple
variables that f = O(g) means that f ≤ Cg for some universal positive constant C, with the convention that
inside big-O notation, log x actually denotes max(1, log x). [Hence, for example, O( 1εM logM) is meaningful
regardless of whether M →∞ or ε→ 0 or both, and is O(1/ε) not 0 for M = 1.]

When we refer to an (ε, δ)-PAC learning algorithm that uses m samples to solve a classification problem
h∗ : A→ B, we mean an algorithm which, when given m labeled samples drawn from A according to D, outputs
ĥ such that

errDĥ := Pr
a∼D

[h∗(a) ̸= ĥ(a)] ≤ ε

with probability 1− δ.
When we refer to an M -mistake-bounded learning algorithm to solve a classification problem h∗ : A → B,

we mean an algorithm which is repeatedly: given a value a ∈ A, outputs a guess h(a), is told the correct answer
h∗(a). On any sequence of values, the algorithm errs at most M times.

3 Proof overview

We give a brief overview of the proof of Theorem 1.1 in this section, and go into the details in the next.
Standard analysis. The chance any specific hypothesis hi with error errDhi > ε is returned is at most

(1 − ε)k ≤ exp(−εk) ≤ δ/M , so a union bound gives a δ chance of failure. One of the first M + 1 hypotheses
will have zero error and always be returned if reached, so this algorithm uses at most (M + 1)k ≤ O(Mε log M

δ )
samples.

Bounding the number of samples. What we show is that the LongSurvivor algorithm only usesO(M/ε)
samples with high probability. Therefore with just O(M/ε) samples we can run the LongSurvivor algorithm
with δ′ = δ/2. The algorithm only fails if it either outputs a bad hypothesis (δ/2 chance) or needs more than
O(M/ε) samples (less than δ/2 chance), giving a PAC learner.

Consider δ > M−9. There are two kinds of hypotheses:

1. bad hypotheses, which have accuracy below (1− ε/20), and

2. good hypotheses, which have accuracy above (1− ε/20).

Each bad hypothesis is expected to fail out in 20/ε≪ k samples, so we only expect to spend O(M/ε) samples
on bad hypotheses. Because the times spent are bounded in [1, k], the Chernoff bound gives that the time spent

on these hypotheses is within k
√

M log 2
δ ≪M/ε of its expectation, with probability 1− δ.

Good hypotheses could take longer, up to k samples on average. But each good hypothesis has a nontrivial
chance of passing all k samples and being output by the algorithm; as a result, the algorithm is unlikely
to consider many good hypotheses before finishing. More precisely, each good hypothesis has at least a
(1 − ε/20)k ≳ 1/(M/δ)1/20 ≳ 1/

√
M chance of terminating the algorithm, for δ > M−9. Therefore, after

O(
√
M log 1

δ ) good hypotheses, we will have terminated with probability 1− δ. This means the algorithm uses at

most O(k
√
M log 1

δ )≪M/ε samples on good hypotheses.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited375

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Overall, the above argument shows that, for any δ = M−c, O(cM/ε) samples suffice with probability 1 − δ.
This matches Theorem 1.1 for δ > M−O(1) but is worse for small δ. A more carefully tuned threshold than
1− ε/20 gives Theorem 1.1 for general δ.

4 Analysis

To show our result formally, we first prove a property of independent geometric random variables:

Lemma 4.1. Let p1, . . . , pM ∈ [0, 1] with pM = 0, and let Ti ∼ Geometric(pi) independently for i ∈ [M ]. Define

i∗ to be the minimum i with Ti > k, for k ∈ Z
+, k ≥ logM . Then

i∗−1
∑

i=1

Ti ≲
Mk

max(1, log M
log 2

δ

)

with probability 1− δ.

Proof. Since Ti ≤ k for all i < i∗, the left hand side is at most i∗k ≤Mk. So the bound is trivial when M < log 2
δ ,

and we can assume M ≥ log 2
δ .

Define

γj := Pr[i∗ > j] =

j
∏

i=1

(1− (1− pi)
k),

so γ is decreasing with γ0 = 1 and γM = 0. Let m ≤ M be the point where this crosses δ
2 , i.e., γm > δ

2 ≥ γm+1.

We have that i∗ ≤ m+ 1 with probability 1− γm+1 ≥ 1− δ
2 . Therefore, with 1− δ

2 probability,

T :=

m
∑

i=1

min(Ti, k) ≥
i∗−1
∑

i=1

Ti.(4.1)

Since m is fixed, and the min(Ti, k) are independent variables bounded in [1, k], we can apply the additive
Chernoff bound to T : with probability 1− δ/2,

T ≤ E[T ] + k

√

1

2
M log

2

δ
.(4.2)

Bounding the expectation. Let S ⊆ [m] contain the indices i with pi ≤ α logM
2k ≤ 1

2 , for α ∈ (0, 1). Every

i ̸∈ S satisfies E[Ti] = 1/pi ≤ 2k
α logM , so

∑

i/∈S

min(E[Ti], k) ≤
2Mk

α logM
.(4.3)

On the other hand, we bound |S|. For each i ∈ S, the chance that Ti > k is

(1− pi)
k ≥ e−2pik ≥ e−α logM = M−α.

Since
δ

2
≤ γm ≤

∏

i∈S

(1− (1− pi)
k) ≤ (1−M−α)|S| ≤ e−|S|M−α

,

this means

|S| ≤Mα log
2

δ

and hence

∑

i∈S

min(E[Ti], k) ≤Mαk log
2

δ
(4.4)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited376

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Combining with (4.3) gives

E[T ] ≤
m
∑

i=1

min(E[Ti], k) ≤
2Mk

α logM
+Mαk log

2

δ
.

We now set α = 1
2

log M

log 2
δ

logM . This gives:

E[T ] ≤ 4Mk

log M
log 2

δ

+

(

M

log 2
δ

)1/2

k log
2

δ
.

Plugging into (4.2), with 1− δ
2 probability we have

T ≤ 4Mk

log M
log 2

δ

+ (1 +
1√
2
)k

√

M log
2

δ
.

Since we assume M ≥ log 2
δ , we know that this second term has

k

√

M log
2

δ
= Mk

1
√

M/ log 2
δ

≲ Mk
1

log(M/ log 2
δ )

.

Applying to (4.1) and a union bound, we have that with probability 1− δ,

i∗−1
∑

i=1

Ti ≤ T ≲
Mk

log M
log 2

δ

as desired.

Correctness is the same as in prior work:

Lemma 4.2. LongSurvivor returns a hypothesis h such that errDh ≤ ε with probability ≥ 1− δ.

Proof. Given that we are on hypothesis h which has error errDh > ε, the chance we incorrectly return an invalid
hypothesis is

Pr[LongSurvivor terminates on h] = (1− errDh)
k

≤ (1− ε)k

= (1− ε)
log(M

δ
)

ε

≤ exp(− log(
M

δ
))

≤ δ

M

We have at most M + 1 hypotheses, and the M + 1th has zero error so we have ≤ M invalid hypotheses.
Applying a union bound, we get a ≤M · δ

M = δ chance of failure.

Theorem 4.1. Given an M -mistake-bounded learning algorithm A and O
(

1
εM

log M

δ

log(M/ log 1
δ
)

)

labeled samples from

the distribution D, LongSurvivor produces an ε-accurate hypothesis h with probability 1− 2δ.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited377

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Proof. According to Lemma 4.2, we have a δ chance of outputting an insufficiently accurate hypothesis. Next we

bound the probability LongSurvivor needs more than O( 1εM
log M

δ

log(M/ log 1
δ
)
) samples.

Note that LongSurvivor goes through at most M + 1 hypotheses by our mistake bound. Denote the ith

hypothesis by hi, and let k :=
log M

δ

ε .
We would like to treat each hypothesis as a biased coin to apply Lemma 4.1. Unfortunately the number of

tests of hypothesis hi and hypothesis hj are not independent as hj can depend on hi in some complicated way.
We examine a related process instead: running LongSurvivor with a modified termination criterion. If

errDhi ̸= 0, then we keep testing hi until it fails, and continue the process with hi+1. If errDh = 0, then we run k+1
times and terminate. Call this process LongSurvivor+. LongSurvivor+ behaves exactly like LongSurvivor
until LongSurvivor terminates. Running LongSurvivor+ generates a sequence of hypotheses, terminating in
a hypothesis with zero error. Let P denote the sequence of hypothesis errors, that is, P = (errDh1, errDh2, . . . ),
and let Ti denote the number of times we test hi. In LongSurvivor+, conditioned on P , the Ti are independent
random variables with Ti ∼ Geometric(pi) for pi > 0 and Ti = k+1 if pi = 0. This is because the mistake-bounded
learning algorithm is strongly conservative, so the number of samples matching the current hypothesis do not
affect the algorithm.

Now, define i∗ as the minimum i such that Ti > k. Then the sum k +
∑i∗−1

i=1 Ti is the number of samples
used by LongSurvivor. But for any fixed value p of P we can apply Lemma 4.1, getting that

Pr[

i∗−1
∑

i=1

Ti ≥ O(
1

ε
M

log M
δ

log(M/ log 1
δ )

)|P = p] ≤ δ

which implies that

Pr[k +

i∗−1
∑

i=1

Ti ≥ O(
1

ε
M

log M
δ

log(M/ log 1
δ )

)] ≤ δ.

Therefore, LongSurvivor uses O( 1εM
log M

δ

log(M/ log 1
δ
)
) samples with probability at least 1− δ.

Union bounding with the δ probability of outputting a bad hypothesis, LongSurvivor succeeds with

O( 1εM
log M

δ

log(M/ log 1
δ
)
) samples with probability 1− 2δ.

5 Lower bound

Now we show that our analysis is tight up to constants.

Theorem 5.1. For any M, ε, δ there exists a classification problem P and an M -mistake-bounded learner for P

such that LongSurvivor needs Ω
(

1
εM

log M

δ

log(M/ log 1
δ
)

)

samples to act as an (ε, δ)-PAC learner.

Proof. Note that we can choose the learning problem and learner in such a way that we get a sequence of
hypotheses with any error values we desire, as long as the M + 1th hypothesis has zero error.

Let r := M
log 1

2δ

, and k :=
log M

δ

ε .

Case M < 2 log 1
δ . Let the error of the 1st through Mth hypotheses be 2

k .
The probability that we reject one of the first M hypotheses after testing it somewhere in [k/8, k] times is

(given that we reach that hypothesis)

(1− 2

k
)k/8−1 − (1− 2

k
)k ≥ 1− 1

4
− exp(−2) ≥ exp(−.5)

Therefore, the chance this happens for all of the first M hypotheses is ≥ exp(−M
2 ) > δ. So we have at least

a δ probability of using Θ(Mε log 1
δ ) samples. This matches the desired bound Θ( 1εM

log M

δ

log(M/ log 1
δ
)
) for this regime

of M .
Case M ≥ 2 log 1

δ . Let the error of the 1st through Mth hypotheses be log r
k .

The probability that we accept any one of the first M hypotheses, given that we reach that hypothesis, is

(1− log r

k
)k ≤ exp(− log r) =

1

r
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited378

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



The probability that we don’t accept any of the first M − 1 hypotheses is lower bounded by

(5.5) (1− 1

r
)M = (1− log 1

2δ

M
)M−1 > 2δ.

Suppose that we ignore for now the termination criterion of LongSurvivor. The probability that we use more
than k

log r tests on a given hypothesis is approximately 1/e and certainly more than .3. Therefore a Chernoff

bound gives that, with probability 1− e−Ω(M) > 1− δ/2, at least M/4 of the first M − 1 hypotheses will need at
least k

log r tests.

Combined with (5.5), there is at least a 1.5δ chance that LongSurvivor uses M
4

k
log r = Θ( 1εM

log M

δ

log(M/ log 1
δ
)
)

samples.

6 Conclusion

We have presented a refined analysis of the LongSurvivor reduction which shows it performs better than
previously known, using only O(Mε ) samples with high probability. Though not as data efficient as [Lit89] for
exponentially small δ, the LongSurvivor simple reduction also has the advantage of a small memory footprint
and time complexity compared to other reductions [SG95; Lit89]. In algorithms where the LongSurvivor

reduction is used as a subprocess, e.g. [HRZ07], this improved analysis can be used to tighten bounds.

Acknowledgments

The authors were supported by NSF awards CCF-1751040 (CAREER) and the NSF AI Institute for Foundations
of Machine Learning (IFML). They would like to thank Aravind Gollakota and Sushrut Karmalkar for helpful
conversations.

References

[Val84] L. G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (Nov. 1984), pp. 1134–1142.

[KLPV87] Michael Kearns, Ming Li, Leonard Pitt, and Leslie G. Valiant. “Recent Results on Boolean Concept
Learning”. In: proceedings of the fourth international workshop on machine learning. Ed. by Pat
Langley. Morgan Kaufmann, 1987, pp. 337–352.

[Lit87] Nick Littlestone. “Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold
Algorithm”. In: Proceedings of the 28th Annual Symposium on Foundations of Computer Science.
SFCS ’87. USA: IEEE Computer Society, 1987, pp. 68–77.

[Ang88] Dana Angluin. “Queries and Concept Learning”. In: Mach. Learn. 2.4 (Apr. 1988), pp. 319–342.

[Hau88] D. Haussler. Space Efficient Learning Algorithms. Tech. rep. UCSC-CRL-88-2. Santa Cruz, CA:
University of Calif. Computer Research Laboratory, 1988.

[Lit89] Nick Littlestone. “From On-Line to Batch Learning”. In: Proceedings of the Second Annual Workshop

on Computational Learning Theory. COLT ’89. Santa Cruz, California, USA: Morgan Kaufmann
Publishers Inc., 1989, pp. 269–284.

[SG95] Dale Schuurmans and Russell Greiner. “Sequential PAC Learning”. In: Proceedings of the Eighth

Annual Conference on Computational Learning Theory. COLT ’95. Santa Cruz, California, USA:
Association for Computing Machinery, 1995, pp. 377–384.

[CCG04] N. Cesa-Bianchi, A. Conconi, and C. Gentile. “On the generalization ability of on-line learning
algorithms”. In: IEEE Transactions on Information Theory 50.9 (2004), pp. 2050–2057.

[HRZ07] Sariel Har-Peled, Dan Roth, and Dav Zimak. “Maximum Margin Coresets for Active and Noise Tol-
erant Learning”. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence.
IJCAI’07. Hyderabad, India: Morgan Kaufmann Publishers Inc., 2007, pp. 836–841.

[Pag10] David Page. Lecture Notes on Theoretical Approaches to Machine Learning. http://pages.cs.
wisc.edu/~dpage/cs760/MLlecturePAC.pdf. CS 760, UW-Madison. 2010.

[Bal11] Nina Balcan. Lecture Notes. http://www.cs.cmu.edu/~ninamf/ML11/lect0908.pdf. 8803 Machine
Learning Theory, Georgia Tech. 2011.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited379

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



[Blu14] Avrim Blum. Lecture Notes on Online Learning. http://www.cs.cmu.edu/~avrim/ML14/lect0829.
pdf. CS-598, CMU. 2014.

[Kan17] Varun Kanade. Lecture Notes on Online Learning, Mistake Bounds, Perceptron Algorithm. https:
//www.cs.ox.ac.uk/people/varun.kanade/teaching/AML-HT2017/lectures/mistakebound-

online.pdf. Advanced Machine Learning, Oxford. 2017.

[BHMZ20] Olivier Bousquet, Steve Hanneke, Shay Moran, and Nikita Zhivotovskiy. “Proper learning, Helly
number, and an optimal SVM bound”. In: Conference on Learning Theory. PMLR. 2020, pp. 582–
609.

[HK21] Steve Hanneke and Aryeh Kontorovich. “Stable Sample Compression Schemes: New Applications
and an Optimal SVM Margin Bound”. In: Proceedings of the 32nd International Conference on

Algorithmic Learning Theory. Ed. by Vitaly Feldman, Katrina Ligett, and Sivan Sabato. Vol. 132.
Proceedings of Machine Learning Research. PMLR, 16–19 Mar 2021, pp. 697–721.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited380

D
o
w

n
lo

ad
ed

 0
7
/2

7
/2

3
 t

o
 1

7
2
.5

8
.2

2
.2

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y


	Introduction
	Related Work

	Notation
	Proof overview
	Analysis
	Lower bound
	Conclusion

