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Abstract This paper presents a summary and meta-
analysis of the first three iterations of the annual

International Verification of Neural Networks Compe-
tition (VNN-COMP) held in 2020, 2021, and 2022. In
the VNN-COMP, participants submit software tools

that analyze whether given neural networks satisfy
specifications describing their input-output behavior.
These neural networks and specifications cover a
variety of problem classes and tasks, corresponding

to safety and robustness properties in image classi-
fication, neural control, reinforcement learning, and
autonomous systems. We summarize the key processes,

rules, and results, present trends observed over the
last three years, and provide an outlook into possible
future developments.
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1 Introduction

Neural networks are increasingly used in safety-critical
applications [7,24]. However, it has become apparent
that they are highly susceptible to adversarial examples

[51], i.e., minor and possibly imperceptible input per-
turbations can cause the output to change significantly.
As such perturbations can occur in the real world either
at random or due to malicious actors, it is of utmost

importance to analyze the robustness of deep learning
based systems in a mathematically rigorous manner be-
fore applying them in safety-critical domains. To this

end, a wide range of methods and corresponding soft-
ware tools have been developed [13,17,23,25]. However,
with tools becoming ever more numerous and special-

ized, it became increasingly difficult for practitioners to
decide which tool to use.

In 2020, the inaugural VNN-COMP was organized
to tackle this problem and allow researchers to com-
pare their neural network verifiers on a wide set of
benchmarks. Initially conceived as a friendly compe-
tition with little standardization, it was increasingly
standardized and automated to ensure a fair compari-
son on cost-equivalent hardware using standardized for-
mats for both properties and networks.

In this work, we outline this development, summa-
rize key rules and results, describe the high-level trends
observed over the last three years, and provide an out-
look on possible future developments.

2 Neural Network Verification

We consider the neural network verification problem
defined as follows: Given an input specification ϕ ⊆
Rdin , also called pre-condition, an output specification
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ψ ⊆ Rdout , also called post-condition, and a neural net-
work N : Rdin 7→ Rdout , we aim to prove that the pre-
condition implies the post-condition, i.e.,

∀x : x ⊨ ϕ⇒ N(x) ⊨ ψ, (2.1)

or provide a counterexample.

Inspired by the notation common in the SAT-solver
community, we encode this problem by specifying a con-
straint set describing an adversarial example, i.e.,

∃x : x ⊨ ϕ ∧N(x) ⊨ ¬ψ. (2.2)

Therefore, we call instances where Equation (2.2) is
satisfiable and thus the property encoded by Equa-
tion (2.1) does not hold SAT and instances where Equa-
tion (2.2) is unsatisfiable and the property encoded by
Equation (2.1) has been shown to hold UNSAT. Note
that while it is possible to show SAT by directly search-
ing for counter-examples using adversarial attacks [18,
33], those approaches are not complete, i.e., if they are
not successful in finding a counter-example this does

not imply that a property holds.

Example Problems One particularly popular property

is the robustness to adversarial ℓ∞-norm bounded per-
turbations in image classification. There, the network
N computes a numerical score y ∈ Rdout corresponding

to its confidence that the input belongs to each of the
dout classes for each input x ∈ Rdin . The final classi-
fication c is then computed as c = argmaxiN(x)i. In

this setting, an adversary may want to perturb the in-
put such that the classification changes. Therefore, the
verification intends to prove that

argmaxiN(x′)i = t,

∀x′ ∈ {x′ ∈ Rdin | ∥x− x′∥∞ ≤ ϵ},

where t is the target class, x is the original image and
ϵ is the maximal permissible perturbation magnitude.
There, the pre-condition ϕ describes the inputs an at-
tacker can choose from (ϕ = {x′ ∈ Rdin | ∥x − x′∥∞ ≤
ϵ}), i.e., an ℓ∞-ball of radius ϵ, and the post-condition
ψ describes the output space corresponding to a clas-

sification to the target class t (ψ = {y ∈ Rdout | yt >
yi, ∀i ̸= t}).

When neural networks are used as controllers, more
complex properties can be relevant. For example, in the
ACAS Xu setting [24] a neural controller gives action
recommendations based on the relative position and
heading of the controlled and intruder aircraft. There,
we want to, e.g., ensure that for inputs D corresponding

to the intruder aircraft being straight ahead and head-
ing our way, neither of the evasive maneuvers ”strong

left” (SL) or ”strong right” (SR) is considered the worst
option. More formally, we want to verify that

argminiN(x′)i /∈ {SL, SR}, ∀x′ ∈ D.

Here, we obtain a more complex, non-convex post-
condition

ψ =Rdout\(
{y ∈ Rdout | ySL < yi, ∀i /∈ {SL, SR}}
∪ {y ∈ Rdout | ySR < yi, ∀i /∈ {SL, SR}}

)
.

3 Competition Goals

VNN-COMP is organized to further the following goals.

Define Standards To enable practitioners to easily use
and evaluate a range of different verification approaches
and tools without substantial overhead, it is essential
that all tools can process both networks and speci-
fications in a standardized file format. To this end,
the second iteration of the VNN-COMP established

such a standard. Problem specifications (pre- and post-
condition) are defined using the VNN-LIB [52] format
and neural networks are defined using the ONNX [3] stan-

dard. In 2022, additionally, a standardized format for
counterexamples was introduced.

Facilitate Verification Tool Comparison Every year,
dozens of papers are published on neural network
verification, many proposing not only new methods
but also new benchmarks. With authors potentially

investing more time into tuning their method to the
chosen benchmarks, a fair comparison between all
these methods is difficult. VNN-COMP facilitates such
a comparison between a large number of tools on a
diverse set of benchmarks, using cost-equivalent hard-
ware, and test instances not available to participants.
Letting participants and industry practitioners propose
a wide range of interesting benchmarks, yields not
only a ranking on the problems typically used in the
field but also highlights which tools are particularly
suitable for more specialized problems. Further, by
ensuring a standardized installation and evaluation
process is in place, the comparison to a large number

of state-of-the-art tools for any publication is enabled.

Shape Future Work Directions The visibility VNN-

COMP lends to the problems underlying the considered
benchmarks has the potential to raise their profile
in the community. As benchmarks are developed
jointly by industry and academia, this constitutes a
great opportunity to shape future research to be as
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impactful as possible. Over the last years, benchmarks
have featured ever-increasing network sizes (see Ta-
ble 5.2), promoting scalability, more complex networks
(including, e.g., residual [20] and max-pooling layers
[68]), promoting generalizability, and more complex
specifications, enabling more interesting properties to
be analyzed.

Bring Researchers Together Both the rule and bench-
mark discussion phase during the lead-up to the
competition, as well as the in-person presentation of
results at the Workshop on Formal Methods for ML-
Enabled Autonomous Systems (FoMLAS)1 provide
participants with a great opportunity to meet fellow
researches and discuss the future of the field. Further,
the tool and benchmark descriptions participants pro-
vide for the yearly report [2,5,35] serve as an excellent
summary of state-of-the-art methods, allowing people
entering the field to get a quick overview.

4 Overview of Three Years of VNN-COMP

In this section, we provide a high-level description of
how the VNN-COMP evolved from 2020 to 2022, list-
ing all participants and the final rankings in Table 5.1.

Generally, performance is measured on a set of equally
weighted benchmarks, each consisting of a set of related
instances. Each instance consists of a trained neural

network, a timeout, and input and output constraints.
Below, we group benchmarks into categories to enable
a quicker comparison between years.

4.1 VNN-COMP 2020

The inaugural VNN-COMP2 [2] was held in 2020 as a
“friendly competition” with no winner. Its main goal
was to provide a stepping stone for future iterations
by starting the process of defining common problem
settings and identifying possible avenues for standard-
ization.

4.1.1 Benchmarks

Three benchmark categories were considered with only
one of the eight teams participating in all of them:

– Fully connected networks with ReLU activations –
two benchmarks, based on ACAS Xu and MNIST.

1 https://fomlas2022.wixsite.com/fomlas2022
2 https://sites.google.com/view/vnn20/vnncomp

– Fully connected networks with sigmoid and tanh
activation functions – one benchmark, based on
MNIST.

– Convolutional networks – two benchmarks, based on
MNIST and CIFAR10.

4.1.2 Evaluation

Teams evaluated their tools using their own hardware.
While this simplified the evaluation process, it made
the reported results incomparable, due to the signif-
icant hardware differences. The teams reported that
they used between 4 and 40 CPUs and between 16 and
756 GB of RAM.

4.2 VNN-COMP 2021

Based upon the insights gained in 2020, the second it-
eration of VNN-COMP3 was organized with a stronger
focus on comparability between the participating tools

[5].

4.2.1 Benchmarks

Teams were permitted to propose one benchmark
with a total timeout of at most six hours split over

its constituting instances. Networks were defined in
the ONNX format [3] and problem specifications were
given in the VNN-LIB format [52]. To prevent excessive
tuning to specific benchmark instances, benchmark

proposers were encouraged to provide a script enabling
the generation of new random instances for the final
tool evaluation. However, teams were allowed to tune

their tools for each benchmark, using the initial set of
benchmark instances.

In 2021, the benchmarks could be split into the fol-
lowing categories, with multiple teams participating in
all of them:

– Fully connected networks with ReLU activations –
two benchmarks, based on ACAS Xu and MNIST.

– Fully connected networks with sigmoid activations
– one benchmark, based on MNIST.

– Convolutional networks – three benchmarks, based
on CIFAR10.

– Networks with max-pooling layers – one benchmark,
based on MNIST.

– Residual networks – one benchmark, based on

CIFAR10.
– Large networks with sparse matrices – one bench-

mark, based on database indexing.

3 https://sites.google.com/view/vnn2021

https://fomlas2022.wixsite.com/fomlas2022
https://sites.google.com/view/vnn20/vnncomp
https://sites.google.com/view/vnn2021
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Table 4.1: Available AWS instances.

2021 2022 vCPUs RAM [GB] GPU

r5.12xlarge ✓ ✗ 48 384 ✗

p3.2xlarge ✓ ✓ 8 61 V100 GPU with 16 GB memory

m5.16xlarge ✗ ✓ 64 256 ✗

g5.8xlarge ✗ ✓ 32 128 A10G GPU with 24 GB memory

t2.large ✗ ✓ 2 8 ✗

4.2.2 Evaluation

To allow for comparability of results, all tools were
evaluated on equal-cost hardware using Amazon Web
Services (AWS). Each team could decide whether they
wanted their tool to be evaluated on a CPU-focused
r5.12xlarge or a GPU-focused p3.2xlarge instance (see
Table 4.1 for more details). Further, instead of provid-
ing results and runtimes themselves, teams had to pre-
pare scripts automating the installation and execution
of their tools. After the submission deadline, the orga-

nizers installed and evaluated each tool using the pro-
vided scripts. In many cases, this process required some
debugging in a back and forth between the organizers

and teams.

Scoring For every benchmark, 10 points were awarded
for correctly showing the instance to be SAT/UNSAT,
with a 100 point penalty for incorrect results (see Ta-

ble 4.2). A simple adversarial attack was used to iden-
tify “easy” SAT instances, on which the available points
were reduced from 10 to 1. If tools reported contra-
dicting results on an instance, the ground truth was

decided by a majority vote. Bonus points were awarded
to the fastest two tools on every instance (two points
for the fastest and one point for the second fastest).
Runtimes differing by less than 0.2 seconds or below
one second were considered equal, so multiple teams
could receive the two point bonus. To correct the no-

table differences in startup overhead, e.g., due to the
need to acquire a GPU, it was measured as the runtime
on a trivial instance and subtracted from every runtime.
The benchmark score was computed from the points ob-
tained as discussed above by normalizing with the maxi-
mum number of obtained points. Consequently, the tool
with the most points was assigned a score of 100%. The

total competition score was simply the sum of the per
benchmark scores, corresponding to equal weighting.

Results In 2021, 12 teams participated in the competi-
tion. α-β-CROWN won first place, followed by VeriNet
in second, and ERAN/OVAL in third, depending on
the overhead measurement and voting scheme used to

Table 4.2: Points per instance in 2021.
SAT instances were split into simple and
complex based on whether a simple ad-
versarial attack was successful.

Returned Result

Ground Truth SAT UNSAT Other

SAT, simple +1 −100 0
SAT, complex +10 −100 0
UNSAT −100 +10 0

determine result-correctness. Except for VeriNet, they
all used the GPU instance.

4.3 VNN-COMP 2022

In the most recent iteration of VNN-COMP4 [35], the

evaluation was fully automated, allowing the number of
benchmarks to be increased.

4.3.1 Benchmarks

In 2022, each participating team could submit or en-
dorse up to two benchmarks, allowing industry practi-
tioners to propose benchmarks without entering a tool.
Each benchmark had a total timeout of between three
and six hours, with randomization of instances being

mandatory this year. Tool tuning was still permitted
on a per benchmark level and in practice also per net-
work using the network’s statistics.

The submitted benchmarks can be grouped into the
following categories:

– Fully connected networks with ReLU activations –
three benchmarks, based on reinforcement tasks and
MNIST.

– Fully connected networks in TLL format [14] – one
benchmark.

– Large networks with sparse matrices – one bench-
mark, based on database indexing and cardinality

estimation.

4 https://sites.google.com/view/vnn2022

https://sites.google.com/view/vnn2022
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– Convolutional networks – three benchmarks, based
on CIFAR10.

– Residual networks – two benchmarks, based on
CIFAR10, CIFAR100, and TinyImageNet.

– Complex U-Net networks with average-pooling and
softmax – one benchmark based on image segmen-
tation.

4.3.2 Evaluation

Similar to the previous year, teams could choose be-
tween a range of AWS instance types (see Table 4.1)
providing a CPU, GPU, or mixed focus. Except for the
much weaker t2.large instance, all instances were priced
at around three dollars per hour. In contrast to 2021
where organizers had to manually execute installation
scripts and debug with the participants, an automated
submission and testing pipeline was set up. Teams could
submit their benchmarks and tools via a web inter-

face by specifying a git repository, commit hash, and
post-installation script (enabling, e.g., the acquisition
of licenses). This triggered a new AWS instance to be

spawned where all installation scripts were executed. If
the installation succeeded, the tool was automatically
evaluated on a previously selected set of benchmarks
before the instance was terminated again. To enable

debugging by the participants, all outputs were logged
and made accessible live via the submission website,
allowing them to monitor the progress. This automa-

tion allowed each team to perform as many tests as
necessary without the need to wait for feedback from
the organizers. Furthermore, teams could test on the

same AWS instances used during final evaluation with-
out having to pay for their usage, with the costs kindly
covered by the SRI Lab of ETH Zurich.

Scoring Unlike during the VNN-COMP 2021, SAT in-
stances were not divided into simple and complex for
scoring purposes, leading to 10 points being awarded
for all correct results (see Table 4.3). Further, instead
of relying on a voting scheme to determine the ground
truth in the presence of dissent among tools, the burden
of proof was placed on the tool reporting SAT, requiring

them to provide a concrete counter-example. If no valid
counter-example was provided, the corresponding tool
was judged to be incorrect and awarded the 100 point
penalty.

Results Out of the eleven participating teams, α-β-
CROWN placed first, MN-BaB second, and VeriNet
third. For a comparison of all participating tools across
all benchmarks, see Figure 4.1.

Table 4.3: Points per instance in 2022.

Returned Result

Ground Truth SAT UNSAT Other

SAT +10 −100 0
UNSAT −100 +10 0

5 Comparison Across the Years

In Table 5.1 we list all tools participating in any itera-
tion of the VNN-COMP and refer the interested reader
to the corresponding VNN-COMP report for a short
description of the tools. In Table 5.2, we compare the
scope of the competition across the last three years. As
can be seen, the number, variety, complexity, and scale
of benchmarks increased with every iteration. Start-
ing with 5 benchmarks covering simple fully connected
(FC) and convolutional (Conv) networks in 2020, the

2022 competition saw 12 benchmarks including a range
of complex residual and U-Net architectures with up
to 140 million parameters. Further, we believe that the

increasing number of registered tools clearly shows that
the interest in both the field in general and the compe-
tition in particular is growing year by year. However,

the large and increasing discrepancy between registered
and submitted tools might indicate that many teams
feel like they are not able to invest the significant effort
required to support not only the standardized network

and specification formats but also the wide variety of
different benchmarks. As tools are ranked by their to-
tal score with each benchmark providing a score of up

to 100%, the final ranking is biased towards tools that
support all benchmarks. While we believe that this is a
valuable incentive for tool developers to develop meth-
ods that can be easily applied to new problems, it might

be daunting for new teams to implement all necessary
features, deterring them from participating at all.

Successful Trends While all teams started out using
only CPUs in 2020, only one of the top four teams
relied solely on CPUs in 2021, and all top three teams
chose GPU instances in 2022. This transition enabled
both the more efficient evaluation of simple bound
propagation methods such as DeepPoly [49], CROWN
[66], and IBP [19] and approximate solutions of the
linear programming (LP) problems arising during
verification [15,59,62]. Similarly, the top two teams
in 2021 and all top three teams in 2022 relied on a
branch-and-bound (BaB) based approach, recursively
breaking down the verification problem into easier
subproblems until it becomes solvable, thus effectively

enabling the use of GPUs to solve tighter mixed
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Fig. 4.1: Cactus plot for all tools in the VNN-COMP 2022 across all benchmarks.

integer linear programming (MILP) encodings of the

verification problem [11,15,59,65]. Both top two teams
in the most recent iteration combined this approach
with additional multi-neuron [15] and solver-generated
cutting plane constraints [65], first introduced by the

3rd place ERAN in 2021 [37]. We thus conclude that
successful tools leverage hardware accelerators such as
GPUs to efficiently handle tight (MI)LP encodings of

the verification problem.

6 Outlook

Below we discuss considerations that could enable fu-

ture iterations of the VNN-COMP to serve its goals and
the community, discussed in Section 3, even better.

6.1 Tracking Year-on-Year Progress

While we believe VNN-COMP already provides rea-

sonable mechanisms for comparing the tools submitted
in every iteration, the changing benchmarks and tools
make it hard to track the year-on-year progress of
the field as a whole. Because some tools are heavily
optimized for the specific benchmarks of that year’s
competition, simply evaluating them on the bench-
marks of previous (or future) years (even if they
support them) does not yield a meaningful progress
metric. While one benchmark from the inaugural com-
petition was included as an unscored extra benchmark

in the two following iterations (cifar2020), only few
unsolved instances remain, making it a very insensitive

measure for further improvements. While including

all benchmarks from previous years in the (scored)
benchmark selection would place an undue burden on
participants, choosing one particularly challenging,
representative, and interesting benchmark every year

to be included as a (scored) extra benchmark in future
iterations might be a good compromise. Additionally,
a more restrictive stance on tool tuning could enable a

much more representative evaluation of new tools on
old benchmarks.

6.2 Tool Tuning

Many of the most successful tools do not employ a sin-
gle verification strategy, but a whole portfolio of dif-

ferent modes, all coming with different hyperparame-
ters. Depending on their choice, tool performance can
vary significantly, making it essential for practitioners
to get their choice right when applying these tools to
new problems. However, this can be highly challenging
given the large number of parameters and their complex
interactions, especially without in-depth knowledge of

the tool.

For VNN-COMP, tuning tools was allowed explic-
itly on a per-benchmark basis and implicitly on a per-
network basis, enabling teams to showcase the maxi-
mum performance of their tools. However, for future
iterations it might be interesting to restrict tuning for
some or all benchmarks to encourage authors to de-
velop autotuning strategies, making the adaption of

their tools to new problems much easier. This could,



VNN-COMP First Three Years 7

Table 5.1: Participating tools.

Tool Organization Participation, Place References

2020 [2] 2021 [5] 2022 [35]

α-β-CROWN Carnegie Mellon, Northeastern,
Columbia, UCLA

✗ ✓(1/12) ✓(1/11) [67,61,62]

AveriNN Kansas State University ✗ ✗ ✓(11/11) N/A
CGDTest University of Waterloo ✗ ✗ ✓(5/11) N/A
Debona RWTH Aachen University ✗ ✓(6/12) ✓(8/11) [9]
DNNF University of Virginia ✗ ✓(12/12) ✗ [46]
ERAN ETH Zurich, UIUC ✓ ✓(3/12) ✗ [50,47,49,48,37,43]
FastBatLLNN University of California ✗ ✗ ✓(9/11) N/A
Marabou Hebrew University of Jerusalem,

Stanford University, Amazon Web
Services, NRI Secure

✗ ✓(5/12) ✓(7/11) [26]

MIPVerify Massachusetts Institute of Technol-
ogy

✓ ✗ ✗ [53]

MN-BaB ETH Zurich ✗ ✗ ✓(2/11) [15]
nnenum Stony Brook University ✓ ✓(8/12) ✓(4/11) [4]
NNV Vanderbilt University ✓ ✓(9/12) ✗ [54,57,56,55,60]
NV.jl Carnegie Mellon, Northeastern ✗ ✓(10/12) ✗ [29]
Oval University of Oxford ✓ ✓(3/12) ✗ [12,10,11,39,40,41,32]
PeregriNN University of California ✓ ✗ ✓(6/11) [27]
RPM Stanford ✗ ✓(11/12) ✗ [58]
Venus Imperial College London ✓ ✓(7/12) ✗ [8,28]
VeraPak Utah State University ✗ ✗ ✓(10/11) N/A
VeriNet Imperial College London ✓ ✓(2/12) ✓(3/11) [21,22]

Table 5.2: Comparison across years.

2020 2021 2022

Tools registered N/A 15 18
Tools submitted 8 13 11
Benchmarks submitted 5 8 (+1 unscored) 12 (+1 unscored)
Max. network depth 8 18 27
Max. network parameters 855,600 42,059,431 (sparse) 138,356,520
Activation functions ReLU, tanh, sigmoid ReLU, sigmoid, Max-

Pool, AveragePool
ReLU, sigmoid, MaxPool

Layer types Fully Connected, Conv Fully Connected, Conv,
Residual

Fully Connected, Conv,
Residual, BatchNorm

Applications Image Recognition, Con-
trol

Image Recognition, Con-
trol, Database Indexing

Image Recognition, Con-
trol, Database Indexing,
Cardinality Estimation

Mean #benchmarks/tool 3.0 (min 2, max 5) 5.5 (min 1, max 9) 7.3 (min 1, max 13)

for example, be implemented by not only generating
random specifications but also random networks.

6.3 Batch Processing

Every VNN-COMP benchmark consists of a set of in-
stances that, while typically related, are evaluated in
isolation, with the tool being terminated in between.
Unfortunately, this means that any startup overhead
such as acquiring a GPU or preprocessing the consid-

ered network is incurred for every instance. This is in
contrast to most practical settings where a large num-

ber of input-output specifications are considered for
the same network. This discrepancy is accounted for
by measuring and subtracting this overhead from each
individual runtime. However, not only is this overhead
measurement process flawed and introduces noise, but
it can also dominate the evaluation time for easy in-
stances.

In future iterations, tools could be provided with
a whole batch of properties at once to more closely
relate to their typical application. Further, currently,
timeouts are defined per instance, making a strategy of
always attempting verification until timeout optimal.
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However, in a practical setting, recognizing instances
where verification is likely to fail and stopping early
can significantly increase a method’s throughput and
thus utility. Switching to per benchmark timeouts for
the VNN-COMP would incentivize the development of
effective heuristics towards this goal. Furthermore, tools
could benefit from proof-sharing approaches [16], where
verified sub-problems from one instance are reused for
following instances.

6.4 Continuous Competition

In addition to a yearly VNN-COMP, tool submissions
for the most recent benchmark set could be accepted on
a rolling basis, made possible by the automated sub-
mission and evaluation process introduced this year.
This would transform the competition from a yearly
snapshot of the current research to a centralized repos-
itory of the state-of-the-art, updating as teams submit
new methods that they publish. However, if not imple-

mented with great care, this would enable tools to be
tuned on the evaluation instances before submission,
leading to a skewed comparison. Further, the question

of funding the required cloud compute remains open.

6.5 Soundness Evaluation

An inherent requirement for neural network verifiers
is that they are sound, i.e., they never claim a safety

property holds, when in fact it does not. However, as-
sessing soundness is difficult as the ground truth for
VNN-COMP problem instances is generally only known

if it was shown to be SAT with a valid counter-example.
This is particularly problematic when no instances in
a benchmark are SAT and thus returning UNSAT for ev-
ery instance immediately can not be demonstrated to

be unsound. Requiring a certain portion of instances of
every benchmark to be SAT (in expectation), could al-
leviate this issue. An interesting alternative avenue to
tackle this challenge is proof generation [38]. An extra
category could be introduced where tools are addition-
ally required or incentivized to provide a verifiable proof
if they claim a property is UNSAT.

While big soundness bugs are rare, few or none
of the submitted tools are floating point sound, i.e.,
even tools that would be sound using exact arithmetic
might become unsound due to imprecisions introduced
by floating-point arithmetic. This is particularly
pronounced if tools choose to use single precision
computations for performance reasons. The sensitivity
of different tools to such issues could be evaluated on

a benchmark specifically designed to uncover floating
point soundness issues.

6.6 Other Competition Modes

A dedicated falsifier category could be added to encour-
age teams to develop and submit stronger attacks, go-
ing beyond the standard adversarial attacks. Further,
a meta-solver category could be added to investigate
whether approaches that heuristically pick from a range
of methods, successful in other domains [63], can signif-
icantly outperform individual tools. However, it would
need to be ensured that these tools provide sufficient
value over individual submissions, which already com-
bine different verification strategies.

6.7 Promote Common Tool Development

Parsing large and complex VNN-LIB files or con-
verting ONNX files to other common formats can be

time-consuming to implement. While many teams
implemented their own tools to this end, available,
open-source tools for the parsing of VNN-LIB files

[1] and the optimization of ONNX files (DNNV [45])
should be highlighted and their continued development
encouraged.

6.8 Remaining Challenges

We can broadly identify four groups of challenges in
neural network verification:

– Verifying relatively small but only weakly regular-
ized networks, which requires an extraordinarily
precise analysis, can still be intractable with current
methods.

– Scaling precise methods to medium-sized networks

(e.g. small ResNets) and datasets (e.g. Cifar100 or
TinyImageNet) with a large number of neurons is
challenging, as the cost of branch-and-bound based
algorithms scales exponentially with the required
split depth, making branching decisions both harder
and more important.

– Scaling verification to large networks (e.g. VGG-

Net 16) and datasets (e.g. ImageNet) in the pres-
ence of dense input specifications requires partic-
ularly memory-efficient implementations due to a
large number of neurons.

– Verification outside of the classification setting is
underexplored leading to a lack of established ap-
proaches for, e.g., image segmentation or object de-
tection.
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Orthogonally, the training of certifiably robust net-
works remains an open problem. Despite significant
progress over recent years [6,19,34,36,42,44,64],
networks trained specifically to exhibit provable ro-
bustness guarantees still suffer from severely degraded
standard accuracy. Therefore, most benchmarks con-
sidered in the VNN-COMP are based on networks
trained without consideration for later certification.
More broadly in the community, readers may also
be interested in the International Competition on
Verifying Continuous and Hybrid Systems (ARCH-
COMP)5 category on Artificial Intelligence and Neural
Network Control Systems (AINNCS), which has been
held annually since 2019 [31,30], and considers neural
network verification in closed-loop systems.

7 Advice for Participants

In this section, we provide some guidance for teams
that are interested in the VNN-COMP but have not

participated yet. Note that these are neither rules nor
requirements.

7.1 For Benchmark Authors

The VNN-COMP intends to highlight areas where neu-

ral network verification can be successfully applied and
to showcase interesting differences between the partic-
ipating tools. Thus, ideally, tasks are not so hard that
none of the instances can be solved by any participant

but also not so easy that every tool can solve all of
them. For benchmarks related to real-world applica-
tions, we recommend including a detailed description

of the background, to highlight the benchmark’s rele-
vance and the characteristics of the verification prob-
lem, e.g. sparseness of the input or some network layers.
Further questions and requests for modifications should
be expected while tool authors work on supporting the
proposed benchmark.

7.2 For Tool Authors

We recommend teams reference past benchmarks to
test their tool before the new benchmarks are submit-
ted. Given the ever-increasing diversity of submitted
benchmarks, it may not be feasible to support all bench-
marks from the get-go. If this is the case, we recommend
focusing on the fully connected and convolutional ReLU
networks, which in the past have covered a wide range of
benchmarks, while minimizing implementation effort.

5 https://cps-vo.org/group/ARCH/FriendlyCompetition

Some operations, e.g., max-pooling can also be simpli-
fied to multiple ReLU layers using tools such as DNNV

[45]. Further, we recommend extensive testing against
adversarial attacks to minimize the chance for sound-
ness errors. For tools that are designed for very specific
problems, we also want to encourage authors to submit
a relevant benchmark highlighting this specialization.
Finally, we recommend reading publications associated
with the well-performing tools (see Table 5.1) to gain
a better understanding of the techniques used by suc-
cessful teams.

8 Conclusions

In this report, we summarize the main processes and
results of the three VNN-COMP held so far from 2020
to 2022. We highlight the growing interest in the field,
expressed in an increasing number of registered teams

and considered benchmarks, including some submitted
by industry. Further, we observe that every year, the
size and complexity not only of the considered networks
but also specifications grew, driving and exemplifying

progress in the field. Finally, we highlight the increase in
accessibility of verification methods resulting from the
standardized input and output formats and the auto-

mated installation and evaluation process required for
participation in VNN-COMP.
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